Properties

Label 1680.2.f.l.881.1
Level $1680$
Weight $2$
Character 1680.881
Analytic conductor $13.415$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(881,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,16,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + x^{14} - 4 x^{13} + 10 x^{12} - 32 x^{11} + 71 x^{10} - 70 x^{9} + 74 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.1
Root \(0.0964469 + 1.72936i\) of defining polynomial
Character \(\chi\) \(=\) 1680.881
Dual form 1680.2.f.l.881.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72936 - 0.0964469i) q^{3} +1.00000 q^{5} +(-0.208829 + 2.63750i) q^{7} +(2.98140 + 0.333584i) q^{9} -1.71212i q^{11} +3.11462i q^{13} +(-1.72936 - 0.0964469i) q^{15} +3.59399 q^{17} -1.04495i q^{19} +(0.615519 - 4.54105i) q^{21} +0.587015i q^{23} +1.00000 q^{25} +(-5.12374 - 0.864434i) q^{27} -4.47468i q^{29} +8.51183i q^{31} +(-0.165129 + 2.96088i) q^{33} +(-0.208829 + 2.63750i) q^{35} -7.99549 q^{37} +(0.300395 - 5.38630i) q^{39} +7.74927 q^{41} +5.05272 q^{43} +(2.98140 + 0.333584i) q^{45} -9.90809 q^{47} +(-6.91278 - 1.10157i) q^{49} +(-6.21532 - 0.346630i) q^{51} +4.63566i q^{53} -1.71212i q^{55} +(-0.100783 + 1.80711i) q^{57} +2.11673 q^{59} +8.11222i q^{61} +(-1.50243 + 7.79376i) q^{63} +3.11462i q^{65} +8.80626 q^{67} +(0.0566158 - 1.01516i) q^{69} -2.57259i q^{71} +6.88336i q^{73} +(-1.72936 - 0.0964469i) q^{75} +(4.51572 + 0.357540i) q^{77} +7.01425 q^{79} +(8.77744 + 1.98909i) q^{81} +5.21838 q^{83} +3.59399 q^{85} +(-0.431570 + 7.73836i) q^{87} -8.17632 q^{89} +(-8.21479 - 0.650421i) q^{91} +(0.820940 - 14.7200i) q^{93} -1.04495i q^{95} +13.5934i q^{97} +(0.571136 - 5.10451i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{5} - 2 q^{7} - 2 q^{9} + 10 q^{21} + 16 q^{25} - 6 q^{27} + 6 q^{33} - 2 q^{35} + 12 q^{37} - 6 q^{39} + 32 q^{41} - 32 q^{43} - 2 q^{45} - 4 q^{47} - 4 q^{49} - 6 q^{51} + 24 q^{59} + 24 q^{63}+ \cdots + 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72936 0.0964469i −0.998448 0.0556837i
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.208829 + 2.63750i −0.0789298 + 0.996880i
\(8\) 0 0
\(9\) 2.98140 + 0.333584i 0.993799 + 0.111195i
\(10\) 0 0
\(11\) 1.71212i 0.516224i −0.966115 0.258112i \(-0.916900\pi\)
0.966115 0.258112i \(-0.0831004\pi\)
\(12\) 0 0
\(13\) 3.11462i 0.863839i 0.901912 + 0.431920i \(0.142164\pi\)
−0.901912 + 0.431920i \(0.857836\pi\)
\(14\) 0 0
\(15\) −1.72936 0.0964469i −0.446520 0.0249025i
\(16\) 0 0
\(17\) 3.59399 0.871671 0.435836 0.900026i \(-0.356453\pi\)
0.435836 + 0.900026i \(0.356453\pi\)
\(18\) 0 0
\(19\) 1.04495i 0.239729i −0.992790 0.119865i \(-0.961754\pi\)
0.992790 0.119865i \(-0.0382460\pi\)
\(20\) 0 0
\(21\) 0.615519 4.54105i 0.134317 0.990938i
\(22\) 0 0
\(23\) 0.587015i 0.122401i 0.998125 + 0.0612006i \(0.0194929\pi\)
−0.998125 + 0.0612006i \(0.980507\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.12374 0.864434i −0.986065 0.166360i
\(28\) 0 0
\(29\) 4.47468i 0.830928i −0.909610 0.415464i \(-0.863619\pi\)
0.909610 0.415464i \(-0.136381\pi\)
\(30\) 0 0
\(31\) 8.51183i 1.52877i 0.644760 + 0.764385i \(0.276957\pi\)
−0.644760 + 0.764385i \(0.723043\pi\)
\(32\) 0 0
\(33\) −0.165129 + 2.96088i −0.0287452 + 0.515423i
\(34\) 0 0
\(35\) −0.208829 + 2.63750i −0.0352985 + 0.445818i
\(36\) 0 0
\(37\) −7.99549 −1.31445 −0.657225 0.753694i \(-0.728270\pi\)
−0.657225 + 0.753694i \(0.728270\pi\)
\(38\) 0 0
\(39\) 0.300395 5.38630i 0.0481017 0.862499i
\(40\) 0 0
\(41\) 7.74927 1.21023 0.605116 0.796137i \(-0.293127\pi\)
0.605116 + 0.796137i \(0.293127\pi\)
\(42\) 0 0
\(43\) 5.05272 0.770533 0.385266 0.922805i \(-0.374110\pi\)
0.385266 + 0.922805i \(0.374110\pi\)
\(44\) 0 0
\(45\) 2.98140 + 0.333584i 0.444440 + 0.0497277i
\(46\) 0 0
\(47\) −9.90809 −1.44524 −0.722622 0.691244i \(-0.757063\pi\)
−0.722622 + 0.691244i \(0.757063\pi\)
\(48\) 0 0
\(49\) −6.91278 1.10157i −0.987540 0.157367i
\(50\) 0 0
\(51\) −6.21532 0.346630i −0.870319 0.0485378i
\(52\) 0 0
\(53\) 4.63566i 0.636757i 0.947964 + 0.318379i \(0.103138\pi\)
−0.947964 + 0.318379i \(0.896862\pi\)
\(54\) 0 0
\(55\) 1.71212i 0.230862i
\(56\) 0 0
\(57\) −0.100783 + 1.80711i −0.0133490 + 0.239357i
\(58\) 0 0
\(59\) 2.11673 0.275575 0.137788 0.990462i \(-0.456001\pi\)
0.137788 + 0.990462i \(0.456001\pi\)
\(60\) 0 0
\(61\) 8.11222i 1.03866i 0.854573 + 0.519332i \(0.173819\pi\)
−0.854573 + 0.519332i \(0.826181\pi\)
\(62\) 0 0
\(63\) −1.50243 + 7.79376i −0.189288 + 0.981922i
\(64\) 0 0
\(65\) 3.11462i 0.386321i
\(66\) 0 0
\(67\) 8.80626 1.07586 0.537928 0.842991i \(-0.319207\pi\)
0.537928 + 0.842991i \(0.319207\pi\)
\(68\) 0 0
\(69\) 0.0566158 1.01516i 0.00681574 0.122211i
\(70\) 0 0
\(71\) 2.57259i 0.305311i −0.988279 0.152655i \(-0.951218\pi\)
0.988279 0.152655i \(-0.0487825\pi\)
\(72\) 0 0
\(73\) 6.88336i 0.805637i 0.915280 + 0.402818i \(0.131969\pi\)
−0.915280 + 0.402818i \(0.868031\pi\)
\(74\) 0 0
\(75\) −1.72936 0.0964469i −0.199690 0.0111367i
\(76\) 0 0
\(77\) 4.51572 + 0.357540i 0.514614 + 0.0407455i
\(78\) 0 0
\(79\) 7.01425 0.789164 0.394582 0.918861i \(-0.370889\pi\)
0.394582 + 0.918861i \(0.370889\pi\)
\(80\) 0 0
\(81\) 8.77744 + 1.98909i 0.975272 + 0.221010i
\(82\) 0 0
\(83\) 5.21838 0.572791 0.286396 0.958111i \(-0.407543\pi\)
0.286396 + 0.958111i \(0.407543\pi\)
\(84\) 0 0
\(85\) 3.59399 0.389823
\(86\) 0 0
\(87\) −0.431570 + 7.73836i −0.0462691 + 0.829639i
\(88\) 0 0
\(89\) −8.17632 −0.866688 −0.433344 0.901229i \(-0.642666\pi\)
−0.433344 + 0.901229i \(0.642666\pi\)
\(90\) 0 0
\(91\) −8.21479 0.650421i −0.861144 0.0681827i
\(92\) 0 0
\(93\) 0.820940 14.7200i 0.0851275 1.52640i
\(94\) 0 0
\(95\) 1.04495i 0.107210i
\(96\) 0 0
\(97\) 13.5934i 1.38020i 0.723715 + 0.690099i \(0.242433\pi\)
−0.723715 + 0.690099i \(0.757567\pi\)
\(98\) 0 0
\(99\) 0.571136 5.10451i 0.0574013 0.513023i
\(100\) 0 0
\(101\) −4.28370 −0.426245 −0.213122 0.977026i \(-0.568363\pi\)
−0.213122 + 0.977026i \(0.568363\pi\)
\(102\) 0 0
\(103\) 14.0227i 1.38170i 0.722998 + 0.690850i \(0.242764\pi\)
−0.722998 + 0.690850i \(0.757236\pi\)
\(104\) 0 0
\(105\) 0.615519 4.54105i 0.0600685 0.443161i
\(106\) 0 0
\(107\) 19.4771i 1.88292i 0.337118 + 0.941462i \(0.390548\pi\)
−0.337118 + 0.941462i \(0.609452\pi\)
\(108\) 0 0
\(109\) −10.7331 −1.02804 −0.514021 0.857778i \(-0.671845\pi\)
−0.514021 + 0.857778i \(0.671845\pi\)
\(110\) 0 0
\(111\) 13.8271 + 0.771140i 1.31241 + 0.0731934i
\(112\) 0 0
\(113\) 8.81346i 0.829100i 0.910026 + 0.414550i \(0.136061\pi\)
−0.910026 + 0.414550i \(0.863939\pi\)
\(114\) 0 0
\(115\) 0.587015i 0.0547395i
\(116\) 0 0
\(117\) −1.03898 + 9.28590i −0.0960542 + 0.858482i
\(118\) 0 0
\(119\) −0.750529 + 9.47915i −0.0688009 + 0.868952i
\(120\) 0 0
\(121\) 8.06864 0.733513
\(122\) 0 0
\(123\) −13.4013 0.747393i −1.20835 0.0673902i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 17.2398 1.52978 0.764890 0.644160i \(-0.222793\pi\)
0.764890 + 0.644160i \(0.222793\pi\)
\(128\) 0 0
\(129\) −8.73799 0.487319i −0.769337 0.0429061i
\(130\) 0 0
\(131\) −6.92330 −0.604891 −0.302446 0.953167i \(-0.597803\pi\)
−0.302446 + 0.953167i \(0.597803\pi\)
\(132\) 0 0
\(133\) 2.75606 + 0.218217i 0.238981 + 0.0189218i
\(134\) 0 0
\(135\) −5.12374 0.864434i −0.440982 0.0743986i
\(136\) 0 0
\(137\) 21.5200i 1.83858i 0.393584 + 0.919289i \(0.371235\pi\)
−0.393584 + 0.919289i \(0.628765\pi\)
\(138\) 0 0
\(139\) 5.37425i 0.455838i −0.973680 0.227919i \(-0.926808\pi\)
0.973680 0.227919i \(-0.0731921\pi\)
\(140\) 0 0
\(141\) 17.1347 + 0.955605i 1.44300 + 0.0804764i
\(142\) 0 0
\(143\) 5.33260 0.445935
\(144\) 0 0
\(145\) 4.47468i 0.371602i
\(146\) 0 0
\(147\) 11.8485 + 2.57173i 0.977245 + 0.212113i
\(148\) 0 0
\(149\) 1.35482i 0.110992i −0.998459 0.0554958i \(-0.982326\pi\)
0.998459 0.0554958i \(-0.0176739\pi\)
\(150\) 0 0
\(151\) −14.4778 −1.17819 −0.589093 0.808065i \(-0.700515\pi\)
−0.589093 + 0.808065i \(0.700515\pi\)
\(152\) 0 0
\(153\) 10.7151 + 1.19890i 0.866266 + 0.0969251i
\(154\) 0 0
\(155\) 8.51183i 0.683687i
\(156\) 0 0
\(157\) 17.6973i 1.41239i −0.708015 0.706197i \(-0.750409\pi\)
0.708015 0.706197i \(-0.249591\pi\)
\(158\) 0 0
\(159\) 0.447095 8.01675i 0.0354570 0.635769i
\(160\) 0 0
\(161\) −1.54825 0.122586i −0.122019 0.00966110i
\(162\) 0 0
\(163\) 14.1348 1.10713 0.553563 0.832807i \(-0.313268\pi\)
0.553563 + 0.832807i \(0.313268\pi\)
\(164\) 0 0
\(165\) −0.165129 + 2.96088i −0.0128553 + 0.230504i
\(166\) 0 0
\(167\) 10.5005 0.812554 0.406277 0.913750i \(-0.366827\pi\)
0.406277 + 0.913750i \(0.366827\pi\)
\(168\) 0 0
\(169\) 3.29917 0.253782
\(170\) 0 0
\(171\) 0.348580 3.11542i 0.0266566 0.238242i
\(172\) 0 0
\(173\) −19.6775 −1.49605 −0.748025 0.663671i \(-0.768998\pi\)
−0.748025 + 0.663671i \(0.768998\pi\)
\(174\) 0 0
\(175\) −0.208829 + 2.63750i −0.0157860 + 0.199376i
\(176\) 0 0
\(177\) −3.66060 0.204152i −0.275148 0.0153450i
\(178\) 0 0
\(179\) 21.2730i 1.59002i −0.606599 0.795008i \(-0.707466\pi\)
0.606599 0.795008i \(-0.292534\pi\)
\(180\) 0 0
\(181\) 9.52329i 0.707861i 0.935272 + 0.353930i \(0.115155\pi\)
−0.935272 + 0.353930i \(0.884845\pi\)
\(182\) 0 0
\(183\) 0.782399 14.0290i 0.0578366 1.03705i
\(184\) 0 0
\(185\) −7.99549 −0.587840
\(186\) 0 0
\(187\) 6.15335i 0.449978i
\(188\) 0 0
\(189\) 3.34993 13.3333i 0.243671 0.969858i
\(190\) 0 0
\(191\) 22.1742i 1.60447i 0.597007 + 0.802236i \(0.296356\pi\)
−0.597007 + 0.802236i \(0.703644\pi\)
\(192\) 0 0
\(193\) −13.1540 −0.946846 −0.473423 0.880835i \(-0.656982\pi\)
−0.473423 + 0.880835i \(0.656982\pi\)
\(194\) 0 0
\(195\) 0.300395 5.38630i 0.0215117 0.385721i
\(196\) 0 0
\(197\) 13.8493i 0.986721i 0.869825 + 0.493361i \(0.164232\pi\)
−0.869825 + 0.493361i \(0.835768\pi\)
\(198\) 0 0
\(199\) 1.51305i 0.107257i −0.998561 0.0536285i \(-0.982921\pi\)
0.998561 0.0536285i \(-0.0170787\pi\)
\(200\) 0 0
\(201\) −15.2292 0.849336i −1.07419 0.0599076i
\(202\) 0 0
\(203\) 11.8020 + 0.934443i 0.828336 + 0.0655850i
\(204\) 0 0
\(205\) 7.74927 0.541232
\(206\) 0 0
\(207\) −0.195819 + 1.75012i −0.0136103 + 0.121642i
\(208\) 0 0
\(209\) −1.78909 −0.123754
\(210\) 0 0
\(211\) −3.10496 −0.213754 −0.106877 0.994272i \(-0.534085\pi\)
−0.106877 + 0.994272i \(0.534085\pi\)
\(212\) 0 0
\(213\) −0.248119 + 4.44895i −0.0170008 + 0.304837i
\(214\) 0 0
\(215\) 5.05272 0.344593
\(216\) 0 0
\(217\) −22.4499 1.77751i −1.52400 0.120666i
\(218\) 0 0
\(219\) 0.663879 11.9038i 0.0448608 0.804387i
\(220\) 0 0
\(221\) 11.1939i 0.752984i
\(222\) 0 0
\(223\) 6.39251i 0.428074i 0.976826 + 0.214037i \(0.0686614\pi\)
−0.976826 + 0.214037i \(0.931339\pi\)
\(224\) 0 0
\(225\) 2.98140 + 0.333584i 0.198760 + 0.0222389i
\(226\) 0 0
\(227\) 13.2462 0.879181 0.439591 0.898198i \(-0.355124\pi\)
0.439591 + 0.898198i \(0.355124\pi\)
\(228\) 0 0
\(229\) 15.4689i 1.02221i −0.859517 0.511107i \(-0.829236\pi\)
0.859517 0.511107i \(-0.170764\pi\)
\(230\) 0 0
\(231\) −7.77483 1.05384i −0.511546 0.0693378i
\(232\) 0 0
\(233\) 28.5413i 1.86980i −0.354907 0.934901i \(-0.615488\pi\)
0.354907 0.934901i \(-0.384512\pi\)
\(234\) 0 0
\(235\) −9.90809 −0.646332
\(236\) 0 0
\(237\) −12.1302 0.676502i −0.787940 0.0439436i
\(238\) 0 0
\(239\) 4.61686i 0.298640i 0.988789 + 0.149320i \(0.0477084\pi\)
−0.988789 + 0.149320i \(0.952292\pi\)
\(240\) 0 0
\(241\) 10.3604i 0.667375i −0.942684 0.333687i \(-0.891707\pi\)
0.942684 0.333687i \(-0.108293\pi\)
\(242\) 0 0
\(243\) −14.9875 4.28642i −0.961452 0.274974i
\(244\) 0 0
\(245\) −6.91278 1.10157i −0.441641 0.0703767i
\(246\) 0 0
\(247\) 3.25463 0.207087
\(248\) 0 0
\(249\) −9.02447 0.503297i −0.571903 0.0318951i
\(250\) 0 0
\(251\) −0.0748113 −0.00472205 −0.00236102 0.999997i \(-0.500752\pi\)
−0.00236102 + 0.999997i \(0.500752\pi\)
\(252\) 0 0
\(253\) 1.00504 0.0631864
\(254\) 0 0
\(255\) −6.21532 0.346630i −0.389218 0.0217068i
\(256\) 0 0
\(257\) −7.49720 −0.467663 −0.233831 0.972277i \(-0.575126\pi\)
−0.233831 + 0.972277i \(0.575126\pi\)
\(258\) 0 0
\(259\) 1.66969 21.0881i 0.103749 1.31035i
\(260\) 0 0
\(261\) 1.49268 13.3408i 0.0923947 0.825775i
\(262\) 0 0
\(263\) 20.0579i 1.23682i −0.785855 0.618410i \(-0.787777\pi\)
0.785855 0.618410i \(-0.212223\pi\)
\(264\) 0 0
\(265\) 4.63566i 0.284766i
\(266\) 0 0
\(267\) 14.1398 + 0.788581i 0.865343 + 0.0482603i
\(268\) 0 0
\(269\) 25.2069 1.53689 0.768447 0.639914i \(-0.221030\pi\)
0.768447 + 0.639914i \(0.221030\pi\)
\(270\) 0 0
\(271\) 18.0716i 1.09777i 0.835896 + 0.548887i \(0.184948\pi\)
−0.835896 + 0.548887i \(0.815052\pi\)
\(272\) 0 0
\(273\) 14.1436 + 1.91711i 0.856011 + 0.116029i
\(274\) 0 0
\(275\) 1.71212i 0.103245i
\(276\) 0 0
\(277\) −13.7938 −0.828786 −0.414393 0.910098i \(-0.636006\pi\)
−0.414393 + 0.910098i \(0.636006\pi\)
\(278\) 0 0
\(279\) −2.83941 + 25.3771i −0.169991 + 1.51929i
\(280\) 0 0
\(281\) 0.315357i 0.0188126i −0.999956 0.00940632i \(-0.997006\pi\)
0.999956 0.00940632i \(-0.00299417\pi\)
\(282\) 0 0
\(283\) 20.6408i 1.22697i −0.789707 0.613484i \(-0.789767\pi\)
0.789707 0.613484i \(-0.210233\pi\)
\(284\) 0 0
\(285\) −0.100783 + 1.80711i −0.00596985 + 0.107044i
\(286\) 0 0
\(287\) −1.61827 + 20.4387i −0.0955234 + 1.20646i
\(288\) 0 0
\(289\) −4.08321 −0.240189
\(290\) 0 0
\(291\) 1.31104 23.5079i 0.0768544 1.37806i
\(292\) 0 0
\(293\) −3.75188 −0.219187 −0.109594 0.993976i \(-0.534955\pi\)
−0.109594 + 0.993976i \(0.534955\pi\)
\(294\) 0 0
\(295\) 2.11673 0.123241
\(296\) 0 0
\(297\) −1.48002 + 8.77247i −0.0858792 + 0.509031i
\(298\) 0 0
\(299\) −1.82833 −0.105735
\(300\) 0 0
\(301\) −1.05515 + 13.3265i −0.0608180 + 0.768129i
\(302\) 0 0
\(303\) 7.40808 + 0.413150i 0.425583 + 0.0237349i
\(304\) 0 0
\(305\) 8.11222i 0.464504i
\(306\) 0 0
\(307\) 29.9301i 1.70820i −0.520108 0.854101i \(-0.674108\pi\)
0.520108 0.854101i \(-0.325892\pi\)
\(308\) 0 0
\(309\) 1.35245 24.2504i 0.0769381 1.37956i
\(310\) 0 0
\(311\) −21.0310 −1.19256 −0.596280 0.802777i \(-0.703355\pi\)
−0.596280 + 0.802777i \(0.703355\pi\)
\(312\) 0 0
\(313\) 9.74984i 0.551094i −0.961288 0.275547i \(-0.911141\pi\)
0.961288 0.275547i \(-0.0888589\pi\)
\(314\) 0 0
\(315\) −1.50243 + 7.79376i −0.0846522 + 0.439129i
\(316\) 0 0
\(317\) 16.2388i 0.912064i 0.889963 + 0.456032i \(0.150730\pi\)
−0.889963 + 0.456032i \(0.849270\pi\)
\(318\) 0 0
\(319\) −7.66120 −0.428945
\(320\) 0 0
\(321\) 1.87851 33.6830i 0.104848 1.88000i
\(322\) 0 0
\(323\) 3.75556i 0.208965i
\(324\) 0 0
\(325\) 3.11462i 0.172768i
\(326\) 0 0
\(327\) 18.5614 + 1.03517i 1.02645 + 0.0572451i
\(328\) 0 0
\(329\) 2.06909 26.1326i 0.114073 1.44073i
\(330\) 0 0
\(331\) −10.3877 −0.570957 −0.285479 0.958385i \(-0.592153\pi\)
−0.285479 + 0.958385i \(0.592153\pi\)
\(332\) 0 0
\(333\) −23.8377 2.66716i −1.30630 0.146160i
\(334\) 0 0
\(335\) 8.80626 0.481137
\(336\) 0 0
\(337\) 14.3020 0.779080 0.389540 0.921010i \(-0.372634\pi\)
0.389540 + 0.921010i \(0.372634\pi\)
\(338\) 0 0
\(339\) 0.850031 15.2417i 0.0461673 0.827814i
\(340\) 0 0
\(341\) 14.5733 0.789188
\(342\) 0 0
\(343\) 4.34898 18.0024i 0.234823 0.972038i
\(344\) 0 0
\(345\) 0.0566158 1.01516i 0.00304809 0.0546545i
\(346\) 0 0
\(347\) 3.55313i 0.190742i 0.995442 + 0.0953711i \(0.0304038\pi\)
−0.995442 + 0.0953711i \(0.969596\pi\)
\(348\) 0 0
\(349\) 33.8742i 1.81324i −0.421943 0.906622i \(-0.638652\pi\)
0.421943 0.906622i \(-0.361348\pi\)
\(350\) 0 0
\(351\) 2.69238 15.9585i 0.143709 0.851802i
\(352\) 0 0
\(353\) −0.702991 −0.0374165 −0.0187082 0.999825i \(-0.505955\pi\)
−0.0187082 + 0.999825i \(0.505955\pi\)
\(354\) 0 0
\(355\) 2.57259i 0.136539i
\(356\) 0 0
\(357\) 2.21217 16.3205i 0.117081 0.863773i
\(358\) 0 0
\(359\) 33.0033i 1.74185i −0.491420 0.870923i \(-0.663522\pi\)
0.491420 0.870923i \(-0.336478\pi\)
\(360\) 0 0
\(361\) 17.9081 0.942530
\(362\) 0 0
\(363\) −13.9536 0.778195i −0.732375 0.0408447i
\(364\) 0 0
\(365\) 6.88336i 0.360292i
\(366\) 0 0
\(367\) 6.88379i 0.359331i 0.983728 + 0.179666i \(0.0575015\pi\)
−0.983728 + 0.179666i \(0.942498\pi\)
\(368\) 0 0
\(369\) 23.1036 + 2.58503i 1.20273 + 0.134571i
\(370\) 0 0
\(371\) −12.2265 0.968060i −0.634771 0.0502591i
\(372\) 0 0
\(373\) 27.1278 1.40462 0.702311 0.711870i \(-0.252152\pi\)
0.702311 + 0.711870i \(0.252152\pi\)
\(374\) 0 0
\(375\) −1.72936 0.0964469i −0.0893039 0.00498050i
\(376\) 0 0
\(377\) 13.9369 0.717788
\(378\) 0 0
\(379\) 25.2240 1.29567 0.647836 0.761780i \(-0.275674\pi\)
0.647836 + 0.761780i \(0.275674\pi\)
\(380\) 0 0
\(381\) −29.8138 1.66272i −1.52741 0.0851838i
\(382\) 0 0
\(383\) −10.8647 −0.555163 −0.277581 0.960702i \(-0.589533\pi\)
−0.277581 + 0.960702i \(0.589533\pi\)
\(384\) 0 0
\(385\) 4.51572 + 0.357540i 0.230142 + 0.0182219i
\(386\) 0 0
\(387\) 15.0642 + 1.68550i 0.765754 + 0.0856790i
\(388\) 0 0
\(389\) 24.7623i 1.25550i 0.778415 + 0.627750i \(0.216024\pi\)
−0.778415 + 0.627750i \(0.783976\pi\)
\(390\) 0 0
\(391\) 2.10973i 0.106694i
\(392\) 0 0
\(393\) 11.9729 + 0.667731i 0.603953 + 0.0336826i
\(394\) 0 0
\(395\) 7.01425 0.352925
\(396\) 0 0
\(397\) 23.9258i 1.20080i −0.799699 0.600401i \(-0.795008\pi\)
0.799699 0.600401i \(-0.204992\pi\)
\(398\) 0 0
\(399\) −4.74519 0.643190i −0.237557 0.0321998i
\(400\) 0 0
\(401\) 13.5963i 0.678966i −0.940612 0.339483i \(-0.889748\pi\)
0.940612 0.339483i \(-0.110252\pi\)
\(402\) 0 0
\(403\) −26.5111 −1.32061
\(404\) 0 0
\(405\) 8.77744 + 1.98909i 0.436155 + 0.0988386i
\(406\) 0 0
\(407\) 13.6892i 0.678551i
\(408\) 0 0
\(409\) 27.6024i 1.36485i 0.730954 + 0.682426i \(0.239075\pi\)
−0.730954 + 0.682426i \(0.760925\pi\)
\(410\) 0 0
\(411\) 2.07554 37.2159i 0.102379 1.83573i
\(412\) 0 0
\(413\) −0.442035 + 5.58288i −0.0217511 + 0.274715i
\(414\) 0 0
\(415\) 5.21838 0.256160
\(416\) 0 0
\(417\) −0.518330 + 9.29403i −0.0253827 + 0.455130i
\(418\) 0 0
\(419\) −29.2886 −1.43084 −0.715421 0.698694i \(-0.753765\pi\)
−0.715421 + 0.698694i \(0.753765\pi\)
\(420\) 0 0
\(421\) 22.8900 1.11559 0.557794 0.829979i \(-0.311648\pi\)
0.557794 + 0.829979i \(0.311648\pi\)
\(422\) 0 0
\(423\) −29.5399 3.30518i −1.43628 0.160703i
\(424\) 0 0
\(425\) 3.59399 0.174334
\(426\) 0 0
\(427\) −21.3960 1.69407i −1.03542 0.0819816i
\(428\) 0 0
\(429\) −9.22201 0.514313i −0.445243 0.0248313i
\(430\) 0 0
\(431\) 14.1215i 0.680208i 0.940388 + 0.340104i \(0.110462\pi\)
−0.940388 + 0.340104i \(0.889538\pi\)
\(432\) 0 0
\(433\) 25.5976i 1.23014i −0.788471 0.615072i \(-0.789127\pi\)
0.788471 0.615072i \(-0.210873\pi\)
\(434\) 0 0
\(435\) −0.431570 + 7.73836i −0.0206922 + 0.371026i
\(436\) 0 0
\(437\) 0.613404 0.0293431
\(438\) 0 0
\(439\) 19.5553i 0.933322i 0.884436 + 0.466661i \(0.154543\pi\)
−0.884436 + 0.466661i \(0.845457\pi\)
\(440\) 0 0
\(441\) −20.2423 5.59021i −0.963918 0.266200i
\(442\) 0 0
\(443\) 35.7251i 1.69735i 0.528916 + 0.848674i \(0.322599\pi\)
−0.528916 + 0.848674i \(0.677401\pi\)
\(444\) 0 0
\(445\) −8.17632 −0.387595
\(446\) 0 0
\(447\) −0.130669 + 2.34298i −0.00618042 + 0.110819i
\(448\) 0 0
\(449\) 20.1071i 0.948912i −0.880279 0.474456i \(-0.842645\pi\)
0.880279 0.474456i \(-0.157355\pi\)
\(450\) 0 0
\(451\) 13.2677i 0.624751i
\(452\) 0 0
\(453\) 25.0374 + 1.39634i 1.17636 + 0.0656057i
\(454\) 0 0
\(455\) −8.21479 0.650421i −0.385115 0.0304922i
\(456\) 0 0
\(457\) 6.65005 0.311076 0.155538 0.987830i \(-0.450289\pi\)
0.155538 + 0.987830i \(0.450289\pi\)
\(458\) 0 0
\(459\) −18.4147 3.10677i −0.859525 0.145012i
\(460\) 0 0
\(461\) 23.7531 1.10629 0.553146 0.833084i \(-0.313427\pi\)
0.553146 + 0.833084i \(0.313427\pi\)
\(462\) 0 0
\(463\) −9.26150 −0.430418 −0.215209 0.976568i \(-0.569043\pi\)
−0.215209 + 0.976568i \(0.569043\pi\)
\(464\) 0 0
\(465\) 0.820940 14.7200i 0.0380702 0.682626i
\(466\) 0 0
\(467\) −18.2641 −0.845161 −0.422580 0.906325i \(-0.638876\pi\)
−0.422580 + 0.906325i \(0.638876\pi\)
\(468\) 0 0
\(469\) −1.83900 + 23.2265i −0.0849171 + 1.07250i
\(470\) 0 0
\(471\) −1.70685 + 30.6050i −0.0786473 + 1.41020i
\(472\) 0 0
\(473\) 8.65087i 0.397767i
\(474\) 0 0
\(475\) 1.04495i 0.0479458i
\(476\) 0 0
\(477\) −1.54638 + 13.8207i −0.0708039 + 0.632808i
\(478\) 0 0
\(479\) −0.944391 −0.0431503 −0.0215752 0.999767i \(-0.506868\pi\)
−0.0215752 + 0.999767i \(0.506868\pi\)
\(480\) 0 0
\(481\) 24.9029i 1.13547i
\(482\) 0 0
\(483\) 2.66567 + 0.361319i 0.121292 + 0.0164406i
\(484\) 0 0
\(485\) 13.5934i 0.617243i
\(486\) 0 0
\(487\) −8.11446 −0.367701 −0.183851 0.982954i \(-0.558856\pi\)
−0.183851 + 0.982954i \(0.558856\pi\)
\(488\) 0 0
\(489\) −24.4443 1.36326i −1.10541 0.0616488i
\(490\) 0 0
\(491\) 18.9773i 0.856432i −0.903676 0.428216i \(-0.859142\pi\)
0.903676 0.428216i \(-0.140858\pi\)
\(492\) 0 0
\(493\) 16.0820i 0.724296i
\(494\) 0 0
\(495\) 0.571136 5.10451i 0.0256706 0.229431i
\(496\) 0 0
\(497\) 6.78521 + 0.537232i 0.304358 + 0.0240981i
\(498\) 0 0
\(499\) −20.1764 −0.903220 −0.451610 0.892215i \(-0.649150\pi\)
−0.451610 + 0.892215i \(0.649150\pi\)
\(500\) 0 0
\(501\) −18.1592 1.01274i −0.811293 0.0452460i
\(502\) 0 0
\(503\) 33.6527 1.50050 0.750249 0.661155i \(-0.229934\pi\)
0.750249 + 0.661155i \(0.229934\pi\)
\(504\) 0 0
\(505\) −4.28370 −0.190622
\(506\) 0 0
\(507\) −5.70546 0.318194i −0.253388 0.0141315i
\(508\) 0 0
\(509\) 14.4818 0.641896 0.320948 0.947097i \(-0.395999\pi\)
0.320948 + 0.947097i \(0.395999\pi\)
\(510\) 0 0
\(511\) −18.1548 1.43744i −0.803123 0.0635888i
\(512\) 0 0
\(513\) −0.903294 + 5.35408i −0.0398814 + 0.236388i
\(514\) 0 0
\(515\) 14.0227i 0.617915i
\(516\) 0 0
\(517\) 16.9639i 0.746069i
\(518\) 0 0
\(519\) 34.0295 + 1.89783i 1.49373 + 0.0833055i
\(520\) 0 0
\(521\) 31.7476 1.39089 0.695445 0.718580i \(-0.255207\pi\)
0.695445 + 0.718580i \(0.255207\pi\)
\(522\) 0 0
\(523\) 3.24913i 0.142074i −0.997474 0.0710372i \(-0.977369\pi\)
0.997474 0.0710372i \(-0.0226309\pi\)
\(524\) 0 0
\(525\) 0.615519 4.54105i 0.0268635 0.198188i
\(526\) 0 0
\(527\) 30.5915i 1.33259i
\(528\) 0 0
\(529\) 22.6554 0.985018
\(530\) 0 0
\(531\) 6.31082 + 0.706107i 0.273866 + 0.0306424i
\(532\) 0 0
\(533\) 24.1360i 1.04545i
\(534\) 0 0
\(535\) 19.4771i 0.842070i
\(536\) 0 0
\(537\) −2.05171 + 36.7887i −0.0885379 + 1.58755i
\(538\) 0 0
\(539\) −1.88602 + 11.8355i −0.0812367 + 0.509792i
\(540\) 0 0
\(541\) −17.9697 −0.772578 −0.386289 0.922378i \(-0.626243\pi\)
−0.386289 + 0.922378i \(0.626243\pi\)
\(542\) 0 0
\(543\) 0.918492 16.4692i 0.0394163 0.706763i
\(544\) 0 0
\(545\) −10.7331 −0.459754
\(546\) 0 0
\(547\) −18.3387 −0.784107 −0.392054 0.919942i \(-0.628235\pi\)
−0.392054 + 0.919942i \(0.628235\pi\)
\(548\) 0 0
\(549\) −2.70610 + 24.1857i −0.115494 + 1.03222i
\(550\) 0 0
\(551\) −4.67584 −0.199198
\(552\) 0 0
\(553\) −1.46478 + 18.5001i −0.0622886 + 0.786702i
\(554\) 0 0
\(555\) 13.8271 + 0.771140i 0.586928 + 0.0327331i
\(556\) 0 0
\(557\) 28.3017i 1.19918i 0.800306 + 0.599591i \(0.204670\pi\)
−0.800306 + 0.599591i \(0.795330\pi\)
\(558\) 0 0
\(559\) 15.7373i 0.665616i
\(560\) 0 0
\(561\) −0.593472 + 10.6414i −0.0250564 + 0.449280i
\(562\) 0 0
\(563\) 17.8742 0.753308 0.376654 0.926354i \(-0.377075\pi\)
0.376654 + 0.926354i \(0.377075\pi\)
\(564\) 0 0
\(565\) 8.81346i 0.370785i
\(566\) 0 0
\(567\) −7.07920 + 22.7351i −0.297298 + 0.954785i
\(568\) 0 0
\(569\) 2.42862i 0.101813i 0.998703 + 0.0509066i \(0.0162111\pi\)
−0.998703 + 0.0509066i \(0.983789\pi\)
\(570\) 0 0
\(571\) 23.8480 0.998008 0.499004 0.866600i \(-0.333699\pi\)
0.499004 + 0.866600i \(0.333699\pi\)
\(572\) 0 0
\(573\) 2.13864 38.3473i 0.0893429 1.60198i
\(574\) 0 0
\(575\) 0.587015i 0.0244802i
\(576\) 0 0
\(577\) 27.1298i 1.12943i −0.825287 0.564714i \(-0.808987\pi\)
0.825287 0.564714i \(-0.191013\pi\)
\(578\) 0 0
\(579\) 22.7481 + 1.26866i 0.945377 + 0.0527239i
\(580\) 0 0
\(581\) −1.08975 + 13.7635i −0.0452103 + 0.571004i
\(582\) 0 0
\(583\) 7.93682 0.328709
\(584\) 0 0
\(585\) −1.03898 + 9.28590i −0.0429567 + 0.383925i
\(586\) 0 0
\(587\) −38.5360 −1.59055 −0.795275 0.606249i \(-0.792673\pi\)
−0.795275 + 0.606249i \(0.792673\pi\)
\(588\) 0 0
\(589\) 8.89448 0.366490
\(590\) 0 0
\(591\) 1.33572 23.9505i 0.0549442 0.985190i
\(592\) 0 0
\(593\) −36.2739 −1.48959 −0.744796 0.667293i \(-0.767453\pi\)
−0.744796 + 0.667293i \(0.767453\pi\)
\(594\) 0 0
\(595\) −0.750529 + 9.47915i −0.0307687 + 0.388607i
\(596\) 0 0
\(597\) −0.145929 + 2.61661i −0.00597246 + 0.107091i
\(598\) 0 0
\(599\) 13.4627i 0.550072i −0.961434 0.275036i \(-0.911310\pi\)
0.961434 0.275036i \(-0.0886898\pi\)
\(600\) 0 0
\(601\) 15.0055i 0.612088i 0.952017 + 0.306044i \(0.0990054\pi\)
−0.952017 + 0.306044i \(0.900995\pi\)
\(602\) 0 0
\(603\) 26.2549 + 2.93762i 1.06918 + 0.119629i
\(604\) 0 0
\(605\) 8.06864 0.328037
\(606\) 0 0
\(607\) 9.84471i 0.399585i −0.979838 0.199792i \(-0.935973\pi\)
0.979838 0.199792i \(-0.0640267\pi\)
\(608\) 0 0
\(609\) −20.3198 2.75425i −0.823399 0.111608i
\(610\) 0 0
\(611\) 30.8599i 1.24846i
\(612\) 0 0
\(613\) −35.8700 −1.44878 −0.724388 0.689392i \(-0.757878\pi\)
−0.724388 + 0.689392i \(0.757878\pi\)
\(614\) 0 0
\(615\) −13.4013 0.747393i −0.540393 0.0301378i
\(616\) 0 0
\(617\) 4.01170i 0.161505i −0.996734 0.0807524i \(-0.974268\pi\)
0.996734 0.0807524i \(-0.0257323\pi\)
\(618\) 0 0
\(619\) 5.91495i 0.237742i −0.992910 0.118871i \(-0.962073\pi\)
0.992910 0.118871i \(-0.0379275\pi\)
\(620\) 0 0
\(621\) 0.507436 3.00772i 0.0203627 0.120695i
\(622\) 0 0
\(623\) 1.70745 21.5650i 0.0684075 0.863984i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 3.09399 + 0.172552i 0.123562 + 0.00689107i
\(628\) 0 0
\(629\) −28.7357 −1.14577
\(630\) 0 0
\(631\) 44.3710 1.76638 0.883191 0.469014i \(-0.155391\pi\)
0.883191 + 0.469014i \(0.155391\pi\)
\(632\) 0 0
\(633\) 5.36960 + 0.299464i 0.213423 + 0.0119026i
\(634\) 0 0
\(635\) 17.2398 0.684139
\(636\) 0 0
\(637\) 3.43097 21.5307i 0.135940 0.853076i
\(638\) 0 0
\(639\) 0.858175 7.66992i 0.0339489 0.303417i
\(640\) 0 0
\(641\) 32.2004i 1.27184i −0.771756 0.635919i \(-0.780621\pi\)
0.771756 0.635919i \(-0.219379\pi\)
\(642\) 0 0
\(643\) 10.9089i 0.430204i 0.976592 + 0.215102i \(0.0690084\pi\)
−0.976592 + 0.215102i \(0.930992\pi\)
\(644\) 0 0
\(645\) −8.73799 0.487319i −0.344058 0.0191882i
\(646\) 0 0
\(647\) −5.60683 −0.220427 −0.110214 0.993908i \(-0.535153\pi\)
−0.110214 + 0.993908i \(0.535153\pi\)
\(648\) 0 0
\(649\) 3.62410i 0.142259i
\(650\) 0 0
\(651\) 38.6526 + 5.23920i 1.51492 + 0.205340i
\(652\) 0 0
\(653\) 21.1436i 0.827414i −0.910410 0.413707i \(-0.864234\pi\)
0.910410 0.413707i \(-0.135766\pi\)
\(654\) 0 0
\(655\) −6.92330 −0.270516
\(656\) 0 0
\(657\) −2.29618 + 20.5220i −0.0895824 + 0.800641i
\(658\) 0 0
\(659\) 5.88542i 0.229264i −0.993408 0.114632i \(-0.963431\pi\)
0.993408 0.114632i \(-0.0365688\pi\)
\(660\) 0 0
\(661\) 49.9175i 1.94157i 0.239956 + 0.970784i \(0.422867\pi\)
−0.239956 + 0.970784i \(0.577133\pi\)
\(662\) 0 0
\(663\) 1.07962 19.3583i 0.0419289 0.751816i
\(664\) 0 0
\(665\) 2.75606 + 0.218217i 0.106876 + 0.00846207i
\(666\) 0 0
\(667\) 2.62671 0.101707
\(668\) 0 0
\(669\) 0.616538 11.0550i 0.0238367 0.427410i
\(670\) 0 0
\(671\) 13.8891 0.536183
\(672\) 0 0
\(673\) 33.1364 1.27732 0.638658 0.769491i \(-0.279490\pi\)
0.638658 + 0.769491i \(0.279490\pi\)
\(674\) 0 0
\(675\) −5.12374 0.864434i −0.197213 0.0332721i
\(676\) 0 0
\(677\) 6.16011 0.236752 0.118376 0.992969i \(-0.462231\pi\)
0.118376 + 0.992969i \(0.462231\pi\)
\(678\) 0 0
\(679\) −35.8525 2.83869i −1.37589 0.108939i
\(680\) 0 0
\(681\) −22.9075 1.27756i −0.877817 0.0489560i
\(682\) 0 0
\(683\) 28.6145i 1.09490i 0.836837 + 0.547451i \(0.184402\pi\)
−0.836837 + 0.547451i \(0.815598\pi\)
\(684\) 0 0
\(685\) 21.5200i 0.822237i
\(686\) 0 0
\(687\) −1.49193 + 26.7513i −0.0569206 + 1.02063i
\(688\) 0 0
\(689\) −14.4383 −0.550056
\(690\) 0 0
\(691\) 32.4683i 1.23515i 0.786511 + 0.617576i \(0.211885\pi\)
−0.786511 + 0.617576i \(0.788115\pi\)
\(692\) 0 0
\(693\) 13.3439 + 2.57234i 0.506892 + 0.0977150i
\(694\) 0 0
\(695\) 5.37425i 0.203857i
\(696\) 0 0
\(697\) 27.8508 1.05492
\(698\) 0 0
\(699\) −2.75272 + 49.3583i −0.104117 + 1.86690i
\(700\) 0 0
\(701\) 2.46493i 0.0930990i −0.998916 0.0465495i \(-0.985177\pi\)
0.998916 0.0465495i \(-0.0148225\pi\)
\(702\) 0 0
\(703\) 8.35492i 0.315112i
\(704\) 0 0
\(705\) 17.1347 + 0.955605i 0.645330 + 0.0359902i
\(706\) 0 0
\(707\) 0.894561 11.2983i 0.0336434 0.424915i
\(708\) 0 0
\(709\) 26.7646 1.00517 0.502584 0.864529i \(-0.332383\pi\)
0.502584 + 0.864529i \(0.332383\pi\)
\(710\) 0 0
\(711\) 20.9122 + 2.33984i 0.784270 + 0.0877507i
\(712\) 0 0
\(713\) −4.99657 −0.187123
\(714\) 0 0
\(715\) 5.33260 0.199428
\(716\) 0 0
\(717\) 0.445281 7.98422i 0.0166293 0.298176i
\(718\) 0 0
\(719\) 29.2186 1.08967 0.544835 0.838543i \(-0.316592\pi\)
0.544835 + 0.838543i \(0.316592\pi\)
\(720\) 0 0
\(721\) −36.9849 2.92835i −1.37739 0.109057i
\(722\) 0 0
\(723\) −0.999233 + 17.9170i −0.0371619 + 0.666339i
\(724\) 0 0
\(725\) 4.47468i 0.166186i
\(726\) 0 0
\(727\) 49.9735i 1.85341i −0.375784 0.926707i \(-0.622627\pi\)
0.375784 0.926707i \(-0.377373\pi\)
\(728\) 0 0
\(729\) 25.5055 + 8.85827i 0.944648 + 0.328084i
\(730\) 0 0
\(731\) 18.1594 0.671651
\(732\) 0 0
\(733\) 8.25200i 0.304795i −0.988319 0.152397i \(-0.951301\pi\)
0.988319 0.152397i \(-0.0486993\pi\)
\(734\) 0 0
\(735\) 11.8485 + 2.57173i 0.437037 + 0.0948598i
\(736\) 0 0
\(737\) 15.0774i 0.555382i
\(738\) 0 0
\(739\) 9.17080 0.337353 0.168677 0.985671i \(-0.446051\pi\)
0.168677 + 0.985671i \(0.446051\pi\)
\(740\) 0 0
\(741\) −5.62844 0.313899i −0.206766 0.0115314i
\(742\) 0 0
\(743\) 45.3646i 1.66427i −0.554575 0.832133i \(-0.687119\pi\)
0.554575 0.832133i \(-0.312881\pi\)
\(744\) 0 0
\(745\) 1.35482i 0.0496369i
\(746\) 0 0
\(747\) 15.5581 + 1.74077i 0.569239 + 0.0636913i
\(748\) 0 0
\(749\) −51.3709 4.06738i −1.87705 0.148619i
\(750\) 0 0
\(751\) 6.19247 0.225966 0.112983 0.993597i \(-0.463959\pi\)
0.112983 + 0.993597i \(0.463959\pi\)
\(752\) 0 0
\(753\) 0.129376 + 0.00721532i 0.00471472 + 0.000262941i
\(754\) 0 0
\(755\) −14.4778 −0.526901
\(756\) 0 0
\(757\) 37.0168 1.34540 0.672700 0.739916i \(-0.265135\pi\)
0.672700 + 0.739916i \(0.265135\pi\)
\(758\) 0 0
\(759\) −1.73808 0.0969332i −0.0630884 0.00351845i
\(760\) 0 0
\(761\) −12.5683 −0.455600 −0.227800 0.973708i \(-0.573153\pi\)
−0.227800 + 0.973708i \(0.573153\pi\)
\(762\) 0 0
\(763\) 2.24137 28.3085i 0.0811432 1.02483i
\(764\) 0 0
\(765\) 10.7151 + 1.19890i 0.387406 + 0.0433462i
\(766\) 0 0
\(767\) 6.59281i 0.238053i
\(768\) 0 0
\(769\) 3.34523i 0.120632i −0.998179 0.0603161i \(-0.980789\pi\)
0.998179 0.0603161i \(-0.0192109\pi\)
\(770\) 0 0
\(771\) 12.9654 + 0.723082i 0.466937 + 0.0260412i
\(772\) 0 0
\(773\) −32.9333 −1.18453 −0.592265 0.805743i \(-0.701766\pi\)
−0.592265 + 0.805743i \(0.701766\pi\)
\(774\) 0 0
\(775\) 8.51183i 0.305754i
\(776\) 0 0
\(777\) −4.92138 + 36.3079i −0.176553 + 1.30254i
\(778\) 0 0
\(779\) 8.09763i 0.290128i
\(780\) 0 0
\(781\) −4.40459 −0.157609
\(782\) 0 0
\(783\) −3.86807 + 22.9271i −0.138233 + 0.819349i
\(784\) 0 0
\(785\) 17.6973i 0.631642i
\(786\) 0 0
\(787\) 28.4703i 1.01486i 0.861694 + 0.507429i \(0.169404\pi\)
−0.861694 + 0.507429i \(0.830596\pi\)
\(788\) 0 0
\(789\) −1.93452 + 34.6873i −0.0688707 + 1.23490i
\(790\) 0 0
\(791\) −23.2455 1.84050i −0.826514 0.0654408i
\(792\) 0 0
\(793\) −25.2665 −0.897238
\(794\) 0 0
\(795\) 0.447095 8.01675i 0.0158568 0.284325i
\(796\) 0 0
\(797\) −3.80494 −0.134778 −0.0673890 0.997727i \(-0.521467\pi\)
−0.0673890 + 0.997727i \(0.521467\pi\)
\(798\) 0 0
\(799\) −35.6096 −1.25978
\(800\) 0 0
\(801\) −24.3768 2.72748i −0.861313 0.0963709i
\(802\) 0 0
\(803\) 11.7852 0.415889
\(804\) 0 0
\(805\) −1.54825 0.122586i −0.0545687 0.00432058i
\(806\) 0 0
\(807\) −43.5919 2.43113i −1.53451 0.0855799i
\(808\) 0 0
\(809\) 41.4444i 1.45711i −0.684989 0.728553i \(-0.740193\pi\)
0.684989 0.728553i \(-0.259807\pi\)
\(810\) 0 0
\(811\) 14.7455i 0.517784i 0.965906 + 0.258892i \(0.0833574\pi\)
−0.965906 + 0.258892i \(0.916643\pi\)
\(812\) 0 0
\(813\) 1.74295 31.2524i 0.0611281 1.09607i
\(814\) 0 0
\(815\) 14.1348 0.495122
\(816\) 0 0
\(817\) 5.27986i 0.184719i
\(818\) 0 0
\(819\) −24.2746 4.67948i −0.848222 0.163514i
\(820\) 0 0
\(821\) 16.8830i 0.589222i 0.955617 + 0.294611i \(0.0951901\pi\)
−0.955617 + 0.294611i \(0.904810\pi\)
\(822\) 0 0
\(823\) −51.4749 −1.79430 −0.897151 0.441725i \(-0.854367\pi\)
−0.897151 + 0.441725i \(0.854367\pi\)
\(824\) 0 0
\(825\) −0.165129 + 2.96088i −0.00574905 + 0.103085i
\(826\) 0 0
\(827\) 19.1522i 0.665988i −0.942929 0.332994i \(-0.891941\pi\)
0.942929 0.332994i \(-0.108059\pi\)
\(828\) 0 0
\(829\) 1.62424i 0.0564121i −0.999602 0.0282060i \(-0.991021\pi\)
0.999602 0.0282060i \(-0.00897946\pi\)
\(830\) 0 0
\(831\) 23.8544 + 1.33036i 0.827500 + 0.0461499i
\(832\) 0 0
\(833\) −24.8445 3.95904i −0.860811 0.137172i
\(834\) 0 0
\(835\) 10.5005 0.363385
\(836\) 0 0
\(837\) 7.35791 43.6124i 0.254327 1.50747i
\(838\) 0 0
\(839\) 31.8128 1.09830 0.549150 0.835724i \(-0.314952\pi\)
0.549150 + 0.835724i \(0.314952\pi\)
\(840\) 0 0
\(841\) 8.97719 0.309558
\(842\) 0 0
\(843\) −0.0304152 + 0.545367i −0.00104756 + 0.0187835i
\(844\) 0 0
\(845\) 3.29917 0.113495
\(846\) 0 0
\(847\) −1.68496 + 21.2810i −0.0578960 + 0.731224i
\(848\) 0 0
\(849\) −1.99074 + 35.6954i −0.0683221 + 1.22506i
\(850\) 0 0
\(851\) 4.69347i 0.160890i
\(852\) 0 0
\(853\) 43.0272i 1.47322i 0.676316 + 0.736612i \(0.263575\pi\)
−0.676316 + 0.736612i \(0.736425\pi\)
\(854\) 0 0
\(855\) 0.348580 3.11542i 0.0119212 0.106545i
\(856\) 0 0
\(857\) 13.7323 0.469086 0.234543 0.972106i \(-0.424641\pi\)
0.234543 + 0.972106i \(0.424641\pi\)
\(858\) 0 0
\(859\) 24.6976i 0.842673i 0.906904 + 0.421336i \(0.138439\pi\)
−0.906904 + 0.421336i \(0.861561\pi\)
\(860\) 0 0
\(861\) 4.76982 35.1898i 0.162555 1.19927i
\(862\) 0 0
\(863\) 49.4217i 1.68233i −0.540775 0.841167i \(-0.681869\pi\)
0.540775 0.841167i \(-0.318131\pi\)
\(864\) 0 0
\(865\) −19.6775 −0.669054
\(866\) 0 0
\(867\) 7.06136 + 0.393813i 0.239816 + 0.0133746i
\(868\) 0 0
\(869\) 12.0092i 0.407386i
\(870\) 0 0
\(871\) 27.4281i 0.929366i
\(872\) 0 0
\(873\) −4.53452 + 40.5272i −0.153470 + 1.37164i
\(874\) 0 0
\(875\) −0.208829 + 2.63750i −0.00705970 + 0.0891637i
\(876\) 0 0
\(877\) 46.8346 1.58149 0.790746 0.612144i \(-0.209693\pi\)
0.790746 + 0.612144i \(0.209693\pi\)
\(878\) 0 0
\(879\) 6.48837 + 0.361857i 0.218847 + 0.0122051i
\(880\) 0 0
\(881\) −25.2322 −0.850096 −0.425048 0.905171i \(-0.639743\pi\)
−0.425048 + 0.905171i \(0.639743\pi\)
\(882\) 0 0
\(883\) 0.140777 0.00473751 0.00236876 0.999997i \(-0.499246\pi\)
0.00236876 + 0.999997i \(0.499246\pi\)
\(884\) 0 0
\(885\) −3.66060 0.204152i −0.123050 0.00686251i
\(886\) 0 0
\(887\) −0.336941 −0.0113134 −0.00565669 0.999984i \(-0.501801\pi\)
−0.00565669 + 0.999984i \(0.501801\pi\)
\(888\) 0 0
\(889\) −3.60016 + 45.4698i −0.120745 + 1.52501i
\(890\) 0 0
\(891\) 3.40556 15.0281i 0.114091 0.503459i
\(892\) 0 0
\(893\) 10.3535i 0.346467i
\(894\) 0 0
\(895\) 21.2730i 0.711077i
\(896\) 0 0
\(897\) 3.16184 + 0.176337i 0.105571 + 0.00588771i
\(898\) 0 0
\(899\) 38.0878 1.27030
\(900\) 0 0
\(901\) 16.6605i 0.555043i
\(902\) 0 0
\(903\) 3.11005 22.9447i 0.103496 0.763550i
\(904\) 0 0
\(905\) 9.52329i 0.316565i
\(906\) 0 0
\(907\) −41.5312 −1.37902 −0.689511 0.724275i \(-0.742175\pi\)
−0.689511 + 0.724275i \(0.742175\pi\)
\(908\) 0 0
\(909\) −12.7714 1.42897i −0.423601 0.0473961i
\(910\) 0 0
\(911\) 45.7168i 1.51467i 0.653029 + 0.757333i \(0.273498\pi\)
−0.653029 + 0.757333i \(0.726502\pi\)
\(912\) 0 0
\(913\) 8.93450i 0.295689i
\(914\) 0 0
\(915\) 0.782399 14.0290i 0.0258653 0.463784i
\(916\) 0 0
\(917\) 1.44578 18.2602i 0.0477440 0.603004i
\(918\) 0 0
\(919\) 11.6957 0.385806 0.192903 0.981218i \(-0.438210\pi\)
0.192903 + 0.981218i \(0.438210\pi\)
\(920\) 0 0
\(921\) −2.88667 + 51.7600i −0.0951189 + 1.70555i
\(922\) 0 0
\(923\) 8.01264 0.263739
\(924\) 0 0
\(925\) −7.99549 −0.262890
\(926\) 0 0
\(927\) −4.67775 + 41.8073i −0.153637 + 1.37313i
\(928\) 0 0
\(929\) 56.6691 1.85925 0.929627 0.368501i \(-0.120129\pi\)
0.929627 + 0.368501i \(0.120129\pi\)
\(930\) 0 0
\(931\) −1.15109 + 7.22354i −0.0377255 + 0.236742i
\(932\) 0 0
\(933\) 36.3703 + 2.02838i 1.19071 + 0.0664061i
\(934\) 0 0
\(935\) 6.15335i 0.201236i
\(936\) 0 0
\(937\) 56.2225i 1.83671i 0.395760 + 0.918354i \(0.370481\pi\)
−0.395760 + 0.918354i \(0.629519\pi\)
\(938\) 0 0
\(939\) −0.940342 + 16.8610i −0.0306869 + 0.550239i
\(940\) 0 0
\(941\) 26.1463 0.852345 0.426172 0.904642i \(-0.359862\pi\)
0.426172 + 0.904642i \(0.359862\pi\)
\(942\) 0 0
\(943\) 4.54894i 0.148134i
\(944\) 0 0
\(945\) 3.34993 13.3333i 0.108973 0.433734i
\(946\) 0 0
\(947\) 29.7126i 0.965530i −0.875750 0.482765i \(-0.839632\pi\)
0.875750 0.482765i \(-0.160368\pi\)
\(948\) 0 0
\(949\) −21.4390 −0.695940
\(950\) 0 0
\(951\) 1.56619 28.0828i 0.0507870 0.910648i
\(952\) 0 0
\(953\) 29.6858i 0.961618i −0.876825 0.480809i \(-0.840343\pi\)
0.876825 0.480809i \(-0.159657\pi\)
\(954\) 0 0
\(955\) 22.1742i 0.717542i
\(956\) 0 0
\(957\) 13.2490 + 0.738900i 0.428280 + 0.0238852i
\(958\) 0 0
\(959\) −56.7589 4.49399i −1.83284 0.145119i
\(960\) 0 0
\(961\) −41.4513 −1.33714
\(962\) 0 0
\(963\) −6.49725 + 58.0690i −0.209371 + 1.87125i
\(964\) 0 0
\(965\) −13.1540 −0.423443
\(966\) 0 0
\(967\) 48.0668 1.54572 0.772862 0.634574i \(-0.218824\pi\)
0.772862 + 0.634574i \(0.218824\pi\)
\(968\) 0 0
\(969\) −0.362212 + 6.49473i −0.0116359 + 0.208641i
\(970\) 0 0
\(971\) −26.6857 −0.856385 −0.428192 0.903688i \(-0.640849\pi\)
−0.428192 + 0.903688i \(0.640849\pi\)
\(972\) 0 0
\(973\) 14.1746 + 1.12230i 0.454416 + 0.0359792i
\(974\) 0 0
\(975\) 0.300395 5.38630i 0.00962034 0.172500i
\(976\) 0 0
\(977\) 32.3351i 1.03449i −0.855837 0.517246i \(-0.826957\pi\)
0.855837 0.517246i \(-0.173043\pi\)
\(978\) 0 0
\(979\) 13.9988i 0.447405i
\(980\) 0 0
\(981\) −31.9995 3.58038i −1.02167 0.114313i
\(982\) 0 0
\(983\) 17.7145 0.565005 0.282502 0.959267i \(-0.408835\pi\)
0.282502 + 0.959267i \(0.408835\pi\)
\(984\) 0 0
\(985\) 13.8493i 0.441275i
\(986\) 0 0
\(987\) −6.09862 + 44.9931i −0.194121 + 1.43215i
\(988\) 0 0
\(989\) 2.96602i 0.0943141i
\(990\) 0 0
\(991\) 52.5895 1.67056 0.835280 0.549825i \(-0.185305\pi\)
0.835280 + 0.549825i \(0.185305\pi\)
\(992\) 0 0
\(993\) 17.9640 + 1.00186i 0.570072 + 0.0317930i
\(994\) 0 0
\(995\) 1.51305i 0.0479668i
\(996\) 0 0
\(997\) 38.0605i 1.20539i −0.797972 0.602695i \(-0.794094\pi\)
0.797972 0.602695i \(-0.205906\pi\)
\(998\) 0 0
\(999\) 40.9668 + 6.91157i 1.29613 + 0.218672i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.f.l.881.1 16
3.2 odd 2 1680.2.f.k.881.15 16
4.3 odd 2 840.2.f.b.41.16 yes 16
7.6 odd 2 1680.2.f.k.881.16 16
12.11 even 2 840.2.f.a.41.2 yes 16
21.20 even 2 inner 1680.2.f.l.881.2 16
28.27 even 2 840.2.f.a.41.1 16
84.83 odd 2 840.2.f.b.41.15 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.f.a.41.1 16 28.27 even 2
840.2.f.a.41.2 yes 16 12.11 even 2
840.2.f.b.41.15 yes 16 84.83 odd 2
840.2.f.b.41.16 yes 16 4.3 odd 2
1680.2.f.k.881.15 16 3.2 odd 2
1680.2.f.k.881.16 16 7.6 odd 2
1680.2.f.l.881.1 16 1.1 even 1 trivial
1680.2.f.l.881.2 16 21.20 even 2 inner