Properties

Label 1680.2.v.a.239.6
Level $1680$
Weight $2$
Character 1680.239
Analytic conductor $13.415$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(239,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.239"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.v (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 8x^{10} + 55x^{8} - 272x^{6} + 1375x^{4} - 5000x^{2} + 15625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 239.6
Root \(-2.15605 + 0.592845i\) of defining polynomial
Character \(\chi\) \(=\) 1680.239
Dual form 1680.2.v.a.239.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.393401 - 1.68678i) q^{3} +(2.15605 + 0.592845i) q^{5} -1.00000 q^{7} +(-2.69047 + 1.32716i) q^{9} -4.95259 q^{11} +1.78105i q^{13} +(0.151809 - 3.87001i) q^{15} -1.69638 q^{17} -3.94181i q^{19} +(0.393401 + 1.68678i) q^{21} +5.56144i q^{23} +(4.29707 + 2.55640i) q^{25} +(3.29707 + 4.01613i) q^{27} +7.03008i q^{29} +5.49252i q^{31} +(1.94835 + 8.35394i) q^{33} +(-2.15605 - 0.592845i) q^{35} +9.43432i q^{37} +(3.00424 - 0.700665i) q^{39} -10.6564i q^{41} -6.16774 q^{43} +(-6.58758 + 1.26639i) q^{45} -1.72142i q^{47} +1.00000 q^{49} +(0.667358 + 2.86143i) q^{51} -6.64897 q^{53} +(-10.6780 - 2.93612i) q^{55} +(-6.64897 + 1.55071i) q^{57} -12.0169 q^{59} +3.57360 q^{61} +(2.69047 - 1.32716i) q^{63} +(-1.05588 + 3.84002i) q^{65} +10.7619 q^{67} +(9.38094 - 2.18788i) q^{69} +2.33688 q^{71} +7.04323i q^{73} +(2.62162 - 8.25391i) q^{75} +4.95259 q^{77} +9.28494i q^{79} +(5.47727 - 7.14139i) q^{81} -2.93728i q^{83} +(-3.65748 - 1.00569i) q^{85} +(11.8582 - 2.76564i) q^{87} +2.11859i q^{89} -1.78105i q^{91} +(9.26468 - 2.16076i) q^{93} +(2.33688 - 8.49872i) q^{95} +16.3282i q^{97} +(13.3248 - 6.57290i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} - 12 q^{7} + 6 q^{9} + 12 q^{15} + 2 q^{21} + 16 q^{25} + 4 q^{27} + 8 q^{43} - 4 q^{45} + 12 q^{49} - 16 q^{55} + 32 q^{61} - 6 q^{63} - 24 q^{67} + 36 q^{69} + 18 q^{75} + 22 q^{81} + 8 q^{85}+ \cdots + 22 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.393401 1.68678i −0.227130 0.973864i
\(4\) 0 0
\(5\) 2.15605 + 0.592845i 0.964213 + 0.265128i
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.69047 + 1.32716i −0.896824 + 0.442388i
\(10\) 0 0
\(11\) −4.95259 −1.49326 −0.746631 0.665238i \(-0.768330\pi\)
−0.746631 + 0.665238i \(0.768330\pi\)
\(12\) 0 0
\(13\) 1.78105i 0.493973i 0.969019 + 0.246987i \(0.0794404\pi\)
−0.969019 + 0.246987i \(0.920560\pi\)
\(14\) 0 0
\(15\) 0.151809 3.87001i 0.0391970 0.999232i
\(16\) 0 0
\(17\) −1.69638 −0.411433 −0.205716 0.978612i \(-0.565952\pi\)
−0.205716 + 0.978612i \(0.565952\pi\)
\(18\) 0 0
\(19\) 3.94181i 0.904312i −0.891939 0.452156i \(-0.850655\pi\)
0.891939 0.452156i \(-0.149345\pi\)
\(20\) 0 0
\(21\) 0.393401 + 1.68678i 0.0858471 + 0.368086i
\(22\) 0 0
\(23\) 5.56144i 1.15964i 0.814744 + 0.579820i \(0.196877\pi\)
−0.814744 + 0.579820i \(0.803123\pi\)
\(24\) 0 0
\(25\) 4.29707 + 2.55640i 0.859414 + 0.511280i
\(26\) 0 0
\(27\) 3.29707 + 4.01613i 0.634522 + 0.772905i
\(28\) 0 0
\(29\) 7.03008i 1.30545i 0.757594 + 0.652726i \(0.226375\pi\)
−0.757594 + 0.652726i \(0.773625\pi\)
\(30\) 0 0
\(31\) 5.49252i 0.986485i 0.869892 + 0.493243i \(0.164189\pi\)
−0.869892 + 0.493243i \(0.835811\pi\)
\(32\) 0 0
\(33\) 1.94835 + 8.35394i 0.339165 + 1.45423i
\(34\) 0 0
\(35\) −2.15605 0.592845i −0.364438 0.100209i
\(36\) 0 0
\(37\) 9.43432i 1.55099i 0.631352 + 0.775497i \(0.282500\pi\)
−0.631352 + 0.775497i \(0.717500\pi\)
\(38\) 0 0
\(39\) 3.00424 0.700665i 0.481063 0.112196i
\(40\) 0 0
\(41\) 10.6564i 1.66426i −0.554584 0.832128i \(-0.687123\pi\)
0.554584 0.832128i \(-0.312877\pi\)
\(42\) 0 0
\(43\) −6.16774 −0.940572 −0.470286 0.882514i \(-0.655849\pi\)
−0.470286 + 0.882514i \(0.655849\pi\)
\(44\) 0 0
\(45\) −6.58758 + 1.26639i −0.982019 + 0.188783i
\(46\) 0 0
\(47\) 1.72142i 0.251096i −0.992088 0.125548i \(-0.959931\pi\)
0.992088 0.125548i \(-0.0400688\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.667358 + 2.86143i 0.0934488 + 0.400680i
\(52\) 0 0
\(53\) −6.64897 −0.913306 −0.456653 0.889645i \(-0.650952\pi\)
−0.456653 + 0.889645i \(0.650952\pi\)
\(54\) 0 0
\(55\) −10.6780 2.93612i −1.43982 0.395906i
\(56\) 0 0
\(57\) −6.64897 + 1.55071i −0.880678 + 0.205397i
\(58\) 0 0
\(59\) −12.0169 −1.56447 −0.782237 0.622981i \(-0.785921\pi\)
−0.782237 + 0.622981i \(0.785921\pi\)
\(60\) 0 0
\(61\) 3.57360 0.457553 0.228777 0.973479i \(-0.426527\pi\)
0.228777 + 0.973479i \(0.426527\pi\)
\(62\) 0 0
\(63\) 2.69047 1.32716i 0.338968 0.167207i
\(64\) 0 0
\(65\) −1.05588 + 3.84002i −0.130966 + 0.476295i
\(66\) 0 0
\(67\) 10.7619 1.31477 0.657387 0.753553i \(-0.271662\pi\)
0.657387 + 0.753553i \(0.271662\pi\)
\(68\) 0 0
\(69\) 9.38094 2.18788i 1.12933 0.263389i
\(70\) 0 0
\(71\) 2.33688 0.277337 0.138668 0.990339i \(-0.455718\pi\)
0.138668 + 0.990339i \(0.455718\pi\)
\(72\) 0 0
\(73\) 7.04323i 0.824347i 0.911105 + 0.412174i \(0.135230\pi\)
−0.911105 + 0.412174i \(0.864770\pi\)
\(74\) 0 0
\(75\) 2.62162 8.25391i 0.302719 0.953080i
\(76\) 0 0
\(77\) 4.95259 0.564400
\(78\) 0 0
\(79\) 9.28494i 1.04464i 0.852750 + 0.522319i \(0.174933\pi\)
−0.852750 + 0.522319i \(0.825067\pi\)
\(80\) 0 0
\(81\) 5.47727 7.14139i 0.608586 0.793488i
\(82\) 0 0
\(83\) 2.93728i 0.322408i −0.986921 0.161204i \(-0.948462\pi\)
0.986921 0.161204i \(-0.0515377\pi\)
\(84\) 0 0
\(85\) −3.65748 1.00569i −0.396709 0.109082i
\(86\) 0 0
\(87\) 11.8582 2.76564i 1.27133 0.296508i
\(88\) 0 0
\(89\) 2.11859i 0.224570i 0.993676 + 0.112285i \(0.0358170\pi\)
−0.993676 + 0.112285i \(0.964183\pi\)
\(90\) 0 0
\(91\) 1.78105i 0.186704i
\(92\) 0 0
\(93\) 9.26468 2.16076i 0.960703 0.224061i
\(94\) 0 0
\(95\) 2.33688 8.49872i 0.239759 0.871950i
\(96\) 0 0
\(97\) 16.3282i 1.65787i 0.559342 + 0.828937i \(0.311054\pi\)
−0.559342 + 0.828937i \(0.688946\pi\)
\(98\) 0 0
\(99\) 13.3248 6.57290i 1.33919 0.660601i
\(100\) 0 0
\(101\) 8.65206i 0.860912i −0.902612 0.430456i \(-0.858353\pi\)
0.902612 0.430456i \(-0.141647\pi\)
\(102\) 0 0
\(103\) 4.78680 0.471658 0.235829 0.971795i \(-0.424220\pi\)
0.235829 + 0.971795i \(0.424220\pi\)
\(104\) 0 0
\(105\) −0.151809 + 3.87001i −0.0148151 + 0.377674i
\(106\) 0 0
\(107\) 13.2415i 1.28010i 0.768333 + 0.640051i \(0.221087\pi\)
−0.768333 + 0.640051i \(0.778913\pi\)
\(108\) 0 0
\(109\) −15.5487 −1.48929 −0.744647 0.667458i \(-0.767382\pi\)
−0.744647 + 0.667458i \(0.767382\pi\)
\(110\) 0 0
\(111\) 15.9137 3.71147i 1.51046 0.352277i
\(112\) 0 0
\(113\) −19.9469 −1.87645 −0.938224 0.346029i \(-0.887530\pi\)
−0.938224 + 0.346029i \(0.887530\pi\)
\(114\) 0 0
\(115\) −3.29707 + 11.9907i −0.307453 + 1.11814i
\(116\) 0 0
\(117\) −2.36374 4.79185i −0.218528 0.443007i
\(118\) 0 0
\(119\) 1.69638 0.155507
\(120\) 0 0
\(121\) 13.5282 1.22983
\(122\) 0 0
\(123\) −17.9751 + 4.19225i −1.62076 + 0.378002i
\(124\) 0 0
\(125\) 7.74913 + 8.05921i 0.693104 + 0.720838i
\(126\) 0 0
\(127\) 3.74135 0.331991 0.165995 0.986127i \(-0.446916\pi\)
0.165995 + 0.986127i \(0.446916\pi\)
\(128\) 0 0
\(129\) 2.42640 + 10.4036i 0.213632 + 0.915990i
\(130\) 0 0
\(131\) −7.34319 −0.641577 −0.320789 0.947151i \(-0.603948\pi\)
−0.320789 + 0.947151i \(0.603948\pi\)
\(132\) 0 0
\(133\) 3.94181i 0.341798i
\(134\) 0 0
\(135\) 4.72769 + 10.6136i 0.406895 + 0.913475i
\(136\) 0 0
\(137\) 3.25621 0.278197 0.139098 0.990279i \(-0.455580\pi\)
0.139098 + 0.990279i \(0.455580\pi\)
\(138\) 0 0
\(139\) 4.73309i 0.401455i −0.979647 0.200728i \(-0.935669\pi\)
0.979647 0.200728i \(-0.0643306\pi\)
\(140\) 0 0
\(141\) −2.90367 + 0.677210i −0.244533 + 0.0570314i
\(142\) 0 0
\(143\) 8.82079i 0.737631i
\(144\) 0 0
\(145\) −4.16774 + 15.1572i −0.346112 + 1.25873i
\(146\) 0 0
\(147\) −0.393401 1.68678i −0.0324472 0.139123i
\(148\) 0 0
\(149\) 7.31303i 0.599107i −0.954080 0.299553i \(-0.903162\pi\)
0.954080 0.299553i \(-0.0968376\pi\)
\(150\) 0 0
\(151\) 16.7079i 1.35967i −0.733366 0.679834i \(-0.762052\pi\)
0.733366 0.679834i \(-0.237948\pi\)
\(152\) 0 0
\(153\) 4.56406 2.25138i 0.368983 0.182013i
\(154\) 0 0
\(155\) −3.25621 + 11.8421i −0.261545 + 0.951182i
\(156\) 0 0
\(157\) 14.9268i 1.19129i −0.803247 0.595646i \(-0.796896\pi\)
0.803247 0.595646i \(-0.203104\pi\)
\(158\) 0 0
\(159\) 2.61571 + 11.2154i 0.207439 + 0.889437i
\(160\) 0 0
\(161\) 5.56144i 0.438303i
\(162\) 0 0
\(163\) 3.40586 0.266767 0.133384 0.991064i \(-0.457416\pi\)
0.133384 + 0.991064i \(0.457416\pi\)
\(164\) 0 0
\(165\) −0.751850 + 19.1666i −0.0585314 + 1.49211i
\(166\) 0 0
\(167\) 10.1207i 0.783163i 0.920143 + 0.391581i \(0.128072\pi\)
−0.920143 + 0.391581i \(0.871928\pi\)
\(168\) 0 0
\(169\) 9.82788 0.755991
\(170\) 0 0
\(171\) 5.23142 + 10.6053i 0.400057 + 0.811009i
\(172\) 0 0
\(173\) 13.7133 1.04261 0.521303 0.853372i \(-0.325446\pi\)
0.521303 + 0.853372i \(0.325446\pi\)
\(174\) 0 0
\(175\) −4.29707 2.55640i −0.324828 0.193246i
\(176\) 0 0
\(177\) 4.72748 + 20.2700i 0.355339 + 1.52358i
\(178\) 0 0
\(179\) −6.28731 −0.469935 −0.234968 0.972003i \(-0.575498\pi\)
−0.234968 + 0.972003i \(0.575498\pi\)
\(180\) 0 0
\(181\) −12.0411 −0.895006 −0.447503 0.894282i \(-0.647687\pi\)
−0.447503 + 0.894282i \(0.647687\pi\)
\(182\) 0 0
\(183\) −1.40586 6.02789i −0.103924 0.445595i
\(184\) 0 0
\(185\) −5.59309 + 20.3408i −0.411212 + 1.49549i
\(186\) 0 0
\(187\) 8.40148 0.614377
\(188\) 0 0
\(189\) −3.29707 4.01613i −0.239827 0.292131i
\(190\) 0 0
\(191\) 1.55983 0.112865 0.0564326 0.998406i \(-0.482027\pi\)
0.0564326 + 0.998406i \(0.482027\pi\)
\(192\) 0 0
\(193\) 12.9964i 0.935502i 0.883860 + 0.467751i \(0.154936\pi\)
−0.883860 + 0.467751i \(0.845064\pi\)
\(194\) 0 0
\(195\) 6.89266 + 0.270380i 0.493594 + 0.0193623i
\(196\) 0 0
\(197\) −13.1614 −0.937710 −0.468855 0.883275i \(-0.655333\pi\)
−0.468855 + 0.883275i \(0.655333\pi\)
\(198\) 0 0
\(199\) 21.5904i 1.53050i 0.643733 + 0.765250i \(0.277385\pi\)
−0.643733 + 0.765250i \(0.722615\pi\)
\(200\) 0 0
\(201\) −4.23374 18.1530i −0.298625 1.28041i
\(202\) 0 0
\(203\) 7.03008i 0.493415i
\(204\) 0 0
\(205\) 6.31761 22.9758i 0.441241 1.60470i
\(206\) 0 0
\(207\) −7.38094 14.9629i −0.513011 1.03999i
\(208\) 0 0
\(209\) 19.5222i 1.35038i
\(210\) 0 0
\(211\) 23.3714i 1.60895i −0.593984 0.804477i \(-0.702446\pi\)
0.593984 0.804477i \(-0.297554\pi\)
\(212\) 0 0
\(213\) −0.919330 3.94181i −0.0629915 0.270088i
\(214\) 0 0
\(215\) −13.2979 3.65651i −0.906912 0.249372i
\(216\) 0 0
\(217\) 5.49252i 0.372856i
\(218\) 0 0
\(219\) 11.8804 2.77081i 0.802803 0.187234i
\(220\) 0 0
\(221\) 3.02133i 0.203237i
\(222\) 0 0
\(223\) 11.3809 0.762124 0.381062 0.924549i \(-0.375558\pi\)
0.381062 + 0.924549i \(0.375558\pi\)
\(224\) 0 0
\(225\) −14.9539 1.17501i −0.996927 0.0783338i
\(226\) 0 0
\(227\) 4.52013i 0.300012i 0.988685 + 0.150006i \(0.0479293\pi\)
−0.988685 + 0.150006i \(0.952071\pi\)
\(228\) 0 0
\(229\) 19.5238 1.29017 0.645084 0.764112i \(-0.276823\pi\)
0.645084 + 0.764112i \(0.276823\pi\)
\(230\) 0 0
\(231\) −1.94835 8.35394i −0.128192 0.549649i
\(232\) 0 0
\(233\) −0.694218 −0.0454797 −0.0227399 0.999741i \(-0.507239\pi\)
−0.0227399 + 0.999741i \(0.507239\pi\)
\(234\) 0 0
\(235\) 1.02054 3.71147i 0.0665725 0.242110i
\(236\) 0 0
\(237\) 15.6617 3.65271i 1.01734 0.237269i
\(238\) 0 0
\(239\) −10.1840 −0.658749 −0.329375 0.944199i \(-0.606838\pi\)
−0.329375 + 0.944199i \(0.606838\pi\)
\(240\) 0 0
\(241\) 5.14721 0.331561 0.165780 0.986163i \(-0.446986\pi\)
0.165780 + 0.986163i \(0.446986\pi\)
\(242\) 0 0
\(243\) −14.2007 6.42954i −0.910978 0.412455i
\(244\) 0 0
\(245\) 2.15605 + 0.592845i 0.137745 + 0.0378755i
\(246\) 0 0
\(247\) 7.02054 0.446706
\(248\) 0 0
\(249\) −4.95455 + 1.15553i −0.313982 + 0.0732286i
\(250\) 0 0
\(251\) −25.0418 −1.58062 −0.790312 0.612705i \(-0.790081\pi\)
−0.790312 + 0.612705i \(0.790081\pi\)
\(252\) 0 0
\(253\) 27.5435i 1.73165i
\(254\) 0 0
\(255\) −0.257527 + 6.56501i −0.0161269 + 0.411117i
\(256\) 0 0
\(257\) 24.1225 1.50472 0.752359 0.658754i \(-0.228916\pi\)
0.752359 + 0.658754i \(0.228916\pi\)
\(258\) 0 0
\(259\) 9.43432i 0.586220i
\(260\) 0 0
\(261\) −9.33007 18.9142i −0.577517 1.17076i
\(262\) 0 0
\(263\) 16.3173i 1.00617i 0.864237 + 0.503085i \(0.167802\pi\)
−0.864237 + 0.503085i \(0.832198\pi\)
\(264\) 0 0
\(265\) −14.3355 3.94181i −0.880622 0.242143i
\(266\) 0 0
\(267\) 3.57360 0.833456i 0.218701 0.0510067i
\(268\) 0 0
\(269\) 11.0838i 0.675789i −0.941184 0.337894i \(-0.890285\pi\)
0.941184 0.337894i \(-0.109715\pi\)
\(270\) 0 0
\(271\) 27.9233i 1.69622i 0.529823 + 0.848109i \(0.322259\pi\)
−0.529823 + 0.848109i \(0.677741\pi\)
\(272\) 0 0
\(273\) −3.00424 + 0.700665i −0.181825 + 0.0424062i
\(274\) 0 0
\(275\) −21.2816 12.6608i −1.28333 0.763475i
\(276\) 0 0
\(277\) 24.4421i 1.46858i −0.678833 0.734292i \(-0.737514\pi\)
0.678833 0.734292i \(-0.262486\pi\)
\(278\) 0 0
\(279\) −7.28947 14.7775i −0.436409 0.884703i
\(280\) 0 0
\(281\) 25.2671i 1.50731i −0.657271 0.753654i \(-0.728289\pi\)
0.657271 0.753654i \(-0.271711\pi\)
\(282\) 0 0
\(283\) 25.8073 1.53409 0.767044 0.641595i \(-0.221727\pi\)
0.767044 + 0.641595i \(0.221727\pi\)
\(284\) 0 0
\(285\) −15.2548 0.598404i −0.903618 0.0354464i
\(286\) 0 0
\(287\) 10.6564i 0.629029i
\(288\) 0 0
\(289\) −14.1223 −0.830723
\(290\) 0 0
\(291\) 27.5421 6.42352i 1.61455 0.376553i
\(292\) 0 0
\(293\) 6.37014 0.372147 0.186074 0.982536i \(-0.440424\pi\)
0.186074 + 0.982536i \(0.440424\pi\)
\(294\) 0 0
\(295\) −25.9091 7.12418i −1.50849 0.414786i
\(296\) 0 0
\(297\) −16.3290 19.8903i −0.947507 1.15415i
\(298\) 0 0
\(299\) −9.90518 −0.572831
\(300\) 0 0
\(301\) 6.16774 0.355503
\(302\) 0 0
\(303\) −14.5941 + 3.40373i −0.838411 + 0.195539i
\(304\) 0 0
\(305\) 7.70485 + 2.11859i 0.441179 + 0.121310i
\(306\) 0 0
\(307\) −20.9545 −1.19594 −0.597970 0.801519i \(-0.704026\pi\)
−0.597970 + 0.801519i \(0.704026\pi\)
\(308\) 0 0
\(309\) −1.88313 8.07429i −0.107128 0.459331i
\(310\) 0 0
\(311\) −28.7077 −1.62786 −0.813931 0.580962i \(-0.802677\pi\)
−0.813931 + 0.580962i \(0.802677\pi\)
\(312\) 0 0
\(313\) 9.20399i 0.520240i −0.965576 0.260120i \(-0.916238\pi\)
0.965576 0.260120i \(-0.0837622\pi\)
\(314\) 0 0
\(315\) 6.58758 1.26639i 0.371168 0.0713533i
\(316\) 0 0
\(317\) −18.3928 −1.03304 −0.516522 0.856274i \(-0.672773\pi\)
−0.516522 + 0.856274i \(0.672773\pi\)
\(318\) 0 0
\(319\) 34.8171i 1.94938i
\(320\) 0 0
\(321\) 22.3355 5.20921i 1.24665 0.290750i
\(322\) 0 0
\(323\) 6.68681i 0.372064i
\(324\) 0 0
\(325\) −4.55307 + 7.65328i −0.252559 + 0.424528i
\(326\) 0 0
\(327\) 6.11687 + 26.2273i 0.338264 + 1.45037i
\(328\) 0 0
\(329\) 1.72142i 0.0949052i
\(330\) 0 0
\(331\) 17.6485i 0.970052i 0.874500 + 0.485026i \(0.161190\pi\)
−0.874500 + 0.485026i \(0.838810\pi\)
\(332\) 0 0
\(333\) −12.5209 25.3828i −0.686141 1.39097i
\(334\) 0 0
\(335\) 23.2031 + 6.38013i 1.26772 + 0.348584i
\(336\) 0 0
\(337\) 3.56209i 0.194039i −0.995282 0.0970197i \(-0.969069\pi\)
0.995282 0.0970197i \(-0.0309310\pi\)
\(338\) 0 0
\(339\) 7.84713 + 33.6461i 0.426198 + 1.82741i
\(340\) 0 0
\(341\) 27.2022i 1.47308i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 21.5228 + 0.844279i 1.15875 + 0.0454545i
\(346\) 0 0
\(347\) 0.313111i 0.0168087i −0.999965 0.00840434i \(-0.997325\pi\)
0.999965 0.00840434i \(-0.00267522\pi\)
\(348\) 0 0
\(349\) −8.42640 −0.451055 −0.225527 0.974237i \(-0.572410\pi\)
−0.225527 + 0.974237i \(0.572410\pi\)
\(350\) 0 0
\(351\) −7.15292 + 5.87223i −0.381794 + 0.313437i
\(352\) 0 0
\(353\) 5.64681 0.300549 0.150275 0.988644i \(-0.451984\pi\)
0.150275 + 0.988644i \(0.451984\pi\)
\(354\) 0 0
\(355\) 5.03842 + 1.38541i 0.267412 + 0.0735297i
\(356\) 0 0
\(357\) −0.667358 2.86143i −0.0353203 0.151443i
\(358\) 0 0
\(359\) −10.9611 −0.578503 −0.289251 0.957253i \(-0.593406\pi\)
−0.289251 + 0.957253i \(0.593406\pi\)
\(360\) 0 0
\(361\) 3.46216 0.182219
\(362\) 0 0
\(363\) −5.32199 22.8190i −0.279332 1.19769i
\(364\) 0 0
\(365\) −4.17554 + 15.1855i −0.218558 + 0.794847i
\(366\) 0 0
\(367\) −6.99562 −0.365168 −0.182584 0.983190i \(-0.558446\pi\)
−0.182584 + 0.983190i \(0.558446\pi\)
\(368\) 0 0
\(369\) 14.1428 + 28.6708i 0.736246 + 1.49254i
\(370\) 0 0
\(371\) 6.64897 0.345197
\(372\) 0 0
\(373\) 10.2256i 0.529462i −0.964322 0.264731i \(-0.914717\pi\)
0.964322 0.264731i \(-0.0852831\pi\)
\(374\) 0 0
\(375\) 10.5456 16.2416i 0.544574 0.838713i
\(376\) 0 0
\(377\) −12.5209 −0.644859
\(378\) 0 0
\(379\) 25.5322i 1.31150i −0.754979 0.655749i \(-0.772353\pi\)
0.754979 0.655749i \(-0.227647\pi\)
\(380\) 0 0
\(381\) −1.47185 6.31084i −0.0754052 0.323314i
\(382\) 0 0
\(383\) 21.0210i 1.07412i 0.843544 + 0.537060i \(0.180465\pi\)
−0.843544 + 0.537060i \(0.819535\pi\)
\(384\) 0 0
\(385\) 10.6780 + 2.93612i 0.544202 + 0.149638i
\(386\) 0 0
\(387\) 16.5941 8.18561i 0.843528 0.416098i
\(388\) 0 0
\(389\) 1.58286i 0.0802540i −0.999195 0.0401270i \(-0.987224\pi\)
0.999195 0.0401270i \(-0.0127762\pi\)
\(390\) 0 0
\(391\) 9.43432i 0.477114i
\(392\) 0 0
\(393\) 2.88882 + 12.3864i 0.145722 + 0.624809i
\(394\) 0 0
\(395\) −5.50453 + 20.0188i −0.276963 + 1.00725i
\(396\) 0 0
\(397\) 26.5538i 1.33270i −0.745641 0.666348i \(-0.767857\pi\)
0.745641 0.666348i \(-0.232143\pi\)
\(398\) 0 0
\(399\) 6.64897 1.55071i 0.332865 0.0776326i
\(400\) 0 0
\(401\) 17.2201i 0.859929i −0.902846 0.429964i \(-0.858526\pi\)
0.902846 0.429964i \(-0.141474\pi\)
\(402\) 0 0
\(403\) −9.78242 −0.487297
\(404\) 0 0
\(405\) 16.0430 12.1500i 0.797183 0.603738i
\(406\) 0 0
\(407\) 46.7243i 2.31604i
\(408\) 0 0
\(409\) −36.2446 −1.79218 −0.896090 0.443873i \(-0.853604\pi\)
−0.896090 + 0.443873i \(0.853604\pi\)
\(410\) 0 0
\(411\) −1.28100 5.49252i −0.0631869 0.270926i
\(412\) 0 0
\(413\) 12.0169 0.591315
\(414\) 0 0
\(415\) 1.74135 6.33290i 0.0854794 0.310870i
\(416\) 0 0
\(417\) −7.98369 + 1.86200i −0.390963 + 0.0911825i
\(418\) 0 0
\(419\) −2.66943 −0.130410 −0.0652051 0.997872i \(-0.520770\pi\)
−0.0652051 + 0.997872i \(0.520770\pi\)
\(420\) 0 0
\(421\) −2.06599 −0.100690 −0.0503451 0.998732i \(-0.516032\pi\)
−0.0503451 + 0.998732i \(0.516032\pi\)
\(422\) 0 0
\(423\) 2.28461 + 4.63144i 0.111082 + 0.225189i
\(424\) 0 0
\(425\) −7.28947 4.33663i −0.353591 0.210357i
\(426\) 0 0
\(427\) −3.57360 −0.172939
\(428\) 0 0
\(429\) −14.8788 + 3.47011i −0.718353 + 0.167538i
\(430\) 0 0
\(431\) 5.22570 0.251713 0.125856 0.992048i \(-0.459832\pi\)
0.125856 + 0.992048i \(0.459832\pi\)
\(432\) 0 0
\(433\) 11.8254i 0.568293i −0.958781 0.284147i \(-0.908290\pi\)
0.958781 0.284147i \(-0.0917103\pi\)
\(434\) 0 0
\(435\) 27.2065 + 1.06723i 1.30445 + 0.0511699i
\(436\) 0 0
\(437\) 21.9221 1.04868
\(438\) 0 0
\(439\) 17.7295i 0.846183i 0.906087 + 0.423091i \(0.139055\pi\)
−0.906087 + 0.423091i \(0.860945\pi\)
\(440\) 0 0
\(441\) −2.69047 + 1.32716i −0.128118 + 0.0631983i
\(442\) 0 0
\(443\) 21.5656i 1.02461i −0.858802 0.512307i \(-0.828791\pi\)
0.858802 0.512307i \(-0.171209\pi\)
\(444\) 0 0
\(445\) −1.25600 + 4.56778i −0.0595399 + 0.216534i
\(446\) 0 0
\(447\) −12.3355 + 2.87695i −0.583449 + 0.136075i
\(448\) 0 0
\(449\) 36.9559i 1.74406i 0.489456 + 0.872028i \(0.337195\pi\)
−0.489456 + 0.872028i \(0.662805\pi\)
\(450\) 0 0
\(451\) 52.7769i 2.48517i
\(452\) 0 0
\(453\) −28.1826 + 6.57290i −1.32413 + 0.308822i
\(454\) 0 0
\(455\) 1.05588 3.84002i 0.0495006 0.180023i
\(456\) 0 0
\(457\) 4.32152i 0.202152i 0.994879 + 0.101076i \(0.0322286\pi\)
−0.994879 + 0.101076i \(0.967771\pi\)
\(458\) 0 0
\(459\) −5.59309 6.81289i −0.261063 0.317999i
\(460\) 0 0
\(461\) 21.4874i 1.00077i −0.865804 0.500384i \(-0.833192\pi\)
0.865804 0.500384i \(-0.166808\pi\)
\(462\) 0 0
\(463\) 36.5443 1.69836 0.849179 0.528105i \(-0.177097\pi\)
0.849179 + 0.528105i \(0.177097\pi\)
\(464\) 0 0
\(465\) 21.2561 + 0.833816i 0.985727 + 0.0386673i
\(466\) 0 0
\(467\) 1.52253i 0.0704544i 0.999379 + 0.0352272i \(0.0112155\pi\)
−0.999379 + 0.0352272i \(0.988785\pi\)
\(468\) 0 0
\(469\) −10.7619 −0.496938
\(470\) 0 0
\(471\) −25.1783 + 5.87223i −1.16016 + 0.270578i
\(472\) 0 0
\(473\) 30.5463 1.40452
\(474\) 0 0
\(475\) 10.0768 16.9382i 0.462357 0.777179i
\(476\) 0 0
\(477\) 17.8889 8.82427i 0.819075 0.404036i
\(478\) 0 0
\(479\) 20.3680 0.930639 0.465319 0.885143i \(-0.345939\pi\)
0.465319 + 0.885143i \(0.345939\pi\)
\(480\) 0 0
\(481\) −16.8030 −0.766149
\(482\) 0 0
\(483\) −9.38094 + 2.18788i −0.426848 + 0.0995518i
\(484\) 0 0
\(485\) −9.68007 + 35.2043i −0.439549 + 1.59854i
\(486\) 0 0
\(487\) −29.7824 −1.34957 −0.674785 0.738014i \(-0.735764\pi\)
−0.674785 + 0.738014i \(0.735764\pi\)
\(488\) 0 0
\(489\) −1.33987 5.74494i −0.0605909 0.259795i
\(490\) 0 0
\(491\) 13.0191 0.587544 0.293772 0.955875i \(-0.405089\pi\)
0.293772 + 0.955875i \(0.405089\pi\)
\(492\) 0 0
\(493\) 11.9257i 0.537106i
\(494\) 0 0
\(495\) 32.6256 6.27193i 1.46641 0.281902i
\(496\) 0 0
\(497\) −2.33688 −0.104823
\(498\) 0 0
\(499\) 42.9995i 1.92492i 0.271422 + 0.962460i \(0.412506\pi\)
−0.271422 + 0.962460i \(0.587494\pi\)
\(500\) 0 0
\(501\) 17.0714 3.98149i 0.762695 0.177880i
\(502\) 0 0
\(503\) 21.2436i 0.947204i −0.880739 0.473602i \(-0.842953\pi\)
0.880739 0.473602i \(-0.157047\pi\)
\(504\) 0 0
\(505\) 5.12933 18.6542i 0.228252 0.830103i
\(506\) 0 0
\(507\) −3.86630 16.5775i −0.171708 0.736232i
\(508\) 0 0
\(509\) 23.8440i 1.05687i 0.848975 + 0.528434i \(0.177220\pi\)
−0.848975 + 0.528434i \(0.822780\pi\)
\(510\) 0 0
\(511\) 7.04323i 0.311574i
\(512\) 0 0
\(513\) 15.8308 12.9964i 0.698948 0.573806i
\(514\) 0 0
\(515\) 10.3206 + 2.83783i 0.454778 + 0.125050i
\(516\) 0 0
\(517\) 8.52551i 0.374952i
\(518\) 0 0
\(519\) −5.39484 23.1314i −0.236807 1.01536i
\(520\) 0 0
\(521\) 15.7662i 0.690729i −0.938469 0.345365i \(-0.887755\pi\)
0.938469 0.345365i \(-0.112245\pi\)
\(522\) 0 0
\(523\) 0.217577 0.00951397 0.00475698 0.999989i \(-0.498486\pi\)
0.00475698 + 0.999989i \(0.498486\pi\)
\(524\) 0 0
\(525\) −2.62162 + 8.25391i −0.114417 + 0.360230i
\(526\) 0 0
\(527\) 9.31740i 0.405872i
\(528\) 0 0
\(529\) −7.92963 −0.344767
\(530\) 0 0
\(531\) 32.3313 15.9485i 1.40306 0.692104i
\(532\) 0 0
\(533\) 18.9796 0.822097
\(534\) 0 0
\(535\) −7.85014 + 28.5492i −0.339391 + 1.23429i
\(536\) 0 0
\(537\) 2.47343 + 10.6053i 0.106736 + 0.457653i
\(538\) 0 0
\(539\) −4.95259 −0.213323
\(540\) 0 0
\(541\) 11.9751 0.514849 0.257425 0.966298i \(-0.417126\pi\)
0.257425 + 0.966298i \(0.417126\pi\)
\(542\) 0 0
\(543\) 4.73697 + 20.3107i 0.203283 + 0.871615i
\(544\) 0 0
\(545\) −33.5237 9.21796i −1.43600 0.394854i
\(546\) 0 0
\(547\) −32.0821 −1.37173 −0.685867 0.727727i \(-0.740577\pi\)
−0.685867 + 0.727727i \(0.740577\pi\)
\(548\) 0 0
\(549\) −9.61468 + 4.74276i −0.410344 + 0.202416i
\(550\) 0 0
\(551\) 27.7112 1.18054
\(552\) 0 0
\(553\) 9.28494i 0.394836i
\(554\) 0 0
\(555\) 36.5109 + 1.43222i 1.54980 + 0.0607943i
\(556\) 0 0
\(557\) −1.14444 −0.0484916 −0.0242458 0.999706i \(-0.507718\pi\)
−0.0242458 + 0.999706i \(0.507718\pi\)
\(558\) 0 0
\(559\) 10.9850i 0.464617i
\(560\) 0 0
\(561\) −3.30515 14.1715i −0.139544 0.598320i
\(562\) 0 0
\(563\) 30.5065i 1.28569i 0.765994 + 0.642847i \(0.222247\pi\)
−0.765994 + 0.642847i \(0.777753\pi\)
\(564\) 0 0
\(565\) −43.0065 11.8254i −1.80930 0.497499i
\(566\) 0 0
\(567\) −5.47727 + 7.14139i −0.230024 + 0.299910i
\(568\) 0 0
\(569\) 23.4853i 0.984557i 0.870438 + 0.492279i \(0.163836\pi\)
−0.870438 + 0.492279i \(0.836164\pi\)
\(570\) 0 0
\(571\) 1.22010i 0.0510597i 0.999674 + 0.0255298i \(0.00812728\pi\)
−0.999674 + 0.0255298i \(0.991873\pi\)
\(572\) 0 0
\(573\) −0.613638 2.63109i −0.0256351 0.109915i
\(574\) 0 0
\(575\) −14.2173 + 23.8979i −0.592901 + 0.996612i
\(576\) 0 0
\(577\) 15.5687i 0.648135i 0.946034 + 0.324068i \(0.105051\pi\)
−0.946034 + 0.324068i \(0.894949\pi\)
\(578\) 0 0
\(579\) 21.9221 5.11280i 0.911053 0.212481i
\(580\) 0 0
\(581\) 2.93728i 0.121859i
\(582\) 0 0
\(583\) 32.9296 1.36381
\(584\) 0 0
\(585\) −2.25551 11.7328i −0.0932537 0.485091i
\(586\) 0 0
\(587\) 8.53784i 0.352394i 0.984355 + 0.176197i \(0.0563796\pi\)
−0.984355 + 0.176197i \(0.943620\pi\)
\(588\) 0 0
\(589\) 21.6504 0.892091
\(590\) 0 0
\(591\) 5.17770 + 22.2004i 0.212982 + 0.913203i
\(592\) 0 0
\(593\) 8.20880 0.337095 0.168547 0.985694i \(-0.446092\pi\)
0.168547 + 0.985694i \(0.446092\pi\)
\(594\) 0 0
\(595\) 3.65748 + 1.00569i 0.149942 + 0.0412293i
\(596\) 0 0
\(597\) 36.4182 8.49366i 1.49050 0.347623i
\(598\) 0 0
\(599\) 19.0813 0.779641 0.389820 0.920891i \(-0.372537\pi\)
0.389820 + 0.920891i \(0.372537\pi\)
\(600\) 0 0
\(601\) 7.90909 0.322619 0.161309 0.986904i \(-0.448428\pi\)
0.161309 + 0.986904i \(0.448428\pi\)
\(602\) 0 0
\(603\) −28.9545 + 14.2828i −1.17912 + 0.581640i
\(604\) 0 0
\(605\) 29.1673 + 8.02009i 1.18582 + 0.326063i
\(606\) 0 0
\(607\) −40.3874 −1.63927 −0.819637 0.572883i \(-0.805825\pi\)
−0.819637 + 0.572883i \(0.805825\pi\)
\(608\) 0 0
\(609\) −11.8582 + 2.76564i −0.480519 + 0.112069i
\(610\) 0 0
\(611\) 3.06594 0.124034
\(612\) 0 0
\(613\) 2.34199i 0.0945921i 0.998881 + 0.0472960i \(0.0150604\pi\)
−0.998881 + 0.0472960i \(0.984940\pi\)
\(614\) 0 0
\(615\) −41.2405 1.61775i −1.66298 0.0652339i
\(616\) 0 0
\(617\) 17.8351 0.718016 0.359008 0.933334i \(-0.383115\pi\)
0.359008 + 0.933334i \(0.383115\pi\)
\(618\) 0 0
\(619\) 33.8273i 1.35964i 0.733381 + 0.679818i \(0.237941\pi\)
−0.733381 + 0.679818i \(0.762059\pi\)
\(620\) 0 0
\(621\) −22.3355 + 18.3365i −0.896292 + 0.735817i
\(622\) 0 0
\(623\) 2.11859i 0.0848796i
\(624\) 0 0
\(625\) 11.9296 + 21.9701i 0.477185 + 0.878803i
\(626\) 0 0
\(627\) 32.9296 7.68003i 1.31508 0.306711i
\(628\) 0 0
\(629\) 16.0042i 0.638130i
\(630\) 0 0
\(631\) 32.4751i 1.29281i −0.762993 0.646407i \(-0.776271\pi\)
0.762993 0.646407i \(-0.223729\pi\)
\(632\) 0 0
\(633\) −39.4225 + 9.19433i −1.56690 + 0.365442i
\(634\) 0 0
\(635\) 8.06652 + 2.21804i 0.320110 + 0.0880202i
\(636\) 0 0
\(637\) 1.78105i 0.0705676i
\(638\) 0 0
\(639\) −6.28731 + 3.10142i −0.248722 + 0.122690i
\(640\) 0 0
\(641\) 31.5028i 1.24429i −0.782903 0.622144i \(-0.786262\pi\)
0.782903 0.622144i \(-0.213738\pi\)
\(642\) 0 0
\(643\) 8.61906 0.339902 0.169951 0.985452i \(-0.445639\pi\)
0.169951 + 0.985452i \(0.445639\pi\)
\(644\) 0 0
\(645\) −0.936322 + 23.8692i −0.0368676 + 0.939849i
\(646\) 0 0
\(647\) 6.90047i 0.271286i −0.990758 0.135643i \(-0.956690\pi\)
0.990758 0.135643i \(-0.0433099\pi\)
\(648\) 0 0
\(649\) 59.5150 2.33617
\(650\) 0 0
\(651\) −9.26468 + 2.16076i −0.363112 + 0.0846869i
\(652\) 0 0
\(653\) −40.3149 −1.57765 −0.788823 0.614621i \(-0.789309\pi\)
−0.788823 + 0.614621i \(0.789309\pi\)
\(654\) 0 0
\(655\) −15.8323 4.35337i −0.618617 0.170100i
\(656\) 0 0
\(657\) −9.34752 18.9496i −0.364681 0.739294i
\(658\) 0 0
\(659\) 22.4741 0.875465 0.437733 0.899105i \(-0.355782\pi\)
0.437733 + 0.899105i \(0.355782\pi\)
\(660\) 0 0
\(661\) 39.9091 1.55228 0.776142 0.630558i \(-0.217174\pi\)
0.776142 + 0.630558i \(0.217174\pi\)
\(662\) 0 0
\(663\) −5.09633 + 1.18859i −0.197925 + 0.0461612i
\(664\) 0 0
\(665\) −2.33688 + 8.49872i −0.0906203 + 0.329566i
\(666\) 0 0
\(667\) −39.0974 −1.51386
\(668\) 0 0
\(669\) −4.47727 19.1972i −0.173101 0.742206i
\(670\) 0 0
\(671\) −17.6986 −0.683247
\(672\) 0 0
\(673\) 42.8501i 1.65175i 0.563853 + 0.825875i \(0.309318\pi\)
−0.563853 + 0.825875i \(0.690682\pi\)
\(674\) 0 0
\(675\) 3.90090 + 25.6862i 0.150146 + 0.988664i
\(676\) 0 0
\(677\) −20.9491 −0.805138 −0.402569 0.915390i \(-0.631883\pi\)
−0.402569 + 0.915390i \(0.631883\pi\)
\(678\) 0 0
\(679\) 16.3282i 0.626618i
\(680\) 0 0
\(681\) 7.62448 1.77822i 0.292171 0.0681417i
\(682\) 0 0
\(683\) 9.00429i 0.344540i 0.985050 + 0.172270i \(0.0551101\pi\)
−0.985050 + 0.172270i \(0.944890\pi\)
\(684\) 0 0
\(685\) 7.02054 + 1.93043i 0.268241 + 0.0737578i
\(686\) 0 0
\(687\) −7.68067 32.9324i −0.293036 1.25645i
\(688\) 0 0
\(689\) 11.8421i 0.451149i
\(690\) 0 0
\(691\) 35.8069i 1.36216i −0.732210 0.681079i \(-0.761511\pi\)
0.732210 0.681079i \(-0.238489\pi\)
\(692\) 0 0
\(693\) −13.3248 + 6.57290i −0.506167 + 0.249684i
\(694\) 0 0
\(695\) 2.80598 10.2048i 0.106437 0.387088i
\(696\) 0 0
\(697\) 18.0774i 0.684729i
\(698\) 0 0
\(699\) 0.273106 + 1.17099i 0.0103298 + 0.0442911i
\(700\) 0 0
\(701\) 13.0432i 0.492635i −0.969189 0.246317i \(-0.920779\pi\)
0.969189 0.246317i \(-0.0792206\pi\)
\(702\) 0 0
\(703\) 37.1883 1.40258
\(704\) 0 0
\(705\) −6.66193 0.261329i −0.250903 0.00984220i
\(706\) 0 0
\(707\) 8.65206i 0.325394i
\(708\) 0 0
\(709\) −4.14283 −0.155587 −0.0777936 0.996969i \(-0.524788\pi\)
−0.0777936 + 0.996969i \(0.524788\pi\)
\(710\) 0 0
\(711\) −12.3226 24.9809i −0.462135 0.936856i
\(712\) 0 0
\(713\) −30.5463 −1.14397
\(714\) 0 0
\(715\) 5.22936 19.0180i 0.195567 0.711234i
\(716\) 0 0
\(717\) 4.00640 + 17.1782i 0.149622 + 0.641532i
\(718\) 0 0
\(719\) 1.00789 0.0375879 0.0187940 0.999823i \(-0.494017\pi\)
0.0187940 + 0.999823i \(0.494017\pi\)
\(720\) 0 0
\(721\) −4.78680 −0.178270
\(722\) 0 0
\(723\) −2.02492 8.68222i −0.0753074 0.322895i
\(724\) 0 0
\(725\) −17.9717 + 30.2087i −0.667452 + 1.12192i
\(726\) 0 0
\(727\) 17.4880 0.648594 0.324297 0.945955i \(-0.394872\pi\)
0.324297 + 0.945955i \(0.394872\pi\)
\(728\) 0 0
\(729\) −5.25865 + 26.4829i −0.194765 + 0.980850i
\(730\) 0 0
\(731\) 10.4628 0.386982
\(732\) 0 0
\(733\) 20.1890i 0.745699i 0.927892 + 0.372849i \(0.121619\pi\)
−0.927892 + 0.372849i \(0.878381\pi\)
\(734\) 0 0
\(735\) 0.151809 3.87001i 0.00559958 0.142747i
\(736\) 0 0
\(737\) −53.2992 −1.96330
\(738\) 0 0
\(739\) 8.82427i 0.324606i 0.986741 + 0.162303i \(0.0518922\pi\)
−0.986741 + 0.162303i \(0.948108\pi\)
\(740\) 0 0
\(741\) −2.76189 11.8421i −0.101460 0.435031i
\(742\) 0 0
\(743\) 12.8745i 0.472318i 0.971714 + 0.236159i \(0.0758887\pi\)
−0.971714 + 0.236159i \(0.924111\pi\)
\(744\) 0 0
\(745\) 4.33549 15.7672i 0.158840 0.577667i
\(746\) 0 0
\(747\) 3.89825 + 7.90266i 0.142629 + 0.289143i
\(748\) 0 0
\(749\) 13.2415i 0.483833i
\(750\) 0 0
\(751\) 5.72285i 0.208830i 0.994534 + 0.104415i \(0.0332970\pi\)
−0.994534 + 0.104415i \(0.966703\pi\)
\(752\) 0 0
\(753\) 9.85146 + 42.2400i 0.359007 + 1.53931i
\(754\) 0 0
\(755\) 9.90518 36.0230i 0.360486 1.31101i
\(756\) 0 0
\(757\) 41.0006i 1.49019i 0.666957 + 0.745097i \(0.267597\pi\)
−0.666957 + 0.745097i \(0.732403\pi\)
\(758\) 0 0
\(759\) −46.4600 + 10.8357i −1.68639 + 0.393309i
\(760\) 0 0
\(761\) 27.1027i 0.982474i −0.871026 0.491237i \(-0.836545\pi\)
0.871026 0.491237i \(-0.163455\pi\)
\(762\) 0 0
\(763\) 15.5487 0.562900
\(764\) 0 0
\(765\) 11.1751 2.14829i 0.404035 0.0776715i
\(766\) 0 0
\(767\) 21.4027i 0.772808i
\(768\) 0 0
\(769\) 2.13198 0.0768812 0.0384406 0.999261i \(-0.487761\pi\)
0.0384406 + 0.999261i \(0.487761\pi\)
\(770\) 0 0
\(771\) −9.48980 40.6893i −0.341767 1.46539i
\(772\) 0 0
\(773\) 19.9526 0.717647 0.358823 0.933406i \(-0.383178\pi\)
0.358823 + 0.933406i \(0.383178\pi\)
\(774\) 0 0
\(775\) −14.0411 + 23.6017i −0.504370 + 0.847799i
\(776\) 0 0
\(777\) −15.9137 + 3.71147i −0.570899 + 0.133148i
\(778\) 0 0
\(779\) −42.0056 −1.50501
\(780\) 0 0
\(781\) −11.5736 −0.414136
\(782\) 0 0
\(783\) −28.2337 + 23.1787i −1.00899 + 0.828338i
\(784\) 0 0
\(785\) 8.84930 32.1830i 0.315845 1.14866i
\(786\) 0 0
\(787\) 45.7933 1.63235 0.816177 0.577802i \(-0.196089\pi\)
0.816177 + 0.577802i \(0.196089\pi\)
\(788\) 0 0
\(789\) 27.5238 6.41925i 0.979872 0.228531i
\(790\) 0 0
\(791\) 19.9469 0.709231
\(792\) 0 0
\(793\) 6.36475i 0.226019i
\(794\) 0 0
\(795\) −1.00938 + 25.7316i −0.0357989 + 0.912605i
\(796\) 0 0
\(797\) −14.5441 −0.515178 −0.257589 0.966255i \(-0.582928\pi\)
−0.257589 + 0.966255i \(0.582928\pi\)
\(798\) 0 0
\(799\) 2.92019i 0.103309i
\(800\) 0 0
\(801\) −2.81172 5.70001i −0.0993472 0.201400i
\(802\) 0 0
\(803\) 34.8822i 1.23097i
\(804\) 0 0
\(805\) 3.29707 11.9907i 0.116206 0.422618i
\(806\) 0 0
\(807\) −18.6959 + 4.36036i −0.658127 + 0.153492i
\(808\) 0 0
\(809\) 4.96538i 0.174574i 0.996183 + 0.0872868i \(0.0278196\pi\)
−0.996183 + 0.0872868i \(0.972180\pi\)
\(810\) 0 0
\(811\) 38.6095i 1.35576i −0.735171 0.677882i \(-0.762898\pi\)
0.735171 0.677882i \(-0.237102\pi\)
\(812\) 0 0
\(813\) 47.1005 10.9850i 1.65189 0.385262i
\(814\) 0 0
\(815\) 7.34319 + 2.01915i 0.257221 + 0.0707276i
\(816\) 0 0
\(817\) 24.3121i 0.850571i
\(818\) 0 0
\(819\) 2.36374 + 4.79185i 0.0825957 + 0.167441i
\(820\) 0 0
\(821\) 36.8173i 1.28493i 0.766314 + 0.642466i \(0.222089\pi\)
−0.766314 + 0.642466i \(0.777911\pi\)
\(822\) 0 0
\(823\) −6.88856 −0.240120 −0.120060 0.992767i \(-0.538309\pi\)
−0.120060 + 0.992767i \(0.538309\pi\)
\(824\) 0 0
\(825\) −12.9838 + 40.8783i −0.452038 + 1.42320i
\(826\) 0 0
\(827\) 50.2814i 1.74846i −0.485516 0.874228i \(-0.661368\pi\)
0.485516 0.874228i \(-0.338632\pi\)
\(828\) 0 0
\(829\) −0.893868 −0.0310453 −0.0155227 0.999880i \(-0.504941\pi\)
−0.0155227 + 0.999880i \(0.504941\pi\)
\(830\) 0 0
\(831\) −41.2285 + 9.61555i −1.43020 + 0.333560i
\(832\) 0 0
\(833\) −1.69638 −0.0587761
\(834\) 0 0
\(835\) −6.00000 + 21.8207i −0.207639 + 0.755136i
\(836\) 0 0
\(837\) −22.0587 + 18.1092i −0.762460 + 0.625946i
\(838\) 0 0
\(839\) 41.8399 1.44447 0.722237 0.691645i \(-0.243114\pi\)
0.722237 + 0.691645i \(0.243114\pi\)
\(840\) 0 0
\(841\) −20.4220 −0.704208
\(842\) 0 0
\(843\) −42.6201 + 9.94010i −1.46791 + 0.342355i
\(844\) 0 0
\(845\) 21.1894 + 5.82640i 0.728936 + 0.200434i
\(846\) 0 0
\(847\) −13.5282 −0.464833
\(848\) 0 0
\(849\) −10.1526 43.5314i −0.348437 1.49399i
\(850\) 0 0
\(851\) −52.4684 −1.79859
\(852\) 0 0
\(853\) 36.8969i 1.26333i 0.775243 + 0.631663i \(0.217627\pi\)
−0.775243 + 0.631663i \(0.782373\pi\)
\(854\) 0 0
\(855\) 4.99188 + 25.9670i 0.170719 + 0.888052i
\(856\) 0 0
\(857\) 32.2964 1.10322 0.551612 0.834101i \(-0.314013\pi\)
0.551612 + 0.834101i \(0.314013\pi\)
\(858\) 0 0
\(859\) 21.2916i 0.726460i −0.931700 0.363230i \(-0.881674\pi\)
0.931700 0.363230i \(-0.118326\pi\)
\(860\) 0 0
\(861\) 17.9751 4.19225i 0.612589 0.142871i
\(862\) 0 0
\(863\) 11.4360i 0.389286i 0.980874 + 0.194643i \(0.0623548\pi\)
−0.980874 + 0.194643i \(0.937645\pi\)
\(864\) 0 0
\(865\) 29.5666 + 8.12987i 1.00529 + 0.276424i
\(866\) 0 0
\(867\) 5.55572 + 23.8212i 0.188682 + 0.809012i
\(868\) 0 0
\(869\) 45.9845i 1.55992i
\(870\) 0 0
\(871\) 19.1674i 0.649463i
\(872\) 0 0
\(873\) −21.6702 43.9305i −0.733424 1.48682i
\(874\) 0 0
\(875\) −7.74913 8.05921i −0.261969 0.272451i
\(876\) 0 0
\(877\) 33.8764i 1.14393i −0.820279 0.571963i \(-0.806182\pi\)
0.820279 0.571963i \(-0.193818\pi\)
\(878\) 0 0
\(879\) −2.50602 10.7450i −0.0845259 0.362421i
\(880\) 0 0
\(881\) 51.0462i 1.71979i 0.510471 + 0.859895i \(0.329471\pi\)
−0.510471 + 0.859895i \(0.670529\pi\)
\(882\) 0 0
\(883\) −2.62990 −0.0885033 −0.0442517 0.999020i \(-0.514090\pi\)
−0.0442517 + 0.999020i \(0.514090\pi\)
\(884\) 0 0
\(885\) −1.82429 + 46.5057i −0.0613227 + 1.56327i
\(886\) 0 0
\(887\) 47.8561i 1.60685i 0.595405 + 0.803426i \(0.296992\pi\)
−0.595405 + 0.803426i \(0.703008\pi\)
\(888\) 0 0
\(889\) −3.74135 −0.125481
\(890\) 0 0
\(891\) −27.1267 + 35.3684i −0.908778 + 1.18489i
\(892\) 0 0
\(893\) −6.78552 −0.227069
\(894\) 0 0
\(895\) −13.5557 3.72740i −0.453118 0.124593i
\(896\) 0 0
\(897\) 3.89671 + 16.7079i 0.130107 + 0.557860i
\(898\) 0 0
\(899\) −38.6128 −1.28781
\(900\) 0 0
\(901\) 11.2792 0.375764
\(902\) 0 0
\(903\) −2.42640 10.4036i −0.0807454 0.346212i
\(904\) 0 0
\(905\) −25.9611 7.13849i −0.862977 0.237291i
\(906\) 0 0
\(907\) −31.9502 −1.06089 −0.530444 0.847720i \(-0.677975\pi\)
−0.530444 + 0.847720i \(0.677975\pi\)
\(908\) 0 0
\(909\) 11.4827 + 23.2781i 0.380857 + 0.772086i
\(910\) 0 0
\(911\) 51.9702 1.72185 0.860925 0.508732i \(-0.169885\pi\)
0.860925 + 0.508732i \(0.169885\pi\)
\(912\) 0 0
\(913\) 14.5471i 0.481440i
\(914\) 0 0
\(915\) 0.542507 13.8299i 0.0179347 0.457201i
\(916\) 0 0
\(917\) 7.34319 0.242493
\(918\) 0 0
\(919\) 23.3714i 0.770951i −0.922718 0.385476i \(-0.874037\pi\)
0.922718 0.385476i \(-0.125963\pi\)
\(920\) 0 0
\(921\) 8.24354 + 35.3458i 0.271634 + 1.16468i
\(922\) 0 0
\(923\) 4.16209i 0.136997i
\(924\) 0 0
\(925\) −24.1179 + 40.5400i −0.792992 + 1.33295i
\(926\) 0 0
\(927\) −12.8788 + 6.35287i −0.422994 + 0.208656i
\(928\) 0 0
\(929\) 25.3576i 0.831955i 0.909375 + 0.415978i \(0.136561\pi\)
−0.909375 + 0.415978i \(0.863439\pi\)
\(930\) 0 0
\(931\) 3.94181i 0.129187i
\(932\) 0 0
\(933\) 11.2936 + 48.4236i 0.369736 + 1.58532i
\(934\) 0 0
\(935\) 18.1140 + 4.98077i 0.592390 + 0.162889i
\(936\) 0 0
\(937\) 23.4524i 0.766155i −0.923716 0.383077i \(-0.874864\pi\)
0.923716 0.383077i \(-0.125136\pi\)
\(938\) 0 0
\(939\) −15.5251 + 3.62086i −0.506643 + 0.118162i
\(940\) 0 0
\(941\) 17.0513i 0.555857i 0.960602 + 0.277929i \(0.0896479\pi\)
−0.960602 + 0.277929i \(0.910352\pi\)
\(942\) 0 0
\(943\) 59.2651 1.92994
\(944\) 0 0
\(945\) −4.72769 10.6136i −0.153792 0.345261i
\(946\) 0 0
\(947\) 52.1177i 1.69360i 0.531914 + 0.846798i \(0.321473\pi\)
−0.531914 + 0.846798i \(0.678527\pi\)
\(948\) 0 0
\(949\) −12.5443 −0.407206
\(950\) 0 0
\(951\) 7.23575 + 31.0247i 0.234635 + 1.00604i
\(952\) 0 0
\(953\) 17.3849 0.563153 0.281576 0.959539i \(-0.409143\pi\)
0.281576 + 0.959539i \(0.409143\pi\)
\(954\) 0 0
\(955\) 3.36306 + 0.924736i 0.108826 + 0.0299237i
\(956\) 0 0
\(957\) −58.7289 + 13.6971i −1.89844 + 0.442764i
\(958\) 0 0
\(959\) −3.25621 −0.105148
\(960\) 0 0
\(961\) 0.832255 0.0268469
\(962\) 0 0
\(963\) −17.5736 35.6258i −0.566301 1.14803i
\(964\) 0 0
\(965\) −7.70485 + 28.0209i −0.248028 + 0.902024i
\(966\) 0 0
\(967\) 33.7771 1.08620 0.543099 0.839668i \(-0.317251\pi\)
0.543099 + 0.839668i \(0.317251\pi\)
\(968\) 0 0
\(969\) 11.2792 2.63060i 0.362340 0.0845069i
\(970\) 0 0
\(971\) 14.1287 0.453412 0.226706 0.973963i \(-0.427204\pi\)
0.226706 + 0.973963i \(0.427204\pi\)
\(972\) 0 0
\(973\) 4.73309i 0.151736i
\(974\) 0 0
\(975\) 14.7006 + 4.66923i 0.470796 + 0.149535i
\(976\) 0 0
\(977\) 57.5633 1.84161 0.920807 0.390019i \(-0.127532\pi\)
0.920807 + 0.390019i \(0.127532\pi\)
\(978\) 0 0
\(979\) 10.4925i 0.335342i
\(980\) 0 0
\(981\) 41.8333 20.6357i 1.33563 0.658846i
\(982\) 0 0
\(983\) 13.0124i 0.415032i −0.978232 0.207516i \(-0.933462\pi\)
0.978232 0.207516i \(-0.0665379\pi\)
\(984\) 0 0
\(985\) −28.3766 7.80266i −0.904153 0.248613i
\(986\) 0 0
\(987\) 2.90367 0.677210i 0.0924248 0.0215558i
\(988\) 0 0
\(989\) 34.3016i 1.09073i
\(990\) 0 0
\(991\) 21.6713i 0.688412i −0.938894 0.344206i \(-0.888148\pi\)
0.938894 0.344206i \(-0.111852\pi\)
\(992\) 0 0
\(993\) 29.7693 6.94295i 0.944699 0.220328i
\(994\) 0 0
\(995\) −12.7997 + 46.5498i −0.405779 + 1.47573i
\(996\) 0 0
\(997\) 62.7085i 1.98600i 0.118121 + 0.992999i \(0.462313\pi\)
−0.118121 + 0.992999i \(0.537687\pi\)
\(998\) 0 0
\(999\) −37.8895 + 31.1056i −1.19877 + 0.984139i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.v.a.239.6 yes 12
3.2 odd 2 inner 1680.2.v.a.239.7 yes 12
4.3 odd 2 1680.2.v.b.239.8 yes 12
5.4 even 2 1680.2.v.b.239.7 yes 12
12.11 even 2 1680.2.v.b.239.5 yes 12
15.14 odd 2 1680.2.v.b.239.6 yes 12
20.19 odd 2 inner 1680.2.v.a.239.5 12
60.59 even 2 inner 1680.2.v.a.239.8 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.v.a.239.5 12 20.19 odd 2 inner
1680.2.v.a.239.6 yes 12 1.1 even 1 trivial
1680.2.v.a.239.7 yes 12 3.2 odd 2 inner
1680.2.v.a.239.8 yes 12 60.59 even 2 inner
1680.2.v.b.239.5 yes 12 12.11 even 2
1680.2.v.b.239.6 yes 12 15.14 odd 2
1680.2.v.b.239.7 yes 12 5.4 even 2
1680.2.v.b.239.8 yes 12 4.3 odd 2