Properties

Label 1680.2.v.a.239.1
Level $1680$
Weight $2$
Character 1680.239
Analytic conductor $13.415$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(239,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.239"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.v (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 8x^{10} + 55x^{8} - 272x^{6} + 1375x^{4} - 5000x^{2} + 15625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 239.1
Root \(1.20750 + 1.88200i\) of defining polynomial
Character \(\chi\) \(=\) 1680.239
Dual form 1680.2.v.a.239.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.64854 - 0.531349i) q^{3} +(-1.20750 + 1.88200i) q^{5} -1.00000 q^{7} +(2.43534 + 1.75189i) q^{9} -4.93129 q^{11} -6.01886i q^{13} +(2.99061 - 2.46094i) q^{15} +3.98122 q^{17} -1.78803i q^{19} +(1.64854 + 0.531349i) q^{21} -1.63861i q^{23} +(-2.08387 - 4.54505i) q^{25} +(-3.08387 - 4.18207i) q^{27} -1.89883i q^{29} +4.73565i q^{31} +(8.12940 + 2.62023i) q^{33} +(1.20750 - 1.88200i) q^{35} +6.52368i q^{37} +(-3.19811 + 9.92231i) q^{39} +9.48232i q^{41} +1.57360 q^{43} +(-6.23775 + 2.46789i) q^{45} +8.90641i q^{47} +1.00000 q^{49} +(-6.56319 - 2.11542i) q^{51} -0.950066 q^{53} +(5.95455 - 9.28070i) q^{55} +(-0.950066 + 2.94762i) q^{57} +12.7925 q^{59} +8.59414 q^{61} +(-2.43534 - 1.75189i) q^{63} +(11.3275 + 7.26779i) q^{65} -9.74135 q^{67} +(-0.870674 + 2.70131i) q^{69} +3.36507 q^{71} +7.68328i q^{73} +(1.02033 + 8.59994i) q^{75} +4.93129 q^{77} -16.2686i q^{79} +(2.86173 + 8.53291i) q^{81} +0.520436i q^{83} +(-4.80734 + 7.49267i) q^{85} +(-1.00894 + 3.13029i) q^{87} +16.1742i q^{89} +6.01886i q^{91} +(2.51628 - 7.80689i) q^{93} +(3.36507 + 2.15905i) q^{95} -8.58528i q^{97} +(-12.0094 - 8.63910i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} - 12 q^{7} + 6 q^{9} + 12 q^{15} + 2 q^{21} + 16 q^{25} + 4 q^{27} + 8 q^{43} - 4 q^{45} + 12 q^{49} - 16 q^{55} + 32 q^{61} - 6 q^{63} - 24 q^{67} + 36 q^{69} + 18 q^{75} + 22 q^{81} + 8 q^{85}+ \cdots + 22 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.64854 0.531349i −0.951782 0.306774i
\(4\) 0 0
\(5\) −1.20750 + 1.88200i −0.540012 + 0.841657i
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 2.43534 + 1.75189i 0.811779 + 0.583965i
\(10\) 0 0
\(11\) −4.93129 −1.48684 −0.743420 0.668825i \(-0.766797\pi\)
−0.743420 + 0.668825i \(0.766797\pi\)
\(12\) 0 0
\(13\) 6.01886i 1.66933i −0.550756 0.834666i \(-0.685661\pi\)
0.550756 0.834666i \(-0.314339\pi\)
\(14\) 0 0
\(15\) 2.99061 2.46094i 0.772173 0.635413i
\(16\) 0 0
\(17\) 3.98122 0.965588 0.482794 0.875734i \(-0.339622\pi\)
0.482794 + 0.875734i \(0.339622\pi\)
\(18\) 0 0
\(19\) 1.78803i 0.410201i −0.978741 0.205101i \(-0.934248\pi\)
0.978741 0.205101i \(-0.0657522\pi\)
\(20\) 0 0
\(21\) 1.64854 + 0.531349i 0.359740 + 0.115950i
\(22\) 0 0
\(23\) 1.63861i 0.341674i −0.985299 0.170837i \(-0.945353\pi\)
0.985299 0.170837i \(-0.0546472\pi\)
\(24\) 0 0
\(25\) −2.08387 4.54505i −0.416774 0.909010i
\(26\) 0 0
\(27\) −3.08387 4.18207i −0.593492 0.804840i
\(28\) 0 0
\(29\) 1.89883i 0.352604i −0.984336 0.176302i \(-0.943586\pi\)
0.984336 0.176302i \(-0.0564135\pi\)
\(30\) 0 0
\(31\) 4.73565i 0.850548i 0.905065 + 0.425274i \(0.139822\pi\)
−0.905065 + 0.425274i \(0.860178\pi\)
\(32\) 0 0
\(33\) 8.12940 + 2.62023i 1.41515 + 0.456124i
\(34\) 0 0
\(35\) 1.20750 1.88200i 0.204105 0.318117i
\(36\) 0 0
\(37\) 6.52368i 1.07249i 0.844064 + 0.536243i \(0.180157\pi\)
−0.844064 + 0.536243i \(0.819843\pi\)
\(38\) 0 0
\(39\) −3.19811 + 9.92231i −0.512108 + 1.58884i
\(40\) 0 0
\(41\) 9.48232i 1.48089i 0.672117 + 0.740445i \(0.265385\pi\)
−0.672117 + 0.740445i \(0.734615\pi\)
\(42\) 0 0
\(43\) 1.57360 0.239972 0.119986 0.992776i \(-0.461715\pi\)
0.119986 + 0.992776i \(0.461715\pi\)
\(44\) 0 0
\(45\) −6.23775 + 2.46789i −0.929869 + 0.367892i
\(46\) 0 0
\(47\) 8.90641i 1.29913i 0.760305 + 0.649566i \(0.225050\pi\)
−0.760305 + 0.649566i \(0.774950\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −6.56319 2.11542i −0.919030 0.296218i
\(52\) 0 0
\(53\) −0.950066 −0.130502 −0.0652508 0.997869i \(-0.520785\pi\)
−0.0652508 + 0.997869i \(0.520785\pi\)
\(54\) 0 0
\(55\) 5.95455 9.28070i 0.802911 1.25141i
\(56\) 0 0
\(57\) −0.950066 + 2.94762i −0.125839 + 0.390422i
\(58\) 0 0
\(59\) 12.7925 1.66544 0.832718 0.553697i \(-0.186783\pi\)
0.832718 + 0.553697i \(0.186783\pi\)
\(60\) 0 0
\(61\) 8.59414 1.10037 0.550184 0.835044i \(-0.314558\pi\)
0.550184 + 0.835044i \(0.314558\pi\)
\(62\) 0 0
\(63\) −2.43534 1.75189i −0.306824 0.220718i
\(64\) 0 0
\(65\) 11.3275 + 7.26779i 1.40501 + 0.901459i
\(66\) 0 0
\(67\) −9.74135 −1.19010 −0.595048 0.803690i \(-0.702867\pi\)
−0.595048 + 0.803690i \(0.702867\pi\)
\(68\) 0 0
\(69\) −0.870674 + 2.70131i −0.104817 + 0.325199i
\(70\) 0 0
\(71\) 3.36507 0.399361 0.199680 0.979861i \(-0.436010\pi\)
0.199680 + 0.979861i \(0.436010\pi\)
\(72\) 0 0
\(73\) 7.68328i 0.899260i 0.893215 + 0.449630i \(0.148444\pi\)
−0.893215 + 0.449630i \(0.851556\pi\)
\(74\) 0 0
\(75\) 1.02033 + 8.59994i 0.117818 + 0.993035i
\(76\) 0 0
\(77\) 4.93129 0.561973
\(78\) 0 0
\(79\) 16.2686i 1.83036i −0.403050 0.915178i \(-0.632050\pi\)
0.403050 0.915178i \(-0.367950\pi\)
\(80\) 0 0
\(81\) 2.86173 + 8.53291i 0.317970 + 0.948101i
\(82\) 0 0
\(83\) 0.520436i 0.0571253i 0.999592 + 0.0285626i \(0.00909301\pi\)
−0.999592 + 0.0285626i \(0.990907\pi\)
\(84\) 0 0
\(85\) −4.80734 + 7.49267i −0.521429 + 0.812695i
\(86\) 0 0
\(87\) −1.00894 + 3.13029i −0.108170 + 0.335602i
\(88\) 0 0
\(89\) 16.1742i 1.71446i 0.514932 + 0.857231i \(0.327817\pi\)
−0.514932 + 0.857231i \(0.672183\pi\)
\(90\) 0 0
\(91\) 6.01886i 0.630948i
\(92\) 0 0
\(93\) 2.51628 7.80689i 0.260926 0.809537i
\(94\) 0 0
\(95\) 3.36507 + 2.15905i 0.345249 + 0.221514i
\(96\) 0 0
\(97\) 8.58528i 0.871703i −0.900018 0.435852i \(-0.856447\pi\)
0.900018 0.435852i \(-0.143553\pi\)
\(98\) 0 0
\(99\) −12.0094 8.63910i −1.20699 0.868262i
\(100\) 0 0
\(101\) 3.44831i 0.343120i −0.985174 0.171560i \(-0.945119\pi\)
0.985174 0.171560i \(-0.0548807\pi\)
\(102\) 0 0
\(103\) 7.29707 0.719002 0.359501 0.933145i \(-0.382947\pi\)
0.359501 + 0.933145i \(0.382947\pi\)
\(104\) 0 0
\(105\) −2.99061 + 2.46094i −0.291854 + 0.240163i
\(106\) 0 0
\(107\) 12.8970i 1.24680i 0.781904 + 0.623399i \(0.214249\pi\)
−0.781904 + 0.623399i \(0.785751\pi\)
\(108\) 0 0
\(109\) 2.44428 0.234119 0.117060 0.993125i \(-0.462653\pi\)
0.117060 + 0.993125i \(0.462653\pi\)
\(110\) 0 0
\(111\) 3.46635 10.7545i 0.329011 1.02077i
\(112\) 0 0
\(113\) −2.85020 −0.268124 −0.134062 0.990973i \(-0.542802\pi\)
−0.134062 + 0.990973i \(0.542802\pi\)
\(114\) 0 0
\(115\) 3.08387 + 1.97863i 0.287573 + 0.184508i
\(116\) 0 0
\(117\) 10.5444 14.6580i 0.974831 1.35513i
\(118\) 0 0
\(119\) −3.98122 −0.364958
\(120\) 0 0
\(121\) 13.3176 1.21069
\(122\) 0 0
\(123\) 5.03842 15.6319i 0.454299 1.40948i
\(124\) 0 0
\(125\) 11.0701 + 1.56631i 0.990138 + 0.140095i
\(126\) 0 0
\(127\) 1.02054 0.0905581 0.0452790 0.998974i \(-0.485582\pi\)
0.0452790 + 0.998974i \(0.485582\pi\)
\(128\) 0 0
\(129\) −2.59414 0.836132i −0.228401 0.0736173i
\(130\) 0 0
\(131\) 19.5226 1.70570 0.852849 0.522158i \(-0.174873\pi\)
0.852849 + 0.522158i \(0.174873\pi\)
\(132\) 0 0
\(133\) 1.78803i 0.155042i
\(134\) 0 0
\(135\) 11.5945 0.753992i 0.997892 0.0648933i
\(136\) 0 0
\(137\) 8.91251 0.761447 0.380724 0.924689i \(-0.375675\pi\)
0.380724 + 0.924689i \(0.375675\pi\)
\(138\) 0 0
\(139\) 22.9159i 1.94370i 0.235607 + 0.971849i \(0.424292\pi\)
−0.235607 + 0.971849i \(0.575708\pi\)
\(140\) 0 0
\(141\) 4.73241 14.6825i 0.398541 1.23649i
\(142\) 0 0
\(143\) 29.6807i 2.48203i
\(144\) 0 0
\(145\) 3.57360 + 2.29284i 0.296772 + 0.190410i
\(146\) 0 0
\(147\) −1.64854 0.531349i −0.135969 0.0438249i
\(148\) 0 0
\(149\) 5.92305i 0.485236i 0.970122 + 0.242618i \(0.0780061\pi\)
−0.970122 + 0.242618i \(0.921994\pi\)
\(150\) 0 0
\(151\) 5.24047i 0.426463i −0.977002 0.213232i \(-0.931601\pi\)
0.977002 0.213232i \(-0.0683989\pi\)
\(152\) 0 0
\(153\) 9.69562 + 6.97468i 0.783844 + 0.563870i
\(154\) 0 0
\(155\) −8.91251 5.71831i −0.715870 0.459306i
\(156\) 0 0
\(157\) 11.2593i 0.898592i −0.893383 0.449296i \(-0.851675\pi\)
0.893383 0.449296i \(-0.148325\pi\)
\(158\) 0 0
\(159\) 1.56622 + 0.504816i 0.124209 + 0.0400345i
\(160\) 0 0
\(161\) 1.63861i 0.129141i
\(162\) 0 0
\(163\) 16.1677 1.26636 0.633178 0.774006i \(-0.281750\pi\)
0.633178 + 0.774006i \(0.281750\pi\)
\(164\) 0 0
\(165\) −14.7476 + 12.1356i −1.14810 + 0.944757i
\(166\) 0 0
\(167\) 3.18809i 0.246702i 0.992363 + 0.123351i \(0.0393641\pi\)
−0.992363 + 0.123351i \(0.960636\pi\)
\(168\) 0 0
\(169\) −23.2267 −1.78667
\(170\) 0 0
\(171\) 3.13243 4.35445i 0.239543 0.332993i
\(172\) 0 0
\(173\) −16.7737 −1.27528 −0.637640 0.770335i \(-0.720089\pi\)
−0.637640 + 0.770335i \(0.720089\pi\)
\(174\) 0 0
\(175\) 2.08387 + 4.54505i 0.157526 + 0.343573i
\(176\) 0 0
\(177\) −21.0888 6.79726i −1.58513 0.510913i
\(178\) 0 0
\(179\) 8.19508 0.612529 0.306265 0.951946i \(-0.400921\pi\)
0.306265 + 0.951946i \(0.400921\pi\)
\(180\) 0 0
\(181\) 23.5238 1.74851 0.874254 0.485469i \(-0.161351\pi\)
0.874254 + 0.485469i \(0.161351\pi\)
\(182\) 0 0
\(183\) −14.1677 4.56649i −1.04731 0.337564i
\(184\) 0 0
\(185\) −12.2776 7.87736i −0.902666 0.579155i
\(186\) 0 0
\(187\) −19.6326 −1.43567
\(188\) 0 0
\(189\) 3.08387 + 4.18207i 0.224319 + 0.304201i
\(190\) 0 0
\(191\) 12.8937 0.932958 0.466479 0.884532i \(-0.345522\pi\)
0.466479 + 0.884532i \(0.345522\pi\)
\(192\) 0 0
\(193\) 5.51405i 0.396910i −0.980110 0.198455i \(-0.936408\pi\)
0.980110 0.198455i \(-0.0635923\pi\)
\(194\) 0 0
\(195\) −14.8121 18.0001i −1.06072 1.28901i
\(196\) 0 0
\(197\) −18.7751 −1.33767 −0.668835 0.743411i \(-0.733207\pi\)
−0.668835 + 0.743411i \(0.733207\pi\)
\(198\) 0 0
\(199\) 5.11686i 0.362724i 0.983416 + 0.181362i \(0.0580506\pi\)
−0.983416 + 0.181362i \(0.941949\pi\)
\(200\) 0 0
\(201\) 16.0590 + 5.17605i 1.13271 + 0.365091i
\(202\) 0 0
\(203\) 1.89883i 0.133272i
\(204\) 0 0
\(205\) −17.8458 11.4499i −1.24640 0.799698i
\(206\) 0 0
\(207\) 2.87067 3.99057i 0.199526 0.277364i
\(208\) 0 0
\(209\) 8.81728i 0.609904i
\(210\) 0 0
\(211\) 0.902006i 0.0620967i 0.999518 + 0.0310483i \(0.00988458\pi\)
−0.999518 + 0.0310483i \(0.990115\pi\)
\(212\) 0 0
\(213\) −5.54744 1.78803i −0.380104 0.122514i
\(214\) 0 0
\(215\) −1.90013 + 2.96153i −0.129588 + 0.201974i
\(216\) 0 0
\(217\) 4.73565i 0.321477i
\(218\) 0 0
\(219\) 4.08250 12.6662i 0.275870 0.855899i
\(220\) 0 0
\(221\) 23.9624i 1.61189i
\(222\) 0 0
\(223\) 1.12933 0.0756253 0.0378126 0.999285i \(-0.487961\pi\)
0.0378126 + 0.999285i \(0.487961\pi\)
\(224\) 0 0
\(225\) 2.88751 14.7195i 0.192501 0.981297i
\(226\) 0 0
\(227\) 28.3242i 1.87994i 0.341255 + 0.939971i \(0.389148\pi\)
−0.341255 + 0.939971i \(0.610852\pi\)
\(228\) 0 0
\(229\) −21.4827 −1.41962 −0.709808 0.704395i \(-0.751218\pi\)
−0.709808 + 0.704395i \(0.751218\pi\)
\(230\) 0 0
\(231\) −8.12940 2.62023i −0.534875 0.172399i
\(232\) 0 0
\(233\) 20.4727 1.34121 0.670605 0.741815i \(-0.266035\pi\)
0.670605 + 0.741815i \(0.266035\pi\)
\(234\) 0 0
\(235\) −16.7619 10.7545i −1.09342 0.701547i
\(236\) 0 0
\(237\) −8.64428 + 26.8193i −0.561506 + 1.74210i
\(238\) 0 0
\(239\) −8.06372 −0.521599 −0.260799 0.965393i \(-0.583986\pi\)
−0.260799 + 0.965393i \(0.583986\pi\)
\(240\) 0 0
\(241\) 15.1883 0.978363 0.489182 0.872182i \(-0.337296\pi\)
0.489182 + 0.872182i \(0.337296\pi\)
\(242\) 0 0
\(243\) −0.183720 15.5874i −0.0117856 0.999931i
\(244\) 0 0
\(245\) −1.20750 + 1.88200i −0.0771445 + 0.120237i
\(246\) 0 0
\(247\) −10.7619 −0.684762
\(248\) 0 0
\(249\) 0.276533 0.857957i 0.0175246 0.0543708i
\(250\) 0 0
\(251\) −22.8576 −1.44276 −0.721379 0.692540i \(-0.756491\pi\)
−0.721379 + 0.692540i \(0.756491\pi\)
\(252\) 0 0
\(253\) 8.08047i 0.508015i
\(254\) 0 0
\(255\) 11.9063 9.79756i 0.745601 0.613547i
\(256\) 0 0
\(257\) 17.3101 1.07978 0.539889 0.841736i \(-0.318466\pi\)
0.539889 + 0.841736i \(0.318466\pi\)
\(258\) 0 0
\(259\) 6.52368i 0.405362i
\(260\) 0 0
\(261\) 3.32655 4.62429i 0.205908 0.286236i
\(262\) 0 0
\(263\) 25.3745i 1.56466i −0.622866 0.782329i \(-0.714032\pi\)
0.622866 0.782329i \(-0.285968\pi\)
\(264\) 0 0
\(265\) 1.14721 1.78803i 0.0704724 0.109838i
\(266\) 0 0
\(267\) 8.59414 26.6637i 0.525953 1.63179i
\(268\) 0 0
\(269\) 20.2203i 1.23285i −0.787413 0.616425i \(-0.788580\pi\)
0.787413 0.616425i \(-0.211420\pi\)
\(270\) 0 0
\(271\) 5.74528i 0.349001i 0.984657 + 0.174501i \(0.0558311\pi\)
−0.984657 + 0.174501i \(0.944169\pi\)
\(272\) 0 0
\(273\) 3.19811 9.92231i 0.193559 0.600525i
\(274\) 0 0
\(275\) 10.2762 + 22.4130i 0.619677 + 1.35155i
\(276\) 0 0
\(277\) 13.9757i 0.839719i 0.907589 + 0.419860i \(0.137921\pi\)
−0.907589 + 0.419860i \(0.862079\pi\)
\(278\) 0 0
\(279\) −8.29636 + 11.5329i −0.496690 + 0.690457i
\(280\) 0 0
\(281\) 17.4080i 1.03847i −0.854630 0.519237i \(-0.826216\pi\)
0.854630 0.519237i \(-0.173784\pi\)
\(282\) 0 0
\(283\) 10.5352 0.626252 0.313126 0.949712i \(-0.398624\pi\)
0.313126 + 0.949712i \(0.398624\pi\)
\(284\) 0 0
\(285\) −4.40023 5.34729i −0.260647 0.316746i
\(286\) 0 0
\(287\) 9.48232i 0.559724i
\(288\) 0 0
\(289\) −1.14986 −0.0676390
\(290\) 0 0
\(291\) −4.56178 + 14.1531i −0.267416 + 0.829672i
\(292\) 0 0
\(293\) 2.74892 0.160594 0.0802968 0.996771i \(-0.474413\pi\)
0.0802968 + 0.996771i \(0.474413\pi\)
\(294\) 0 0
\(295\) −15.4469 + 24.0754i −0.899355 + 1.40173i
\(296\) 0 0
\(297\) 15.2075 + 20.6230i 0.882427 + 1.19667i
\(298\) 0 0
\(299\) −9.86258 −0.570368
\(300\) 0 0
\(301\) −1.57360 −0.0907010
\(302\) 0 0
\(303\) −1.83226 + 5.68466i −0.105260 + 0.326575i
\(304\) 0 0
\(305\) −10.3775 + 16.1742i −0.594211 + 0.926132i
\(306\) 0 0
\(307\) −15.7235 −0.897386 −0.448693 0.893686i \(-0.648110\pi\)
−0.448693 + 0.893686i \(0.648110\pi\)
\(308\) 0 0
\(309\) −12.0295 3.87729i −0.684333 0.220571i
\(310\) 0 0
\(311\) 18.8548 1.06916 0.534578 0.845119i \(-0.320471\pi\)
0.534578 + 0.845119i \(0.320471\pi\)
\(312\) 0 0
\(313\) 15.4902i 0.875556i −0.899083 0.437778i \(-0.855766\pi\)
0.899083 0.437778i \(-0.144234\pi\)
\(314\) 0 0
\(315\) 6.23775 2.46789i 0.351457 0.139050i
\(316\) 0 0
\(317\) −21.9075 −1.23045 −0.615225 0.788352i \(-0.710935\pi\)
−0.615225 + 0.788352i \(0.710935\pi\)
\(318\) 0 0
\(319\) 9.36368i 0.524265i
\(320\) 0 0
\(321\) 6.85279 21.2611i 0.382486 1.18668i
\(322\) 0 0
\(323\) 7.11853i 0.396086i
\(324\) 0 0
\(325\) −27.3560 + 12.5425i −1.51744 + 0.695735i
\(326\) 0 0
\(327\) −4.02948 1.29876i −0.222831 0.0718218i
\(328\) 0 0
\(329\) 8.90641i 0.491026i
\(330\) 0 0
\(331\) 3.32883i 0.182969i 0.995807 + 0.0914845i \(0.0291612\pi\)
−0.995807 + 0.0914845i \(0.970839\pi\)
\(332\) 0 0
\(333\) −11.4288 + 15.8874i −0.626294 + 0.870622i
\(334\) 0 0
\(335\) 11.7627 18.3332i 0.642665 1.00165i
\(336\) 0 0
\(337\) 12.0377i 0.655737i 0.944723 + 0.327868i \(0.106330\pi\)
−0.944723 + 0.327868i \(0.893670\pi\)
\(338\) 0 0
\(339\) 4.69865 + 1.51445i 0.255196 + 0.0822536i
\(340\) 0 0
\(341\) 23.3529i 1.26463i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −4.03253 4.90045i −0.217104 0.263831i
\(346\) 0 0
\(347\) 0.597739i 0.0320883i −0.999871 0.0160442i \(-0.994893\pi\)
0.999871 0.0160442i \(-0.00510723\pi\)
\(348\) 0 0
\(349\) −3.40586 −0.182311 −0.0911557 0.995837i \(-0.529056\pi\)
−0.0911557 + 0.995837i \(0.529056\pi\)
\(350\) 0 0
\(351\) −25.1713 + 18.5614i −1.34355 + 0.990734i
\(352\) 0 0
\(353\) −15.5414 −0.827184 −0.413592 0.910462i \(-0.635726\pi\)
−0.413592 + 0.910462i \(0.635726\pi\)
\(354\) 0 0
\(355\) −4.06333 + 6.33308i −0.215659 + 0.336125i
\(356\) 0 0
\(357\) 6.56319 + 2.11542i 0.347361 + 0.111960i
\(358\) 0 0
\(359\) 1.46494 0.0773166 0.0386583 0.999252i \(-0.487692\pi\)
0.0386583 + 0.999252i \(0.487692\pi\)
\(360\) 0 0
\(361\) 15.8030 0.831735
\(362\) 0 0
\(363\) −21.9545 7.07629i −1.15231 0.371409i
\(364\) 0 0
\(365\) −14.4600 9.27758i −0.756868 0.485611i
\(366\) 0 0
\(367\) 33.8003 1.76436 0.882181 0.470911i \(-0.156075\pi\)
0.882181 + 0.470911i \(0.156075\pi\)
\(368\) 0 0
\(369\) −16.6120 + 23.0926i −0.864787 + 1.20216i
\(370\) 0 0
\(371\) 0.950066 0.0493250
\(372\) 0 0
\(373\) 18.1802i 0.941335i 0.882311 + 0.470667i \(0.155987\pi\)
−0.882311 + 0.470667i \(0.844013\pi\)
\(374\) 0 0
\(375\) −17.4172 8.46419i −0.899418 0.437089i
\(376\) 0 0
\(377\) −11.4288 −0.588613
\(378\) 0 0
\(379\) 6.90488i 0.354680i −0.984150 0.177340i \(-0.943251\pi\)
0.984150 0.177340i \(-0.0567492\pi\)
\(380\) 0 0
\(381\) −1.68239 0.542261i −0.0861916 0.0277809i
\(382\) 0 0
\(383\) 13.1790i 0.673417i 0.941609 + 0.336708i \(0.109314\pi\)
−0.941609 + 0.336708i \(0.890686\pi\)
\(384\) 0 0
\(385\) −5.95455 + 9.28070i −0.303472 + 0.472988i
\(386\) 0 0
\(387\) 3.83226 + 2.75679i 0.194804 + 0.140135i
\(388\) 0 0
\(389\) 28.8446i 1.46248i −0.682120 0.731240i \(-0.738942\pi\)
0.682120 0.731240i \(-0.261058\pi\)
\(390\) 0 0
\(391\) 6.52368i 0.329917i
\(392\) 0 0
\(393\) −32.1837 10.3733i −1.62345 0.523264i
\(394\) 0 0
\(395\) 30.6175 + 19.6443i 1.54053 + 0.988414i
\(396\) 0 0
\(397\) 26.7655i 1.34332i 0.740859 + 0.671661i \(0.234419\pi\)
−0.740859 + 0.671661i \(0.765581\pi\)
\(398\) 0 0
\(399\) 0.950066 2.94762i 0.0475628 0.147566i
\(400\) 0 0
\(401\) 17.5862i 0.878215i 0.898434 + 0.439108i \(0.144705\pi\)
−0.898434 + 0.439108i \(0.855295\pi\)
\(402\) 0 0
\(403\) 28.5032 1.41985
\(404\) 0 0
\(405\) −19.5145 4.91772i −0.969684 0.244363i
\(406\) 0 0
\(407\) 32.1701i 1.59461i
\(408\) 0 0
\(409\) −10.2997 −0.509289 −0.254644 0.967035i \(-0.581958\pi\)
−0.254644 + 0.967035i \(0.581958\pi\)
\(410\) 0 0
\(411\) −14.6926 4.73565i −0.724732 0.233592i
\(412\) 0 0
\(413\) −12.7925 −0.629476
\(414\) 0 0
\(415\) −0.979463 0.628428i −0.0480799 0.0308483i
\(416\) 0 0
\(417\) 12.1763 37.7776i 0.596276 1.84998i
\(418\) 0 0
\(419\) 26.2527 1.28253 0.641265 0.767319i \(-0.278410\pi\)
0.641265 + 0.767319i \(0.278410\pi\)
\(420\) 0 0
\(421\) 10.4854 0.511025 0.255512 0.966806i \(-0.417756\pi\)
0.255512 + 0.966806i \(0.417756\pi\)
\(422\) 0 0
\(423\) −15.6031 + 21.6901i −0.758648 + 1.05461i
\(424\) 0 0
\(425\) −8.29636 18.0949i −0.402433 0.877729i
\(426\) 0 0
\(427\) −8.59414 −0.415900
\(428\) 0 0
\(429\) 15.7708 48.9298i 0.761423 2.36235i
\(430\) 0 0
\(431\) −28.8186 −1.38814 −0.694072 0.719905i \(-0.744185\pi\)
−0.694072 + 0.719905i \(0.744185\pi\)
\(432\) 0 0
\(433\) 5.36408i 0.257781i −0.991659 0.128891i \(-0.958858\pi\)
0.991659 0.128891i \(-0.0411416\pi\)
\(434\) 0 0
\(435\) −4.67291 5.67866i −0.224049 0.272271i
\(436\) 0 0
\(437\) −2.92988 −0.140155
\(438\) 0 0
\(439\) 28.4299i 1.35688i −0.734654 0.678442i \(-0.762655\pi\)
0.734654 0.678442i \(-0.237345\pi\)
\(440\) 0 0
\(441\) 2.43534 + 1.75189i 0.115968 + 0.0834235i
\(442\) 0 0
\(443\) 27.6108i 1.31183i 0.754835 + 0.655915i \(0.227717\pi\)
−0.754835 + 0.655915i \(0.772283\pi\)
\(444\) 0 0
\(445\) −30.4399 19.5304i −1.44299 0.925830i
\(446\) 0 0
\(447\) 3.14721 9.76436i 0.148858 0.461839i
\(448\) 0 0
\(449\) 6.08231i 0.287042i 0.989647 + 0.143521i \(0.0458425\pi\)
−0.989647 + 0.143521i \(0.954158\pi\)
\(450\) 0 0
\(451\) 46.7601i 2.20185i
\(452\) 0 0
\(453\) −2.78452 + 8.63910i −0.130828 + 0.405900i
\(454\) 0 0
\(455\) −11.3275 7.26779i −0.531042 0.340719i
\(456\) 0 0
\(457\) 15.6138i 0.730382i 0.930933 + 0.365191i \(0.118996\pi\)
−0.930933 + 0.365191i \(0.881004\pi\)
\(458\) 0 0
\(459\) −12.2776 16.6498i −0.573069 0.777144i
\(460\) 0 0
\(461\) 19.3841i 0.902808i −0.892320 0.451404i \(-0.850923\pi\)
0.892320 0.451404i \(-0.149077\pi\)
\(462\) 0 0
\(463\) −22.2446 −1.03379 −0.516897 0.856048i \(-0.672913\pi\)
−0.516897 + 0.856048i \(0.672913\pi\)
\(464\) 0 0
\(465\) 11.6542 + 14.1625i 0.540449 + 0.656770i
\(466\) 0 0
\(467\) 19.6007i 0.907012i 0.891253 + 0.453506i \(0.149827\pi\)
−0.891253 + 0.453506i \(0.850173\pi\)
\(468\) 0 0
\(469\) 9.74135 0.449814
\(470\) 0 0
\(471\) −5.98263 + 18.5614i −0.275665 + 0.855264i
\(472\) 0 0
\(473\) −7.75989 −0.356800
\(474\) 0 0
\(475\) −8.12667 + 3.72602i −0.372877 + 0.170961i
\(476\) 0 0
\(477\) −2.31373 1.66441i −0.105938 0.0762083i
\(478\) 0 0
\(479\) 16.1274 0.736882 0.368441 0.929651i \(-0.379892\pi\)
0.368441 + 0.929651i \(0.379892\pi\)
\(480\) 0 0
\(481\) 39.2651 1.79034
\(482\) 0 0
\(483\) 0.870674 2.70131i 0.0396170 0.122914i
\(484\) 0 0
\(485\) 16.1575 + 10.3668i 0.733676 + 0.470730i
\(486\) 0 0
\(487\) 8.50323 0.385318 0.192659 0.981266i \(-0.438289\pi\)
0.192659 + 0.981266i \(0.438289\pi\)
\(488\) 0 0
\(489\) −26.6531 8.59071i −1.20529 0.388485i
\(490\) 0 0
\(491\) 3.69899 0.166933 0.0834665 0.996511i \(-0.473401\pi\)
0.0834665 + 0.996511i \(0.473401\pi\)
\(492\) 0 0
\(493\) 7.55966i 0.340470i
\(494\) 0 0
\(495\) 30.7601 12.1699i 1.38257 0.546996i
\(496\) 0 0
\(497\) −3.36507 −0.150944
\(498\) 0 0
\(499\) 39.7969i 1.78155i 0.454443 + 0.890776i \(0.349838\pi\)
−0.454443 + 0.890776i \(0.650162\pi\)
\(500\) 0 0
\(501\) 1.69399 5.25568i 0.0756818 0.234807i
\(502\) 0 0
\(503\) 0.0891309i 0.00397415i 0.999998 + 0.00198708i \(0.000632506\pi\)
−0.999998 + 0.00198708i \(0.999367\pi\)
\(504\) 0 0
\(505\) 6.48973 + 4.16385i 0.288789 + 0.185289i
\(506\) 0 0
\(507\) 38.2900 + 12.3415i 1.70052 + 0.548104i
\(508\) 0 0
\(509\) 16.4462i 0.728967i −0.931210 0.364484i \(-0.881246\pi\)
0.931210 0.364484i \(-0.118754\pi\)
\(510\) 0 0
\(511\) 7.68328i 0.339888i
\(512\) 0 0
\(513\) −7.47766 + 5.51405i −0.330147 + 0.243451i
\(514\) 0 0
\(515\) −8.81124 + 13.7331i −0.388269 + 0.605153i
\(516\) 0 0
\(517\) 43.9201i 1.93160i
\(518\) 0 0
\(519\) 27.6520 + 8.91267i 1.21379 + 0.391223i
\(520\) 0 0
\(521\) 26.0323i 1.14050i −0.821472 0.570249i \(-0.806847\pi\)
0.821472 0.570249i \(-0.193153\pi\)
\(522\) 0 0
\(523\) 38.5032 1.68363 0.841814 0.539767i \(-0.181488\pi\)
0.841814 + 0.539767i \(0.181488\pi\)
\(524\) 0 0
\(525\) −1.02033 8.59994i −0.0445309 0.375332i
\(526\) 0 0
\(527\) 18.8537i 0.821279i
\(528\) 0 0
\(529\) 20.3150 0.883259
\(530\) 0 0
\(531\) 31.1539 + 22.4110i 1.35197 + 0.972556i
\(532\) 0 0
\(533\) 57.0728 2.47210
\(534\) 0 0
\(535\) −24.2722 15.5731i −1.04938 0.673286i
\(536\) 0 0
\(537\) −13.5099 4.35445i −0.582995 0.187908i
\(538\) 0 0
\(539\) −4.93129 −0.212406
\(540\) 0 0
\(541\) −11.0384 −0.474579 −0.237289 0.971439i \(-0.576259\pi\)
−0.237289 + 0.971439i \(0.576259\pi\)
\(542\) 0 0
\(543\) −38.7798 12.4993i −1.66420 0.536397i
\(544\) 0 0
\(545\) −2.95147 + 4.60014i −0.126427 + 0.197048i
\(546\) 0 0
\(547\) 39.0475 1.66955 0.834776 0.550589i \(-0.185597\pi\)
0.834776 + 0.550589i \(0.185597\pi\)
\(548\) 0 0
\(549\) 20.9296 + 15.0560i 0.893255 + 0.642576i
\(550\) 0 0
\(551\) −3.39516 −0.144639
\(552\) 0 0
\(553\) 16.2686i 0.691810i
\(554\) 0 0
\(555\) 16.0544 + 19.5098i 0.681471 + 0.828144i
\(556\) 0 0
\(557\) −31.5675 −1.33756 −0.668780 0.743460i \(-0.733183\pi\)
−0.668780 + 0.743460i \(0.733183\pi\)
\(558\) 0 0
\(559\) 9.47130i 0.400593i
\(560\) 0 0
\(561\) 32.3650 + 10.4317i 1.36645 + 0.440428i
\(562\) 0 0
\(563\) 43.2911i 1.82450i 0.409633 + 0.912251i \(0.365657\pi\)
−0.409633 + 0.912251i \(0.634343\pi\)
\(564\) 0 0
\(565\) 3.44162 5.36408i 0.144790 0.225669i
\(566\) 0 0
\(567\) −2.86173 8.53291i −0.120182 0.358348i
\(568\) 0 0
\(569\) 17.0705i 0.715631i 0.933792 + 0.357816i \(0.116478\pi\)
−0.933792 + 0.357816i \(0.883522\pi\)
\(570\) 0 0
\(571\) 9.71853i 0.406708i 0.979105 + 0.203354i \(0.0651842\pi\)
−0.979105 + 0.203354i \(0.934816\pi\)
\(572\) 0 0
\(573\) −21.2558 6.85107i −0.887973 0.286208i
\(574\) 0 0
\(575\) −7.44757 + 3.41466i −0.310585 + 0.142401i
\(576\) 0 0
\(577\) 36.2368i 1.50856i −0.656555 0.754279i \(-0.727987\pi\)
0.656555 0.754279i \(-0.272013\pi\)
\(578\) 0 0
\(579\) −2.92988 + 9.09010i −0.121762 + 0.377772i
\(580\) 0 0
\(581\) 0.520436i 0.0215913i
\(582\) 0 0
\(583\) 4.68505 0.194035
\(584\) 0 0
\(585\) 14.8539 + 37.5441i 0.614134 + 1.55226i
\(586\) 0 0
\(587\) 25.6565i 1.05896i −0.848323 0.529479i \(-0.822387\pi\)
0.848323 0.529479i \(-0.177613\pi\)
\(588\) 0 0
\(589\) 8.46747 0.348896
\(590\) 0 0
\(591\) 30.9514 + 9.97612i 1.27317 + 0.410363i
\(592\) 0 0
\(593\) 13.8438 0.568497 0.284248 0.958751i \(-0.408256\pi\)
0.284248 + 0.958751i \(0.408256\pi\)
\(594\) 0 0
\(595\) 4.80734 7.49267i 0.197082 0.307170i
\(596\) 0 0
\(597\) 2.71883 8.43532i 0.111274 0.345235i
\(598\) 0 0
\(599\) −30.5162 −1.24686 −0.623429 0.781880i \(-0.714261\pi\)
−0.623429 + 0.781880i \(0.714261\pi\)
\(600\) 0 0
\(601\) −2.55307 −0.104142 −0.0520709 0.998643i \(-0.516582\pi\)
−0.0520709 + 0.998643i \(0.516582\pi\)
\(602\) 0 0
\(603\) −23.7235 17.0658i −0.966094 0.694974i
\(604\) 0 0
\(605\) −16.0811 + 25.0638i −0.653788 + 1.01899i
\(606\) 0 0
\(607\) 16.3123 0.662096 0.331048 0.943614i \(-0.392598\pi\)
0.331048 + 0.943614i \(0.392598\pi\)
\(608\) 0 0
\(609\) 1.00894 3.13029i 0.0408843 0.126846i
\(610\) 0 0
\(611\) 53.6064 2.16868
\(612\) 0 0
\(613\) 21.7563i 0.878727i −0.898309 0.439363i \(-0.855204\pi\)
0.898309 0.439363i \(-0.144796\pi\)
\(614\) 0 0
\(615\) 23.3355 + 28.3579i 0.940976 + 1.14350i
\(616\) 0 0
\(617\) 25.5052 1.02680 0.513401 0.858149i \(-0.328385\pi\)
0.513401 + 0.858149i \(0.328385\pi\)
\(618\) 0 0
\(619\) 28.0487i 1.12737i −0.825989 0.563686i \(-0.809383\pi\)
0.825989 0.563686i \(-0.190617\pi\)
\(620\) 0 0
\(621\) −6.85279 + 5.05327i −0.274993 + 0.202781i
\(622\) 0 0
\(623\) 16.1742i 0.648006i
\(624\) 0 0
\(625\) −16.3150 + 18.9426i −0.652598 + 0.757704i
\(626\) 0 0
\(627\) 4.68505 14.5356i 0.187103 0.580496i
\(628\) 0 0
\(629\) 25.9722i 1.03558i
\(630\) 0 0
\(631\) 12.3926i 0.493341i −0.969099 0.246670i \(-0.920664\pi\)
0.969099 0.246670i \(-0.0793365\pi\)
\(632\) 0 0
\(633\) 0.479280 1.48699i 0.0190497 0.0591025i
\(634\) 0 0
\(635\) −1.23230 + 1.92065i −0.0489024 + 0.0762189i
\(636\) 0 0
\(637\) 6.01886i 0.238476i
\(638\) 0 0
\(639\) 8.19508 + 5.89525i 0.324193 + 0.233212i
\(640\) 0 0
\(641\) 34.6521i 1.36867i 0.729166 + 0.684337i \(0.239908\pi\)
−0.729166 + 0.684337i \(0.760092\pi\)
\(642\) 0 0
\(643\) 18.8707 0.744187 0.372093 0.928195i \(-0.378640\pi\)
0.372093 + 0.928195i \(0.378640\pi\)
\(644\) 0 0
\(645\) 4.70604 3.87255i 0.185300 0.152481i
\(646\) 0 0
\(647\) 7.73275i 0.304006i −0.988380 0.152003i \(-0.951428\pi\)
0.988380 0.152003i \(-0.0485723\pi\)
\(648\) 0 0
\(649\) −63.0833 −2.47624
\(650\) 0 0
\(651\) −2.51628 + 7.80689i −0.0986209 + 0.305976i
\(652\) 0 0
\(653\) −18.9776 −0.742652 −0.371326 0.928502i \(-0.621097\pi\)
−0.371326 + 0.928502i \(0.621097\pi\)
\(654\) 0 0
\(655\) −23.5736 + 36.7416i −0.921097 + 1.43561i
\(656\) 0 0
\(657\) −13.4603 + 18.7114i −0.525136 + 0.730000i
\(658\) 0 0
\(659\) −38.4787 −1.49892 −0.749458 0.662052i \(-0.769686\pi\)
−0.749458 + 0.662052i \(0.769686\pi\)
\(660\) 0 0
\(661\) 29.4469 1.14535 0.572676 0.819781i \(-0.305905\pi\)
0.572676 + 0.819781i \(0.305905\pi\)
\(662\) 0 0
\(663\) −12.7324 + 39.5029i −0.494486 + 1.53417i
\(664\) 0 0
\(665\) −3.36507 2.15905i −0.130492 0.0837243i
\(666\) 0 0
\(667\) −3.11144 −0.120476
\(668\) 0 0
\(669\) −1.86173 0.600066i −0.0719788 0.0231999i
\(670\) 0 0
\(671\) −42.3802 −1.63607
\(672\) 0 0
\(673\) 17.0046i 0.655480i 0.944768 + 0.327740i \(0.106287\pi\)
−0.944768 + 0.327740i \(0.893713\pi\)
\(674\) 0 0
\(675\) −12.5813 + 22.7313i −0.484256 + 0.874927i
\(676\) 0 0
\(677\) −19.3416 −0.743360 −0.371680 0.928361i \(-0.621218\pi\)
−0.371680 + 0.928361i \(0.621218\pi\)
\(678\) 0 0
\(679\) 8.58528i 0.329473i
\(680\) 0 0
\(681\) 15.0500 46.6934i 0.576718 1.78930i
\(682\) 0 0
\(683\) 19.4514i 0.744288i −0.928175 0.372144i \(-0.878623\pi\)
0.928175 0.372144i \(-0.121377\pi\)
\(684\) 0 0
\(685\) −10.7619 + 16.7734i −0.411191 + 0.640878i
\(686\) 0 0
\(687\) 35.4150 + 11.4148i 1.35117 + 0.435502i
\(688\) 0 0
\(689\) 5.71831i 0.217850i
\(690\) 0 0
\(691\) 9.32134i 0.354600i −0.984157 0.177300i \(-0.943264\pi\)
0.984157 0.177300i \(-0.0567363\pi\)
\(692\) 0 0
\(693\) 12.0094 + 8.63910i 0.456197 + 0.328172i
\(694\) 0 0
\(695\) −43.1277 27.6710i −1.63593 1.04962i
\(696\) 0 0
\(697\) 37.7512i 1.42993i
\(698\) 0 0
\(699\) −33.7499 10.8781i −1.27654 0.411449i
\(700\) 0 0
\(701\) 40.6907i 1.53687i 0.639929 + 0.768434i \(0.278964\pi\)
−0.639929 + 0.768434i \(0.721036\pi\)
\(702\) 0 0
\(703\) 11.6645 0.439935
\(704\) 0 0
\(705\) 21.9182 + 26.6356i 0.825486 + 1.00315i
\(706\) 0 0
\(707\) 3.44831i 0.129687i
\(708\) 0 0
\(709\) 26.6120 0.999435 0.499718 0.866188i \(-0.333437\pi\)
0.499718 + 0.866188i \(0.333437\pi\)
\(710\) 0 0
\(711\) 28.5008 39.6194i 1.06886 1.48584i
\(712\) 0 0
\(713\) 7.75989 0.290610
\(714\) 0 0
\(715\) −55.8593 35.8396i −2.08902 1.34032i
\(716\) 0 0
\(717\) 13.2933 + 4.28465i 0.496449 + 0.160013i
\(718\) 0 0
\(719\) 48.4425 1.80660 0.903300 0.429009i \(-0.141137\pi\)
0.903300 + 0.429009i \(0.141137\pi\)
\(720\) 0 0
\(721\) −7.29707 −0.271757
\(722\) 0 0
\(723\) −25.0384 8.07027i −0.931189 0.300137i
\(724\) 0 0
\(725\) −8.63028 + 3.95692i −0.320520 + 0.146956i
\(726\) 0 0
\(727\) −40.8798 −1.51615 −0.758074 0.652169i \(-0.773859\pi\)
−0.758074 + 0.652169i \(0.773859\pi\)
\(728\) 0 0
\(729\) −7.97946 + 25.7940i −0.295536 + 0.955332i
\(730\) 0 0
\(731\) 6.26487 0.231714
\(732\) 0 0
\(733\) 24.9615i 0.921973i 0.887407 + 0.460986i \(0.152504\pi\)
−0.887407 + 0.460986i \(0.847496\pi\)
\(734\) 0 0
\(735\) 2.99061 2.46094i 0.110310 0.0907733i
\(736\) 0 0
\(737\) 48.0374 1.76948
\(738\) 0 0
\(739\) 1.66441i 0.0612265i 0.999531 + 0.0306132i \(0.00974602\pi\)
−0.999531 + 0.0306132i \(0.990254\pi\)
\(740\) 0 0
\(741\) 17.7413 + 5.71831i 0.651745 + 0.210068i
\(742\) 0 0
\(743\) 7.56167i 0.277411i −0.990334 0.138705i \(-0.955706\pi\)
0.990334 0.138705i \(-0.0442941\pi\)
\(744\) 0 0
\(745\) −11.1472 7.15211i −0.408402 0.262033i
\(746\) 0 0
\(747\) −0.911749 + 1.26744i −0.0333592 + 0.0463731i
\(748\) 0 0
\(749\) 12.8970i 0.471245i
\(750\) 0 0
\(751\) 4.23084i 0.154385i −0.997016 0.0771927i \(-0.975404\pi\)
0.997016 0.0771927i \(-0.0245957\pi\)
\(752\) 0 0
\(753\) 37.6815 + 12.1454i 1.37319 + 0.442601i
\(754\) 0 0
\(755\) 9.86258 + 6.32788i 0.358936 + 0.230295i
\(756\) 0 0
\(757\) 31.5275i 1.14589i −0.819595 0.572943i \(-0.805802\pi\)
0.819595 0.572943i \(-0.194198\pi\)
\(758\) 0 0
\(759\) 4.29355 13.3209i 0.155846 0.483519i
\(760\) 0 0
\(761\) 37.6064i 1.36323i −0.731710 0.681616i \(-0.761278\pi\)
0.731710 0.681616i \(-0.238722\pi\)
\(762\) 0 0
\(763\) −2.44428 −0.0884888
\(764\) 0 0
\(765\) −24.8339 + 9.82524i −0.897870 + 0.355232i
\(766\) 0 0
\(767\) 76.9960i 2.78017i
\(768\) 0 0
\(769\) −22.9707 −0.828345 −0.414172 0.910198i \(-0.635929\pi\)
−0.414172 + 0.910198i \(0.635929\pi\)
\(770\) 0 0
\(771\) −28.5364 9.19773i −1.02771 0.331248i
\(772\) 0 0
\(773\) 34.8013 1.25171 0.625857 0.779938i \(-0.284749\pi\)
0.625857 + 0.779938i \(0.284749\pi\)
\(774\) 0 0
\(775\) 21.5238 9.86849i 0.773157 0.354487i
\(776\) 0 0
\(777\) −3.46635 + 10.7545i −0.124355 + 0.385816i
\(778\) 0 0
\(779\) 16.9546 0.607463
\(780\) 0 0
\(781\) −16.5941 −0.593785
\(782\) 0 0
\(783\) −7.94104 + 5.85575i −0.283790 + 0.209267i
\(784\) 0 0
\(785\) 21.1901 + 13.5957i 0.756307 + 0.485250i
\(786\) 0 0
\(787\) 1.85545 0.0661396 0.0330698 0.999453i \(-0.489472\pi\)
0.0330698 + 0.999453i \(0.489472\pi\)
\(788\) 0 0
\(789\) −13.4827 + 41.8307i −0.479997 + 1.48921i
\(790\) 0 0
\(791\) 2.85020 0.101341
\(792\) 0 0
\(793\) 51.7270i 1.83688i
\(794\) 0 0
\(795\) −2.84128 + 2.33806i −0.100770 + 0.0829224i
\(796\) 0 0
\(797\) 54.1213 1.91708 0.958538 0.284966i \(-0.0919824\pi\)
0.958538 + 0.284966i \(0.0919824\pi\)
\(798\) 0 0
\(799\) 35.4584i 1.25443i
\(800\) 0 0
\(801\) −28.3355 + 39.3896i −1.00119 + 1.39176i
\(802\) 0 0
\(803\) 37.8885i 1.33705i
\(804\) 0 0
\(805\) −3.08387 1.97863i −0.108692 0.0697375i
\(806\) 0 0
\(807\) −10.7440 + 33.3338i −0.378207 + 1.17341i
\(808\) 0 0
\(809\) 1.78787i 0.0628583i 0.999506 + 0.0314291i \(0.0100059\pi\)
−0.999506 + 0.0314291i \(0.989994\pi\)
\(810\) 0 0
\(811\) 30.3679i 1.06636i 0.846002 + 0.533180i \(0.179003\pi\)
−0.846002 + 0.533180i \(0.820997\pi\)
\(812\) 0 0
\(813\) 3.05275 9.47130i 0.107065 0.332173i
\(814\) 0 0
\(815\) −19.5226 + 30.4277i −0.683847 + 1.06584i
\(816\) 0 0
\(817\) 2.81365i 0.0984370i
\(818\) 0 0
\(819\) −10.5444 + 14.6580i −0.368451 + 0.512191i
\(820\) 0 0
\(821\) 43.8333i 1.52979i 0.644153 + 0.764897i \(0.277210\pi\)
−0.644153 + 0.764897i \(0.722790\pi\)
\(822\) 0 0
\(823\) −14.2088 −0.495288 −0.247644 0.968851i \(-0.579656\pi\)
−0.247644 + 0.968851i \(0.579656\pi\)
\(824\) 0 0
\(825\) −5.03155 42.4088i −0.175176 1.47648i
\(826\) 0 0
\(827\) 43.4622i 1.51133i −0.654960 0.755664i \(-0.727314\pi\)
0.654960 0.755664i \(-0.272686\pi\)
\(828\) 0 0
\(829\) 44.7121 1.55291 0.776457 0.630170i \(-0.217015\pi\)
0.776457 + 0.630170i \(0.217015\pi\)
\(830\) 0 0
\(831\) 7.42598 23.0395i 0.257604 0.799230i
\(832\) 0 0
\(833\) 3.98122 0.137941
\(834\) 0 0
\(835\) −6.00000 3.84963i −0.207639 0.133222i
\(836\) 0 0
\(837\) 19.8048 14.6041i 0.684555 0.504793i
\(838\) 0 0
\(839\) −38.8427 −1.34100 −0.670499 0.741911i \(-0.733920\pi\)
−0.670499 + 0.741911i \(0.733920\pi\)
\(840\) 0 0
\(841\) 25.3944 0.875671
\(842\) 0 0
\(843\) −9.24971 + 28.6977i −0.318577 + 0.988401i
\(844\) 0 0
\(845\) 28.0463 43.7127i 0.964823 1.50376i
\(846\) 0 0
\(847\) −13.3176 −0.457598
\(848\) 0 0
\(849\) −17.3676 5.59786i −0.596055 0.192118i
\(850\) 0 0
\(851\) 10.6898 0.366441
\(852\) 0 0
\(853\) 30.2019i 1.03409i 0.855957 + 0.517047i \(0.172969\pi\)
−0.855957 + 0.517047i \(0.827031\pi\)
\(854\) 0 0
\(855\) 4.41266 + 11.1533i 0.150910 + 0.381433i
\(856\) 0 0
\(857\) −39.5601 −1.35135 −0.675673 0.737201i \(-0.736147\pi\)
−0.675673 + 0.737201i \(0.736147\pi\)
\(858\) 0 0
\(859\) 40.4676i 1.38074i 0.723458 + 0.690369i \(0.242552\pi\)
−0.723458 + 0.690369i \(0.757448\pi\)
\(860\) 0 0
\(861\) −5.03842 + 15.6319i −0.171709 + 0.532735i
\(862\) 0 0
\(863\) 2.67948i 0.0912107i −0.998960 0.0456053i \(-0.985478\pi\)
0.998960 0.0456053i \(-0.0145217\pi\)
\(864\) 0 0
\(865\) 20.2543 31.5681i 0.688666 1.07335i
\(866\) 0 0
\(867\) 1.89559 + 0.610978i 0.0643776 + 0.0207499i
\(868\) 0 0
\(869\) 80.2250i 2.72145i
\(870\) 0 0
\(871\) 58.6318i 1.98666i
\(872\) 0 0
\(873\) 15.0405 20.9081i 0.509044 0.707631i
\(874\) 0 0
\(875\) −11.0701 1.56631i −0.374237 0.0529508i
\(876\) 0 0
\(877\) 7.45204i 0.251637i 0.992053 + 0.125819i \(0.0401558\pi\)
−0.992053 + 0.125819i \(0.959844\pi\)
\(878\) 0 0
\(879\) −4.53169 1.46064i −0.152850 0.0492660i
\(880\) 0 0
\(881\) 6.90662i 0.232690i 0.993209 + 0.116345i \(0.0371178\pi\)
−0.993209 + 0.116345i \(0.962882\pi\)
\(882\) 0 0
\(883\) −7.22936 −0.243287 −0.121644 0.992574i \(-0.538816\pi\)
−0.121644 + 0.992574i \(0.538816\pi\)
\(884\) 0 0
\(885\) 38.2573 31.4815i 1.28600 1.05824i
\(886\) 0 0
\(887\) 16.0732i 0.539687i 0.962904 + 0.269843i \(0.0869719\pi\)
−0.962904 + 0.269843i \(0.913028\pi\)
\(888\) 0 0
\(889\) −1.02054 −0.0342277
\(890\) 0 0
\(891\) −14.1120 42.0782i −0.472771 1.40967i
\(892\) 0 0
\(893\) 15.9249 0.532906
\(894\) 0 0
\(895\) −9.89559 + 15.4232i −0.330773 + 0.515540i
\(896\) 0 0
\(897\) 16.2588 + 5.24047i 0.542866 + 0.174974i
\(898\) 0 0
\(899\) 8.99220 0.299907
\(900\) 0 0
\(901\) −3.78242 −0.126011
\(902\) 0 0
\(903\) 2.59414 + 0.836132i 0.0863276 + 0.0278247i
\(904\) 0 0
\(905\) −28.4050 + 44.2718i −0.944215 + 1.47164i
\(906\) 0 0
\(907\) 14.0768 0.467414 0.233707 0.972307i \(-0.424914\pi\)
0.233707 + 0.972307i \(0.424914\pi\)
\(908\) 0 0
\(909\) 6.04107 8.39780i 0.200370 0.278537i
\(910\) 0 0
\(911\) −2.95997 −0.0980681 −0.0490340 0.998797i \(-0.515614\pi\)
−0.0490340 + 0.998797i \(0.515614\pi\)
\(912\) 0 0
\(913\) 2.56642i 0.0849361i
\(914\) 0 0
\(915\) 25.7017 21.1497i 0.849673 0.699187i
\(916\) 0 0
\(917\) −19.5226 −0.644693
\(918\) 0 0
\(919\) 0.902006i 0.0297544i 0.999889 + 0.0148772i \(0.00473574\pi\)
−0.999889 + 0.0148772i \(0.995264\pi\)
\(920\) 0 0
\(921\) 25.9207 + 8.35464i 0.854116 + 0.275295i
\(922\) 0 0
\(923\) 20.2539i 0.666665i
\(924\) 0 0
\(925\) 29.6504 13.5945i 0.974901 0.446985i
\(926\) 0 0
\(927\) 17.7708 + 12.7837i 0.583671 + 0.419872i
\(928\) 0 0
\(929\) 31.2739i 1.02606i 0.858370 + 0.513031i \(0.171478\pi\)
−0.858370 + 0.513031i \(0.828522\pi\)
\(930\) 0 0
\(931\) 1.78803i 0.0586002i
\(932\) 0 0
\(933\) −31.0828 10.0185i −1.01760 0.327990i
\(934\) 0 0
\(935\) 23.7064 36.9485i 0.775281 1.20835i
\(936\) 0 0
\(937\) 32.6607i 1.06698i 0.845807 + 0.533490i \(0.179120\pi\)
−0.845807 + 0.533490i \(0.820880\pi\)
\(938\) 0 0
\(939\) −8.23068 + 25.5361i −0.268598 + 0.833339i
\(940\) 0 0
\(941\) 15.5428i 0.506681i 0.967377 + 0.253341i \(0.0815293\pi\)
−0.967377 + 0.253341i \(0.918471\pi\)
\(942\) 0 0
\(943\) 15.5378 0.505982
\(944\) 0 0
\(945\) −11.5945 + 0.753992i −0.377168 + 0.0245274i
\(946\) 0 0
\(947\) 18.4342i 0.599031i −0.954091 0.299516i \(-0.903175\pi\)
0.954091 0.299516i \(-0.0968251\pi\)
\(948\) 0 0
\(949\) 46.2446 1.50116
\(950\) 0 0
\(951\) 36.1153 + 11.6405i 1.17112 + 0.377470i
\(952\) 0 0
\(953\) −26.5350 −0.859552 −0.429776 0.902935i \(-0.641408\pi\)
−0.429776 + 0.902935i \(0.641408\pi\)
\(954\) 0 0
\(955\) −15.5692 + 24.2661i −0.503808 + 0.785231i
\(956\) 0 0
\(957\) 4.97538 15.4364i 0.160831 0.498986i
\(958\) 0 0
\(959\) −8.91251 −0.287800
\(960\) 0 0
\(961\) 8.57360 0.276568
\(962\) 0 0
\(963\) −22.5941 + 31.4085i −0.728086 + 1.01212i
\(964\) 0 0
\(965\) 10.3775 + 6.65823i 0.334062 + 0.214336i
\(966\) 0 0
\(967\) 48.4176 1.55701 0.778503 0.627641i \(-0.215979\pi\)
0.778503 + 0.627641i \(0.215979\pi\)
\(968\) 0 0
\(969\) −3.78242 + 11.7352i −0.121509 + 0.376987i
\(970\) 0 0
\(971\) −35.4475 −1.13756 −0.568782 0.822488i \(-0.692585\pi\)
−0.568782 + 0.822488i \(0.692585\pi\)
\(972\) 0 0
\(973\) 22.9159i 0.734648i
\(974\) 0 0
\(975\) 51.7618 6.14123i 1.65771 0.196677i
\(976\) 0 0
\(977\) 9.31762 0.298097 0.149048 0.988830i \(-0.452379\pi\)
0.149048 + 0.988830i \(0.452379\pi\)
\(978\) 0 0
\(979\) 79.7597i 2.54913i
\(980\) 0 0
\(981\) 5.95264 + 4.28212i 0.190053 + 0.136717i
\(982\) 0 0
\(983\) 36.7821i 1.17317i −0.809889 0.586584i \(-0.800473\pi\)
0.809889 0.586584i \(-0.199527\pi\)
\(984\) 0 0
\(985\) 22.6710 35.3348i 0.722357 1.12586i
\(986\) 0 0
\(987\) −4.73241 + 14.6825i −0.150634 + 0.467350i
\(988\) 0 0
\(989\) 2.57853i 0.0819923i
\(990\) 0 0
\(991\) 26.6419i 0.846307i 0.906058 + 0.423153i \(0.139077\pi\)
−0.906058 + 0.423153i \(0.860923\pi\)
\(992\) 0 0
\(993\) 1.76877 5.48769i 0.0561302 0.174147i
\(994\) 0 0
\(995\) −9.62994 6.17862i −0.305290 0.195875i
\(996\) 0 0
\(997\) 48.7370i 1.54352i 0.635916 + 0.771758i \(0.280622\pi\)
−0.635916 + 0.771758i \(0.719378\pi\)
\(998\) 0 0
\(999\) 27.2825 20.1182i 0.863180 0.636511i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.v.a.239.1 12
3.2 odd 2 inner 1680.2.v.a.239.4 yes 12
4.3 odd 2 1680.2.v.b.239.11 yes 12
5.4 even 2 1680.2.v.b.239.12 yes 12
12.11 even 2 1680.2.v.b.239.10 yes 12
15.14 odd 2 1680.2.v.b.239.9 yes 12
20.19 odd 2 inner 1680.2.v.a.239.2 yes 12
60.59 even 2 inner 1680.2.v.a.239.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.v.a.239.1 12 1.1 even 1 trivial
1680.2.v.a.239.2 yes 12 20.19 odd 2 inner
1680.2.v.a.239.3 yes 12 60.59 even 2 inner
1680.2.v.a.239.4 yes 12 3.2 odd 2 inner
1680.2.v.b.239.9 yes 12 15.14 odd 2
1680.2.v.b.239.10 yes 12 12.11 even 2
1680.2.v.b.239.11 yes 12 4.3 odd 2
1680.2.v.b.239.12 yes 12 5.4 even 2