Properties

Label 1680.2.k.h.209.11
Level $1680$
Weight $2$
Character 1680.209
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(209,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,-2,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.11
Character \(\chi\) \(=\) 1680.209
Dual form 1680.2.k.h.209.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.325454 - 1.70120i) q^{3} +(1.34492 - 1.78639i) q^{5} +(1.53984 + 2.15149i) q^{7} +(-2.78816 + 1.10732i) q^{9} +5.00998i q^{11} -1.62957 q^{13} +(-3.47672 - 1.70659i) q^{15} -4.73603i q^{17} -2.13979i q^{19} +(3.15897 - 3.31978i) q^{21} +9.46270 q^{23} +(-1.38239 - 4.80510i) q^{25} +(2.79119 + 4.38283i) q^{27} -5.96788i q^{29} -4.38673i q^{31} +(8.52298 - 1.63052i) q^{33} +(5.91436 + 0.142824i) q^{35} -3.75323i q^{37} +(0.530349 + 2.77222i) q^{39} +10.6255 q^{41} -4.74762i q^{43} +(-1.77173 + 6.47001i) q^{45} -5.64934i q^{47} +(-2.25781 + 6.62588i) q^{49} +(-8.05694 + 1.54136i) q^{51} +4.69333 q^{53} +(8.94979 + 6.73801i) q^{55} +(-3.64020 + 0.696402i) q^{57} -8.66206 q^{59} -2.09779i q^{61} +(-6.67570 - 4.29360i) q^{63} +(-2.19163 + 2.91105i) q^{65} -6.20510i q^{67} +(-3.07967 - 16.0979i) q^{69} +8.65231i q^{71} +12.5394 q^{73} +(-7.72453 + 3.91557i) q^{75} +(-10.7789 + 7.71455i) q^{77} -1.06070 q^{79} +(6.54767 - 6.17479i) q^{81} +5.96483i q^{83} +(-8.46041 - 6.36957i) q^{85} +(-10.1525 + 1.94227i) q^{87} +0.187117 q^{89} +(-2.50927 - 3.50600i) q^{91} +(-7.46270 + 1.42768i) q^{93} +(-3.82250 - 2.87784i) q^{95} -10.8671 q^{97} +(-5.54767 - 13.9686i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{9} - 2 q^{15} - 2 q^{21} + 16 q^{23} + 8 q^{25} - 8 q^{35} + 2 q^{39} - 6 q^{51} + 24 q^{53} + 8 q^{57} - 16 q^{63} + 16 q^{65} + 8 q^{77} - 4 q^{79} + 18 q^{81} - 12 q^{85} - 12 q^{91} + 32 q^{93}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.325454 1.70120i −0.187901 0.982188i
\(4\) 0 0
\(5\) 1.34492 1.78639i 0.601465 0.798899i
\(6\) 0 0
\(7\) 1.53984 + 2.15149i 0.582003 + 0.813186i
\(8\) 0 0
\(9\) −2.78816 + 1.10732i −0.929387 + 0.369108i
\(10\) 0 0
\(11\) 5.00998i 1.51057i 0.655399 + 0.755283i \(0.272501\pi\)
−0.655399 + 0.755283i \(0.727499\pi\)
\(12\) 0 0
\(13\) −1.62957 −0.451961 −0.225980 0.974132i \(-0.572559\pi\)
−0.225980 + 0.974132i \(0.572559\pi\)
\(14\) 0 0
\(15\) −3.47672 1.70659i −0.897685 0.440638i
\(16\) 0 0
\(17\) 4.73603i 1.14866i −0.818625 0.574328i \(-0.805263\pi\)
0.818625 0.574328i \(-0.194737\pi\)
\(18\) 0 0
\(19\) 2.13979i 0.490901i −0.969409 0.245450i \(-0.921064\pi\)
0.969409 0.245450i \(-0.0789359\pi\)
\(20\) 0 0
\(21\) 3.15897 3.31978i 0.689343 0.724435i
\(22\) 0 0
\(23\) 9.46270 1.97311 0.986555 0.163429i \(-0.0522555\pi\)
0.986555 + 0.163429i \(0.0522555\pi\)
\(24\) 0 0
\(25\) −1.38239 4.80510i −0.276479 0.961020i
\(26\) 0 0
\(27\) 2.79119 + 4.38283i 0.537166 + 0.843477i
\(28\) 0 0
\(29\) 5.96788i 1.10821i −0.832448 0.554103i \(-0.813061\pi\)
0.832448 0.554103i \(-0.186939\pi\)
\(30\) 0 0
\(31\) 4.38673i 0.787880i −0.919136 0.393940i \(-0.871112\pi\)
0.919136 0.393940i \(-0.128888\pi\)
\(32\) 0 0
\(33\) 8.52298 1.63052i 1.48366 0.283837i
\(34\) 0 0
\(35\) 5.91436 + 0.142824i 0.999709 + 0.0241417i
\(36\) 0 0
\(37\) 3.75323i 0.617027i −0.951220 0.308514i \(-0.900168\pi\)
0.951220 0.308514i \(-0.0998315\pi\)
\(38\) 0 0
\(39\) 0.530349 + 2.77222i 0.0849238 + 0.443911i
\(40\) 0 0
\(41\) 10.6255 1.65943 0.829716 0.558186i \(-0.188503\pi\)
0.829716 + 0.558186i \(0.188503\pi\)
\(42\) 0 0
\(43\) 4.74762i 0.724005i −0.932177 0.362002i \(-0.882093\pi\)
0.932177 0.362002i \(-0.117907\pi\)
\(44\) 0 0
\(45\) −1.77173 + 6.47001i −0.264114 + 0.964491i
\(46\) 0 0
\(47\) 5.64934i 0.824041i −0.911175 0.412021i \(-0.864823\pi\)
0.911175 0.412021i \(-0.135177\pi\)
\(48\) 0 0
\(49\) −2.25781 + 6.62588i −0.322544 + 0.946554i
\(50\) 0 0
\(51\) −8.05694 + 1.54136i −1.12820 + 0.215834i
\(52\) 0 0
\(53\) 4.69333 0.644679 0.322340 0.946624i \(-0.395531\pi\)
0.322340 + 0.946624i \(0.395531\pi\)
\(54\) 0 0
\(55\) 8.94979 + 6.73801i 1.20679 + 0.908553i
\(56\) 0 0
\(57\) −3.64020 + 0.696402i −0.482157 + 0.0922406i
\(58\) 0 0
\(59\) −8.66206 −1.12770 −0.563852 0.825876i \(-0.690681\pi\)
−0.563852 + 0.825876i \(0.690681\pi\)
\(60\) 0 0
\(61\) 2.09779i 0.268594i −0.990941 0.134297i \(-0.957122\pi\)
0.990941 0.134297i \(-0.0428776\pi\)
\(62\) 0 0
\(63\) −6.67570 4.29360i −0.841059 0.540943i
\(64\) 0 0
\(65\) −2.19163 + 2.91105i −0.271839 + 0.361071i
\(66\) 0 0
\(67\) 6.20510i 0.758073i −0.925382 0.379037i \(-0.876255\pi\)
0.925382 0.379037i \(-0.123745\pi\)
\(68\) 0 0
\(69\) −3.07967 16.0979i −0.370749 1.93797i
\(70\) 0 0
\(71\) 8.65231i 1.02684i 0.858138 + 0.513420i \(0.171622\pi\)
−0.858138 + 0.513420i \(0.828378\pi\)
\(72\) 0 0
\(73\) 12.5394 1.46763 0.733815 0.679349i \(-0.237738\pi\)
0.733815 + 0.679349i \(0.237738\pi\)
\(74\) 0 0
\(75\) −7.72453 + 3.91557i −0.891952 + 0.452131i
\(76\) 0 0
\(77\) −10.7789 + 7.71455i −1.22837 + 0.879155i
\(78\) 0 0
\(79\) −1.06070 −0.119338 −0.0596689 0.998218i \(-0.519004\pi\)
−0.0596689 + 0.998218i \(0.519004\pi\)
\(80\) 0 0
\(81\) 6.54767 6.17479i 0.727519 0.686088i
\(82\) 0 0
\(83\) 5.96483i 0.654725i 0.944899 + 0.327362i \(0.106160\pi\)
−0.944899 + 0.327362i \(0.893840\pi\)
\(84\) 0 0
\(85\) −8.46041 6.36957i −0.917661 0.690877i
\(86\) 0 0
\(87\) −10.1525 + 1.94227i −1.08847 + 0.208233i
\(88\) 0 0
\(89\) 0.187117 0.0198344 0.00991719 0.999951i \(-0.496843\pi\)
0.00991719 + 0.999951i \(0.496843\pi\)
\(90\) 0 0
\(91\) −2.50927 3.50600i −0.263043 0.367529i
\(92\) 0 0
\(93\) −7.46270 + 1.42768i −0.773846 + 0.148043i
\(94\) 0 0
\(95\) −3.82250 2.87784i −0.392180 0.295260i
\(96\) 0 0
\(97\) −10.8671 −1.10339 −0.551693 0.834047i \(-0.686018\pi\)
−0.551693 + 0.834047i \(0.686018\pi\)
\(98\) 0 0
\(99\) −5.54767 13.9686i −0.557562 1.40390i
\(100\) 0 0
\(101\) −4.64716 −0.462409 −0.231205 0.972905i \(-0.574267\pi\)
−0.231205 + 0.972905i \(0.574267\pi\)
\(102\) 0 0
\(103\) −0.674162 −0.0664272 −0.0332136 0.999448i \(-0.510574\pi\)
−0.0332136 + 0.999448i \(0.510574\pi\)
\(104\) 0 0
\(105\) −1.68188 10.1080i −0.164134 0.986438i
\(106\) 0 0
\(107\) −8.45930 −0.817792 −0.408896 0.912581i \(-0.634086\pi\)
−0.408896 + 0.912581i \(0.634086\pi\)
\(108\) 0 0
\(109\) 7.32715 0.701814 0.350907 0.936410i \(-0.385873\pi\)
0.350907 + 0.936410i \(0.385873\pi\)
\(110\) 0 0
\(111\) −6.38499 + 1.22150i −0.606037 + 0.115940i
\(112\) 0 0
\(113\) 10.2229 0.961691 0.480845 0.876805i \(-0.340330\pi\)
0.480845 + 0.876805i \(0.340330\pi\)
\(114\) 0 0
\(115\) 12.7266 16.9041i 1.18676 1.57632i
\(116\) 0 0
\(117\) 4.54350 1.80446i 0.420046 0.166822i
\(118\) 0 0
\(119\) 10.1895 7.29271i 0.934072 0.668522i
\(120\) 0 0
\(121\) −14.0999 −1.28181
\(122\) 0 0
\(123\) −3.45812 18.0762i −0.311808 1.62987i
\(124\) 0 0
\(125\) −10.4430 3.99296i −0.934050 0.357142i
\(126\) 0 0
\(127\) 19.7565i 1.75310i 0.481307 + 0.876552i \(0.340162\pi\)
−0.481307 + 0.876552i \(0.659838\pi\)
\(128\) 0 0
\(129\) −8.07664 + 1.54513i −0.711109 + 0.136041i
\(130\) 0 0
\(131\) 17.5174 1.53050 0.765251 0.643732i \(-0.222615\pi\)
0.765251 + 0.643732i \(0.222615\pi\)
\(132\) 0 0
\(133\) 4.60373 3.29492i 0.399194 0.285706i
\(134\) 0 0
\(135\) 11.5834 + 0.908381i 0.996939 + 0.0781810i
\(136\) 0 0
\(137\) 21.3696 1.82573 0.912863 0.408266i \(-0.133866\pi\)
0.912863 + 0.408266i \(0.133866\pi\)
\(138\) 0 0
\(139\) 3.32832i 0.282305i −0.989988 0.141152i \(-0.954919\pi\)
0.989988 0.141152i \(-0.0450807\pi\)
\(140\) 0 0
\(141\) −9.61066 + 1.83860i −0.809363 + 0.154838i
\(142\) 0 0
\(143\) 8.16411i 0.682717i
\(144\) 0 0
\(145\) −10.6610 8.02630i −0.885345 0.666548i
\(146\) 0 0
\(147\) 12.0068 + 1.68457i 0.990301 + 0.138941i
\(148\) 0 0
\(149\) 4.29916i 0.352201i 0.984372 + 0.176101i \(0.0563484\pi\)
−0.984372 + 0.176101i \(0.943652\pi\)
\(150\) 0 0
\(151\) 7.59367 0.617964 0.308982 0.951068i \(-0.400012\pi\)
0.308982 + 0.951068i \(0.400012\pi\)
\(152\) 0 0
\(153\) 5.24432 + 13.2048i 0.423978 + 1.06755i
\(154\) 0 0
\(155\) −7.83642 5.89979i −0.629436 0.473883i
\(156\) 0 0
\(157\) −15.4164 −1.23036 −0.615181 0.788386i \(-0.710917\pi\)
−0.615181 + 0.788386i \(0.710917\pi\)
\(158\) 0 0
\(159\) −1.52746 7.98430i −0.121136 0.633196i
\(160\) 0 0
\(161\) 14.5710 + 20.3589i 1.14836 + 1.60451i
\(162\) 0 0
\(163\) 7.60297i 0.595511i −0.954642 0.297755i \(-0.903762\pi\)
0.954642 0.297755i \(-0.0962380\pi\)
\(164\) 0 0
\(165\) 8.54996 17.4183i 0.665614 1.35601i
\(166\) 0 0
\(167\) 3.12412i 0.241752i −0.992668 0.120876i \(-0.961430\pi\)
0.992668 0.120876i \(-0.0385703\pi\)
\(168\) 0 0
\(169\) −10.3445 −0.795731
\(170\) 0 0
\(171\) 2.36944 + 5.96607i 0.181195 + 0.456237i
\(172\) 0 0
\(173\) 5.28993i 0.402186i 0.979572 + 0.201093i \(0.0644493\pi\)
−0.979572 + 0.201093i \(0.935551\pi\)
\(174\) 0 0
\(175\) 8.20946 10.3733i 0.620577 0.784146i
\(176\) 0 0
\(177\) 2.81910 + 14.7359i 0.211897 + 1.10762i
\(178\) 0 0
\(179\) 14.5042i 1.08410i 0.840348 + 0.542048i \(0.182351\pi\)
−0.840348 + 0.542048i \(0.817649\pi\)
\(180\) 0 0
\(181\) 18.5082i 1.37571i 0.725850 + 0.687853i \(0.241446\pi\)
−0.725850 + 0.687853i \(0.758554\pi\)
\(182\) 0 0
\(183\) −3.56875 + 0.682732i −0.263810 + 0.0504690i
\(184\) 0 0
\(185\) −6.70474 5.04778i −0.492942 0.371120i
\(186\) 0 0
\(187\) 23.7274 1.73512
\(188\) 0 0
\(189\) −5.13164 + 12.7541i −0.373272 + 0.927722i
\(190\) 0 0
\(191\) 12.7342i 0.921414i −0.887552 0.460707i \(-0.847596\pi\)
0.887552 0.460707i \(-0.152404\pi\)
\(192\) 0 0
\(193\) 4.04248i 0.290984i −0.989359 0.145492i \(-0.953523\pi\)
0.989359 0.145492i \(-0.0464765\pi\)
\(194\) 0 0
\(195\) 5.66555 + 2.78100i 0.405718 + 0.199151i
\(196\) 0 0
\(197\) −5.44077 −0.387639 −0.193819 0.981037i \(-0.562088\pi\)
−0.193819 + 0.981037i \(0.562088\pi\)
\(198\) 0 0
\(199\) 15.8119i 1.12087i 0.828197 + 0.560437i \(0.189367\pi\)
−0.828197 + 0.560437i \(0.810633\pi\)
\(200\) 0 0
\(201\) −10.5561 + 2.01947i −0.744570 + 0.142443i
\(202\) 0 0
\(203\) 12.8398 9.18955i 0.901179 0.644980i
\(204\) 0 0
\(205\) 14.2905 18.9814i 0.998090 1.32572i
\(206\) 0 0
\(207\) −26.3835 + 10.4783i −1.83378 + 0.728290i
\(208\) 0 0
\(209\) 10.7203 0.741538
\(210\) 0 0
\(211\) −17.7369 −1.22106 −0.610531 0.791993i \(-0.709044\pi\)
−0.610531 + 0.791993i \(0.709044\pi\)
\(212\) 0 0
\(213\) 14.7193 2.81593i 1.00855 0.192944i
\(214\) 0 0
\(215\) −8.48111 6.38515i −0.578407 0.435464i
\(216\) 0 0
\(217\) 9.43800 6.75484i 0.640693 0.458549i
\(218\) 0 0
\(219\) −4.08101 21.3321i −0.275769 1.44149i
\(220\) 0 0
\(221\) 7.71769i 0.519148i
\(222\) 0 0
\(223\) −28.0313 −1.87711 −0.938556 0.345126i \(-0.887836\pi\)
−0.938556 + 0.345126i \(0.887836\pi\)
\(224\) 0 0
\(225\) 9.17513 + 11.8666i 0.611676 + 0.791109i
\(226\) 0 0
\(227\) 17.2192i 1.14288i −0.820645 0.571439i \(-0.806385\pi\)
0.820645 0.571439i \(-0.193615\pi\)
\(228\) 0 0
\(229\) 4.89863i 0.323710i −0.986815 0.161855i \(-0.948252\pi\)
0.986815 0.161855i \(-0.0517477\pi\)
\(230\) 0 0
\(231\) 16.6320 + 15.8264i 1.09431 + 1.04130i
\(232\) 0 0
\(233\) −17.0858 −1.11933 −0.559663 0.828720i \(-0.689069\pi\)
−0.559663 + 0.828720i \(0.689069\pi\)
\(234\) 0 0
\(235\) −10.0919 7.59790i −0.658326 0.495632i
\(236\) 0 0
\(237\) 0.345208 + 1.80446i 0.0224237 + 0.117212i
\(238\) 0 0
\(239\) 20.4559i 1.32319i 0.749863 + 0.661593i \(0.230119\pi\)
−0.749863 + 0.661593i \(0.769881\pi\)
\(240\) 0 0
\(241\) 10.8088i 0.696253i −0.937448 0.348127i \(-0.886818\pi\)
0.937448 0.348127i \(-0.113182\pi\)
\(242\) 0 0
\(243\) −12.6355 9.12929i −0.810568 0.585644i
\(244\) 0 0
\(245\) 8.79985 + 12.9446i 0.562202 + 0.827000i
\(246\) 0 0
\(247\) 3.48693i 0.221868i
\(248\) 0 0
\(249\) 10.1474 1.94128i 0.643063 0.123023i
\(250\) 0 0
\(251\) 29.7407 1.87722 0.938609 0.344982i \(-0.112115\pi\)
0.938609 + 0.344982i \(0.112115\pi\)
\(252\) 0 0
\(253\) 47.4080i 2.98051i
\(254\) 0 0
\(255\) −8.08244 + 16.4659i −0.506142 + 1.03113i
\(256\) 0 0
\(257\) 28.1376i 1.75518i −0.479415 0.877589i \(-0.659151\pi\)
0.479415 0.877589i \(-0.340849\pi\)
\(258\) 0 0
\(259\) 8.07503 5.77936i 0.501758 0.359112i
\(260\) 0 0
\(261\) 6.60837 + 16.6394i 0.409048 + 1.02995i
\(262\) 0 0
\(263\) −21.0985 −1.30099 −0.650496 0.759510i \(-0.725439\pi\)
−0.650496 + 0.759510i \(0.725439\pi\)
\(264\) 0 0
\(265\) 6.31215 8.38414i 0.387752 0.515033i
\(266\) 0 0
\(267\) −0.0608979 0.318324i −0.00372689 0.0194811i
\(268\) 0 0
\(269\) 5.42683 0.330880 0.165440 0.986220i \(-0.447096\pi\)
0.165440 + 0.986220i \(0.447096\pi\)
\(270\) 0 0
\(271\) 17.0004i 1.03270i 0.856377 + 0.516351i \(0.172710\pi\)
−0.856377 + 0.516351i \(0.827290\pi\)
\(272\) 0 0
\(273\) −5.14775 + 5.40981i −0.311556 + 0.327416i
\(274\) 0 0
\(275\) 24.0735 6.92577i 1.45168 0.417640i
\(276\) 0 0
\(277\) 0.897874i 0.0539480i 0.999636 + 0.0269740i \(0.00858714\pi\)
−0.999636 + 0.0269740i \(0.991413\pi\)
\(278\) 0 0
\(279\) 4.85753 + 12.2309i 0.290813 + 0.732245i
\(280\) 0 0
\(281\) 12.6282i 0.753338i 0.926348 + 0.376669i \(0.122931\pi\)
−0.926348 + 0.376669i \(0.877069\pi\)
\(282\) 0 0
\(283\) 1.82856 0.108696 0.0543482 0.998522i \(-0.482692\pi\)
0.0543482 + 0.998522i \(0.482692\pi\)
\(284\) 0 0
\(285\) −3.65173 + 7.43944i −0.216310 + 0.440674i
\(286\) 0 0
\(287\) 16.3616 + 22.8607i 0.965794 + 1.34943i
\(288\) 0 0
\(289\) −5.43001 −0.319413
\(290\) 0 0
\(291\) 3.53674 + 18.4871i 0.207327 + 1.08373i
\(292\) 0 0
\(293\) 6.26878i 0.366226i 0.983092 + 0.183113i \(0.0586175\pi\)
−0.983092 + 0.183113i \(0.941383\pi\)
\(294\) 0 0
\(295\) −11.6498 + 15.4738i −0.678275 + 0.900922i
\(296\) 0 0
\(297\) −21.9579 + 13.9838i −1.27413 + 0.811424i
\(298\) 0 0
\(299\) −15.4201 −0.891769
\(300\) 0 0
\(301\) 10.2144 7.31055i 0.588751 0.421373i
\(302\) 0 0
\(303\) 1.51243 + 7.90574i 0.0868871 + 0.454173i
\(304\) 0 0
\(305\) −3.74747 2.82135i −0.214579 0.161550i
\(306\) 0 0
\(307\) −18.5040 −1.05608 −0.528039 0.849220i \(-0.677073\pi\)
−0.528039 + 0.849220i \(0.677073\pi\)
\(308\) 0 0
\(309\) 0.219409 + 1.14688i 0.0124817 + 0.0652440i
\(310\) 0 0
\(311\) 19.3348 1.09637 0.548187 0.836356i \(-0.315318\pi\)
0.548187 + 0.836356i \(0.315318\pi\)
\(312\) 0 0
\(313\) −10.6125 −0.599856 −0.299928 0.953962i \(-0.596963\pi\)
−0.299928 + 0.953962i \(0.596963\pi\)
\(314\) 0 0
\(315\) −16.6483 + 6.15089i −0.938027 + 0.346563i
\(316\) 0 0
\(317\) 2.68654 0.150891 0.0754455 0.997150i \(-0.475962\pi\)
0.0754455 + 0.997150i \(0.475962\pi\)
\(318\) 0 0
\(319\) 29.8990 1.67402
\(320\) 0 0
\(321\) 2.75311 + 14.3910i 0.153664 + 0.803225i
\(322\) 0 0
\(323\) −10.1341 −0.563877
\(324\) 0 0
\(325\) 2.25271 + 7.83024i 0.124958 + 0.434344i
\(326\) 0 0
\(327\) −2.38465 12.4649i −0.131871 0.689313i
\(328\) 0 0
\(329\) 12.1545 8.69906i 0.670099 0.479595i
\(330\) 0 0
\(331\) 15.6637 0.860954 0.430477 0.902602i \(-0.358345\pi\)
0.430477 + 0.902602i \(0.358345\pi\)
\(332\) 0 0
\(333\) 4.15604 + 10.4646i 0.227749 + 0.573457i
\(334\) 0 0
\(335\) −11.0847 8.34534i −0.605624 0.455955i
\(336\) 0 0
\(337\) 8.05239i 0.438642i 0.975653 + 0.219321i \(0.0703842\pi\)
−0.975653 + 0.219321i \(0.929616\pi\)
\(338\) 0 0
\(339\) −3.32708 17.3912i −0.180702 0.944561i
\(340\) 0 0
\(341\) 21.9774 1.19015
\(342\) 0 0
\(343\) −17.7322 + 5.34511i −0.957447 + 0.288609i
\(344\) 0 0
\(345\) −32.8992 16.1489i −1.77123 0.869428i
\(346\) 0 0
\(347\) −0.814731 −0.0437370 −0.0218685 0.999761i \(-0.506962\pi\)
−0.0218685 + 0.999761i \(0.506962\pi\)
\(348\) 0 0
\(349\) 20.6841i 1.10719i 0.832785 + 0.553597i \(0.186745\pi\)
−0.832785 + 0.553597i \(0.813255\pi\)
\(350\) 0 0
\(351\) −4.54844 7.14213i −0.242778 0.381219i
\(352\) 0 0
\(353\) 13.1361i 0.699163i −0.936906 0.349581i \(-0.886324\pi\)
0.936906 0.349581i \(-0.113676\pi\)
\(354\) 0 0
\(355\) 15.4564 + 11.6366i 0.820341 + 0.617609i
\(356\) 0 0
\(357\) −15.7226 14.9610i −0.832127 0.791819i
\(358\) 0 0
\(359\) 15.6128i 0.824014i 0.911181 + 0.412007i \(0.135172\pi\)
−0.911181 + 0.412007i \(0.864828\pi\)
\(360\) 0 0
\(361\) 14.4213 0.759016
\(362\) 0 0
\(363\) 4.58887 + 23.9868i 0.240853 + 1.25898i
\(364\) 0 0
\(365\) 16.8645 22.4004i 0.882729 1.17249i
\(366\) 0 0
\(367\) −9.40534 −0.490955 −0.245477 0.969402i \(-0.578945\pi\)
−0.245477 + 0.969402i \(0.578945\pi\)
\(368\) 0 0
\(369\) −29.6257 + 11.7659i −1.54225 + 0.612509i
\(370\) 0 0
\(371\) 7.22697 + 10.0977i 0.375205 + 0.524244i
\(372\) 0 0
\(373\) 8.98592i 0.465273i 0.972564 + 0.232637i \(0.0747353\pi\)
−0.972564 + 0.232637i \(0.925265\pi\)
\(374\) 0 0
\(375\) −3.39412 + 19.0652i −0.175271 + 0.984520i
\(376\) 0 0
\(377\) 9.72506i 0.500866i
\(378\) 0 0
\(379\) −17.6705 −0.907671 −0.453836 0.891085i \(-0.649945\pi\)
−0.453836 + 0.891085i \(0.649945\pi\)
\(380\) 0 0
\(381\) 33.6097 6.42982i 1.72188 0.329410i
\(382\) 0 0
\(383\) 9.60898i 0.490996i 0.969397 + 0.245498i \(0.0789515\pi\)
−0.969397 + 0.245498i \(0.921049\pi\)
\(384\) 0 0
\(385\) −0.715548 + 29.6308i −0.0364677 + 1.51013i
\(386\) 0 0
\(387\) 5.25715 + 13.2371i 0.267236 + 0.672880i
\(388\) 0 0
\(389\) 31.1675i 1.58026i −0.612942 0.790128i \(-0.710014\pi\)
0.612942 0.790128i \(-0.289986\pi\)
\(390\) 0 0
\(391\) 44.8157i 2.26643i
\(392\) 0 0
\(393\) −5.70110 29.8006i −0.287583 1.50324i
\(394\) 0 0
\(395\) −1.42655 + 1.89482i −0.0717776 + 0.0953389i
\(396\) 0 0
\(397\) 5.58833 0.280470 0.140235 0.990118i \(-0.455214\pi\)
0.140235 + 0.990118i \(0.455214\pi\)
\(398\) 0 0
\(399\) −7.10362 6.75952i −0.355626 0.338399i
\(400\) 0 0
\(401\) 19.0883i 0.953224i 0.879114 + 0.476612i \(0.158135\pi\)
−0.879114 + 0.476612i \(0.841865\pi\)
\(402\) 0 0
\(403\) 7.14848i 0.356091i
\(404\) 0 0
\(405\) −2.22452 20.0013i −0.110537 0.993872i
\(406\) 0 0
\(407\) 18.8036 0.932060
\(408\) 0 0
\(409\) 5.53326i 0.273602i −0.990599 0.136801i \(-0.956318\pi\)
0.990599 0.136801i \(-0.0436821\pi\)
\(410\) 0 0
\(411\) −6.95481 36.3539i −0.343055 1.79321i
\(412\) 0 0
\(413\) −13.3382 18.6363i −0.656328 0.917034i
\(414\) 0 0
\(415\) 10.6555 + 8.02220i 0.523059 + 0.393794i
\(416\) 0 0
\(417\) −5.66214 + 1.08321i −0.277276 + 0.0530452i
\(418\) 0 0
\(419\) −17.0661 −0.833734 −0.416867 0.908968i \(-0.636872\pi\)
−0.416867 + 0.908968i \(0.636872\pi\)
\(420\) 0 0
\(421\) −26.1421 −1.27409 −0.637045 0.770827i \(-0.719843\pi\)
−0.637045 + 0.770827i \(0.719843\pi\)
\(422\) 0 0
\(423\) 6.25565 + 15.7513i 0.304160 + 0.765853i
\(424\) 0 0
\(425\) −22.7571 + 6.54706i −1.10388 + 0.317579i
\(426\) 0 0
\(427\) 4.51336 3.23024i 0.218417 0.156323i
\(428\) 0 0
\(429\) −13.8888 + 2.65704i −0.670557 + 0.128283i
\(430\) 0 0
\(431\) 15.4016i 0.741869i 0.928659 + 0.370934i \(0.120963\pi\)
−0.928659 + 0.370934i \(0.879037\pi\)
\(432\) 0 0
\(433\) 15.0966 0.725494 0.362747 0.931888i \(-0.381839\pi\)
0.362747 + 0.931888i \(0.381839\pi\)
\(434\) 0 0
\(435\) −10.1847 + 20.7486i −0.488318 + 0.994820i
\(436\) 0 0
\(437\) 20.2482i 0.968601i
\(438\) 0 0
\(439\) 17.0500i 0.813751i 0.913484 + 0.406875i \(0.133382\pi\)
−0.913484 + 0.406875i \(0.866618\pi\)
\(440\) 0 0
\(441\) −1.04185 20.9741i −0.0496121 0.998769i
\(442\) 0 0
\(443\) 21.8460 1.03793 0.518967 0.854794i \(-0.326317\pi\)
0.518967 + 0.854794i \(0.326317\pi\)
\(444\) 0 0
\(445\) 0.251657 0.334265i 0.0119297 0.0158457i
\(446\) 0 0
\(447\) 7.31374 1.39918i 0.345928 0.0661789i
\(448\) 0 0
\(449\) 14.4240i 0.680710i −0.940297 0.340355i \(-0.889453\pi\)
0.940297 0.340355i \(-0.110547\pi\)
\(450\) 0 0
\(451\) 53.2338i 2.50668i
\(452\) 0 0
\(453\) −2.47139 12.9184i −0.116116 0.606957i
\(454\) 0 0
\(455\) −9.63785 0.232742i −0.451829 0.0109111i
\(456\) 0 0
\(457\) 9.40452i 0.439925i 0.975508 + 0.219962i \(0.0705935\pi\)
−0.975508 + 0.219962i \(0.929406\pi\)
\(458\) 0 0
\(459\) 20.7572 13.2192i 0.968865 0.617019i
\(460\) 0 0
\(461\) −8.63026 −0.401951 −0.200976 0.979596i \(-0.564411\pi\)
−0.200976 + 0.979596i \(0.564411\pi\)
\(462\) 0 0
\(463\) 24.9809i 1.16096i 0.814275 + 0.580479i \(0.197135\pi\)
−0.814275 + 0.580479i \(0.802865\pi\)
\(464\) 0 0
\(465\) −7.48633 + 15.2514i −0.347170 + 0.707268i
\(466\) 0 0
\(467\) 5.52170i 0.255514i −0.991806 0.127757i \(-0.959222\pi\)
0.991806 0.127757i \(-0.0407777\pi\)
\(468\) 0 0
\(469\) 13.3502 9.55483i 0.616455 0.441201i
\(470\) 0 0
\(471\) 5.01732 + 26.2264i 0.231186 + 1.20845i
\(472\) 0 0
\(473\) 23.7855 1.09366
\(474\) 0 0
\(475\) −10.2819 + 2.95803i −0.471766 + 0.135724i
\(476\) 0 0
\(477\) −13.0858 + 5.19704i −0.599156 + 0.237956i
\(478\) 0 0
\(479\) −3.15027 −0.143940 −0.0719699 0.997407i \(-0.522929\pi\)
−0.0719699 + 0.997407i \(0.522929\pi\)
\(480\) 0 0
\(481\) 6.11614i 0.278872i
\(482\) 0 0
\(483\) 29.8924 31.4141i 1.36015 1.42939i
\(484\) 0 0
\(485\) −14.6153 + 19.4129i −0.663649 + 0.881494i
\(486\) 0 0
\(487\) 31.1480i 1.41145i −0.708485 0.705726i \(-0.750621\pi\)
0.708485 0.705726i \(-0.249379\pi\)
\(488\) 0 0
\(489\) −12.9342 + 2.47442i −0.584903 + 0.111897i
\(490\) 0 0
\(491\) 7.82187i 0.352996i 0.984301 + 0.176498i \(0.0564769\pi\)
−0.984301 + 0.176498i \(0.943523\pi\)
\(492\) 0 0
\(493\) −28.2641 −1.27295
\(494\) 0 0
\(495\) −32.4146 8.87634i −1.45693 0.398962i
\(496\) 0 0
\(497\) −18.6153 + 13.3231i −0.835012 + 0.597624i
\(498\) 0 0
\(499\) −28.8804 −1.29286 −0.646432 0.762971i \(-0.723740\pi\)
−0.646432 + 0.762971i \(0.723740\pi\)
\(500\) 0 0
\(501\) −5.31475 + 1.01676i −0.237445 + 0.0454253i
\(502\) 0 0
\(503\) 27.7497i 1.23730i −0.785668 0.618648i \(-0.787681\pi\)
0.785668 0.618648i \(-0.212319\pi\)
\(504\) 0 0
\(505\) −6.25004 + 8.30164i −0.278123 + 0.369418i
\(506\) 0 0
\(507\) 3.36666 + 17.5981i 0.149519 + 0.781558i
\(508\) 0 0
\(509\) 9.57553 0.424428 0.212214 0.977223i \(-0.431933\pi\)
0.212214 + 0.977223i \(0.431933\pi\)
\(510\) 0 0
\(511\) 19.3087 + 26.9785i 0.854166 + 1.19346i
\(512\) 0 0
\(513\) 9.37833 5.97256i 0.414063 0.263695i
\(514\) 0 0
\(515\) −0.906693 + 1.20432i −0.0399536 + 0.0530686i
\(516\) 0 0
\(517\) 28.3031 1.24477
\(518\) 0 0
\(519\) 8.99923 1.72163i 0.395022 0.0755711i
\(520\) 0 0
\(521\) 25.0936 1.09937 0.549685 0.835372i \(-0.314748\pi\)
0.549685 + 0.835372i \(0.314748\pi\)
\(522\) 0 0
\(523\) −31.7296 −1.38744 −0.693720 0.720245i \(-0.744029\pi\)
−0.693720 + 0.720245i \(0.744029\pi\)
\(524\) 0 0
\(525\) −20.3188 10.5899i −0.886785 0.462182i
\(526\) 0 0
\(527\) −20.7757 −0.905004
\(528\) 0 0
\(529\) 66.5428 2.89316
\(530\) 0 0
\(531\) 24.1512 9.59170i 1.04807 0.416244i
\(532\) 0 0
\(533\) −17.3151 −0.749998
\(534\) 0 0
\(535\) −11.3771 + 15.1116i −0.491873 + 0.653333i
\(536\) 0 0
\(537\) 24.6745 4.72045i 1.06479 0.203702i
\(538\) 0 0
\(539\) −33.1955 11.3116i −1.42983 0.487225i
\(540\) 0 0
\(541\) 35.5457 1.52823 0.764115 0.645080i \(-0.223176\pi\)
0.764115 + 0.645080i \(0.223176\pi\)
\(542\) 0 0
\(543\) 31.4862 6.02357i 1.35120 0.258496i
\(544\) 0 0
\(545\) 9.85442 13.0892i 0.422117 0.560678i
\(546\) 0 0
\(547\) 9.24333i 0.395216i 0.980281 + 0.197608i \(0.0633174\pi\)
−0.980281 + 0.197608i \(0.936683\pi\)
\(548\) 0 0
\(549\) 2.32293 + 5.84896i 0.0991401 + 0.249628i
\(550\) 0 0
\(551\) −12.7700 −0.544020
\(552\) 0 0
\(553\) −1.63330 2.28208i −0.0694550 0.0970439i
\(554\) 0 0
\(555\) −6.40520 + 13.0489i −0.271886 + 0.553896i
\(556\) 0 0
\(557\) 16.8645 0.714572 0.357286 0.933995i \(-0.383702\pi\)
0.357286 + 0.933995i \(0.383702\pi\)
\(558\) 0 0
\(559\) 7.73657i 0.327222i
\(560\) 0 0
\(561\) −7.72218 40.3651i −0.326031 1.70422i
\(562\) 0 0
\(563\) 15.9764i 0.673325i −0.941625 0.336662i \(-0.890702\pi\)
0.941625 0.336662i \(-0.109298\pi\)
\(564\) 0 0
\(565\) 13.7490 18.2621i 0.578424 0.768293i
\(566\) 0 0
\(567\) 23.3673 + 4.57908i 0.981336 + 0.192303i
\(568\) 0 0
\(569\) 17.2766i 0.724272i −0.932125 0.362136i \(-0.882048\pi\)
0.932125 0.362136i \(-0.117952\pi\)
\(570\) 0 0
\(571\) −17.5387 −0.733973 −0.366987 0.930226i \(-0.619611\pi\)
−0.366987 + 0.930226i \(0.619611\pi\)
\(572\) 0 0
\(573\) −21.6634 + 4.14439i −0.905002 + 0.173134i
\(574\) 0 0
\(575\) −13.0812 45.4692i −0.545523 1.89620i
\(576\) 0 0
\(577\) 16.5820 0.690316 0.345158 0.938545i \(-0.387825\pi\)
0.345158 + 0.938545i \(0.387825\pi\)
\(578\) 0 0
\(579\) −6.87707 + 1.31564i −0.285801 + 0.0546761i
\(580\) 0 0
\(581\) −12.8333 + 9.18486i −0.532413 + 0.381052i
\(582\) 0 0
\(583\) 23.5135i 0.973831i
\(584\) 0 0
\(585\) 2.88716 10.5433i 0.119369 0.435912i
\(586\) 0 0
\(587\) 31.5221i 1.30106i 0.759481 + 0.650529i \(0.225453\pi\)
−0.759481 + 0.650529i \(0.774547\pi\)
\(588\) 0 0
\(589\) −9.38667 −0.386771
\(590\) 0 0
\(591\) 1.77072 + 9.25583i 0.0728376 + 0.380734i
\(592\) 0 0
\(593\) 31.5290i 1.29474i 0.762176 + 0.647370i \(0.224131\pi\)
−0.762176 + 0.647370i \(0.775869\pi\)
\(594\) 0 0
\(595\) 0.676421 28.0106i 0.0277306 1.14832i
\(596\) 0 0
\(597\) 26.8992 5.14603i 1.10091 0.210613i
\(598\) 0 0
\(599\) 34.3090i 1.40183i 0.713246 + 0.700913i \(0.247224\pi\)
−0.713246 + 0.700913i \(0.752776\pi\)
\(600\) 0 0
\(601\) 37.5135i 1.53021i 0.643907 + 0.765103i \(0.277312\pi\)
−0.643907 + 0.765103i \(0.722688\pi\)
\(602\) 0 0
\(603\) 6.87105 + 17.3008i 0.279811 + 0.704543i
\(604\) 0 0
\(605\) −18.9632 + 25.1880i −0.770965 + 1.02404i
\(606\) 0 0
\(607\) −2.56064 −0.103933 −0.0519666 0.998649i \(-0.516549\pi\)
−0.0519666 + 0.998649i \(0.516549\pi\)
\(608\) 0 0
\(609\) −19.8120 18.8523i −0.802824 0.763935i
\(610\) 0 0
\(611\) 9.20599i 0.372434i
\(612\) 0 0
\(613\) 6.36050i 0.256898i 0.991716 + 0.128449i \(0.0409999\pi\)
−0.991716 + 0.128449i \(0.959000\pi\)
\(614\) 0 0
\(615\) −36.9420 18.1334i −1.48965 0.731209i
\(616\) 0 0
\(617\) −12.0824 −0.486418 −0.243209 0.969974i \(-0.578200\pi\)
−0.243209 + 0.969974i \(0.578200\pi\)
\(618\) 0 0
\(619\) 38.9476i 1.56543i −0.622378 0.782717i \(-0.713833\pi\)
0.622378 0.782717i \(-0.286167\pi\)
\(620\) 0 0
\(621\) 26.4122 + 41.4735i 1.05989 + 1.66427i
\(622\) 0 0
\(623\) 0.288130 + 0.402580i 0.0115437 + 0.0161290i
\(624\) 0 0
\(625\) −21.1780 + 13.2851i −0.847119 + 0.531403i
\(626\) 0 0
\(627\) −3.48896 18.2374i −0.139336 0.728330i
\(628\) 0 0
\(629\) −17.7754 −0.708752
\(630\) 0 0
\(631\) −9.62832 −0.383297 −0.191649 0.981464i \(-0.561383\pi\)
−0.191649 + 0.981464i \(0.561383\pi\)
\(632\) 0 0
\(633\) 5.77255 + 30.1741i 0.229438 + 1.19931i
\(634\) 0 0
\(635\) 35.2928 + 26.5708i 1.40055 + 1.05443i
\(636\) 0 0
\(637\) 3.67926 10.7973i 0.145777 0.427806i
\(638\) 0 0
\(639\) −9.58090 24.1240i −0.379015 0.954331i
\(640\) 0 0
\(641\) 4.14281i 0.163631i −0.996647 0.0818155i \(-0.973928\pi\)
0.996647 0.0818155i \(-0.0260718\pi\)
\(642\) 0 0
\(643\) 21.6519 0.853869 0.426934 0.904283i \(-0.359594\pi\)
0.426934 + 0.904283i \(0.359594\pi\)
\(644\) 0 0
\(645\) −8.10221 + 16.5061i −0.319024 + 0.649928i
\(646\) 0 0
\(647\) 12.8648i 0.505766i 0.967497 + 0.252883i \(0.0813788\pi\)
−0.967497 + 0.252883i \(0.918621\pi\)
\(648\) 0 0
\(649\) 43.3968i 1.70347i
\(650\) 0 0
\(651\) −14.5630 13.8575i −0.570768 0.543120i
\(652\) 0 0
\(653\) −8.82708 −0.345430 −0.172715 0.984972i \(-0.555254\pi\)
−0.172715 + 0.984972i \(0.555254\pi\)
\(654\) 0 0
\(655\) 23.5595 31.2929i 0.920544 1.22272i
\(656\) 0 0
\(657\) −34.9620 + 13.8852i −1.36400 + 0.541714i
\(658\) 0 0
\(659\) 25.3918i 0.989123i −0.869143 0.494561i \(-0.835329\pi\)
0.869143 0.494561i \(-0.164671\pi\)
\(660\) 0 0
\(661\) 27.2661i 1.06053i −0.847833 0.530264i \(-0.822093\pi\)
0.847833 0.530264i \(-0.177907\pi\)
\(662\) 0 0
\(663\) 13.1293 2.51175i 0.509901 0.0975483i
\(664\) 0 0
\(665\) 0.305614 12.6555i 0.0118512 0.490758i
\(666\) 0 0
\(667\) 56.4722i 2.18661i
\(668\) 0 0
\(669\) 9.12288 + 47.6868i 0.352711 + 1.84368i
\(670\) 0 0
\(671\) 10.5099 0.405729
\(672\) 0 0
\(673\) 24.5127i 0.944895i 0.881359 + 0.472447i \(0.156629\pi\)
−0.881359 + 0.472447i \(0.843371\pi\)
\(674\) 0 0
\(675\) 17.2014 19.4708i 0.662083 0.749430i
\(676\) 0 0
\(677\) 31.5932i 1.21423i 0.794615 + 0.607114i \(0.207673\pi\)
−0.794615 + 0.607114i \(0.792327\pi\)
\(678\) 0 0
\(679\) −16.7335 23.3804i −0.642174 0.897259i
\(680\) 0 0
\(681\) −29.2933 + 5.60405i −1.12252 + 0.214748i
\(682\) 0 0
\(683\) −14.3252 −0.548139 −0.274069 0.961710i \(-0.588370\pi\)
−0.274069 + 0.961710i \(0.588370\pi\)
\(684\) 0 0
\(685\) 28.7403 38.1744i 1.09811 1.45857i
\(686\) 0 0
\(687\) −8.33354 + 1.59428i −0.317944 + 0.0608254i
\(688\) 0 0
\(689\) −7.64811 −0.291370
\(690\) 0 0
\(691\) 1.69810i 0.0645986i −0.999478 0.0322993i \(-0.989717\pi\)
0.999478 0.0322993i \(-0.0102830\pi\)
\(692\) 0 0
\(693\) 21.5109 33.4452i 0.817130 1.27048i
\(694\) 0 0
\(695\) −5.94569 4.47632i −0.225533 0.169796i
\(696\) 0 0
\(697\) 50.3229i 1.90612i
\(698\) 0 0
\(699\) 5.56063 + 29.0663i 0.210322 + 1.09939i
\(700\) 0 0
\(701\) 22.8839i 0.864314i 0.901798 + 0.432157i \(0.142247\pi\)
−0.901798 + 0.432157i \(0.857753\pi\)
\(702\) 0 0
\(703\) −8.03111 −0.302899
\(704\) 0 0
\(705\) −9.64108 + 19.6412i −0.363104 + 0.739729i
\(706\) 0 0
\(707\) −7.15586 9.99831i −0.269124 0.376025i
\(708\) 0 0
\(709\) −43.3163 −1.62678 −0.813389 0.581720i \(-0.802380\pi\)
−0.813389 + 0.581720i \(0.802380\pi\)
\(710\) 0 0
\(711\) 2.95740 1.17454i 0.110911 0.0440485i
\(712\) 0 0
\(713\) 41.5103i 1.55457i
\(714\) 0 0
\(715\) −14.5843 10.9801i −0.545422 0.410631i
\(716\) 0 0
\(717\) 34.7997 6.65746i 1.29962 0.248628i
\(718\) 0 0
\(719\) 29.7322 1.10882 0.554412 0.832242i \(-0.312943\pi\)
0.554412 + 0.832242i \(0.312943\pi\)
\(720\) 0 0
\(721\) −1.03810 1.45045i −0.0386608 0.0540177i
\(722\) 0 0
\(723\) −18.3879 + 3.51775i −0.683852 + 0.130827i
\(724\) 0 0
\(725\) −28.6762 + 8.24996i −1.06501 + 0.306396i
\(726\) 0 0
\(727\) 15.6211 0.579355 0.289677 0.957124i \(-0.406452\pi\)
0.289677 + 0.957124i \(0.406452\pi\)
\(728\) 0 0
\(729\) −11.4185 + 24.4667i −0.422906 + 0.906174i
\(730\) 0 0
\(731\) −22.4849 −0.831633
\(732\) 0 0
\(733\) −31.8068 −1.17481 −0.587406 0.809292i \(-0.699851\pi\)
−0.587406 + 0.809292i \(0.699851\pi\)
\(734\) 0 0
\(735\) 19.1574 19.1832i 0.706631 0.707582i
\(736\) 0 0
\(737\) 31.0874 1.14512
\(738\) 0 0
\(739\) 42.0016 1.54505 0.772527 0.634982i \(-0.218992\pi\)
0.772527 + 0.634982i \(0.218992\pi\)
\(740\) 0 0
\(741\) 5.93196 1.13483i 0.217916 0.0416892i
\(742\) 0 0
\(743\) −26.5031 −0.972305 −0.486152 0.873874i \(-0.661600\pi\)
−0.486152 + 0.873874i \(0.661600\pi\)
\(744\) 0 0
\(745\) 7.67999 + 5.78202i 0.281373 + 0.211837i
\(746\) 0 0
\(747\) −6.60499 16.6309i −0.241664 0.608492i
\(748\) 0 0
\(749\) −13.0259 18.2001i −0.475958 0.665017i
\(750\) 0 0
\(751\) −33.4006 −1.21881 −0.609403 0.792861i \(-0.708591\pi\)
−0.609403 + 0.792861i \(0.708591\pi\)
\(752\) 0 0
\(753\) −9.67923 50.5949i −0.352731 1.84378i
\(754\) 0 0
\(755\) 10.2129 13.5653i 0.371684 0.493691i
\(756\) 0 0
\(757\) 3.34496i 0.121575i −0.998151 0.0607873i \(-0.980639\pi\)
0.998151 0.0607873i \(-0.0193611\pi\)
\(758\) 0 0
\(759\) 80.6504 15.4291i 2.92743 0.560041i
\(760\) 0 0
\(761\) 14.4992 0.525595 0.262798 0.964851i \(-0.415355\pi\)
0.262798 + 0.964851i \(0.415355\pi\)
\(762\) 0 0
\(763\) 11.2826 + 15.7643i 0.408458 + 0.570706i
\(764\) 0 0
\(765\) 30.6422 + 8.39098i 1.10787 + 0.303376i
\(766\) 0 0
\(767\) 14.1154 0.509678
\(768\) 0 0
\(769\) 28.7135i 1.03544i −0.855551 0.517718i \(-0.826782\pi\)
0.855551 0.517718i \(-0.173218\pi\)
\(770\) 0 0
\(771\) −47.8677 + 9.15750i −1.72391 + 0.329799i
\(772\) 0 0
\(773\) 13.0728i 0.470196i −0.971972 0.235098i \(-0.924459\pi\)
0.971972 0.235098i \(-0.0755411\pi\)
\(774\) 0 0
\(775\) −21.0787 + 6.06419i −0.757168 + 0.217832i
\(776\) 0 0
\(777\) −12.4599 11.8563i −0.446996 0.425343i
\(778\) 0 0
\(779\) 22.7364i 0.814616i
\(780\) 0 0
\(781\) −43.3479 −1.55111
\(782\) 0 0
\(783\) 26.1562 16.6575i 0.934747 0.595291i
\(784\) 0 0
\(785\) −20.7338 + 27.5397i −0.740020 + 0.982935i
\(786\) 0 0
\(787\) 25.4820 0.908337 0.454168 0.890916i \(-0.349936\pi\)
0.454168 + 0.890916i \(0.349936\pi\)
\(788\) 0 0
\(789\) 6.86660 + 35.8928i 0.244457 + 1.27782i
\(790\) 0 0
\(791\) 15.7416 + 21.9945i 0.559707 + 0.782034i
\(792\) 0 0
\(793\) 3.41848i 0.121394i
\(794\) 0 0
\(795\) −16.3174 8.00957i −0.578719 0.284070i
\(796\) 0 0
\(797\) 7.96431i 0.282110i 0.990002 + 0.141055i \(0.0450495\pi\)
−0.990002 + 0.141055i \(0.954950\pi\)
\(798\) 0 0
\(799\) −26.7555 −0.946541
\(800\) 0 0
\(801\) −0.521712 + 0.207199i −0.0184338 + 0.00732102i
\(802\) 0 0
\(803\) 62.8224i 2.21695i
\(804\) 0 0
\(805\) 55.9658 + 1.35151i 1.97254 + 0.0476343i
\(806\) 0 0
\(807\) −1.76618 9.23212i −0.0621726 0.324986i
\(808\) 0 0
\(809\) 40.8966i 1.43785i 0.695088 + 0.718924i \(0.255365\pi\)
−0.695088 + 0.718924i \(0.744635\pi\)
\(810\) 0 0
\(811\) 39.9526i 1.40293i −0.712705 0.701464i \(-0.752530\pi\)
0.712705 0.701464i \(-0.247470\pi\)
\(812\) 0 0
\(813\) 28.9211 5.53285i 1.01431 0.194045i
\(814\) 0 0
\(815\) −13.5819 10.2254i −0.475753 0.358179i
\(816\) 0 0
\(817\) −10.1589 −0.355415
\(818\) 0 0
\(819\) 10.8785 + 6.99671i 0.380126 + 0.244485i
\(820\) 0 0
\(821\) 28.4551i 0.993091i −0.868011 0.496546i \(-0.834602\pi\)
0.868011 0.496546i \(-0.165398\pi\)
\(822\) 0 0
\(823\) 0.837012i 0.0291764i 0.999894 + 0.0145882i \(0.00464373\pi\)
−0.999894 + 0.0145882i \(0.995356\pi\)
\(824\) 0 0
\(825\) −19.6169 38.6998i −0.682973 1.34735i
\(826\) 0 0
\(827\) 21.2414 0.738637 0.369319 0.929303i \(-0.379591\pi\)
0.369319 + 0.929303i \(0.379591\pi\)
\(828\) 0 0
\(829\) 26.3174i 0.914041i 0.889456 + 0.457021i \(0.151083\pi\)
−0.889456 + 0.457021i \(0.848917\pi\)
\(830\) 0 0
\(831\) 1.52746 0.292216i 0.0529871 0.0101369i
\(832\) 0 0
\(833\) 31.3804 + 10.6931i 1.08727 + 0.370493i
\(834\) 0 0
\(835\) −5.58090 4.20168i −0.193135 0.145405i
\(836\) 0 0
\(837\) 19.2263 12.2442i 0.664558 0.423222i
\(838\) 0 0
\(839\) −31.0138 −1.07071 −0.535357 0.844626i \(-0.679823\pi\)
−0.535357 + 0.844626i \(0.679823\pi\)
\(840\) 0 0
\(841\) −6.61554 −0.228122
\(842\) 0 0
\(843\) 21.4832 4.10991i 0.739919 0.141553i
\(844\) 0 0
\(845\) −13.9125 + 18.4793i −0.478605 + 0.635709i
\(846\) 0 0
\(847\) −21.7116 30.3358i −0.746018 1.04235i
\(848\) 0 0
\(849\) −0.595110 3.11074i −0.0204241 0.106760i
\(850\) 0 0
\(851\) 35.5157i 1.21746i
\(852\) 0 0
\(853\) −22.6808 −0.776576 −0.388288 0.921538i \(-0.626933\pi\)
−0.388288 + 0.921538i \(0.626933\pi\)
\(854\) 0 0
\(855\) 13.8444 + 3.79113i 0.473470 + 0.129654i
\(856\) 0 0
\(857\) 5.68694i 0.194262i 0.995272 + 0.0971310i \(0.0309666\pi\)
−0.995272 + 0.0971310i \(0.969033\pi\)
\(858\) 0 0
\(859\) 33.2123i 1.13319i 0.823997 + 0.566595i \(0.191739\pi\)
−0.823997 + 0.566595i \(0.808261\pi\)
\(860\) 0 0
\(861\) 33.5657 35.2745i 1.14392 1.20215i
\(862\) 0 0
\(863\) 4.78646 0.162933 0.0814665 0.996676i \(-0.474040\pi\)
0.0814665 + 0.996676i \(0.474040\pi\)
\(864\) 0 0
\(865\) 9.44989 + 7.11452i 0.321306 + 0.241901i
\(866\) 0 0
\(867\) 1.76722 + 9.23754i 0.0600179 + 0.313723i
\(868\) 0 0
\(869\) 5.31408i 0.180268i
\(870\) 0 0
\(871\) 10.1116i 0.342619i
\(872\) 0 0
\(873\) 30.2992 12.0334i 1.02547 0.407268i
\(874\) 0 0
\(875\) −7.48968 28.6165i −0.253198 0.967415i
\(876\) 0 0
\(877\) 10.0778i 0.340303i −0.985418 0.170151i \(-0.945574\pi\)
0.985418 0.170151i \(-0.0544257\pi\)
\(878\) 0 0
\(879\) 10.6645 2.04020i 0.359703 0.0688142i
\(880\) 0 0
\(881\) −27.6439 −0.931346 −0.465673 0.884957i \(-0.654188\pi\)
−0.465673 + 0.884957i \(0.654188\pi\)
\(882\) 0 0
\(883\) 9.04074i 0.304245i 0.988362 + 0.152123i \(0.0486108\pi\)
−0.988362 + 0.152123i \(0.951389\pi\)
\(884\) 0 0
\(885\) 30.1155 + 14.7825i 1.01232 + 0.496910i
\(886\) 0 0
\(887\) 36.6139i 1.22937i −0.788771 0.614687i \(-0.789282\pi\)
0.788771 0.614687i \(-0.210718\pi\)
\(888\) 0 0
\(889\) −42.5059 + 30.4217i −1.42560 + 1.02031i
\(890\) 0 0
\(891\) 30.9356 + 32.8037i 1.03638 + 1.09897i
\(892\) 0 0
\(893\) −12.0884 −0.404523
\(894\) 0 0
\(895\) 25.9102 + 19.5070i 0.866082 + 0.652046i
\(896\) 0 0
\(897\) 5.01854 + 26.2327i 0.167564 + 0.875885i
\(898\) 0 0
\(899\) −26.1795 −0.873134
\(900\) 0 0
\(901\) 22.2278i 0.740515i
\(902\) 0 0
\(903\) −15.7610 14.9976i −0.524494 0.499088i
\(904\) 0 0
\(905\) 33.0629 + 24.8920i 1.09905 + 0.827439i
\(906\) 0 0
\(907\) 5.95247i 0.197648i 0.995105 + 0.0988242i \(0.0315081\pi\)
−0.995105 + 0.0988242i \(0.968492\pi\)
\(908\) 0 0
\(909\) 12.9570 5.14591i 0.429757 0.170679i
\(910\) 0 0
\(911\) 11.3197i 0.375039i −0.982261 0.187519i \(-0.939955\pi\)
0.982261 0.187519i \(-0.0600447\pi\)
\(912\) 0 0
\(913\) −29.8837 −0.989005
\(914\) 0 0
\(915\) −3.58005 + 7.29341i −0.118353 + 0.241113i
\(916\) 0 0
\(917\) 26.9739 + 37.6885i 0.890757 + 1.24458i
\(918\) 0 0
\(919\) −7.97971 −0.263226 −0.131613 0.991301i \(-0.542016\pi\)
−0.131613 + 0.991301i \(0.542016\pi\)
\(920\) 0 0
\(921\) 6.02219 + 31.4790i 0.198438 + 1.03727i
\(922\) 0 0
\(923\) 14.0995i 0.464092i
\(924\) 0 0
\(925\) −18.0346 + 5.18844i −0.592975 + 0.170595i
\(926\) 0 0
\(927\) 1.87967 0.746516i 0.0617365 0.0245188i
\(928\) 0 0
\(929\) 31.7309 1.04106 0.520529 0.853844i \(-0.325735\pi\)
0.520529 + 0.853844i \(0.325735\pi\)
\(930\) 0 0
\(931\) 14.1780 + 4.83123i 0.464664 + 0.158337i
\(932\) 0 0
\(933\) −6.29257 32.8923i −0.206010 1.07685i
\(934\) 0 0
\(935\) 31.9115 42.3865i 1.04362 1.38619i
\(936\) 0 0
\(937\) 39.1916 1.28033 0.640167 0.768236i \(-0.278865\pi\)
0.640167 + 0.768236i \(0.278865\pi\)
\(938\) 0 0
\(939\) 3.45389 + 18.0541i 0.112713 + 0.589172i
\(940\) 0 0
\(941\) −14.7755 −0.481667 −0.240834 0.970566i \(-0.577421\pi\)
−0.240834 + 0.970566i \(0.577421\pi\)
\(942\) 0 0
\(943\) 100.546 3.27424
\(944\) 0 0
\(945\) 15.8821 + 26.3203i 0.516646 + 0.856199i
\(946\) 0 0
\(947\) −38.4136 −1.24827 −0.624137 0.781315i \(-0.714549\pi\)
−0.624137 + 0.781315i \(0.714549\pi\)
\(948\) 0 0
\(949\) −20.4339 −0.663312
\(950\) 0 0
\(951\) −0.874343 4.57033i −0.0283525 0.148203i
\(952\) 0 0
\(953\) 31.2446 1.01211 0.506056 0.862500i \(-0.331103\pi\)
0.506056 + 0.862500i \(0.331103\pi\)
\(954\) 0 0
\(955\) −22.7483 17.1264i −0.736117 0.554199i
\(956\) 0 0
\(957\) −9.73072 50.8641i −0.314550 1.64420i
\(958\) 0 0
\(959\) 32.9056 + 45.9764i 1.06258 + 1.48466i
\(960\) 0 0
\(961\) 11.7566 0.379245
\(962\) 0 0
\(963\) 23.5859 9.36719i 0.760045 0.301853i
\(964\) 0 0
\(965\) −7.22146 5.43680i −0.232467 0.175017i
\(966\) 0 0
\(967\) 16.9272i 0.544341i −0.962249 0.272170i \(-0.912259\pi\)
0.962249 0.272170i \(-0.0877414\pi\)
\(968\) 0 0
\(969\) 3.29818 + 17.2401i 0.105953 + 0.553833i
\(970\) 0 0
\(971\) 42.4041 1.36081 0.680406 0.732836i \(-0.261804\pi\)
0.680406 + 0.732836i \(0.261804\pi\)
\(972\) 0 0
\(973\) 7.16085 5.12507i 0.229566 0.164302i
\(974\) 0 0
\(975\) 12.5876 6.38068i 0.403127 0.204345i
\(976\) 0 0
\(977\) −42.3945 −1.35632 −0.678160 0.734914i \(-0.737222\pi\)
−0.678160 + 0.734914i \(0.737222\pi\)
\(978\) 0 0
\(979\) 0.937453i 0.0299611i
\(980\) 0 0
\(981\) −20.4293 + 8.11353i −0.652256 + 0.259045i
\(982\) 0 0
\(983\) 27.5443i 0.878525i 0.898359 + 0.439263i \(0.144760\pi\)
−0.898359 + 0.439263i \(0.855240\pi\)
\(984\) 0 0
\(985\) −7.31738 + 9.71935i −0.233151 + 0.309684i
\(986\) 0 0
\(987\) −18.7546 17.8461i −0.596964 0.568047i
\(988\) 0 0
\(989\) 44.9253i 1.42854i
\(990\) 0 0
\(991\) −33.3366 −1.05897 −0.529486 0.848319i \(-0.677615\pi\)
−0.529486 + 0.848319i \(0.677615\pi\)
\(992\) 0 0
\(993\) −5.09780 26.6470i −0.161774 0.845618i
\(994\) 0 0
\(995\) 28.2462 + 21.2657i 0.895465 + 0.674167i
\(996\) 0 0
\(997\) 42.4732 1.34514 0.672570 0.740033i \(-0.265190\pi\)
0.672570 + 0.740033i \(0.265190\pi\)
\(998\) 0 0
\(999\) 16.4498 10.4760i 0.520448 0.331446i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.k.h.209.11 24
3.2 odd 2 1680.2.k.i.209.12 24
4.3 odd 2 840.2.k.b.209.14 yes 24
5.4 even 2 1680.2.k.i.209.14 24
7.6 odd 2 inner 1680.2.k.h.209.14 24
12.11 even 2 840.2.k.a.209.13 yes 24
15.14 odd 2 inner 1680.2.k.h.209.13 24
20.19 odd 2 840.2.k.a.209.11 24
21.20 even 2 1680.2.k.i.209.13 24
28.27 even 2 840.2.k.b.209.11 yes 24
35.34 odd 2 1680.2.k.i.209.11 24
60.59 even 2 840.2.k.b.209.12 yes 24
84.83 odd 2 840.2.k.a.209.12 yes 24
105.104 even 2 inner 1680.2.k.h.209.12 24
140.139 even 2 840.2.k.a.209.14 yes 24
420.419 odd 2 840.2.k.b.209.13 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.k.a.209.11 24 20.19 odd 2
840.2.k.a.209.12 yes 24 84.83 odd 2
840.2.k.a.209.13 yes 24 12.11 even 2
840.2.k.a.209.14 yes 24 140.139 even 2
840.2.k.b.209.11 yes 24 28.27 even 2
840.2.k.b.209.12 yes 24 60.59 even 2
840.2.k.b.209.13 yes 24 420.419 odd 2
840.2.k.b.209.14 yes 24 4.3 odd 2
1680.2.k.h.209.11 24 1.1 even 1 trivial
1680.2.k.h.209.12 24 105.104 even 2 inner
1680.2.k.h.209.13 24 15.14 odd 2 inner
1680.2.k.h.209.14 24 7.6 odd 2 inner
1680.2.k.i.209.11 24 35.34 odd 2
1680.2.k.i.209.12 24 3.2 odd 2
1680.2.k.i.209.13 24 21.20 even 2
1680.2.k.i.209.14 24 5.4 even 2