Properties

Label 1680.2.k.e.209.4
Level $1680$
Weight $2$
Character 1680.209
Analytic conductor $13.415$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(209,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.10070523904.11
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 10x^{4} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.4
Root \(0.420861 + 1.68014i\) of defining polynomial
Character \(\chi\) \(=\) 1680.209
Dual form 1680.2.k.e.209.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.420861 + 1.68014i) q^{3} +(-1.95522 - 1.08495i) q^{5} +(2.37608 + 1.16372i) q^{7} +(-2.64575 - 1.41421i) q^{9} -2.82843i q^{11} -0.841723 q^{13} +(2.64575 - 2.82843i) q^{15} -1.19038i q^{17} +4.55066i q^{19} +(-2.95522 + 3.50238i) q^{21} +3.29150 q^{23} +(2.64575 + 4.24264i) q^{25} +(3.48957 - 3.85005i) q^{27} -7.98430i q^{29} +5.53019i q^{31} +(4.75216 + 1.19038i) q^{33} +(-3.38317 - 4.85326i) q^{35} -10.8127i q^{37} +(0.354249 - 1.41421i) q^{39} +7.82087 q^{41} -4.65489i q^{43} +(3.63866 + 5.63561i) q^{45} -4.33981i q^{47} +(4.29150 + 5.53019i) q^{49} +(2.00000 + 0.500983i) q^{51} +12.5830 q^{53} +(-3.06871 + 5.53019i) q^{55} +(-7.64575 - 1.91520i) q^{57} +3.91044 q^{59} +10.0808i q^{61} +(-4.64076 - 6.43920i) q^{63} +(1.64575 + 0.913230i) q^{65} +4.65489i q^{67} +(-1.38527 + 5.53019i) q^{69} +12.6392i q^{71} +3.06871 q^{73} +(-8.24173 + 2.65967i) q^{75} +(3.29150 - 6.72057i) q^{77} +7.29150 q^{79} +(5.00000 + 7.48331i) q^{81} +7.70010i q^{83} +(-1.29150 + 2.32744i) q^{85} +(13.4148 + 3.36028i) q^{87} -12.8712 q^{89} +(-2.00000 - 0.979531i) q^{91} +(-9.29150 - 2.32744i) q^{93} +(4.93725 - 8.89753i) q^{95} +8.11905 q^{97} +(-4.00000 + 7.48331i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{21} - 16 q^{23} - 16 q^{35} + 24 q^{39} - 8 q^{49} + 16 q^{51} + 16 q^{53} - 40 q^{57} - 8 q^{63} - 8 q^{65} - 16 q^{77} + 16 q^{79} + 40 q^{81} + 32 q^{85} - 16 q^{91} - 32 q^{93} - 24 q^{95}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.420861 + 1.68014i −0.242984 + 0.970030i
\(4\) 0 0
\(5\) −1.95522 1.08495i −0.874400 0.485206i
\(6\) 0 0
\(7\) 2.37608 + 1.16372i 0.898073 + 0.439846i
\(8\) 0 0
\(9\) −2.64575 1.41421i −0.881917 0.471405i
\(10\) 0 0
\(11\) 2.82843i 0.852803i −0.904534 0.426401i \(-0.859781\pi\)
0.904534 0.426401i \(-0.140219\pi\)
\(12\) 0 0
\(13\) −0.841723 −0.233452 −0.116726 0.993164i \(-0.537240\pi\)
−0.116726 + 0.993164i \(0.537240\pi\)
\(14\) 0 0
\(15\) 2.64575 2.82843i 0.683130 0.730297i
\(16\) 0 0
\(17\) 1.19038i 0.288709i −0.989526 0.144354i \(-0.953890\pi\)
0.989526 0.144354i \(-0.0461105\pi\)
\(18\) 0 0
\(19\) 4.55066i 1.04399i 0.852948 + 0.521996i \(0.174813\pi\)
−0.852948 + 0.521996i \(0.825187\pi\)
\(20\) 0 0
\(21\) −2.95522 + 3.50238i −0.644881 + 0.764283i
\(22\) 0 0
\(23\) 3.29150 0.686326 0.343163 0.939276i \(-0.388502\pi\)
0.343163 + 0.939276i \(0.388502\pi\)
\(24\) 0 0
\(25\) 2.64575 + 4.24264i 0.529150 + 0.848528i
\(26\) 0 0
\(27\) 3.48957 3.85005i 0.671569 0.740942i
\(28\) 0 0
\(29\) 7.98430i 1.48265i −0.671148 0.741323i \(-0.734198\pi\)
0.671148 0.741323i \(-0.265802\pi\)
\(30\) 0 0
\(31\) 5.53019i 0.993252i 0.867965 + 0.496626i \(0.165428\pi\)
−0.867965 + 0.496626i \(0.834572\pi\)
\(32\) 0 0
\(33\) 4.75216 + 1.19038i 0.827245 + 0.207218i
\(34\) 0 0
\(35\) −3.38317 4.85326i −0.571860 0.820352i
\(36\) 0 0
\(37\) 10.8127i 1.77760i −0.458294 0.888801i \(-0.651539\pi\)
0.458294 0.888801i \(-0.348461\pi\)
\(38\) 0 0
\(39\) 0.354249 1.41421i 0.0567252 0.226455i
\(40\) 0 0
\(41\) 7.82087 1.22141 0.610707 0.791856i \(-0.290885\pi\)
0.610707 + 0.791856i \(0.290885\pi\)
\(42\) 0 0
\(43\) 4.65489i 0.709864i −0.934892 0.354932i \(-0.884504\pi\)
0.934892 0.354932i \(-0.115496\pi\)
\(44\) 0 0
\(45\) 3.63866 + 5.63561i 0.542420 + 0.840108i
\(46\) 0 0
\(47\) 4.33981i 0.633027i −0.948588 0.316513i \(-0.897488\pi\)
0.948588 0.316513i \(-0.102512\pi\)
\(48\) 0 0
\(49\) 4.29150 + 5.53019i 0.613072 + 0.790027i
\(50\) 0 0
\(51\) 2.00000 + 0.500983i 0.280056 + 0.0701517i
\(52\) 0 0
\(53\) 12.5830 1.72841 0.864204 0.503141i \(-0.167822\pi\)
0.864204 + 0.503141i \(0.167822\pi\)
\(54\) 0 0
\(55\) −3.06871 + 5.53019i −0.413785 + 0.745691i
\(56\) 0 0
\(57\) −7.64575 1.91520i −1.01270 0.253674i
\(58\) 0 0
\(59\) 3.91044 0.509095 0.254548 0.967060i \(-0.418073\pi\)
0.254548 + 0.967060i \(0.418073\pi\)
\(60\) 0 0
\(61\) 10.0808i 1.29072i 0.763878 + 0.645360i \(0.223293\pi\)
−0.763878 + 0.645360i \(0.776707\pi\)
\(62\) 0 0
\(63\) −4.64076 6.43920i −0.584681 0.811263i
\(64\) 0 0
\(65\) 1.64575 + 0.913230i 0.204130 + 0.113272i
\(66\) 0 0
\(67\) 4.65489i 0.568685i 0.958723 + 0.284343i \(0.0917753\pi\)
−0.958723 + 0.284343i \(0.908225\pi\)
\(68\) 0 0
\(69\) −1.38527 + 5.53019i −0.166766 + 0.665757i
\(70\) 0 0
\(71\) 12.6392i 1.50000i 0.661440 + 0.749998i \(0.269945\pi\)
−0.661440 + 0.749998i \(0.730055\pi\)
\(72\) 0 0
\(73\) 3.06871 0.359166 0.179583 0.983743i \(-0.442525\pi\)
0.179583 + 0.983743i \(0.442525\pi\)
\(74\) 0 0
\(75\) −8.24173 + 2.65967i −0.951673 + 0.307113i
\(76\) 0 0
\(77\) 3.29150 6.72057i 0.375102 0.765880i
\(78\) 0 0
\(79\) 7.29150 0.820358 0.410179 0.912005i \(-0.365466\pi\)
0.410179 + 0.912005i \(0.365466\pi\)
\(80\) 0 0
\(81\) 5.00000 + 7.48331i 0.555556 + 0.831479i
\(82\) 0 0
\(83\) 7.70010i 0.845196i 0.906317 + 0.422598i \(0.138882\pi\)
−0.906317 + 0.422598i \(0.861118\pi\)
\(84\) 0 0
\(85\) −1.29150 + 2.32744i −0.140083 + 0.252447i
\(86\) 0 0
\(87\) 13.4148 + 3.36028i 1.43821 + 0.360260i
\(88\) 0 0
\(89\) −12.8712 −1.36435 −0.682173 0.731191i \(-0.738965\pi\)
−0.682173 + 0.731191i \(0.738965\pi\)
\(90\) 0 0
\(91\) −2.00000 0.979531i −0.209657 0.102683i
\(92\) 0 0
\(93\) −9.29150 2.32744i −0.963484 0.241345i
\(94\) 0 0
\(95\) 4.93725 8.89753i 0.506552 0.912867i
\(96\) 0 0
\(97\) 8.11905 0.824365 0.412182 0.911101i \(-0.364767\pi\)
0.412182 + 0.911101i \(0.364767\pi\)
\(98\) 0 0
\(99\) −4.00000 + 7.48331i −0.402015 + 0.752101i
\(100\) 0 0
\(101\) 3.91044 0.389103 0.194551 0.980892i \(-0.437675\pi\)
0.194551 + 0.980892i \(0.437675\pi\)
\(102\) 0 0
\(103\) 12.5730 1.23886 0.619429 0.785053i \(-0.287364\pi\)
0.619429 + 0.785053i \(0.287364\pi\)
\(104\) 0 0
\(105\) 9.57802 3.64165i 0.934719 0.355388i
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 18.1669 + 4.55066i 1.72433 + 0.431929i
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −6.43560 3.57113i −0.600123 0.333009i
\(116\) 0 0
\(117\) 2.22699 + 1.19038i 0.205885 + 0.110050i
\(118\) 0 0
\(119\) 1.38527 2.82843i 0.126987 0.259281i
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) −3.29150 + 13.1402i −0.296785 + 1.18481i
\(124\) 0 0
\(125\) −0.569951 11.1658i −0.0509780 0.998700i
\(126\) 0 0
\(127\) 10.8127i 0.959474i −0.877412 0.479737i \(-0.840732\pi\)
0.877412 0.479737i \(-0.159268\pi\)
\(128\) 0 0
\(129\) 7.82087 + 1.95906i 0.688589 + 0.172486i
\(130\) 0 0
\(131\) −8.96077 −0.782906 −0.391453 0.920198i \(-0.628027\pi\)
−0.391453 + 0.920198i \(0.628027\pi\)
\(132\) 0 0
\(133\) −5.29570 + 10.8127i −0.459196 + 0.937582i
\(134\) 0 0
\(135\) −11.0000 + 3.74166i −0.946729 + 0.322031i
\(136\) 0 0
\(137\) −9.29150 −0.793827 −0.396913 0.917856i \(-0.629919\pi\)
−0.396913 + 0.917856i \(0.629919\pi\)
\(138\) 0 0
\(139\) 15.6110i 1.32411i −0.749455 0.662056i \(-0.769684\pi\)
0.749455 0.662056i \(-0.230316\pi\)
\(140\) 0 0
\(141\) 7.29150 + 1.82646i 0.614055 + 0.153816i
\(142\) 0 0
\(143\) 2.38075i 0.199088i
\(144\) 0 0
\(145\) −8.66259 + 15.6110i −0.719389 + 1.29643i
\(146\) 0 0
\(147\) −11.0976 + 4.88289i −0.915317 + 0.402734i
\(148\) 0 0
\(149\) 3.32941i 0.272756i −0.990657 0.136378i \(-0.956454\pi\)
0.990657 0.136378i \(-0.0435462\pi\)
\(150\) 0 0
\(151\) 22.5830 1.83778 0.918889 0.394515i \(-0.129087\pi\)
0.918889 + 0.394515i \(0.129087\pi\)
\(152\) 0 0
\(153\) −1.68345 + 3.14944i −0.136099 + 0.254617i
\(154\) 0 0
\(155\) 6.00000 10.8127i 0.481932 0.868499i
\(156\) 0 0
\(157\) 22.6209 1.80534 0.902672 0.430330i \(-0.141603\pi\)
0.902672 + 0.430330i \(0.141603\pi\)
\(158\) 0 0
\(159\) −5.29570 + 21.1412i −0.419976 + 1.67661i
\(160\) 0 0
\(161\) 7.82087 + 3.83039i 0.616371 + 0.301877i
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) −8.00000 7.48331i −0.622799 0.582575i
\(166\) 0 0
\(167\) 11.4821i 0.888509i −0.895901 0.444255i \(-0.853469\pi\)
0.895901 0.444255i \(-0.146531\pi\)
\(168\) 0 0
\(169\) −12.2915 −0.945500
\(170\) 0 0
\(171\) 6.43560 12.0399i 0.492143 0.920715i
\(172\) 0 0
\(173\) 8.89047i 0.675930i 0.941159 + 0.337965i \(0.109739\pi\)
−0.941159 + 0.337965i \(0.890261\pi\)
\(174\) 0 0
\(175\) 1.34926 + 13.1598i 0.101994 + 0.994785i
\(176\) 0 0
\(177\) −1.64575 + 6.57008i −0.123702 + 0.493838i
\(178\) 0 0
\(179\) 9.48725i 0.709110i 0.935035 + 0.354555i \(0.115368\pi\)
−0.935035 + 0.354555i \(0.884632\pi\)
\(180\) 0 0
\(181\) 12.0399i 0.894920i −0.894304 0.447460i \(-0.852329\pi\)
0.894304 0.447460i \(-0.147671\pi\)
\(182\) 0 0
\(183\) −16.9373 4.24264i −1.25204 0.313625i
\(184\) 0 0
\(185\) −11.7313 + 21.1412i −0.862503 + 1.55433i
\(186\) 0 0
\(187\) −3.36689 −0.246211
\(188\) 0 0
\(189\) 12.7719 5.08713i 0.929018 0.370034i
\(190\) 0 0
\(191\) 7.98430i 0.577724i 0.957371 + 0.288862i \(0.0932768\pi\)
−0.957371 + 0.288862i \(0.906723\pi\)
\(192\) 0 0
\(193\) 8.48528i 0.610784i −0.952227 0.305392i \(-0.901213\pi\)
0.952227 0.305392i \(-0.0987875\pi\)
\(194\) 0 0
\(195\) −2.22699 + 2.38075i −0.159478 + 0.170489i
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 16.5906i 1.17607i 0.808834 + 0.588037i \(0.200099\pi\)
−0.808834 + 0.588037i \(0.799901\pi\)
\(200\) 0 0
\(201\) −7.82087 1.95906i −0.551642 0.138182i
\(202\) 0 0
\(203\) 9.29150 18.9713i 0.652136 1.33153i
\(204\) 0 0
\(205\) −15.2915 8.48528i −1.06800 0.592638i
\(206\) 0 0
\(207\) −8.70850 4.65489i −0.605282 0.323537i
\(208\) 0 0
\(209\) 12.8712 0.890320
\(210\) 0 0
\(211\) −21.1660 −1.45713 −0.728564 0.684978i \(-0.759812\pi\)
−0.728564 + 0.684978i \(0.759812\pi\)
\(212\) 0 0
\(213\) −21.2356 5.31935i −1.45504 0.364476i
\(214\) 0 0
\(215\) −5.05034 + 9.10132i −0.344430 + 0.620705i
\(216\) 0 0
\(217\) −6.43560 + 13.1402i −0.436877 + 0.892013i
\(218\) 0 0
\(219\) −1.29150 + 5.15587i −0.0872717 + 0.348401i
\(220\) 0 0
\(221\) 1.00197i 0.0673996i
\(222\) 0 0
\(223\) 4.75216 0.318228 0.159114 0.987260i \(-0.449136\pi\)
0.159114 + 0.987260i \(0.449136\pi\)
\(224\) 0 0
\(225\) −1.00000 14.9666i −0.0666667 0.997775i
\(226\) 0 0
\(227\) 1.40122i 0.0930023i −0.998918 0.0465011i \(-0.985193\pi\)
0.998918 0.0465011i \(-0.0148071\pi\)
\(228\) 0 0
\(229\) 28.2835i 1.86903i −0.355930 0.934513i \(-0.615836\pi\)
0.355930 0.934513i \(-0.384164\pi\)
\(230\) 0 0
\(231\) 9.90624 + 8.35862i 0.651782 + 0.549957i
\(232\) 0 0
\(233\) 2.70850 0.177440 0.0887198 0.996057i \(-0.471722\pi\)
0.0887198 + 0.996057i \(0.471722\pi\)
\(234\) 0 0
\(235\) −4.70850 + 8.48528i −0.307149 + 0.553519i
\(236\) 0 0
\(237\) −3.06871 + 12.2508i −0.199334 + 0.795772i
\(238\) 0 0
\(239\) 22.1264i 1.43124i −0.698490 0.715620i \(-0.746144\pi\)
0.698490 0.715620i \(-0.253856\pi\)
\(240\) 0 0
\(241\) 1.95906i 0.126194i −0.998007 0.0630972i \(-0.979902\pi\)
0.998007 0.0630972i \(-0.0200978\pi\)
\(242\) 0 0
\(243\) −14.6773 + 5.25127i −0.941551 + 0.336869i
\(244\) 0 0
\(245\) −2.39082 15.4688i −0.152744 0.988266i
\(246\) 0 0
\(247\) 3.83039i 0.243722i
\(248\) 0 0
\(249\) −12.9373 3.24067i −0.819865 0.205369i
\(250\) 0 0
\(251\) −11.7313 −0.740473 −0.370237 0.928937i \(-0.620723\pi\)
−0.370237 + 0.928937i \(0.620723\pi\)
\(252\) 0 0
\(253\) 9.30978i 0.585301i
\(254\) 0 0
\(255\) −3.36689 3.14944i −0.210843 0.197225i
\(256\) 0 0
\(257\) 14.2098i 0.886384i −0.896427 0.443192i \(-0.853846\pi\)
0.896427 0.443192i \(-0.146154\pi\)
\(258\) 0 0
\(259\) 12.5830 25.6919i 0.781870 1.59642i
\(260\) 0 0
\(261\) −11.2915 + 21.1245i −0.698926 + 1.30757i
\(262\) 0 0
\(263\) 6.58301 0.405925 0.202963 0.979186i \(-0.434943\pi\)
0.202963 + 0.979186i \(0.434943\pi\)
\(264\) 0 0
\(265\) −24.6025 13.6520i −1.51132 0.838634i
\(266\) 0 0
\(267\) 5.41699 21.6255i 0.331515 1.32346i
\(268\) 0 0
\(269\) −24.6025 −1.50004 −0.750021 0.661414i \(-0.769957\pi\)
−0.750021 + 0.661414i \(0.769957\pi\)
\(270\) 0 0
\(271\) 7.48925i 0.454940i −0.973785 0.227470i \(-0.926955\pi\)
0.973785 0.227470i \(-0.0730453\pi\)
\(272\) 0 0
\(273\) 2.48747 2.94804i 0.150549 0.178423i
\(274\) 0 0
\(275\) 12.0000 7.48331i 0.723627 0.451261i
\(276\) 0 0
\(277\) 15.4676i 0.929359i 0.885479 + 0.464679i \(0.153830\pi\)
−0.885479 + 0.464679i \(0.846170\pi\)
\(278\) 0 0
\(279\) 7.82087 14.6315i 0.468223 0.875965i
\(280\) 0 0
\(281\) 20.6235i 1.23029i 0.788412 + 0.615147i \(0.210903\pi\)
−0.788412 + 0.615147i \(0.789097\pi\)
\(282\) 0 0
\(283\) −9.74968 −0.579558 −0.289779 0.957094i \(-0.593582\pi\)
−0.289779 + 0.957094i \(0.593582\pi\)
\(284\) 0 0
\(285\) 12.8712 + 12.0399i 0.762425 + 0.713183i
\(286\) 0 0
\(287\) 18.5830 + 9.10132i 1.09692 + 0.537234i
\(288\) 0 0
\(289\) 15.5830 0.916647
\(290\) 0 0
\(291\) −3.41699 + 13.6412i −0.200308 + 0.799659i
\(292\) 0 0
\(293\) 11.2712i 0.658472i −0.944248 0.329236i \(-0.893209\pi\)
0.944248 0.329236i \(-0.106791\pi\)
\(294\) 0 0
\(295\) −7.64575 4.24264i −0.445153 0.247016i
\(296\) 0 0
\(297\) −10.8896 9.87000i −0.631878 0.572716i
\(298\) 0 0
\(299\) −2.77053 −0.160224
\(300\) 0 0
\(301\) 5.41699 11.0604i 0.312230 0.637510i
\(302\) 0 0
\(303\) −1.64575 + 6.57008i −0.0945459 + 0.377441i
\(304\) 0 0
\(305\) 10.9373 19.7103i 0.626265 1.12861i
\(306\) 0 0
\(307\) −14.8000 −0.844682 −0.422341 0.906437i \(-0.638791\pi\)
−0.422341 + 0.906437i \(0.638791\pi\)
\(308\) 0 0
\(309\) −5.29150 + 21.1245i −0.301023 + 1.20173i
\(310\) 0 0
\(311\) 2.77053 0.157103 0.0785513 0.996910i \(-0.474971\pi\)
0.0785513 + 0.996910i \(0.474971\pi\)
\(312\) 0 0
\(313\) 8.11905 0.458916 0.229458 0.973319i \(-0.426305\pi\)
0.229458 + 0.973319i \(0.426305\pi\)
\(314\) 0 0
\(315\) 2.08747 + 17.6251i 0.117615 + 0.993059i
\(316\) 0 0
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −22.5830 −1.26441
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.41699 0.301410
\(324\) 0 0
\(325\) −2.22699 3.57113i −0.123531 0.198091i
\(326\) 0 0
\(327\) −0.841723 + 3.36028i −0.0465474 + 0.185824i
\(328\) 0 0
\(329\) 5.05034 10.3117i 0.278434 0.568505i
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) −15.2915 + 28.6078i −0.837969 + 1.56770i
\(334\) 0 0
\(335\) 5.05034 9.10132i 0.275929 0.497258i
\(336\) 0 0
\(337\) 22.4499i 1.22293i −0.791273 0.611463i \(-0.790581\pi\)
0.791273 0.611463i \(-0.209419\pi\)
\(338\) 0 0
\(339\) 2.52517 10.0808i 0.137148 0.547517i
\(340\) 0 0
\(341\) 15.6417 0.847048
\(342\) 0 0
\(343\) 3.76135 + 18.1343i 0.203094 + 0.979159i
\(344\) 0 0
\(345\) 8.70850 9.30978i 0.468850 0.501221i
\(346\) 0 0
\(347\) 24.0000 1.28839 0.644194 0.764862i \(-0.277193\pi\)
0.644194 + 0.764862i \(0.277193\pi\)
\(348\) 0 0
\(349\) 19.1822i 1.02680i 0.858150 + 0.513399i \(0.171614\pi\)
−0.858150 + 0.513399i \(0.828386\pi\)
\(350\) 0 0
\(351\) −2.93725 + 3.24067i −0.156779 + 0.172974i
\(352\) 0 0
\(353\) 21.3521i 1.13646i −0.822871 0.568228i \(-0.807629\pi\)
0.822871 0.568228i \(-0.192371\pi\)
\(354\) 0 0
\(355\) 13.7129 24.7124i 0.727807 1.31160i
\(356\) 0 0
\(357\) 4.16915 + 3.51782i 0.220655 + 0.186183i
\(358\) 0 0
\(359\) 26.7813i 1.41346i −0.707481 0.706732i \(-0.750169\pi\)
0.707481 0.706732i \(-0.249831\pi\)
\(360\) 0 0
\(361\) −1.70850 −0.0899209
\(362\) 0 0
\(363\) −1.26258 + 5.04042i −0.0662685 + 0.264554i
\(364\) 0 0
\(365\) −6.00000 3.32941i −0.314054 0.174269i
\(366\) 0 0
\(367\) −8.11905 −0.423811 −0.211905 0.977290i \(-0.567967\pi\)
−0.211905 + 0.977290i \(0.567967\pi\)
\(368\) 0 0
\(369\) −20.6921 11.0604i −1.07719 0.575780i
\(370\) 0 0
\(371\) 29.8982 + 14.6431i 1.55224 + 0.760233i
\(372\) 0 0
\(373\) 15.4676i 0.800883i −0.916322 0.400441i \(-0.868857\pi\)
0.916322 0.400441i \(-0.131143\pi\)
\(374\) 0 0
\(375\) 19.0000 + 3.74166i 0.981156 + 0.193218i
\(376\) 0 0
\(377\) 6.72057i 0.346127i
\(378\) 0 0
\(379\) −14.5830 −0.749079 −0.374539 0.927211i \(-0.622199\pi\)
−0.374539 + 0.927211i \(0.622199\pi\)
\(380\) 0 0
\(381\) 18.1669 + 4.55066i 0.930719 + 0.233137i
\(382\) 0 0
\(383\) 11.4821i 0.586706i −0.956004 0.293353i \(-0.905229\pi\)
0.956004 0.293353i \(-0.0947712\pi\)
\(384\) 0 0
\(385\) −13.7271 + 9.56904i −0.699598 + 0.487684i
\(386\) 0 0
\(387\) −6.58301 + 12.3157i −0.334633 + 0.626041i
\(388\) 0 0
\(389\) 0.323511i 0.0164026i −0.999966 0.00820132i \(-0.997389\pi\)
0.999966 0.00820132i \(-0.00261059\pi\)
\(390\) 0 0
\(391\) 3.91813i 0.198148i
\(392\) 0 0
\(393\) 3.77124 15.0554i 0.190234 0.759443i
\(394\) 0 0
\(395\) −14.2565 7.91094i −0.717321 0.398043i
\(396\) 0 0
\(397\) −21.5338 −1.08075 −0.540375 0.841424i \(-0.681718\pi\)
−0.540375 + 0.841424i \(0.681718\pi\)
\(398\) 0 0
\(399\) −15.9382 13.4482i −0.797906 0.673251i
\(400\) 0 0
\(401\) 7.48331i 0.373699i 0.982389 + 0.186849i \(0.0598277\pi\)
−0.982389 + 0.186849i \(0.940172\pi\)
\(402\) 0 0
\(403\) 4.65489i 0.231876i
\(404\) 0 0
\(405\) −1.65704 20.0563i −0.0823389 0.996604i
\(406\) 0 0
\(407\) −30.5830 −1.51594
\(408\) 0 0
\(409\) 13.0194i 0.643770i −0.946779 0.321885i \(-0.895684\pi\)
0.946779 0.321885i \(-0.104316\pi\)
\(410\) 0 0
\(411\) 3.91044 15.6110i 0.192888 0.770036i
\(412\) 0 0
\(413\) 9.29150 + 4.55066i 0.457205 + 0.223923i
\(414\) 0 0
\(415\) 8.35425 15.0554i 0.410094 0.739039i
\(416\) 0 0
\(417\) 26.2288 + 6.57008i 1.28443 + 0.321738i
\(418\) 0 0
\(419\) −21.8320 −1.06656 −0.533281 0.845938i \(-0.679041\pi\)
−0.533281 + 0.845938i \(0.679041\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) −6.13742 + 11.4821i −0.298412 + 0.558277i
\(424\) 0 0
\(425\) 5.05034 3.14944i 0.244977 0.152770i
\(426\) 0 0
\(427\) −11.7313 + 23.9529i −0.567718 + 1.15916i
\(428\) 0 0
\(429\) −4.00000 1.00197i −0.193122 0.0483754i
\(430\) 0 0
\(431\) 16.4696i 0.793312i 0.917967 + 0.396656i \(0.129829\pi\)
−0.917967 + 0.396656i \(0.870171\pi\)
\(432\) 0 0
\(433\) 26.5313 1.27501 0.637507 0.770445i \(-0.279966\pi\)
0.637507 + 0.770445i \(0.279966\pi\)
\(434\) 0 0
\(435\) −22.5830 21.1245i −1.08277 1.01284i
\(436\) 0 0
\(437\) 14.9785i 0.716519i
\(438\) 0 0
\(439\) 18.5496i 0.885326i 0.896688 + 0.442663i \(0.145966\pi\)
−0.896688 + 0.442663i \(0.854034\pi\)
\(440\) 0 0
\(441\) −3.53338 20.7006i −0.168256 0.985743i
\(442\) 0 0
\(443\) −13.1660 −0.625536 −0.312768 0.949830i \(-0.601256\pi\)
−0.312768 + 0.949830i \(0.601256\pi\)
\(444\) 0 0
\(445\) 25.1660 + 13.9647i 1.19298 + 0.661989i
\(446\) 0 0
\(447\) 5.59388 + 1.40122i 0.264581 + 0.0662755i
\(448\) 0 0
\(449\) 8.30781i 0.392070i 0.980597 + 0.196035i \(0.0628066\pi\)
−0.980597 + 0.196035i \(0.937193\pi\)
\(450\) 0 0
\(451\) 22.1208i 1.04163i
\(452\) 0 0
\(453\) −9.50432 + 37.9426i −0.446552 + 1.78270i
\(454\) 0 0
\(455\) 2.84769 + 4.08510i 0.133502 + 0.191513i
\(456\) 0 0
\(457\) 8.48528i 0.396925i 0.980109 + 0.198462i \(0.0635948\pi\)
−0.980109 + 0.198462i \(0.936405\pi\)
\(458\) 0 0
\(459\) −4.58301 4.15390i −0.213916 0.193888i
\(460\) 0 0
\(461\) −8.96077 −0.417345 −0.208672 0.977986i \(-0.566914\pi\)
−0.208672 + 0.977986i \(0.566914\pi\)
\(462\) 0 0
\(463\) 23.9529i 1.11319i −0.830786 0.556593i \(-0.812108\pi\)
0.830786 0.556593i \(-0.187892\pi\)
\(464\) 0 0
\(465\) 15.6417 + 14.6315i 0.725368 + 0.678520i
\(466\) 0 0
\(467\) 3.36028i 0.155495i −0.996973 0.0777477i \(-0.975227\pi\)
0.996973 0.0777477i \(-0.0247729\pi\)
\(468\) 0 0
\(469\) −5.41699 + 11.0604i −0.250134 + 0.510721i
\(470\) 0 0
\(471\) −9.52026 + 38.0063i −0.438670 + 1.75124i
\(472\) 0 0
\(473\) −13.1660 −0.605374
\(474\) 0 0
\(475\) −19.3068 + 12.0399i −0.885857 + 0.552429i
\(476\) 0 0
\(477\) −33.2915 17.7951i −1.52431 0.814780i
\(478\) 0 0
\(479\) −39.1044 −1.78672 −0.893362 0.449338i \(-0.851660\pi\)
−0.893362 + 0.449338i \(0.851660\pi\)
\(480\) 0 0
\(481\) 9.10132i 0.414984i
\(482\) 0 0
\(483\) −9.72711 + 11.5281i −0.442599 + 0.524547i
\(484\) 0 0
\(485\) −15.8745 8.80879i −0.720824 0.399987i
\(486\) 0 0
\(487\) 32.4382i 1.46991i 0.678114 + 0.734957i \(0.262798\pi\)
−0.678114 + 0.734957i \(0.737202\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14.1421i 0.638226i 0.947717 + 0.319113i \(0.103385\pi\)
−0.947717 + 0.319113i \(0.896615\pi\)
\(492\) 0 0
\(493\) −9.50432 −0.428053
\(494\) 0 0
\(495\) 15.9399 10.2917i 0.716446 0.462577i
\(496\) 0 0
\(497\) −14.7085 + 30.0317i −0.659766 + 1.34711i
\(498\) 0 0
\(499\) −1.41699 −0.0634334 −0.0317167 0.999497i \(-0.510097\pi\)
−0.0317167 + 0.999497i \(0.510097\pi\)
\(500\) 0 0
\(501\) 19.2915 + 4.83236i 0.861881 + 0.215894i
\(502\) 0 0
\(503\) 8.67963i 0.387006i 0.981100 + 0.193503i \(0.0619848\pi\)
−0.981100 + 0.193503i \(0.938015\pi\)
\(504\) 0 0
\(505\) −7.64575 4.24264i −0.340231 0.188795i
\(506\) 0 0
\(507\) 5.17302 20.6515i 0.229742 0.917164i
\(508\) 0 0
\(509\) 30.1436 1.33609 0.668045 0.744121i \(-0.267131\pi\)
0.668045 + 0.744121i \(0.267131\pi\)
\(510\) 0 0
\(511\) 7.29150 + 3.57113i 0.322557 + 0.157977i
\(512\) 0 0
\(513\) 17.5203 + 15.8799i 0.773538 + 0.701113i
\(514\) 0 0
\(515\) −24.5830 13.6412i −1.08326 0.601101i
\(516\) 0 0
\(517\) −12.2748 −0.539847
\(518\) 0 0
\(519\) −14.9373 3.74166i −0.655673 0.164241i
\(520\) 0 0
\(521\) −23.4626 −1.02792 −0.513958 0.857815i \(-0.671821\pi\)
−0.513958 + 0.857815i \(0.671821\pi\)
\(522\) 0 0
\(523\) −4.20861 −0.184030 −0.0920149 0.995758i \(-0.529331\pi\)
−0.0920149 + 0.995758i \(0.529331\pi\)
\(524\) 0 0
\(525\) −22.6781 3.27149i −0.989755 0.142780i
\(526\) 0 0
\(527\) 6.58301 0.286760
\(528\) 0 0
\(529\) −12.1660 −0.528957
\(530\) 0 0
\(531\) −10.3460 5.53019i −0.448980 0.239990i
\(532\) 0 0
\(533\) −6.58301 −0.285142
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −15.9399 3.99282i −0.687858 0.172303i
\(538\) 0 0
\(539\) 15.6417 12.1382i 0.673737 0.522829i
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) 20.2288 + 5.06713i 0.868099 + 0.217452i
\(544\) 0 0
\(545\) −3.91044 2.16991i −0.167505 0.0929486i
\(546\) 0 0
\(547\) 16.9706i 0.725609i 0.931865 + 0.362804i \(0.118181\pi\)
−0.931865 + 0.362804i \(0.881819\pi\)
\(548\) 0 0
\(549\) 14.2565 26.6714i 0.608451 1.13831i
\(550\) 0 0
\(551\) 36.3338 1.54787
\(552\) 0 0
\(553\) 17.3252 + 8.48528i 0.736742 + 0.360831i
\(554\) 0 0
\(555\) −30.5830 28.6078i −1.29818 1.21433i
\(556\) 0 0
\(557\) 7.16601 0.303634 0.151817 0.988409i \(-0.451488\pi\)
0.151817 + 0.988409i \(0.451488\pi\)
\(558\) 0 0
\(559\) 3.91813i 0.165719i
\(560\) 0 0
\(561\) 1.41699 5.65685i 0.0598256 0.238833i
\(562\) 0 0
\(563\) 18.7605i 0.790660i 0.918539 + 0.395330i \(0.129370\pi\)
−0.918539 + 0.395330i \(0.870630\pi\)
\(564\) 0 0
\(565\) 11.7313 + 6.50972i 0.493540 + 0.273866i
\(566\) 0 0
\(567\) 3.17190 + 23.5996i 0.133207 + 0.991088i
\(568\) 0 0
\(569\) 11.1362i 0.466855i −0.972374 0.233428i \(-0.925006\pi\)
0.972374 0.233428i \(-0.0749942\pi\)
\(570\) 0 0
\(571\) 34.5830 1.44725 0.723627 0.690191i \(-0.242474\pi\)
0.723627 + 0.690191i \(0.242474\pi\)
\(572\) 0 0
\(573\) −13.4148 3.36028i −0.560409 0.140378i
\(574\) 0 0
\(575\) 8.70850 + 13.9647i 0.363169 + 0.582367i
\(576\) 0 0
\(577\) −30.9853 −1.28993 −0.644967 0.764210i \(-0.723129\pi\)
−0.644967 + 0.764210i \(0.723129\pi\)
\(578\) 0 0
\(579\) 14.2565 + 3.57113i 0.592479 + 0.148411i
\(580\) 0 0
\(581\) −8.96077 + 18.2960i −0.371755 + 0.759048i
\(582\) 0 0
\(583\) 35.5901i 1.47399i
\(584\) 0 0
\(585\) −3.06275 4.74362i −0.126629 0.196125i
\(586\) 0 0
\(587\) 44.1054i 1.82042i 0.414143 + 0.910212i \(0.364081\pi\)
−0.414143 + 0.910212i \(0.635919\pi\)
\(588\) 0 0
\(589\) −25.1660 −1.03695
\(590\) 0 0
\(591\) −7.57551 + 30.2425i −0.311615 + 1.24401i
\(592\) 0 0
\(593\) 7.91094i 0.324863i 0.986720 + 0.162432i \(0.0519337\pi\)
−0.986720 + 0.162432i \(0.948066\pi\)
\(594\) 0 0
\(595\) −5.77721 + 4.02724i −0.236843 + 0.165101i
\(596\) 0 0
\(597\) −27.8745 6.98233i −1.14083 0.285768i
\(598\) 0 0
\(599\) 18.2960i 0.747556i −0.927518 0.373778i \(-0.878062\pi\)
0.927518 0.373778i \(-0.121938\pi\)
\(600\) 0 0
\(601\) 11.0604i 0.451162i −0.974224 0.225581i \(-0.927572\pi\)
0.974224 0.225581i \(-0.0724281\pi\)
\(602\) 0 0
\(603\) 6.58301 12.3157i 0.268081 0.501533i
\(604\) 0 0
\(605\) −5.86565 3.25486i −0.238473 0.132329i
\(606\) 0 0
\(607\) −23.7608 −0.964421 −0.482210 0.876055i \(-0.660166\pi\)
−0.482210 + 0.876055i \(0.660166\pi\)
\(608\) 0 0
\(609\) 27.9641 + 23.5953i 1.13316 + 0.956131i
\(610\) 0 0
\(611\) 3.65292i 0.147781i
\(612\) 0 0
\(613\) 40.0990i 1.61958i 0.586719 + 0.809791i \(0.300419\pi\)
−0.586719 + 0.809791i \(0.699581\pi\)
\(614\) 0 0
\(615\) 20.6921 22.1208i 0.834385 0.891995i
\(616\) 0 0
\(617\) 4.83399 0.194609 0.0973045 0.995255i \(-0.468978\pi\)
0.0973045 + 0.995255i \(0.468978\pi\)
\(618\) 0 0
\(619\) 0.632534i 0.0254237i 0.999919 + 0.0127118i \(0.00404641\pi\)
−0.999919 + 0.0127118i \(0.995954\pi\)
\(620\) 0 0
\(621\) 11.4859 12.6724i 0.460915 0.508528i
\(622\) 0 0
\(623\) −30.5830 14.9785i −1.22528 0.600101i
\(624\) 0 0
\(625\) −11.0000 + 22.4499i −0.440000 + 0.897998i
\(626\) 0 0
\(627\) −5.41699 + 21.6255i −0.216334 + 0.863637i
\(628\) 0 0
\(629\) −12.8712 −0.513209
\(630\) 0 0
\(631\) 20.4575 0.814401 0.407200 0.913339i \(-0.366505\pi\)
0.407200 + 0.913339i \(0.366505\pi\)
\(632\) 0 0
\(633\) 8.90796 35.5619i 0.354060 1.41346i
\(634\) 0 0
\(635\) −11.7313 + 21.1412i −0.465543 + 0.838964i
\(636\) 0 0
\(637\) −3.61226 4.65489i −0.143123 0.184433i
\(638\) 0 0
\(639\) 17.8745 33.4401i 0.707105 1.32287i
\(640\) 0 0
\(641\) 16.7931i 0.663287i 0.943405 + 0.331644i \(0.107603\pi\)
−0.943405 + 0.331644i \(0.892397\pi\)
\(642\) 0 0
\(643\) 47.7669 1.88374 0.941872 0.335971i \(-0.109065\pi\)
0.941872 + 0.335971i \(0.109065\pi\)
\(644\) 0 0
\(645\) −13.1660 12.3157i −0.518411 0.484929i
\(646\) 0 0
\(647\) 15.4002i 0.605444i −0.953079 0.302722i \(-0.902105\pi\)
0.953079 0.302722i \(-0.0978954\pi\)
\(648\) 0 0
\(649\) 11.0604i 0.434158i
\(650\) 0 0
\(651\) −19.3688 16.3429i −0.759125 0.640529i
\(652\) 0 0
\(653\) 19.1660 0.750024 0.375012 0.927020i \(-0.377639\pi\)
0.375012 + 0.927020i \(0.377639\pi\)
\(654\) 0 0
\(655\) 17.5203 + 9.72202i 0.684573 + 0.379871i
\(656\) 0 0
\(657\) −8.11905 4.33981i −0.316754 0.169312i
\(658\) 0 0
\(659\) 32.7617i 1.27621i 0.769948 + 0.638107i \(0.220282\pi\)
−0.769948 + 0.638107i \(0.779718\pi\)
\(660\) 0 0
\(661\) 0.979531i 0.0380994i −0.999819 0.0190497i \(-0.993936\pi\)
0.999819 0.0190497i \(-0.00606407\pi\)
\(662\) 0 0
\(663\) −1.68345 0.421689i −0.0653796 0.0163770i
\(664\) 0 0
\(665\) 22.0856 15.3956i 0.856441 0.597017i
\(666\) 0 0
\(667\) 26.2803i 1.01758i
\(668\) 0 0
\(669\) −2.00000 + 7.98430i −0.0773245 + 0.308691i
\(670\) 0 0
\(671\) 28.5129 1.10073
\(672\) 0 0
\(673\) 38.5960i 1.48777i −0.668309 0.743883i \(-0.732982\pi\)
0.668309 0.743883i \(-0.267018\pi\)
\(674\) 0 0
\(675\) 25.5669 + 4.61874i 0.984071 + 0.177775i
\(676\) 0 0
\(677\) 42.4933i 1.63315i −0.577239 0.816575i \(-0.695870\pi\)
0.577239 0.816575i \(-0.304130\pi\)
\(678\) 0 0
\(679\) 19.2915 + 9.44832i 0.740340 + 0.362593i
\(680\) 0 0
\(681\) 2.35425 + 0.589720i 0.0902150 + 0.0225981i
\(682\) 0 0
\(683\) −5.41699 −0.207276 −0.103638 0.994615i \(-0.533048\pi\)
−0.103638 + 0.994615i \(0.533048\pi\)
\(684\) 0 0
\(685\) 18.1669 + 10.0808i 0.694122 + 0.385169i
\(686\) 0 0
\(687\) 47.5203 + 11.9034i 1.81301 + 0.454144i
\(688\) 0 0
\(689\) −10.5914 −0.403500
\(690\) 0 0
\(691\) 6.50972i 0.247641i 0.992305 + 0.123821i \(0.0395148\pi\)
−0.992305 + 0.123821i \(0.960485\pi\)
\(692\) 0 0
\(693\) −18.2128 + 13.1261i −0.691848 + 0.498618i
\(694\) 0 0
\(695\) −16.9373 + 30.5230i −0.642467 + 1.15780i
\(696\) 0 0
\(697\) 9.30978i 0.352633i
\(698\) 0 0
\(699\) −1.13990 + 4.55066i −0.0431151 + 0.172122i
\(700\) 0 0
\(701\) 1.32548i 0.0500626i 0.999687 + 0.0250313i \(0.00796854\pi\)
−0.999687 + 0.0250313i \(0.992031\pi\)
\(702\) 0 0
\(703\) 49.2050 1.85580
\(704\) 0 0
\(705\) −12.2748 11.4821i −0.462298 0.432440i
\(706\) 0 0
\(707\) 9.29150 + 4.55066i 0.349443 + 0.171145i
\(708\) 0 0
\(709\) 20.5830 0.773011 0.386505 0.922287i \(-0.373682\pi\)
0.386505 + 0.922287i \(0.373682\pi\)
\(710\) 0 0
\(711\) −19.2915 10.3117i −0.723488 0.386721i
\(712\) 0 0
\(713\) 18.2026i 0.681694i
\(714\) 0 0
\(715\) 2.58301 4.65489i 0.0965989 0.174083i
\(716\) 0 0
\(717\) 37.1755 + 9.31216i 1.38835 + 0.347769i
\(718\) 0 0
\(719\) 36.3338 1.35502 0.677511 0.735512i \(-0.263058\pi\)
0.677511 + 0.735512i \(0.263058\pi\)
\(720\) 0 0
\(721\) 29.8745 + 14.6315i 1.11258 + 0.544906i
\(722\) 0 0
\(723\) 3.29150 + 0.824494i 0.122412 + 0.0306633i
\(724\) 0 0
\(725\) 33.8745 21.1245i 1.25807 0.784543i
\(726\) 0 0
\(727\) 7.03196 0.260801 0.130401 0.991461i \(-0.458374\pi\)
0.130401 + 0.991461i \(0.458374\pi\)
\(728\) 0 0
\(729\) −2.64575 26.8701i −0.0979908 0.995187i
\(730\) 0 0
\(731\) −5.54107 −0.204944
\(732\) 0 0
\(733\) 24.9007 0.919728 0.459864 0.887989i \(-0.347898\pi\)
0.459864 + 0.887989i \(0.347898\pi\)
\(734\) 0 0
\(735\) 26.9960 + 2.49331i 0.995762 + 0.0919670i
\(736\) 0 0
\(737\) 13.1660 0.484976
\(738\) 0 0
\(739\) −9.16601 −0.337177 −0.168589 0.985687i \(-0.553921\pi\)
−0.168589 + 0.985687i \(0.553921\pi\)
\(740\) 0 0
\(741\) 6.43560 + 1.61206i 0.236418 + 0.0592207i
\(742\) 0 0
\(743\) 33.8745 1.24274 0.621368 0.783519i \(-0.286577\pi\)
0.621368 + 0.783519i \(0.286577\pi\)
\(744\) 0 0
\(745\) −3.61226 + 6.50972i −0.132343 + 0.238498i
\(746\) 0 0
\(747\) 10.8896 20.3725i 0.398429 0.745392i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −21.1660 −0.772359 −0.386179 0.922424i \(-0.626205\pi\)
−0.386179 + 0.922424i \(0.626205\pi\)
\(752\) 0 0
\(753\) 4.93725 19.7103i 0.179924 0.718282i
\(754\) 0 0
\(755\) −44.1547 24.5015i −1.60695 0.891701i
\(756\) 0 0
\(757\) 3.15194i 0.114559i 0.998358 + 0.0572796i \(0.0182426\pi\)
−0.998358 + 0.0572796i \(0.981757\pi\)
\(758\) 0 0
\(759\) 15.6417 + 3.91813i 0.567759 + 0.142219i
\(760\) 0 0
\(761\) 20.6921 0.750087 0.375044 0.927007i \(-0.377628\pi\)
0.375044 + 0.927007i \(0.377628\pi\)
\(762\) 0 0
\(763\) 4.75216 + 2.32744i 0.172040 + 0.0842591i
\(764\) 0 0
\(765\) 6.70850 4.33138i 0.242546 0.156601i
\(766\) 0 0
\(767\) −3.29150 −0.118849
\(768\) 0 0
\(769\) 35.1402i 1.26719i 0.773666 + 0.633594i \(0.218421\pi\)
−0.773666 + 0.633594i \(0.781579\pi\)
\(770\) 0 0
\(771\) 23.8745 + 5.98036i 0.859819 + 0.215378i
\(772\) 0 0
\(773\) 7.35310i 0.264473i −0.991218 0.132236i \(-0.957784\pi\)
0.991218 0.132236i \(-0.0422158\pi\)
\(774\) 0 0
\(775\) −23.4626 + 14.6315i −0.842802 + 0.525579i
\(776\) 0 0
\(777\) 37.8703 + 31.9540i 1.35859 + 1.14634i
\(778\) 0 0
\(779\) 35.5901i 1.27515i
\(780\) 0 0
\(781\) 35.7490 1.27920
\(782\) 0 0
\(783\) −30.7399 27.8618i −1.09856 0.995699i
\(784\) 0 0
\(785\) −44.2288 24.5426i −1.57859 0.875963i
\(786\) 0 0
\(787\) −24.9007 −0.887614 −0.443807 0.896122i \(-0.646372\pi\)
−0.443807 + 0.896122i \(0.646372\pi\)
\(788\) 0 0
\(789\) −2.77053 + 11.0604i −0.0986336 + 0.393760i
\(790\) 0 0
\(791\) −14.2565 6.98233i −0.506902 0.248263i
\(792\) 0 0
\(793\) 8.48528i 0.301321i
\(794\) 0 0
\(795\) 33.2915 35.5901i 1.18073 1.26225i
\(796\) 0 0
\(797\) 6.93141i 0.245523i 0.992436 + 0.122762i \(0.0391750\pi\)
−0.992436 + 0.122762i \(0.960825\pi\)
\(798\) 0 0
\(799\) −5.16601 −0.182760
\(800\) 0 0
\(801\) 34.0540 + 18.2026i 1.20324 + 0.643159i
\(802\) 0 0
\(803\) 8.67963i 0.306297i
\(804\) 0 0
\(805\) −11.1357 15.9745i −0.392482 0.563028i
\(806\) 0 0
\(807\) 10.3542 41.3357i 0.364487 1.45509i
\(808\) 0 0
\(809\) 33.7637i 1.18707i 0.804809 + 0.593533i \(0.202268\pi\)
−0.804809 + 0.593533i \(0.797732\pi\)
\(810\) 0 0
\(811\) 28.6305i 1.00535i 0.864475 + 0.502676i \(0.167651\pi\)
−0.864475 + 0.502676i \(0.832349\pi\)
\(812\) 0 0
\(813\) 12.5830 + 3.15194i 0.441305 + 0.110543i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 21.1828 0.741093
\(818\) 0 0
\(819\) 3.90624 + 5.42002i 0.136495 + 0.189391i
\(820\) 0 0
\(821\) 5.98036i 0.208716i 0.994540 + 0.104358i \(0.0332788\pi\)
−0.994540 + 0.104358i \(0.966721\pi\)
\(822\) 0 0
\(823\) 19.2980i 0.672686i 0.941740 + 0.336343i \(0.109190\pi\)
−0.941740 + 0.336343i \(0.890810\pi\)
\(824\) 0 0
\(825\) 7.52269 + 23.3111i 0.261906 + 0.811590i
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 45.2211i 1.57059i 0.619120 + 0.785296i \(0.287489\pi\)
−0.619120 + 0.785296i \(0.712511\pi\)
\(830\) 0 0
\(831\) −25.9878 6.50972i −0.901506 0.225820i
\(832\) 0 0
\(833\) 6.58301 5.10850i 0.228088 0.176999i
\(834\) 0 0
\(835\) −12.4575 + 22.4499i −0.431110 + 0.776912i
\(836\) 0 0
\(837\) 21.2915 + 19.2980i 0.735942 + 0.667037i
\(838\) 0 0
\(839\) −26.2331 −0.905669 −0.452834 0.891595i \(-0.649587\pi\)
−0.452834 + 0.891595i \(0.649587\pi\)
\(840\) 0 0
\(841\) −34.7490 −1.19824
\(842\) 0 0
\(843\) −34.6504 8.67963i −1.19342 0.298942i
\(844\) 0 0
\(845\) 24.0326 + 13.3357i 0.826745 + 0.458762i
\(846\) 0 0
\(847\) 7.12824 + 3.49117i 0.244929 + 0.119958i
\(848\) 0 0
\(849\) 4.10326 16.3808i 0.140824 0.562189i
\(850\) 0 0
\(851\) 35.5901i 1.22001i
\(852\) 0 0
\(853\) −5.89206 −0.201740 −0.100870 0.994900i \(-0.532163\pi\)
−0.100870 + 0.994900i \(0.532163\pi\)
\(854\) 0 0
\(855\) −25.6458 + 16.5583i −0.877066 + 0.566282i
\(856\) 0 0
\(857\) 24.1545i 0.825103i 0.910934 + 0.412551i \(0.135362\pi\)
−0.910934 + 0.412551i \(0.864638\pi\)
\(858\) 0 0
\(859\) 2.59160i 0.0884241i 0.999022 + 0.0442121i \(0.0140777\pi\)
−0.999022 + 0.0442121i \(0.985922\pi\)
\(860\) 0 0
\(861\) −23.1124 + 27.3917i −0.787668 + 0.933506i
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 9.64575 17.3828i 0.327965 0.591033i
\(866\) 0 0
\(867\) −6.55829 + 26.1817i −0.222731 + 0.889176i
\(868\) 0 0
\(869\) 20.6235i 0.699604i
\(870\) 0 0
\(871\) 3.91813i 0.132761i
\(872\) 0 0
\(873\) −21.4810 11.4821i −0.727021 0.388609i
\(874\) 0 0
\(875\) 11.6396 27.1941i 0.393492 0.919328i
\(876\) 0 0
\(877\) 1.50295i 0.0507510i −0.999678 0.0253755i \(-0.991922\pi\)
0.999678 0.0253755i \(-0.00807814\pi\)
\(878\) 0 0
\(879\) 18.9373 + 4.74362i 0.638738 + 0.159998i
\(880\) 0 0
\(881\) 12.8712 0.433642 0.216821 0.976211i \(-0.430431\pi\)
0.216821 + 0.976211i \(0.430431\pi\)
\(882\) 0 0
\(883\) 13.9647i 0.469948i −0.972002 0.234974i \(-0.924499\pi\)
0.972002 0.234974i \(-0.0755006\pi\)
\(884\) 0 0
\(885\) 10.3460 11.0604i 0.347778 0.371791i
\(886\) 0 0
\(887\) 44.6632i 1.49964i −0.661640 0.749822i \(-0.730139\pi\)
0.661640 0.749822i \(-0.269861\pi\)
\(888\) 0 0
\(889\) 12.5830 25.6919i 0.422020 0.861678i
\(890\) 0 0
\(891\) 21.1660 14.1421i 0.709088 0.473779i
\(892\) 0 0
\(893\) 19.7490 0.660876
\(894\) 0 0
\(895\) 10.2932 18.5496i 0.344065 0.620046i
\(896\) 0 0
\(897\) 1.16601 4.65489i 0.0389320 0.155422i
\(898\) 0 0
\(899\) 44.1547 1.47264
\(900\) 0 0
\(901\) 14.9785i 0.499006i
\(902\) 0 0
\(903\) 16.3032 + 13.7562i 0.542537 + 0.457778i
\(904\) 0 0
\(905\) −13.0627 + 23.5406i −0.434220 + 0.782518i
\(906\) 0 0
\(907\) 33.9411i 1.12700i −0.826117 0.563498i \(-0.809455\pi\)
0.826117 0.563498i \(-0.190545\pi\)
\(908\) 0 0
\(909\) −10.3460 5.53019i −0.343156 0.183425i
\(910\) 0 0
\(911\) 4.15390i 0.137625i 0.997630 + 0.0688125i \(0.0219210\pi\)
−0.997630 + 0.0688125i \(0.978079\pi\)
\(912\) 0 0
\(913\) 21.7792 0.720785
\(914\) 0 0
\(915\) 28.5129 + 26.6714i 0.942609 + 0.881730i
\(916\) 0 0
\(917\) −21.2915 10.4278i −0.703107 0.344358i
\(918\) 0 0
\(919\) −10.1255 −0.334009 −0.167005 0.985956i \(-0.553409\pi\)
−0.167005 + 0.985956i \(0.553409\pi\)
\(920\) 0 0
\(921\) 6.22876 24.8661i 0.205245 0.819367i
\(922\) 0 0
\(923\) 10.6387i 0.350177i
\(924\) 0 0
\(925\) 45.8745 28.6078i 1.50834 0.940618i
\(926\) 0 0
\(927\) −33.2651 17.7809i −1.09257 0.584003i
\(928\) 0 0
\(929\) 30.7928 1.01028 0.505139 0.863038i \(-0.331441\pi\)
0.505139 + 0.863038i \(0.331441\pi\)
\(930\) 0 0
\(931\) −25.1660 + 19.5292i −0.824783 + 0.640043i
\(932\) 0 0
\(933\) −1.16601 + 4.65489i −0.0381735 + 0.152394i
\(934\) 0 0
\(935\) 6.58301 + 3.65292i 0.215287 + 0.119463i
\(936\) 0 0
\(937\) 3.06871 0.100250 0.0501252 0.998743i \(-0.484038\pi\)
0.0501252 + 0.998743i \(0.484038\pi\)
\(938\) 0 0
\(939\) −3.41699 + 13.6412i −0.111509 + 0.445162i
\(940\) 0 0
\(941\) −40.2443 −1.31193 −0.655963 0.754793i \(-0.727737\pi\)
−0.655963 + 0.754793i \(0.727737\pi\)
\(942\) 0 0
\(943\) 25.7424 0.838288
\(944\) 0 0
\(945\) −30.4911 3.91047i −0.991876 0.127208i
\(946\) 0 0
\(947\) −24.0000 −0.779895 −0.389948 0.920837i \(-0.627507\pi\)
−0.389948 + 0.920837i \(0.627507\pi\)
\(948\) 0 0
\(949\) −2.58301 −0.0838479
\(950\) 0 0
\(951\) −2.52517 + 10.0808i −0.0818842 + 0.326894i
\(952\) 0 0
\(953\) −27.8745 −0.902944 −0.451472 0.892285i \(-0.649101\pi\)
−0.451472 + 0.892285i \(0.649101\pi\)
\(954\) 0 0
\(955\) 8.66259 15.6110i 0.280315 0.505161i
\(956\) 0 0
\(957\) 9.50432 37.9426i 0.307231 1.22651i
\(958\) 0 0
\(959\) −22.0773 10.8127i −0.712915 0.349161i
\(960\) 0 0
\(961\) 0.416995 0.0134514
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −9.20614 + 16.5906i −0.296356 + 0.534069i
\(966\) 0 0
\(967\) 49.4087i 1.58888i −0.607344 0.794439i \(-0.707765\pi\)
0.607344 0.794439i \(-0.292235\pi\)
\(968\) 0 0
\(969\) −2.27980 + 9.10132i −0.0732379 + 0.292376i
\(970\) 0 0
\(971\) 24.6025 0.789532 0.394766 0.918782i \(-0.370826\pi\)
0.394766 + 0.918782i \(0.370826\pi\)
\(972\) 0 0
\(973\) 18.1669 37.0931i 0.582404 1.18915i
\(974\) 0 0
\(975\) 6.93725 2.23871i 0.222170 0.0716960i
\(976\) 0 0
\(977\) −51.8745 −1.65961 −0.829806 0.558052i \(-0.811549\pi\)
−0.829806 + 0.558052i \(0.811549\pi\)
\(978\) 0 0
\(979\) 36.4053i 1.16352i
\(980\) 0 0
\(981\) −5.29150 2.82843i −0.168945 0.0903047i
\(982\) 0 0
\(983\) 62.0225i 1.97821i 0.147213 + 0.989105i \(0.452970\pi\)
−0.147213 + 0.989105i \(0.547030\pi\)
\(984\) 0 0
\(985\) −35.1939 19.5292i −1.12137 0.622251i
\(986\) 0 0
\(987\) 15.1997 + 12.8251i 0.483812 + 0.408227i
\(988\) 0 0
\(989\) 15.3216i 0.487198i
\(990\) 0 0
\(991\) 0.708497 0.0225062 0.0112531 0.999937i \(-0.496418\pi\)
0.0112531 + 0.999937i \(0.496418\pi\)
\(992\) 0 0
\(993\) 3.36689 13.4411i 0.106845 0.426541i
\(994\) 0 0
\(995\) 18.0000 32.4382i 0.570638 1.02836i
\(996\) 0 0
\(997\) −42.2259 −1.33731 −0.668653 0.743574i \(-0.733129\pi\)
−0.668653 + 0.743574i \(0.733129\pi\)
\(998\) 0 0
\(999\) −41.6295 37.7318i −1.31710 1.19378i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.k.e.209.4 8
3.2 odd 2 1680.2.k.f.209.3 8
4.3 odd 2 210.2.d.a.209.5 yes 8
5.4 even 2 1680.2.k.f.209.5 8
7.6 odd 2 inner 1680.2.k.e.209.5 8
12.11 even 2 210.2.d.b.209.6 yes 8
15.14 odd 2 inner 1680.2.k.e.209.6 8
20.3 even 4 1050.2.b.f.251.16 16
20.7 even 4 1050.2.b.f.251.1 16
20.19 odd 2 210.2.d.b.209.4 yes 8
21.20 even 2 1680.2.k.f.209.6 8
28.27 even 2 210.2.d.a.209.4 yes 8
35.34 odd 2 1680.2.k.f.209.4 8
60.23 odd 4 1050.2.b.f.251.2 16
60.47 odd 4 1050.2.b.f.251.15 16
60.59 even 2 210.2.d.a.209.3 8
84.83 odd 2 210.2.d.b.209.3 yes 8
105.104 even 2 inner 1680.2.k.e.209.3 8
140.27 odd 4 1050.2.b.f.251.8 16
140.83 odd 4 1050.2.b.f.251.9 16
140.139 even 2 210.2.d.b.209.5 yes 8
420.83 even 4 1050.2.b.f.251.7 16
420.167 even 4 1050.2.b.f.251.10 16
420.419 odd 2 210.2.d.a.209.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.d.a.209.3 8 60.59 even 2
210.2.d.a.209.4 yes 8 28.27 even 2
210.2.d.a.209.5 yes 8 4.3 odd 2
210.2.d.a.209.6 yes 8 420.419 odd 2
210.2.d.b.209.3 yes 8 84.83 odd 2
210.2.d.b.209.4 yes 8 20.19 odd 2
210.2.d.b.209.5 yes 8 140.139 even 2
210.2.d.b.209.6 yes 8 12.11 even 2
1050.2.b.f.251.1 16 20.7 even 4
1050.2.b.f.251.2 16 60.23 odd 4
1050.2.b.f.251.7 16 420.83 even 4
1050.2.b.f.251.8 16 140.27 odd 4
1050.2.b.f.251.9 16 140.83 odd 4
1050.2.b.f.251.10 16 420.167 even 4
1050.2.b.f.251.15 16 60.47 odd 4
1050.2.b.f.251.16 16 20.3 even 4
1680.2.k.e.209.3 8 105.104 even 2 inner
1680.2.k.e.209.4 8 1.1 even 1 trivial
1680.2.k.e.209.5 8 7.6 odd 2 inner
1680.2.k.e.209.6 8 15.14 odd 2 inner
1680.2.k.f.209.3 8 3.2 odd 2
1680.2.k.f.209.4 8 35.34 odd 2
1680.2.k.f.209.5 8 5.4 even 2
1680.2.k.f.209.6 8 21.20 even 2