Properties

Label 1680.2.k.h.209.4
Level $1680$
Weight $2$
Character 1680.209
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(209,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,-2,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.4
Character \(\chi\) \(=\) 1680.209
Dual form 1680.2.k.h.209.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.64602 + 0.539084i) q^{3} +(-1.30213 + 1.81782i) q^{5} +(-2.19974 - 1.47008i) q^{7} +(2.41878 - 1.77469i) q^{9} -0.958461i q^{11} -0.157315 q^{13} +(1.16337 - 3.69413i) q^{15} +2.51337i q^{17} -1.98260i q^{19} +(4.41332 + 1.23394i) q^{21} -2.67280 q^{23} +(-1.60893 - 4.73406i) q^{25} +(-3.02466 + 4.22510i) q^{27} +1.25028i q^{29} -8.66804i q^{31} +(0.516691 + 1.57765i) q^{33} +(5.53668 - 2.08450i) q^{35} -2.29909i q^{37} +(0.258945 - 0.0848062i) q^{39} +4.74507 q^{41} +6.58424i q^{43} +(0.0765078 + 6.70777i) q^{45} -5.60727i q^{47} +(2.67772 + 6.46760i) q^{49} +(-1.35492 - 4.13706i) q^{51} +8.59262 q^{53} +(1.74231 + 1.24804i) q^{55} +(1.06879 + 3.26340i) q^{57} +10.4488 q^{59} +4.27757i q^{61} +(-7.92962 + 0.348054i) q^{63} +(0.204845 - 0.285971i) q^{65} +13.8282i q^{67} +(4.39948 - 1.44086i) q^{69} +9.75994i q^{71} +4.43474 q^{73} +(5.20040 + 6.92502i) q^{75} +(-1.40902 + 2.10837i) q^{77} -0.517890 q^{79} +(2.70097 - 8.58515i) q^{81} +18.1293i q^{83} +(-4.56885 - 3.27272i) q^{85} +(-0.674006 - 2.05799i) q^{87} -0.954423 q^{89} +(0.346053 + 0.231267i) q^{91} +(4.67280 + 14.2678i) q^{93} +(3.60401 + 2.58160i) q^{95} -14.0907 q^{97} +(-1.70097 - 2.31830i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{9} - 2 q^{15} - 2 q^{21} + 16 q^{23} + 8 q^{25} - 8 q^{35} + 2 q^{39} - 6 q^{51} + 24 q^{53} + 8 q^{57} - 16 q^{63} + 16 q^{65} + 8 q^{77} - 4 q^{79} + 18 q^{81} - 12 q^{85} - 12 q^{91} + 32 q^{93}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.64602 + 0.539084i −0.950331 + 0.311240i
\(4\) 0 0
\(5\) −1.30213 + 1.81782i −0.582329 + 0.812954i
\(6\) 0 0
\(7\) −2.19974 1.47008i −0.831424 0.555638i
\(8\) 0 0
\(9\) 2.41878 1.77469i 0.806259 0.591562i
\(10\) 0 0
\(11\) 0.958461i 0.288987i −0.989506 0.144493i \(-0.953845\pi\)
0.989506 0.144493i \(-0.0461553\pi\)
\(12\) 0 0
\(13\) −0.157315 −0.0436315 −0.0218157 0.999762i \(-0.506945\pi\)
−0.0218157 + 0.999762i \(0.506945\pi\)
\(14\) 0 0
\(15\) 1.16337 3.69413i 0.300381 0.953819i
\(16\) 0 0
\(17\) 2.51337i 0.609581i 0.952419 + 0.304791i \(0.0985865\pi\)
−0.952419 + 0.304791i \(0.901414\pi\)
\(18\) 0 0
\(19\) 1.98260i 0.454840i −0.973797 0.227420i \(-0.926971\pi\)
0.973797 0.227420i \(-0.0730290\pi\)
\(20\) 0 0
\(21\) 4.41332 + 1.23394i 0.963065 + 0.269268i
\(22\) 0 0
\(23\) −2.67280 −0.557317 −0.278658 0.960390i \(-0.589890\pi\)
−0.278658 + 0.960390i \(0.589890\pi\)
\(24\) 0 0
\(25\) −1.60893 4.73406i −0.321787 0.946812i
\(26\) 0 0
\(27\) −3.02466 + 4.22510i −0.582095 + 0.813121i
\(28\) 0 0
\(29\) 1.25028i 0.232171i 0.993239 + 0.116086i \(0.0370347\pi\)
−0.993239 + 0.116086i \(0.962965\pi\)
\(30\) 0 0
\(31\) 8.66804i 1.55683i −0.627753 0.778413i \(-0.716025\pi\)
0.627753 0.778413i \(-0.283975\pi\)
\(32\) 0 0
\(33\) 0.516691 + 1.57765i 0.0899443 + 0.274633i
\(34\) 0 0
\(35\) 5.53668 2.08450i 0.935870 0.352345i
\(36\) 0 0
\(37\) 2.29909i 0.377969i −0.981980 0.188984i \(-0.939480\pi\)
0.981980 0.188984i \(-0.0605195\pi\)
\(38\) 0 0
\(39\) 0.258945 0.0848062i 0.0414643 0.0135799i
\(40\) 0 0
\(41\) 4.74507 0.741056 0.370528 0.928821i \(-0.379177\pi\)
0.370528 + 0.928821i \(0.379177\pi\)
\(42\) 0 0
\(43\) 6.58424i 1.00409i 0.864842 + 0.502043i \(0.167418\pi\)
−0.864842 + 0.502043i \(0.832582\pi\)
\(44\) 0 0
\(45\) 0.0765078 + 6.70777i 0.0114051 + 0.999935i
\(46\) 0 0
\(47\) 5.60727i 0.817904i −0.912556 0.408952i \(-0.865894\pi\)
0.912556 0.408952i \(-0.134106\pi\)
\(48\) 0 0
\(49\) 2.67772 + 6.46760i 0.382532 + 0.923942i
\(50\) 0 0
\(51\) −1.35492 4.13706i −0.189726 0.579304i
\(52\) 0 0
\(53\) 8.59262 1.18029 0.590144 0.807298i \(-0.299071\pi\)
0.590144 + 0.807298i \(0.299071\pi\)
\(54\) 0 0
\(55\) 1.74231 + 1.24804i 0.234933 + 0.168285i
\(56\) 0 0
\(57\) 1.06879 + 3.26340i 0.141564 + 0.432248i
\(58\) 0 0
\(59\) 10.4488 1.36032 0.680159 0.733065i \(-0.261911\pi\)
0.680159 + 0.733065i \(0.261911\pi\)
\(60\) 0 0
\(61\) 4.27757i 0.547686i 0.961774 + 0.273843i \(0.0882949\pi\)
−0.961774 + 0.273843i \(0.911705\pi\)
\(62\) 0 0
\(63\) −7.92962 + 0.348054i −0.999038 + 0.0438506i
\(64\) 0 0
\(65\) 0.204845 0.285971i 0.0254078 0.0354704i
\(66\) 0 0
\(67\) 13.8282i 1.68938i 0.535255 + 0.844690i \(0.320215\pi\)
−0.535255 + 0.844690i \(0.679785\pi\)
\(68\) 0 0
\(69\) 4.39948 1.44086i 0.529635 0.173459i
\(70\) 0 0
\(71\) 9.75994i 1.15829i 0.815224 + 0.579146i \(0.196614\pi\)
−0.815224 + 0.579146i \(0.803386\pi\)
\(72\) 0 0
\(73\) 4.43474 0.519047 0.259524 0.965737i \(-0.416434\pi\)
0.259524 + 0.965737i \(0.416434\pi\)
\(74\) 0 0
\(75\) 5.20040 + 6.92502i 0.600490 + 0.799632i
\(76\) 0 0
\(77\) −1.40902 + 2.10837i −0.160572 + 0.240271i
\(78\) 0 0
\(79\) −0.517890 −0.0582671 −0.0291336 0.999576i \(-0.509275\pi\)
−0.0291336 + 0.999576i \(0.509275\pi\)
\(80\) 0 0
\(81\) 2.70097 8.58515i 0.300108 0.953905i
\(82\) 0 0
\(83\) 18.1293i 1.98995i 0.100105 + 0.994977i \(0.468082\pi\)
−0.100105 + 0.994977i \(0.531918\pi\)
\(84\) 0 0
\(85\) −4.56885 3.27272i −0.495561 0.354977i
\(86\) 0 0
\(87\) −0.674006 2.05799i −0.0722611 0.220640i
\(88\) 0 0
\(89\) −0.954423 −0.101169 −0.0505843 0.998720i \(-0.516108\pi\)
−0.0505843 + 0.998720i \(0.516108\pi\)
\(90\) 0 0
\(91\) 0.346053 + 0.231267i 0.0362762 + 0.0242433i
\(92\) 0 0
\(93\) 4.67280 + 14.2678i 0.484546 + 1.47950i
\(94\) 0 0
\(95\) 3.60401 + 2.58160i 0.369764 + 0.264866i
\(96\) 0 0
\(97\) −14.0907 −1.43070 −0.715348 0.698768i \(-0.753732\pi\)
−0.715348 + 0.698768i \(0.753732\pi\)
\(98\) 0 0
\(99\) −1.70097 2.31830i −0.170954 0.232998i
\(100\) 0 0
\(101\) 8.87371 0.882967 0.441484 0.897269i \(-0.354452\pi\)
0.441484 + 0.897269i \(0.354452\pi\)
\(102\) 0 0
\(103\) 2.26288 0.222968 0.111484 0.993766i \(-0.464440\pi\)
0.111484 + 0.993766i \(0.464440\pi\)
\(104\) 0 0
\(105\) −7.98978 + 6.41587i −0.779723 + 0.626125i
\(106\) 0 0
\(107\) 16.2677 1.57266 0.786331 0.617806i \(-0.211978\pi\)
0.786331 + 0.617806i \(0.211978\pi\)
\(108\) 0 0
\(109\) −13.4109 −1.28453 −0.642264 0.766483i \(-0.722005\pi\)
−0.642264 + 0.766483i \(0.722005\pi\)
\(110\) 0 0
\(111\) 1.23940 + 3.78436i 0.117639 + 0.359195i
\(112\) 0 0
\(113\) 15.0284 1.41375 0.706875 0.707339i \(-0.250104\pi\)
0.706875 + 0.707339i \(0.250104\pi\)
\(114\) 0 0
\(115\) 3.48032 4.85866i 0.324541 0.453073i
\(116\) 0 0
\(117\) −0.380511 + 0.279186i −0.0351783 + 0.0258107i
\(118\) 0 0
\(119\) 3.69485 5.52876i 0.338707 0.506820i
\(120\) 0 0
\(121\) 10.0814 0.916487
\(122\) 0 0
\(123\) −7.81049 + 2.55799i −0.704248 + 0.230646i
\(124\) 0 0
\(125\) 10.7007 + 3.23959i 0.957100 + 0.289758i
\(126\) 0 0
\(127\) 3.39261i 0.301046i 0.988607 + 0.150523i \(0.0480957\pi\)
−0.988607 + 0.150523i \(0.951904\pi\)
\(128\) 0 0
\(129\) −3.54945 10.8378i −0.312512 0.954215i
\(130\) 0 0
\(131\) −0.388687 −0.0339598 −0.0169799 0.999856i \(-0.505405\pi\)
−0.0169799 + 0.999856i \(0.505405\pi\)
\(132\) 0 0
\(133\) −2.91458 + 4.36121i −0.252726 + 0.378165i
\(134\) 0 0
\(135\) −3.74198 10.9999i −0.322059 0.946720i
\(136\) 0 0
\(137\) −9.32628 −0.796798 −0.398399 0.917212i \(-0.630434\pi\)
−0.398399 + 0.917212i \(0.630434\pi\)
\(138\) 0 0
\(139\) 14.5321i 1.23260i 0.787511 + 0.616300i \(0.211369\pi\)
−0.787511 + 0.616300i \(0.788631\pi\)
\(140\) 0 0
\(141\) 3.02279 + 9.22969i 0.254565 + 0.777280i
\(142\) 0 0
\(143\) 0.150781i 0.0126089i
\(144\) 0 0
\(145\) −2.27279 1.62802i −0.188745 0.135200i
\(146\) 0 0
\(147\) −7.89417 9.20229i −0.651100 0.758992i
\(148\) 0 0
\(149\) 10.9872i 0.900110i 0.893001 + 0.450055i \(0.148596\pi\)
−0.893001 + 0.450055i \(0.851404\pi\)
\(150\) 0 0
\(151\) 20.5486 1.67222 0.836109 0.548563i \(-0.184825\pi\)
0.836109 + 0.548563i \(0.184825\pi\)
\(152\) 0 0
\(153\) 4.46044 + 6.07928i 0.360605 + 0.491480i
\(154\) 0 0
\(155\) 15.7569 + 11.2869i 1.26563 + 0.906584i
\(156\) 0 0
\(157\) −0.876066 −0.0699177 −0.0349588 0.999389i \(-0.511130\pi\)
−0.0349588 + 0.999389i \(0.511130\pi\)
\(158\) 0 0
\(159\) −14.1436 + 4.63214i −1.12166 + 0.367353i
\(160\) 0 0
\(161\) 5.87946 + 3.92923i 0.463366 + 0.309667i
\(162\) 0 0
\(163\) 21.9513i 1.71936i −0.510833 0.859680i \(-0.670663\pi\)
0.510833 0.859680i \(-0.329337\pi\)
\(164\) 0 0
\(165\) −3.54068 1.11505i −0.275641 0.0868063i
\(166\) 0 0
\(167\) 11.7288i 0.907602i −0.891103 0.453801i \(-0.850068\pi\)
0.891103 0.453801i \(-0.149932\pi\)
\(168\) 0 0
\(169\) −12.9753 −0.998096
\(170\) 0 0
\(171\) −3.51850 4.79547i −0.269066 0.366719i
\(172\) 0 0
\(173\) 18.8779i 1.43526i −0.696423 0.717632i \(-0.745226\pi\)
0.696423 0.717632i \(-0.254774\pi\)
\(174\) 0 0
\(175\) −3.42021 + 12.7790i −0.258544 + 0.966000i
\(176\) 0 0
\(177\) −17.1989 + 5.63278i −1.29275 + 0.423385i
\(178\) 0 0
\(179\) 12.3237i 0.921118i −0.887629 0.460559i \(-0.847649\pi\)
0.887629 0.460559i \(-0.152351\pi\)
\(180\) 0 0
\(181\) 18.2694i 1.35795i −0.734160 0.678976i \(-0.762424\pi\)
0.734160 0.678976i \(-0.237576\pi\)
\(182\) 0 0
\(183\) −2.30597 7.04097i −0.170462 0.520484i
\(184\) 0 0
\(185\) 4.17934 + 2.99371i 0.307271 + 0.220102i
\(186\) 0 0
\(187\) 2.40897 0.176161
\(188\) 0 0
\(189\) 12.8647 4.84763i 0.935769 0.352613i
\(190\) 0 0
\(191\) 12.4184i 0.898565i 0.893390 + 0.449283i \(0.148320\pi\)
−0.893390 + 0.449283i \(0.851680\pi\)
\(192\) 0 0
\(193\) 20.0849i 1.44574i −0.690983 0.722871i \(-0.742822\pi\)
0.690983 0.722871i \(-0.257178\pi\)
\(194\) 0 0
\(195\) −0.183016 + 0.581143i −0.0131061 + 0.0416165i
\(196\) 0 0
\(197\) 13.5756 0.967223 0.483612 0.875283i \(-0.339325\pi\)
0.483612 + 0.875283i \(0.339325\pi\)
\(198\) 0 0
\(199\) 5.36196i 0.380099i 0.981774 + 0.190050i \(0.0608649\pi\)
−0.981774 + 0.190050i \(0.939135\pi\)
\(200\) 0 0
\(201\) −7.45455 22.7615i −0.525803 1.60547i
\(202\) 0 0
\(203\) 1.83802 2.75030i 0.129003 0.193033i
\(204\) 0 0
\(205\) −6.17868 + 8.62568i −0.431538 + 0.602444i
\(206\) 0 0
\(207\) −6.46490 + 4.74338i −0.449342 + 0.329688i
\(208\) 0 0
\(209\) −1.90025 −0.131443
\(210\) 0 0
\(211\) 17.4010 1.19794 0.598968 0.800773i \(-0.295578\pi\)
0.598968 + 0.800773i \(0.295578\pi\)
\(212\) 0 0
\(213\) −5.26143 16.0651i −0.360507 1.10076i
\(214\) 0 0
\(215\) −11.9690 8.57351i −0.816276 0.584708i
\(216\) 0 0
\(217\) −12.7427 + 19.0674i −0.865032 + 1.29438i
\(218\) 0 0
\(219\) −7.29968 + 2.39070i −0.493267 + 0.161548i
\(220\) 0 0
\(221\) 0.395392i 0.0265969i
\(222\) 0 0
\(223\) 15.7794 1.05666 0.528332 0.849038i \(-0.322818\pi\)
0.528332 + 0.849038i \(0.322818\pi\)
\(224\) 0 0
\(225\) −12.2931 8.59528i −0.819542 0.573019i
\(226\) 0 0
\(227\) 3.69704i 0.245381i 0.992445 + 0.122690i \(0.0391522\pi\)
−0.992445 + 0.122690i \(0.960848\pi\)
\(228\) 0 0
\(229\) 13.9567i 0.922286i 0.887326 + 0.461143i \(0.152560\pi\)
−0.887326 + 0.461143i \(0.847440\pi\)
\(230\) 0 0
\(231\) 1.18269 4.23000i 0.0778150 0.278313i
\(232\) 0 0
\(233\) 16.7836 1.09953 0.549767 0.835318i \(-0.314717\pi\)
0.549767 + 0.835318i \(0.314717\pi\)
\(234\) 0 0
\(235\) 10.1930 + 7.30137i 0.664918 + 0.476289i
\(236\) 0 0
\(237\) 0.852458 0.279186i 0.0553731 0.0181351i
\(238\) 0 0
\(239\) 18.2421i 1.17998i 0.807410 + 0.589991i \(0.200869\pi\)
−0.807410 + 0.589991i \(0.799131\pi\)
\(240\) 0 0
\(241\) 5.36648i 0.345685i −0.984949 0.172843i \(-0.944705\pi\)
0.984949 0.172843i \(-0.0552952\pi\)
\(242\) 0 0
\(243\) 0.182259 + 15.5874i 0.0116919 + 0.999932i
\(244\) 0 0
\(245\) −15.2437 3.55401i −0.973881 0.227057i
\(246\) 0 0
\(247\) 0.311894i 0.0198453i
\(248\) 0 0
\(249\) −9.77323 29.8413i −0.619353 1.89112i
\(250\) 0 0
\(251\) 30.5862 1.93058 0.965292 0.261172i \(-0.0841091\pi\)
0.965292 + 0.261172i \(0.0841091\pi\)
\(252\) 0 0
\(253\) 2.56177i 0.161057i
\(254\) 0 0
\(255\) 9.28470 + 2.92398i 0.581430 + 0.183107i
\(256\) 0 0
\(257\) 17.6305i 1.09976i −0.835243 0.549881i \(-0.814673\pi\)
0.835243 0.549881i \(-0.185327\pi\)
\(258\) 0 0
\(259\) −3.37985 + 5.05741i −0.210014 + 0.314252i
\(260\) 0 0
\(261\) 2.21886 + 3.02415i 0.137344 + 0.187190i
\(262\) 0 0
\(263\) −27.0858 −1.67018 −0.835090 0.550113i \(-0.814584\pi\)
−0.835090 + 0.550113i \(0.814584\pi\)
\(264\) 0 0
\(265\) −11.1887 + 15.6198i −0.687315 + 0.959519i
\(266\) 0 0
\(267\) 1.57100 0.514514i 0.0961437 0.0314877i
\(268\) 0 0
\(269\) −12.4642 −0.759954 −0.379977 0.924996i \(-0.624068\pi\)
−0.379977 + 0.924996i \(0.624068\pi\)
\(270\) 0 0
\(271\) 11.1528i 0.677484i −0.940879 0.338742i \(-0.889999\pi\)
0.940879 0.338742i \(-0.110001\pi\)
\(272\) 0 0
\(273\) −0.694283 0.194118i −0.0420199 0.0117486i
\(274\) 0 0
\(275\) −4.53741 + 1.54210i −0.273616 + 0.0929922i
\(276\) 0 0
\(277\) 26.2365i 1.57640i −0.615422 0.788198i \(-0.711014\pi\)
0.615422 0.788198i \(-0.288986\pi\)
\(278\) 0 0
\(279\) −15.3831 20.9660i −0.920959 1.25520i
\(280\) 0 0
\(281\) 14.9648i 0.892722i 0.894853 + 0.446361i \(0.147280\pi\)
−0.894853 + 0.446361i \(0.852720\pi\)
\(282\) 0 0
\(283\) 0.613047 0.0364418 0.0182209 0.999834i \(-0.494200\pi\)
0.0182209 + 0.999834i \(0.494200\pi\)
\(284\) 0 0
\(285\) −7.32397 2.30650i −0.433835 0.136625i
\(286\) 0 0
\(287\) −10.4379 6.97564i −0.616132 0.411759i
\(288\) 0 0
\(289\) 10.6830 0.628411
\(290\) 0 0
\(291\) 23.1937 7.59608i 1.35964 0.445290i
\(292\) 0 0
\(293\) 8.76313i 0.511947i 0.966684 + 0.255974i \(0.0823960\pi\)
−0.966684 + 0.255974i \(0.917604\pi\)
\(294\) 0 0
\(295\) −13.6056 + 18.9940i −0.792152 + 1.10587i
\(296\) 0 0
\(297\) 4.04959 + 2.89902i 0.234981 + 0.168218i
\(298\) 0 0
\(299\) 0.420472 0.0243165
\(300\) 0 0
\(301\) 9.67936 14.4836i 0.557909 0.834822i
\(302\) 0 0
\(303\) −14.6063 + 4.78367i −0.839111 + 0.274815i
\(304\) 0 0
\(305\) −7.77585 5.56993i −0.445244 0.318933i
\(306\) 0 0
\(307\) −17.8865 −1.02084 −0.510418 0.859926i \(-0.670509\pi\)
−0.510418 + 0.859926i \(0.670509\pi\)
\(308\) 0 0
\(309\) −3.72474 + 1.21988i −0.211893 + 0.0693965i
\(310\) 0 0
\(311\) −12.9594 −0.734859 −0.367430 0.930051i \(-0.619762\pi\)
−0.367430 + 0.930051i \(0.619762\pi\)
\(312\) 0 0
\(313\) 26.4080 1.49267 0.746334 0.665572i \(-0.231812\pi\)
0.746334 + 0.665572i \(0.231812\pi\)
\(314\) 0 0
\(315\) 9.69267 14.8678i 0.546120 0.837707i
\(316\) 0 0
\(317\) −18.5973 −1.04453 −0.522263 0.852785i \(-0.674912\pi\)
−0.522263 + 0.852785i \(0.674912\pi\)
\(318\) 0 0
\(319\) 1.19835 0.0670945
\(320\) 0 0
\(321\) −26.7770 + 8.76967i −1.49455 + 0.489475i
\(322\) 0 0
\(323\) 4.98300 0.277262
\(324\) 0 0
\(325\) 0.253110 + 0.744741i 0.0140400 + 0.0413108i
\(326\) 0 0
\(327\) 22.0746 7.22958i 1.22073 0.399797i
\(328\) 0 0
\(329\) −8.24314 + 12.3345i −0.454459 + 0.680025i
\(330\) 0 0
\(331\) 1.45274 0.0798496 0.0399248 0.999203i \(-0.487288\pi\)
0.0399248 + 0.999203i \(0.487288\pi\)
\(332\) 0 0
\(333\) −4.08017 5.56100i −0.223592 0.304741i
\(334\) 0 0
\(335\) −25.1371 18.0060i −1.37339 0.983775i
\(336\) 0 0
\(337\) 13.2863i 0.723753i 0.932226 + 0.361876i \(0.117864\pi\)
−0.932226 + 0.361876i \(0.882136\pi\)
\(338\) 0 0
\(339\) −24.7370 + 8.10155i −1.34353 + 0.440016i
\(340\) 0 0
\(341\) −8.30797 −0.449902
\(342\) 0 0
\(343\) 3.61760 18.1635i 0.195332 0.980737i
\(344\) 0 0
\(345\) −3.10946 + 9.87365i −0.167407 + 0.531579i
\(346\) 0 0
\(347\) −3.62840 −0.194783 −0.0973914 0.995246i \(-0.531050\pi\)
−0.0973914 + 0.995246i \(0.531050\pi\)
\(348\) 0 0
\(349\) 2.91682i 0.156134i 0.996948 + 0.0780670i \(0.0248748\pi\)
−0.996948 + 0.0780670i \(0.975125\pi\)
\(350\) 0 0
\(351\) 0.475825 0.664673i 0.0253977 0.0354776i
\(352\) 0 0
\(353\) 14.2988i 0.761049i −0.924771 0.380525i \(-0.875743\pi\)
0.924771 0.380525i \(-0.124257\pi\)
\(354\) 0 0
\(355\) −17.7418 12.7087i −0.941638 0.674506i
\(356\) 0 0
\(357\) −3.10135 + 11.0923i −0.164141 + 0.587066i
\(358\) 0 0
\(359\) 5.66998i 0.299250i 0.988743 + 0.149625i \(0.0478067\pi\)
−0.988743 + 0.149625i \(0.952193\pi\)
\(360\) 0 0
\(361\) 15.0693 0.793121
\(362\) 0 0
\(363\) −16.5941 + 5.43469i −0.870966 + 0.285247i
\(364\) 0 0
\(365\) −5.77459 + 8.06156i −0.302256 + 0.421961i
\(366\) 0 0
\(367\) 1.46586 0.0765170 0.0382585 0.999268i \(-0.487819\pi\)
0.0382585 + 0.999268i \(0.487819\pi\)
\(368\) 0 0
\(369\) 11.4773 8.42102i 0.597483 0.438381i
\(370\) 0 0
\(371\) −18.9015 12.6319i −0.981320 0.655813i
\(372\) 0 0
\(373\) 4.24635i 0.219868i 0.993939 + 0.109934i \(0.0350639\pi\)
−0.993939 + 0.109934i \(0.964936\pi\)
\(374\) 0 0
\(375\) −19.3600 + 0.436136i −0.999746 + 0.0225220i
\(376\) 0 0
\(377\) 0.196689i 0.0101300i
\(378\) 0 0
\(379\) −28.6426 −1.47127 −0.735636 0.677377i \(-0.763117\pi\)
−0.735636 + 0.677377i \(0.763117\pi\)
\(380\) 0 0
\(381\) −1.82890 5.58431i −0.0936975 0.286093i
\(382\) 0 0
\(383\) 19.9108i 1.01740i −0.860945 0.508698i \(-0.830127\pi\)
0.860945 0.508698i \(-0.169873\pi\)
\(384\) 0 0
\(385\) −1.99791 5.30670i −0.101823 0.270454i
\(386\) 0 0
\(387\) 11.6850 + 15.9258i 0.593980 + 0.809554i
\(388\) 0 0
\(389\) 14.0461i 0.712168i −0.934454 0.356084i \(-0.884112\pi\)
0.934454 0.356084i \(-0.115888\pi\)
\(390\) 0 0
\(391\) 6.71772i 0.339730i
\(392\) 0 0
\(393\) 0.639788 0.209535i 0.0322730 0.0105696i
\(394\) 0 0
\(395\) 0.674358 0.941430i 0.0339306 0.0473685i
\(396\) 0 0
\(397\) 34.1172 1.71230 0.856148 0.516731i \(-0.172851\pi\)
0.856148 + 0.516731i \(0.172851\pi\)
\(398\) 0 0
\(399\) 2.44641 8.74985i 0.122474 0.438040i
\(400\) 0 0
\(401\) 29.9190i 1.49408i 0.664778 + 0.747041i \(0.268526\pi\)
−0.664778 + 0.747041i \(0.731474\pi\)
\(402\) 0 0
\(403\) 1.36362i 0.0679266i
\(404\) 0 0
\(405\) 12.0892 + 16.0888i 0.600719 + 0.799460i
\(406\) 0 0
\(407\) −2.20359 −0.109228
\(408\) 0 0
\(409\) 14.1069i 0.697540i 0.937208 + 0.348770i \(0.113401\pi\)
−0.937208 + 0.348770i \(0.886599\pi\)
\(410\) 0 0
\(411\) 15.3513 5.02765i 0.757222 0.247996i
\(412\) 0 0
\(413\) −22.9846 15.3606i −1.13100 0.755845i
\(414\) 0 0
\(415\) −32.9559 23.6067i −1.61774 1.15881i
\(416\) 0 0
\(417\) −7.83404 23.9202i −0.383635 1.17138i
\(418\) 0 0
\(419\) 15.5078 0.757606 0.378803 0.925477i \(-0.376336\pi\)
0.378803 + 0.925477i \(0.376336\pi\)
\(420\) 0 0
\(421\) 6.90788 0.336669 0.168335 0.985730i \(-0.446161\pi\)
0.168335 + 0.985730i \(0.446161\pi\)
\(422\) 0 0
\(423\) −9.95115 13.5627i −0.483841 0.659443i
\(424\) 0 0
\(425\) 11.8984 4.04384i 0.577159 0.196155i
\(426\) 0 0
\(427\) 6.28837 9.40954i 0.304316 0.455360i
\(428\) 0 0
\(429\) −0.0812835 0.248188i −0.00392440 0.0119827i
\(430\) 0 0
\(431\) 10.6636i 0.513646i 0.966458 + 0.256823i \(0.0826757\pi\)
−0.966458 + 0.256823i \(0.917324\pi\)
\(432\) 0 0
\(433\) 28.7128 1.37985 0.689924 0.723882i \(-0.257644\pi\)
0.689924 + 0.723882i \(0.257644\pi\)
\(434\) 0 0
\(435\) 4.61870 + 1.45454i 0.221450 + 0.0697399i
\(436\) 0 0
\(437\) 5.29909i 0.253490i
\(438\) 0 0
\(439\) 30.4819i 1.45482i −0.686203 0.727410i \(-0.740724\pi\)
0.686203 0.727410i \(-0.259276\pi\)
\(440\) 0 0
\(441\) 17.9548 + 10.8916i 0.854989 + 0.518646i
\(442\) 0 0
\(443\) 4.91751 0.233638 0.116819 0.993153i \(-0.462730\pi\)
0.116819 + 0.993153i \(0.462730\pi\)
\(444\) 0 0
\(445\) 1.24278 1.73497i 0.0589134 0.0822454i
\(446\) 0 0
\(447\) −5.92304 18.0852i −0.280150 0.855402i
\(448\) 0 0
\(449\) 37.5082i 1.77012i 0.465477 + 0.885060i \(0.345883\pi\)
−0.465477 + 0.885060i \(0.654117\pi\)
\(450\) 0 0
\(451\) 4.54797i 0.214155i
\(452\) 0 0
\(453\) −33.8234 + 11.0774i −1.58916 + 0.520462i
\(454\) 0 0
\(455\) −0.871006 + 0.327924i −0.0408334 + 0.0153733i
\(456\) 0 0
\(457\) 5.50935i 0.257717i −0.991663 0.128858i \(-0.958869\pi\)
0.991663 0.128858i \(-0.0411313\pi\)
\(458\) 0 0
\(459\) −10.6192 7.60207i −0.495663 0.354834i
\(460\) 0 0
\(461\) −31.2515 −1.45553 −0.727763 0.685828i \(-0.759440\pi\)
−0.727763 + 0.685828i \(0.759440\pi\)
\(462\) 0 0
\(463\) 8.75214i 0.406746i 0.979101 + 0.203373i \(0.0651905\pi\)
−0.979101 + 0.203373i \(0.934810\pi\)
\(464\) 0 0
\(465\) −32.0208 10.0841i −1.48493 0.467641i
\(466\) 0 0
\(467\) 0.527427i 0.0244064i 0.999926 + 0.0122032i \(0.00388450\pi\)
−0.999926 + 0.0122032i \(0.996116\pi\)
\(468\) 0 0
\(469\) 20.3285 30.4184i 0.938685 1.40459i
\(470\) 0 0
\(471\) 1.44202 0.472273i 0.0664450 0.0217612i
\(472\) 0 0
\(473\) 6.31073 0.290168
\(474\) 0 0
\(475\) −9.38575 + 3.18987i −0.430648 + 0.146361i
\(476\) 0 0
\(477\) 20.7836 15.2492i 0.951618 0.698214i
\(478\) 0 0
\(479\) 20.2855 0.926869 0.463435 0.886131i \(-0.346617\pi\)
0.463435 + 0.886131i \(0.346617\pi\)
\(480\) 0 0
\(481\) 0.361683i 0.0164913i
\(482\) 0 0
\(483\) −11.7959 3.29807i −0.536732 0.150068i
\(484\) 0 0
\(485\) 18.3479 25.6144i 0.833136 1.16309i
\(486\) 0 0
\(487\) 10.5659i 0.478787i −0.970923 0.239393i \(-0.923051\pi\)
0.970923 0.239393i \(-0.0769485\pi\)
\(488\) 0 0
\(489\) 11.8336 + 36.1324i 0.535134 + 1.63396i
\(490\) 0 0
\(491\) 38.7844i 1.75032i 0.483836 + 0.875159i \(0.339243\pi\)
−0.483836 + 0.875159i \(0.660757\pi\)
\(492\) 0 0
\(493\) −3.14242 −0.141527
\(494\) 0 0
\(495\) 6.42913 0.0733297i 0.288968 0.00329593i
\(496\) 0 0
\(497\) 14.3479 21.4693i 0.643592 0.963032i
\(498\) 0 0
\(499\) −5.89045 −0.263693 −0.131846 0.991270i \(-0.542091\pi\)
−0.131846 + 0.991270i \(0.542091\pi\)
\(500\) 0 0
\(501\) 6.32281 + 19.3059i 0.282482 + 0.862523i
\(502\) 0 0
\(503\) 14.4764i 0.645471i −0.946489 0.322736i \(-0.895398\pi\)
0.946489 0.322736i \(-0.104602\pi\)
\(504\) 0 0
\(505\) −11.5547 + 16.1308i −0.514177 + 0.717811i
\(506\) 0 0
\(507\) 21.3576 6.99475i 0.948522 0.310648i
\(508\) 0 0
\(509\) −29.2013 −1.29433 −0.647163 0.762351i \(-0.724045\pi\)
−0.647163 + 0.762351i \(0.724045\pi\)
\(510\) 0 0
\(511\) −9.75528 6.51943i −0.431548 0.288403i
\(512\) 0 0
\(513\) 8.37668 + 5.99668i 0.369839 + 0.264760i
\(514\) 0 0
\(515\) −2.94655 + 4.11350i −0.129841 + 0.181262i
\(516\) 0 0
\(517\) −5.37435 −0.236364
\(518\) 0 0
\(519\) 10.1768 + 31.0735i 0.446712 + 1.36398i
\(520\) 0 0
\(521\) 39.4599 1.72877 0.864385 0.502830i \(-0.167708\pi\)
0.864385 + 0.502830i \(0.167708\pi\)
\(522\) 0 0
\(523\) −16.9475 −0.741061 −0.370531 0.928820i \(-0.620824\pi\)
−0.370531 + 0.928820i \(0.620824\pi\)
\(524\) 0 0
\(525\) −1.25919 22.8783i −0.0549555 0.998489i
\(526\) 0 0
\(527\) 21.7860 0.949011
\(528\) 0 0
\(529\) −15.8562 −0.689398
\(530\) 0 0
\(531\) 25.2733 18.5433i 1.09677 0.804713i
\(532\) 0 0
\(533\) −0.746473 −0.0323333
\(534\) 0 0
\(535\) −21.1826 + 29.5718i −0.915805 + 1.27850i
\(536\) 0 0
\(537\) 6.64352 + 20.2851i 0.286689 + 0.875367i
\(538\) 0 0
\(539\) 6.19894 2.56649i 0.267007 0.110547i
\(540\) 0 0
\(541\) 20.9754 0.901802 0.450901 0.892574i \(-0.351103\pi\)
0.450901 + 0.892574i \(0.351103\pi\)
\(542\) 0 0
\(543\) 9.84873 + 30.0718i 0.422649 + 1.29050i
\(544\) 0 0
\(545\) 17.4626 24.3785i 0.748017 1.04426i
\(546\) 0 0
\(547\) 9.09174i 0.388735i −0.980929 0.194367i \(-0.937735\pi\)
0.980929 0.194367i \(-0.0622654\pi\)
\(548\) 0 0
\(549\) 7.59135 + 10.3465i 0.323991 + 0.441577i
\(550\) 0 0
\(551\) 2.47881 0.105601
\(552\) 0 0
\(553\) 1.13922 + 0.761340i 0.0484447 + 0.0323755i
\(554\) 0 0
\(555\) −8.49314 2.67470i −0.360514 0.113535i
\(556\) 0 0
\(557\) −5.77459 −0.244677 −0.122339 0.992488i \(-0.539039\pi\)
−0.122339 + 0.992488i \(0.539039\pi\)
\(558\) 0 0
\(559\) 1.03580i 0.0438098i
\(560\) 0 0
\(561\) −3.96521 + 1.29863i −0.167411 + 0.0548284i
\(562\) 0 0
\(563\) 0.378414i 0.0159483i 0.999968 + 0.00797413i \(0.00253827\pi\)
−0.999968 + 0.00797413i \(0.997462\pi\)
\(564\) 0 0
\(565\) −19.5688 + 27.3188i −0.823267 + 1.14931i
\(566\) 0 0
\(567\) −18.5623 + 14.9145i −0.779543 + 0.626348i
\(568\) 0 0
\(569\) 25.5314i 1.07033i 0.844747 + 0.535166i \(0.179751\pi\)
−0.844747 + 0.535166i \(0.820249\pi\)
\(570\) 0 0
\(571\) 14.5308 0.608097 0.304048 0.952657i \(-0.401662\pi\)
0.304048 + 0.952657i \(0.401662\pi\)
\(572\) 0 0
\(573\) −6.69457 20.4410i −0.279670 0.853935i
\(574\) 0 0
\(575\) 4.30036 + 12.6532i 0.179337 + 0.527674i
\(576\) 0 0
\(577\) 15.4901 0.644863 0.322432 0.946593i \(-0.395500\pi\)
0.322432 + 0.946593i \(0.395500\pi\)
\(578\) 0 0
\(579\) 10.8274 + 33.0602i 0.449973 + 1.37393i
\(580\) 0 0
\(581\) 26.6516 39.8799i 1.10569 1.65450i
\(582\) 0 0
\(583\) 8.23570i 0.341088i
\(584\) 0 0
\(585\) −0.0120359 1.05524i −0.000497621 0.0436286i
\(586\) 0 0
\(587\) 21.9975i 0.907933i 0.891019 + 0.453967i \(0.149991\pi\)
−0.891019 + 0.453967i \(0.850009\pi\)
\(588\) 0 0
\(589\) −17.1852 −0.708106
\(590\) 0 0
\(591\) −22.3458 + 7.31840i −0.919183 + 0.301039i
\(592\) 0 0
\(593\) 11.3606i 0.466523i 0.972414 + 0.233261i \(0.0749397\pi\)
−0.972414 + 0.233261i \(0.925060\pi\)
\(594\) 0 0
\(595\) 5.23912 + 13.9157i 0.214783 + 0.570489i
\(596\) 0 0
\(597\) −2.89054 8.82590i −0.118302 0.361220i
\(598\) 0 0
\(599\) 35.8691i 1.46557i −0.680460 0.732785i \(-0.738220\pi\)
0.680460 0.732785i \(-0.261780\pi\)
\(600\) 0 0
\(601\) 22.9788i 0.937326i −0.883377 0.468663i \(-0.844736\pi\)
0.883377 0.468663i \(-0.155264\pi\)
\(602\) 0 0
\(603\) 24.5407 + 33.4473i 0.999374 + 1.36208i
\(604\) 0 0
\(605\) −13.1272 + 18.3261i −0.533696 + 0.745061i
\(606\) 0 0
\(607\) 3.58776 0.145623 0.0728114 0.997346i \(-0.476803\pi\)
0.0728114 + 0.997346i \(0.476803\pi\)
\(608\) 0 0
\(609\) −1.54277 + 5.51789i −0.0625164 + 0.223596i
\(610\) 0 0
\(611\) 0.882110i 0.0356864i
\(612\) 0 0
\(613\) 20.9840i 0.847535i 0.905771 + 0.423768i \(0.139293\pi\)
−0.905771 + 0.423768i \(0.860707\pi\)
\(614\) 0 0
\(615\) 5.52028 17.5289i 0.222599 0.706833i
\(616\) 0 0
\(617\) 34.3786 1.38403 0.692015 0.721883i \(-0.256723\pi\)
0.692015 + 0.721883i \(0.256723\pi\)
\(618\) 0 0
\(619\) 6.34530i 0.255039i 0.991836 + 0.127520i \(0.0407016\pi\)
−0.991836 + 0.127520i \(0.959298\pi\)
\(620\) 0 0
\(621\) 8.08429 11.2928i 0.324411 0.453166i
\(622\) 0 0
\(623\) 2.09948 + 1.40308i 0.0841140 + 0.0562132i
\(624\) 0 0
\(625\) −19.8227 + 15.2336i −0.792906 + 0.609344i
\(626\) 0 0
\(627\) 3.12785 1.02439i 0.124914 0.0409102i
\(628\) 0 0
\(629\) 5.77847 0.230403
\(630\) 0 0
\(631\) −15.4326 −0.614363 −0.307181 0.951651i \(-0.599386\pi\)
−0.307181 + 0.951651i \(0.599386\pi\)
\(632\) 0 0
\(633\) −28.6425 + 9.38061i −1.13844 + 0.372846i
\(634\) 0 0
\(635\) −6.16715 4.41761i −0.244736 0.175307i
\(636\) 0 0
\(637\) −0.421247 1.01745i −0.0166904 0.0403130i
\(638\) 0 0
\(639\) 17.3208 + 23.6071i 0.685202 + 0.933883i
\(640\) 0 0
\(641\) 23.5106i 0.928614i −0.885674 0.464307i \(-0.846304\pi\)
0.885674 0.464307i \(-0.153696\pi\)
\(642\) 0 0
\(643\) 23.9541 0.944658 0.472329 0.881422i \(-0.343413\pi\)
0.472329 + 0.881422i \(0.343413\pi\)
\(644\) 0 0
\(645\) 24.3230 + 7.65991i 0.957717 + 0.301609i
\(646\) 0 0
\(647\) 29.3039i 1.15205i 0.817431 + 0.576027i \(0.195398\pi\)
−0.817431 + 0.576027i \(0.804602\pi\)
\(648\) 0 0
\(649\) 10.0148i 0.393114i
\(650\) 0 0
\(651\) 10.6958 38.2548i 0.419203 1.49932i
\(652\) 0 0
\(653\) −38.8097 −1.51874 −0.759370 0.650659i \(-0.774493\pi\)
−0.759370 + 0.650659i \(0.774493\pi\)
\(654\) 0 0
\(655\) 0.506120 0.706564i 0.0197758 0.0276077i
\(656\) 0 0
\(657\) 10.7267 7.87028i 0.418487 0.307049i
\(658\) 0 0
\(659\) 30.2584i 1.17870i −0.807878 0.589349i \(-0.799384\pi\)
0.807878 0.589349i \(-0.200616\pi\)
\(660\) 0 0
\(661\) 18.7051i 0.727542i 0.931488 + 0.363771i \(0.118511\pi\)
−0.931488 + 0.363771i \(0.881489\pi\)
\(662\) 0 0
\(663\) 0.213149 + 0.650823i 0.00827803 + 0.0252759i
\(664\) 0 0
\(665\) −4.13273 10.9770i −0.160260 0.425671i
\(666\) 0 0
\(667\) 3.34175i 0.129393i
\(668\) 0 0
\(669\) −25.9732 + 8.50639i −1.00418 + 0.328876i
\(670\) 0 0
\(671\) 4.09988 0.158274
\(672\) 0 0
\(673\) 22.1399i 0.853432i −0.904386 0.426716i \(-0.859670\pi\)
0.904386 0.426716i \(-0.140330\pi\)
\(674\) 0 0
\(675\) 24.8683 + 7.52100i 0.957183 + 0.289483i
\(676\) 0 0
\(677\) 45.2632i 1.73961i 0.493400 + 0.869803i \(0.335754\pi\)
−0.493400 + 0.869803i \(0.664246\pi\)
\(678\) 0 0
\(679\) 30.9960 + 20.7145i 1.18952 + 0.794950i
\(680\) 0 0
\(681\) −1.99301 6.08540i −0.0763724 0.233193i
\(682\) 0 0
\(683\) −4.71527 −0.180425 −0.0902124 0.995923i \(-0.528755\pi\)
−0.0902124 + 0.995923i \(0.528755\pi\)
\(684\) 0 0
\(685\) 12.1440 16.9535i 0.463998 0.647760i
\(686\) 0 0
\(687\) −7.52384 22.9731i −0.287052 0.876477i
\(688\) 0 0
\(689\) −1.35175 −0.0514977
\(690\) 0 0
\(691\) 19.5451i 0.743531i −0.928327 0.371766i \(-0.878753\pi\)
0.928327 0.371766i \(-0.121247\pi\)
\(692\) 0 0
\(693\) 0.333596 + 7.60023i 0.0126723 + 0.288709i
\(694\) 0 0
\(695\) −26.4168 18.9227i −1.00205 0.717778i
\(696\) 0 0
\(697\) 11.9261i 0.451734i
\(698\) 0 0
\(699\) −27.6263 + 9.04779i −1.04492 + 0.342219i
\(700\) 0 0
\(701\) 27.0912i 1.02322i 0.859217 + 0.511611i \(0.170951\pi\)
−0.859217 + 0.511611i \(0.829049\pi\)
\(702\) 0 0
\(703\) −4.55818 −0.171915
\(704\) 0 0
\(705\) −20.7140 6.52334i −0.780133 0.245683i
\(706\) 0 0
\(707\) −19.5199 13.0451i −0.734120 0.490611i
\(708\) 0 0
\(709\) 16.3683 0.614723 0.307362 0.951593i \(-0.400554\pi\)
0.307362 + 0.951593i \(0.400554\pi\)
\(710\) 0 0
\(711\) −1.25266 + 0.919092i −0.0469784 + 0.0344686i
\(712\) 0 0
\(713\) 23.1679i 0.867644i
\(714\) 0 0
\(715\) −0.274092 0.196336i −0.0102505 0.00734254i
\(716\) 0 0
\(717\) −9.83401 30.0269i −0.367258 1.12137i
\(718\) 0 0
\(719\) 21.4591 0.800289 0.400145 0.916452i \(-0.368960\pi\)
0.400145 + 0.916452i \(0.368960\pi\)
\(720\) 0 0
\(721\) −4.97774 3.32661i −0.185381 0.123890i
\(722\) 0 0
\(723\) 2.89298 + 8.83334i 0.107591 + 0.328515i
\(724\) 0 0
\(725\) 5.91891 2.01162i 0.219823 0.0747097i
\(726\) 0 0
\(727\) 14.9291 0.553690 0.276845 0.960915i \(-0.410711\pi\)
0.276845 + 0.960915i \(0.410711\pi\)
\(728\) 0 0
\(729\) −8.70291 25.5589i −0.322330 0.946627i
\(730\) 0 0
\(731\) −16.5486 −0.612072
\(732\) 0 0
\(733\) −14.7630 −0.545284 −0.272642 0.962116i \(-0.587897\pi\)
−0.272642 + 0.962116i \(0.587897\pi\)
\(734\) 0 0
\(735\) 27.0073 2.36762i 0.996179 0.0873312i
\(736\) 0 0
\(737\) 13.2538 0.488209
\(738\) 0 0
\(739\) −42.3148 −1.55658 −0.778288 0.627908i \(-0.783912\pi\)
−0.778288 + 0.627908i \(0.783912\pi\)
\(740\) 0 0
\(741\) −0.168137 0.513384i −0.00617666 0.0188596i
\(742\) 0 0
\(743\) 38.3503 1.40693 0.703467 0.710728i \(-0.251634\pi\)
0.703467 + 0.710728i \(0.251634\pi\)
\(744\) 0 0
\(745\) −19.9728 14.3068i −0.731747 0.524160i
\(746\) 0 0
\(747\) 32.1739 + 43.8508i 1.17718 + 1.60442i
\(748\) 0 0
\(749\) −35.7848 23.9149i −1.30755 0.873831i
\(750\) 0 0
\(751\) 15.9483 0.581961 0.290981 0.956729i \(-0.406019\pi\)
0.290981 + 0.956729i \(0.406019\pi\)
\(752\) 0 0
\(753\) −50.3456 + 16.4885i −1.83469 + 0.600875i
\(754\) 0 0
\(755\) −26.7568 + 37.3536i −0.973781 + 1.35944i
\(756\) 0 0
\(757\) 37.3428i 1.35725i 0.734486 + 0.678624i \(0.237423\pi\)
−0.734486 + 0.678624i \(0.762577\pi\)
\(758\) 0 0
\(759\) −1.38101 4.21673i −0.0501275 0.153058i
\(760\) 0 0
\(761\) 20.9251 0.758536 0.379268 0.925287i \(-0.376176\pi\)
0.379268 + 0.925287i \(0.376176\pi\)
\(762\) 0 0
\(763\) 29.5004 + 19.7151i 1.06799 + 0.713733i
\(764\) 0 0
\(765\) −16.8591 + 0.192292i −0.609542 + 0.00695234i
\(766\) 0 0
\(767\) −1.64376 −0.0593526
\(768\) 0 0
\(769\) 22.7908i 0.821856i −0.911668 0.410928i \(-0.865205\pi\)
0.911668 0.410928i \(-0.134795\pi\)
\(770\) 0 0
\(771\) 9.50433 + 29.0202i 0.342290 + 1.04514i
\(772\) 0 0
\(773\) 35.5488i 1.27860i 0.768958 + 0.639300i \(0.220776\pi\)
−0.768958 + 0.639300i \(0.779224\pi\)
\(774\) 0 0
\(775\) −41.0350 + 13.9463i −1.47402 + 0.500966i
\(776\) 0 0
\(777\) 2.83695 10.1466i 0.101775 0.364008i
\(778\) 0 0
\(779\) 9.40758i 0.337062i
\(780\) 0 0
\(781\) 9.35452 0.334731
\(782\) 0 0
\(783\) −5.28256 3.78167i −0.188783 0.135146i
\(784\) 0 0
\(785\) 1.14075 1.59253i 0.0407151 0.0568398i
\(786\) 0 0
\(787\) −3.01968 −0.107640 −0.0538201 0.998551i \(-0.517140\pi\)
−0.0538201 + 0.998551i \(0.517140\pi\)
\(788\) 0 0
\(789\) 44.5838 14.6015i 1.58722 0.519827i
\(790\) 0 0
\(791\) −33.0585 22.0929i −1.17543 0.785534i
\(792\) 0 0
\(793\) 0.672928i 0.0238964i
\(794\) 0 0
\(795\) 9.99642 31.7422i 0.354536 1.12578i
\(796\) 0 0
\(797\) 14.0365i 0.497198i −0.968607 0.248599i \(-0.920030\pi\)
0.968607 0.248599i \(-0.0799701\pi\)
\(798\) 0 0
\(799\) 14.0931 0.498579
\(800\) 0 0
\(801\) −2.30854 + 1.69380i −0.0815681 + 0.0598475i
\(802\) 0 0
\(803\) 4.25053i 0.149998i
\(804\) 0 0
\(805\) −14.7984 + 5.57145i −0.521576 + 0.196368i
\(806\) 0 0
\(807\) 20.5163 6.71923i 0.722208 0.236528i
\(808\) 0 0
\(809\) 46.9966i 1.65231i −0.563442 0.826156i \(-0.690523\pi\)
0.563442 0.826156i \(-0.309477\pi\)
\(810\) 0 0
\(811\) 52.8375i 1.85537i 0.373358 + 0.927687i \(0.378206\pi\)
−0.373358 + 0.927687i \(0.621794\pi\)
\(812\) 0 0
\(813\) 6.01229 + 18.3577i 0.210860 + 0.643834i
\(814\) 0 0
\(815\) 39.9035 + 28.5834i 1.39776 + 1.00123i
\(816\) 0 0
\(817\) 13.0539 0.456698
\(818\) 0 0
\(819\) 1.24745 0.0547542i 0.0435895 0.00191327i
\(820\) 0 0
\(821\) 53.1985i 1.85664i −0.371783 0.928320i \(-0.621253\pi\)
0.371783 0.928320i \(-0.378747\pi\)
\(822\) 0 0
\(823\) 26.3931i 0.920006i −0.887917 0.460003i \(-0.847848\pi\)
0.887917 0.460003i \(-0.152152\pi\)
\(824\) 0 0
\(825\) 6.63736 4.98438i 0.231083 0.173534i
\(826\) 0 0
\(827\) 20.3363 0.707161 0.353580 0.935404i \(-0.384964\pi\)
0.353580 + 0.935404i \(0.384964\pi\)
\(828\) 0 0
\(829\) 5.14232i 0.178600i 0.996005 + 0.0893000i \(0.0284630\pi\)
−0.996005 + 0.0893000i \(0.971537\pi\)
\(830\) 0 0
\(831\) 14.1436 + 43.1858i 0.490638 + 1.49810i
\(832\) 0 0
\(833\) −16.2554 + 6.73010i −0.563218 + 0.233184i
\(834\) 0 0
\(835\) 21.3208 + 15.2724i 0.737838 + 0.528523i
\(836\) 0 0
\(837\) 36.6233 + 26.2178i 1.26589 + 0.906221i
\(838\) 0 0
\(839\) −25.1161 −0.867103 −0.433552 0.901129i \(-0.642740\pi\)
−0.433552 + 0.901129i \(0.642740\pi\)
\(840\) 0 0
\(841\) 27.4368 0.946096
\(842\) 0 0
\(843\) −8.06725 24.6323i −0.277851 0.848382i
\(844\) 0 0
\(845\) 16.8954 23.5867i 0.581220 0.811406i
\(846\) 0 0
\(847\) −22.1764 14.8204i −0.761989 0.509235i
\(848\) 0 0
\(849\) −1.00909 + 0.330483i −0.0346318 + 0.0113422i
\(850\) 0 0
\(851\) 6.14501i 0.210648i
\(852\) 0 0
\(853\) −24.0408 −0.823141 −0.411570 0.911378i \(-0.635020\pi\)
−0.411570 + 0.911378i \(0.635020\pi\)
\(854\) 0 0
\(855\) 13.2988 0.151684i 0.454810 0.00518749i
\(856\) 0 0
\(857\) 52.0141i 1.77677i 0.459102 + 0.888384i \(0.348171\pi\)
−0.459102 + 0.888384i \(0.651829\pi\)
\(858\) 0 0
\(859\) 19.8217i 0.676309i 0.941091 + 0.338154i \(0.109803\pi\)
−0.941091 + 0.338154i \(0.890197\pi\)
\(860\) 0 0
\(861\) 20.9415 + 5.85514i 0.713685 + 0.199543i
\(862\) 0 0
\(863\) 27.2461 0.927468 0.463734 0.885974i \(-0.346509\pi\)
0.463734 + 0.885974i \(0.346509\pi\)
\(864\) 0 0
\(865\) 34.3167 + 24.5815i 1.16680 + 0.835795i
\(866\) 0 0
\(867\) −17.5844 + 5.75902i −0.597198 + 0.195587i
\(868\) 0 0
\(869\) 0.496377i 0.0168384i
\(870\) 0 0
\(871\) 2.17539i 0.0737102i
\(872\) 0 0
\(873\) −34.0823 + 25.0066i −1.15351 + 0.846346i
\(874\) 0 0
\(875\) −18.7763 22.8572i −0.634755 0.772713i
\(876\) 0 0
\(877\) 21.6226i 0.730145i −0.930979 0.365072i \(-0.881044\pi\)
0.930979 0.365072i \(-0.118956\pi\)
\(878\) 0 0
\(879\) −4.72406 14.4243i −0.159339 0.486520i
\(880\) 0 0
\(881\) −38.4204 −1.29442 −0.647209 0.762313i \(-0.724064\pi\)
−0.647209 + 0.762313i \(0.724064\pi\)
\(882\) 0 0
\(883\) 33.7562i 1.13599i −0.823033 0.567993i \(-0.807720\pi\)
0.823033 0.567993i \(-0.192280\pi\)
\(884\) 0 0
\(885\) 12.1558 38.5992i 0.408614 1.29750i
\(886\) 0 0
\(887\) 37.9418i 1.27396i 0.770879 + 0.636981i \(0.219817\pi\)
−0.770879 + 0.636981i \(0.780183\pi\)
\(888\) 0 0
\(889\) 4.98741 7.46287i 0.167273 0.250297i
\(890\) 0 0
\(891\) −8.22853 2.58877i −0.275666 0.0867272i
\(892\) 0 0
\(893\) −11.1170 −0.372015
\(894\) 0 0
\(895\) 22.4023 + 16.0470i 0.748826 + 0.536393i
\(896\) 0 0
\(897\) −0.692107 + 0.226670i −0.0231088 + 0.00756828i
\(898\) 0 0
\(899\) 10.8375 0.361450
\(900\) 0 0
\(901\) 21.5964i 0.719481i
\(902\) 0 0
\(903\) −8.12456 + 29.0583i −0.270369 + 0.967001i
\(904\) 0 0
\(905\) 33.2104 + 23.7890i 1.10395 + 0.790774i
\(906\) 0 0
\(907\) 5.51100i 0.182990i −0.995806 0.0914949i \(-0.970835\pi\)
0.995806 0.0914949i \(-0.0291645\pi\)
\(908\) 0 0
\(909\) 21.4635 15.7481i 0.711900 0.522330i
\(910\) 0 0
\(911\) 32.8419i 1.08810i −0.839052 0.544051i \(-0.816890\pi\)
0.839052 0.544051i \(-0.183110\pi\)
\(912\) 0 0
\(913\) 17.3763 0.575071
\(914\) 0 0
\(915\) 15.8019 + 4.97640i 0.522394 + 0.164515i
\(916\) 0 0
\(917\) 0.855012 + 0.571402i 0.0282350 + 0.0188694i
\(918\) 0 0
\(919\) 44.1954 1.45787 0.728935 0.684583i \(-0.240016\pi\)
0.728935 + 0.684583i \(0.240016\pi\)
\(920\) 0 0
\(921\) 29.4416 9.64232i 0.970133 0.317725i
\(922\) 0 0
\(923\) 1.53539i 0.0505380i
\(924\) 0 0
\(925\) −10.8840 + 3.69909i −0.357865 + 0.121625i
\(926\) 0 0
\(927\) 5.47339 4.01590i 0.179770 0.131899i
\(928\) 0 0
\(929\) −5.66334 −0.185808 −0.0929040 0.995675i \(-0.529615\pi\)
−0.0929040 + 0.995675i \(0.529615\pi\)
\(930\) 0 0
\(931\) 12.8227 5.30885i 0.420246 0.173991i
\(932\) 0 0
\(933\) 21.3314 6.98619i 0.698360 0.228718i
\(934\) 0 0
\(935\) −3.13678 + 4.37906i −0.102584 + 0.143211i
\(936\) 0 0
\(937\) −45.8981 −1.49943 −0.749713 0.661763i \(-0.769809\pi\)
−0.749713 + 0.661763i \(0.769809\pi\)
\(938\) 0 0
\(939\) −43.4681 + 14.2361i −1.41853 + 0.464578i
\(940\) 0 0
\(941\) 50.0654 1.63209 0.816043 0.577991i \(-0.196163\pi\)
0.816043 + 0.577991i \(0.196163\pi\)
\(942\) 0 0
\(943\) −12.6826 −0.413003
\(944\) 0 0
\(945\) −7.93934 + 29.6979i −0.258267 + 0.966074i
\(946\) 0 0
\(947\) −27.8322 −0.904426 −0.452213 0.891910i \(-0.649365\pi\)
−0.452213 + 0.891910i \(0.649365\pi\)
\(948\) 0 0
\(949\) −0.697653 −0.0226468
\(950\) 0 0
\(951\) 30.6115 10.0255i 0.992645 0.325098i
\(952\) 0 0
\(953\) −17.3099 −0.560721 −0.280361 0.959895i \(-0.590454\pi\)
−0.280361 + 0.959895i \(0.590454\pi\)
\(954\) 0 0
\(955\) −22.5744 16.1703i −0.730492 0.523260i
\(956\) 0 0
\(957\) −1.97250 + 0.646009i −0.0637620 + 0.0208825i
\(958\) 0 0
\(959\) 20.5154 + 13.7104i 0.662477 + 0.442732i
\(960\) 0 0
\(961\) −44.1348 −1.42370
\(962\) 0 0
\(963\) 39.3480 28.8701i 1.26797 0.930327i
\(964\) 0 0
\(965\) 36.5107 + 26.1531i 1.17532 + 0.841897i
\(966\) 0 0
\(967\) 19.0313i 0.612006i 0.952031 + 0.306003i \(0.0989917\pi\)
−0.952031 + 0.306003i \(0.901008\pi\)
\(968\) 0 0
\(969\) −8.20213 + 2.68626i −0.263490 + 0.0862950i
\(970\) 0 0
\(971\) −0.307918 −0.00988156 −0.00494078 0.999988i \(-0.501573\pi\)
−0.00494078 + 0.999988i \(0.501573\pi\)
\(972\) 0 0
\(973\) 21.3634 31.9670i 0.684880 1.02481i
\(974\) 0 0
\(975\) −0.818103 1.08941i −0.0262003 0.0348891i
\(976\) 0 0
\(977\) −33.3493 −1.06694 −0.533469 0.845820i \(-0.679112\pi\)
−0.533469 + 0.845820i \(0.679112\pi\)
\(978\) 0 0
\(979\) 0.914777i 0.0292364i
\(980\) 0 0
\(981\) −32.4379 + 23.8001i −1.03566 + 0.759879i
\(982\) 0 0
\(983\) 38.9932i 1.24369i 0.783140 + 0.621845i \(0.213617\pi\)
−0.783140 + 0.621845i \(0.786383\pi\)
\(984\) 0 0
\(985\) −17.6772 + 24.6780i −0.563242 + 0.786308i
\(986\) 0 0
\(987\) 6.91904 24.7467i 0.220235 0.787695i
\(988\) 0 0
\(989\) 17.5983i 0.559594i
\(990\) 0 0
\(991\) −25.8271 −0.820424 −0.410212 0.911990i \(-0.634545\pi\)
−0.410212 + 0.911990i \(0.634545\pi\)
\(992\) 0 0
\(993\) −2.39124 + 0.783146i −0.0758836 + 0.0248524i
\(994\) 0 0
\(995\) −9.74707 6.98195i −0.309003 0.221343i
\(996\) 0 0
\(997\) −4.68987 −0.148530 −0.0742649 0.997239i \(-0.523661\pi\)
−0.0742649 + 0.997239i \(0.523661\pi\)
\(998\) 0 0
\(999\) 9.71390 + 6.95397i 0.307334 + 0.220014i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.k.h.209.4 24
3.2 odd 2 1680.2.k.i.209.3 24
4.3 odd 2 840.2.k.b.209.21 yes 24
5.4 even 2 1680.2.k.i.209.21 24
7.6 odd 2 inner 1680.2.k.h.209.21 24
12.11 even 2 840.2.k.a.209.22 yes 24
15.14 odd 2 inner 1680.2.k.h.209.22 24
20.19 odd 2 840.2.k.a.209.4 yes 24
21.20 even 2 1680.2.k.i.209.22 24
28.27 even 2 840.2.k.b.209.4 yes 24
35.34 odd 2 1680.2.k.i.209.4 24
60.59 even 2 840.2.k.b.209.3 yes 24
84.83 odd 2 840.2.k.a.209.3 24
105.104 even 2 inner 1680.2.k.h.209.3 24
140.139 even 2 840.2.k.a.209.21 yes 24
420.419 odd 2 840.2.k.b.209.22 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.k.a.209.3 24 84.83 odd 2
840.2.k.a.209.4 yes 24 20.19 odd 2
840.2.k.a.209.21 yes 24 140.139 even 2
840.2.k.a.209.22 yes 24 12.11 even 2
840.2.k.b.209.3 yes 24 60.59 even 2
840.2.k.b.209.4 yes 24 28.27 even 2
840.2.k.b.209.21 yes 24 4.3 odd 2
840.2.k.b.209.22 yes 24 420.419 odd 2
1680.2.k.h.209.3 24 105.104 even 2 inner
1680.2.k.h.209.4 24 1.1 even 1 trivial
1680.2.k.h.209.21 24 7.6 odd 2 inner
1680.2.k.h.209.22 24 15.14 odd 2 inner
1680.2.k.i.209.3 24 3.2 odd 2
1680.2.k.i.209.4 24 35.34 odd 2
1680.2.k.i.209.21 24 5.4 even 2
1680.2.k.i.209.22 24 21.20 even 2