Properties

Label 1680.2.f.k.881.6
Level $1680$
Weight $2$
Character 1680.881
Analytic conductor $13.415$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(881,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-16,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + x^{14} - 4 x^{13} + 10 x^{12} - 32 x^{11} + 71 x^{10} - 70 x^{9} + 74 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.6
Root \(-1.49826 + 0.869033i\) of defining polynomial
Character \(\chi\) \(=\) 1680.881
Dual form 1680.2.f.k.881.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.869033 + 1.49826i) q^{3} -1.00000 q^{5} +(0.807952 - 2.51937i) q^{7} +(-1.48956 - 2.60407i) q^{9} -0.541366i q^{11} -5.85348i q^{13} +(0.869033 - 1.49826i) q^{15} -6.22086 q^{17} +5.74951i q^{19} +(3.07253 + 3.39994i) q^{21} +6.55465i q^{23} +1.00000 q^{25} +(5.19606 + 0.0312759i) q^{27} +5.28395i q^{29} +8.99125i q^{31} +(0.811106 + 0.470465i) q^{33} +(-0.807952 + 2.51937i) q^{35} +7.33408 q^{37} +(8.77004 + 5.08687i) q^{39} -5.16593 q^{41} +2.48280 q^{43} +(1.48956 + 2.60407i) q^{45} -2.09597 q^{47} +(-5.69443 - 4.07106i) q^{49} +(5.40614 - 9.32047i) q^{51} +9.75661i q^{53} +0.541366i q^{55} +(-8.61426 - 4.99652i) q^{57} -9.76727 q^{59} +0.433188i q^{61} +(-7.76412 + 1.64879i) q^{63} +5.85348i q^{65} +8.26790 q^{67} +(-9.82057 - 5.69621i) q^{69} -5.25045i q^{71} +9.42155i q^{73} +(-0.869033 + 1.49826i) q^{75} +(-1.36390 - 0.437398i) q^{77} -17.3885 q^{79} +(-4.56241 + 7.75786i) q^{81} +14.8593 q^{83} +6.22086 q^{85} +(-7.91673 - 4.59193i) q^{87} -7.12418 q^{89} +(-14.7471 - 4.72933i) q^{91} +(-13.4712 - 7.81370i) q^{93} -5.74951i q^{95} +3.24620i q^{97} +(-1.40976 + 0.806398i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{5} - 2 q^{7} - 2 q^{9} + 2 q^{21} + 16 q^{25} + 6 q^{27} - 6 q^{33} + 2 q^{35} + 12 q^{37} - 6 q^{39} - 32 q^{41} - 32 q^{43} + 2 q^{45} + 4 q^{47} - 4 q^{49} - 6 q^{51} - 24 q^{59} + 4 q^{63}+ \cdots + 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.869033 + 1.49826i −0.501737 + 0.865020i
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0.807952 2.51937i 0.305377 0.952231i
\(8\) 0 0
\(9\) −1.48956 2.60407i −0.496521 0.868025i
\(10\) 0 0
\(11\) 0.541366i 0.163228i −0.996664 0.0816139i \(-0.973993\pi\)
0.996664 0.0816139i \(-0.0260075\pi\)
\(12\) 0 0
\(13\) 5.85348i 1.62346i −0.584030 0.811732i \(-0.698525\pi\)
0.584030 0.811732i \(-0.301475\pi\)
\(14\) 0 0
\(15\) 0.869033 1.49826i 0.224383 0.386849i
\(16\) 0 0
\(17\) −6.22086 −1.50878 −0.754390 0.656426i \(-0.772067\pi\)
−0.754390 + 0.656426i \(0.772067\pi\)
\(18\) 0 0
\(19\) 5.74951i 1.31903i 0.751692 + 0.659515i \(0.229238\pi\)
−0.751692 + 0.659515i \(0.770762\pi\)
\(20\) 0 0
\(21\) 3.07253 + 3.39994i 0.670481 + 0.741927i
\(22\) 0 0
\(23\) 6.55465i 1.36674i 0.730072 + 0.683370i \(0.239486\pi\)
−0.730072 + 0.683370i \(0.760514\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.19606 + 0.0312759i 0.999982 + 0.00601904i
\(28\) 0 0
\(29\) 5.28395i 0.981206i 0.871383 + 0.490603i \(0.163223\pi\)
−0.871383 + 0.490603i \(0.836777\pi\)
\(30\) 0 0
\(31\) 8.99125i 1.61488i 0.589952 + 0.807438i \(0.299147\pi\)
−0.589952 + 0.807438i \(0.700853\pi\)
\(32\) 0 0
\(33\) 0.811106 + 0.470465i 0.141195 + 0.0818974i
\(34\) 0 0
\(35\) −0.807952 + 2.51937i −0.136569 + 0.425851i
\(36\) 0 0
\(37\) 7.33408 1.20572 0.602858 0.797849i \(-0.294029\pi\)
0.602858 + 0.797849i \(0.294029\pi\)
\(38\) 0 0
\(39\) 8.77004 + 5.08687i 1.40433 + 0.814551i
\(40\) 0 0
\(41\) −5.16593 −0.806783 −0.403392 0.915027i \(-0.632169\pi\)
−0.403392 + 0.915027i \(0.632169\pi\)
\(42\) 0 0
\(43\) 2.48280 0.378623 0.189311 0.981917i \(-0.439374\pi\)
0.189311 + 0.981917i \(0.439374\pi\)
\(44\) 0 0
\(45\) 1.48956 + 2.60407i 0.222051 + 0.388192i
\(46\) 0 0
\(47\) −2.09597 −0.305728 −0.152864 0.988247i \(-0.548850\pi\)
−0.152864 + 0.988247i \(0.548850\pi\)
\(48\) 0 0
\(49\) −5.69443 4.07106i −0.813489 0.581580i
\(50\) 0 0
\(51\) 5.40614 9.32047i 0.757010 1.30513i
\(52\) 0 0
\(53\) 9.75661i 1.34017i 0.742283 + 0.670086i \(0.233743\pi\)
−0.742283 + 0.670086i \(0.766257\pi\)
\(54\) 0 0
\(55\) 0.541366i 0.0729977i
\(56\) 0 0
\(57\) −8.61426 4.99652i −1.14099 0.661805i
\(58\) 0 0
\(59\) −9.76727 −1.27159 −0.635795 0.771858i \(-0.719328\pi\)
−0.635795 + 0.771858i \(0.719328\pi\)
\(60\) 0 0
\(61\) 0.433188i 0.0554640i 0.999615 + 0.0277320i \(0.00882850\pi\)
−0.999615 + 0.0277320i \(0.991171\pi\)
\(62\) 0 0
\(63\) −7.76412 + 1.64879i −0.978187 + 0.207728i
\(64\) 0 0
\(65\) 5.85348i 0.726035i
\(66\) 0 0
\(67\) 8.26790 1.01008 0.505042 0.863095i \(-0.331477\pi\)
0.505042 + 0.863095i \(0.331477\pi\)
\(68\) 0 0
\(69\) −9.82057 5.69621i −1.18226 0.685743i
\(70\) 0 0
\(71\) 5.25045i 0.623114i −0.950228 0.311557i \(-0.899150\pi\)
0.950228 0.311557i \(-0.100850\pi\)
\(72\) 0 0
\(73\) 9.42155i 1.10271i 0.834271 + 0.551354i \(0.185889\pi\)
−0.834271 + 0.551354i \(0.814111\pi\)
\(74\) 0 0
\(75\) −0.869033 + 1.49826i −0.100347 + 0.173004i
\(76\) 0 0
\(77\) −1.36390 0.437398i −0.155431 0.0498461i
\(78\) 0 0
\(79\) −17.3885 −1.95635 −0.978177 0.207772i \(-0.933379\pi\)
−0.978177 + 0.207772i \(0.933379\pi\)
\(80\) 0 0
\(81\) −4.56241 + 7.75786i −0.506934 + 0.861985i
\(82\) 0 0
\(83\) 14.8593 1.63102 0.815510 0.578742i \(-0.196456\pi\)
0.815510 + 0.578742i \(0.196456\pi\)
\(84\) 0 0
\(85\) 6.22086 0.674747
\(86\) 0 0
\(87\) −7.91673 4.59193i −0.848763 0.492307i
\(88\) 0 0
\(89\) −7.12418 −0.755162 −0.377581 0.925977i \(-0.623244\pi\)
−0.377581 + 0.925977i \(0.623244\pi\)
\(90\) 0 0
\(91\) −14.7471 4.72933i −1.54591 0.495769i
\(92\) 0 0
\(93\) −13.4712 7.81370i −1.39690 0.810243i
\(94\) 0 0
\(95\) 5.74951i 0.589888i
\(96\) 0 0
\(97\) 3.24620i 0.329602i 0.986327 + 0.164801i \(0.0526982\pi\)
−0.986327 + 0.164801i \(0.947302\pi\)
\(98\) 0 0
\(99\) −1.40976 + 0.806398i −0.141686 + 0.0810460i
\(100\) 0 0
\(101\) 14.9842 1.49098 0.745492 0.666515i \(-0.232215\pi\)
0.745492 + 0.666515i \(0.232215\pi\)
\(102\) 0 0
\(103\) 13.0115i 1.28206i 0.767515 + 0.641031i \(0.221493\pi\)
−0.767515 + 0.641031i \(0.778507\pi\)
\(104\) 0 0
\(105\) −3.07253 3.39994i −0.299848 0.331800i
\(106\) 0 0
\(107\) 12.1046i 1.17019i 0.810963 + 0.585097i \(0.198943\pi\)
−0.810963 + 0.585097i \(0.801057\pi\)
\(108\) 0 0
\(109\) −1.41160 −0.135207 −0.0676033 0.997712i \(-0.521535\pi\)
−0.0676033 + 0.997712i \(0.521535\pi\)
\(110\) 0 0
\(111\) −6.37356 + 10.9884i −0.604952 + 1.04297i
\(112\) 0 0
\(113\) 8.79738i 0.827588i −0.910371 0.413794i \(-0.864203\pi\)
0.910371 0.413794i \(-0.135797\pi\)
\(114\) 0 0
\(115\) 6.55465i 0.611225i
\(116\) 0 0
\(117\) −15.2429 + 8.71913i −1.40921 + 0.806084i
\(118\) 0 0
\(119\) −5.02616 + 15.6726i −0.460747 + 1.43671i
\(120\) 0 0
\(121\) 10.7069 0.973357
\(122\) 0 0
\(123\) 4.48937 7.73991i 0.404793 0.697884i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −0.861929 −0.0764839 −0.0382419 0.999269i \(-0.512176\pi\)
−0.0382419 + 0.999269i \(0.512176\pi\)
\(128\) 0 0
\(129\) −2.15763 + 3.71987i −0.189969 + 0.327517i
\(130\) 0 0
\(131\) −9.94338 −0.868757 −0.434378 0.900730i \(-0.643032\pi\)
−0.434378 + 0.900730i \(0.643032\pi\)
\(132\) 0 0
\(133\) 14.4851 + 4.64533i 1.25602 + 0.402802i
\(134\) 0 0
\(135\) −5.19606 0.0312759i −0.447205 0.00269180i
\(136\) 0 0
\(137\) 12.4338i 1.06229i −0.847280 0.531147i \(-0.821761\pi\)
0.847280 0.531147i \(-0.178239\pi\)
\(138\) 0 0
\(139\) 5.11832i 0.434130i −0.976157 0.217065i \(-0.930352\pi\)
0.976157 0.217065i \(-0.0696484\pi\)
\(140\) 0 0
\(141\) 1.82146 3.14030i 0.153395 0.264461i
\(142\) 0 0
\(143\) −3.16887 −0.264995
\(144\) 0 0
\(145\) 5.28395i 0.438808i
\(146\) 0 0
\(147\) 11.0481 4.99384i 0.911236 0.411885i
\(148\) 0 0
\(149\) 3.74937i 0.307161i 0.988136 + 0.153580i \(0.0490804\pi\)
−0.988136 + 0.153580i \(0.950920\pi\)
\(150\) 0 0
\(151\) 3.33203 0.271156 0.135578 0.990767i \(-0.456711\pi\)
0.135578 + 0.990767i \(0.456711\pi\)
\(152\) 0 0
\(153\) 9.26636 + 16.1996i 0.749141 + 1.30966i
\(154\) 0 0
\(155\) 8.99125i 0.722195i
\(156\) 0 0
\(157\) 2.75551i 0.219914i 0.993936 + 0.109957i \(0.0350713\pi\)
−0.993936 + 0.109957i \(0.964929\pi\)
\(158\) 0 0
\(159\) −14.6179 8.47881i −1.15928 0.672414i
\(160\) 0 0
\(161\) 16.5136 + 5.29585i 1.30145 + 0.417371i
\(162\) 0 0
\(163\) −11.6131 −0.909611 −0.454806 0.890591i \(-0.650291\pi\)
−0.454806 + 0.890591i \(0.650291\pi\)
\(164\) 0 0
\(165\) −0.811106 0.470465i −0.0631445 0.0366256i
\(166\) 0 0
\(167\) −7.85657 −0.607960 −0.303980 0.952678i \(-0.598316\pi\)
−0.303980 + 0.952678i \(0.598316\pi\)
\(168\) 0 0
\(169\) −21.2633 −1.63564
\(170\) 0 0
\(171\) 14.9722 8.56426i 1.14495 0.654925i
\(172\) 0 0
\(173\) −5.82479 −0.442850 −0.221425 0.975177i \(-0.571071\pi\)
−0.221425 + 0.975177i \(0.571071\pi\)
\(174\) 0 0
\(175\) 0.807952 2.51937i 0.0610755 0.190446i
\(176\) 0 0
\(177\) 8.48808 14.6339i 0.638003 1.09995i
\(178\) 0 0
\(179\) 10.5161i 0.786011i 0.919536 + 0.393005i \(0.128565\pi\)
−0.919536 + 0.393005i \(0.871435\pi\)
\(180\) 0 0
\(181\) 2.28411i 0.169777i 0.996390 + 0.0848883i \(0.0270533\pi\)
−0.996390 + 0.0848883i \(0.972947\pi\)
\(182\) 0 0
\(183\) −0.649028 0.376454i −0.0479775 0.0278283i
\(184\) 0 0
\(185\) −7.33408 −0.539212
\(186\) 0 0
\(187\) 3.36776i 0.246275i
\(188\) 0 0
\(189\) 4.27696 13.0655i 0.311103 0.950376i
\(190\) 0 0
\(191\) 4.26399i 0.308531i −0.988029 0.154266i \(-0.950699\pi\)
0.988029 0.154266i \(-0.0493012\pi\)
\(192\) 0 0
\(193\) −8.02782 −0.577855 −0.288928 0.957351i \(-0.593299\pi\)
−0.288928 + 0.957351i \(0.593299\pi\)
\(194\) 0 0
\(195\) −8.77004 5.08687i −0.628035 0.364278i
\(196\) 0 0
\(197\) 11.3017i 0.805210i −0.915374 0.402605i \(-0.868105\pi\)
0.915374 0.402605i \(-0.131895\pi\)
\(198\) 0 0
\(199\) 8.86775i 0.628618i 0.949321 + 0.314309i \(0.101773\pi\)
−0.949321 + 0.314309i \(0.898227\pi\)
\(200\) 0 0
\(201\) −7.18508 + 12.3875i −0.506796 + 0.873744i
\(202\) 0 0
\(203\) 13.3122 + 4.26918i 0.934335 + 0.299638i
\(204\) 0 0
\(205\) 5.16593 0.360804
\(206\) 0 0
\(207\) 17.0688 9.76357i 1.18636 0.678615i
\(208\) 0 0
\(209\) 3.11259 0.215302
\(210\) 0 0
\(211\) −21.5275 −1.48201 −0.741006 0.671499i \(-0.765651\pi\)
−0.741006 + 0.671499i \(0.765651\pi\)
\(212\) 0 0
\(213\) 7.86654 + 4.56282i 0.539006 + 0.312639i
\(214\) 0 0
\(215\) −2.48280 −0.169325
\(216\) 0 0
\(217\) 22.6523 + 7.26450i 1.53774 + 0.493147i
\(218\) 0 0
\(219\) −14.1159 8.18764i −0.953865 0.553269i
\(220\) 0 0
\(221\) 36.4137i 2.44945i
\(222\) 0 0
\(223\) 10.9108i 0.730640i −0.930882 0.365320i \(-0.880960\pi\)
0.930882 0.365320i \(-0.119040\pi\)
\(224\) 0 0
\(225\) −1.48956 2.60407i −0.0993042 0.173605i
\(226\) 0 0
\(227\) 19.4610 1.29167 0.645835 0.763477i \(-0.276509\pi\)
0.645835 + 0.763477i \(0.276509\pi\)
\(228\) 0 0
\(229\) 18.8113i 1.24308i 0.783381 + 0.621542i \(0.213493\pi\)
−0.783381 + 0.621542i \(0.786507\pi\)
\(230\) 0 0
\(231\) 1.84061 1.66336i 0.121103 0.109441i
\(232\) 0 0
\(233\) 7.01806i 0.459769i 0.973218 + 0.229884i \(0.0738348\pi\)
−0.973218 + 0.229884i \(0.926165\pi\)
\(234\) 0 0
\(235\) 2.09597 0.136726
\(236\) 0 0
\(237\) 15.1111 26.0524i 0.981575 1.69229i
\(238\) 0 0
\(239\) 8.60528i 0.556629i 0.960490 + 0.278315i \(0.0897758\pi\)
−0.960490 + 0.278315i \(0.910224\pi\)
\(240\) 0 0
\(241\) 12.4188i 0.799967i −0.916522 0.399984i \(-0.869016\pi\)
0.916522 0.399984i \(-0.130984\pi\)
\(242\) 0 0
\(243\) −7.65841 13.5775i −0.491287 0.870998i
\(244\) 0 0
\(245\) 5.69443 + 4.07106i 0.363804 + 0.260090i
\(246\) 0 0
\(247\) 33.6547 2.14140
\(248\) 0 0
\(249\) −12.9132 + 22.2631i −0.818343 + 1.41087i
\(250\) 0 0
\(251\) −7.77791 −0.490938 −0.245469 0.969405i \(-0.578942\pi\)
−0.245469 + 0.969405i \(0.578942\pi\)
\(252\) 0 0
\(253\) 3.54846 0.223090
\(254\) 0 0
\(255\) −5.40614 + 9.32047i −0.338545 + 0.583670i
\(256\) 0 0
\(257\) 24.1332 1.50539 0.752694 0.658371i \(-0.228754\pi\)
0.752694 + 0.658371i \(0.228754\pi\)
\(258\) 0 0
\(259\) 5.92559 18.4772i 0.368198 1.14812i
\(260\) 0 0
\(261\) 13.7598 7.87078i 0.851711 0.487189i
\(262\) 0 0
\(263\) 10.7824i 0.664874i 0.943125 + 0.332437i \(0.107871\pi\)
−0.943125 + 0.332437i \(0.892129\pi\)
\(264\) 0 0
\(265\) 9.75661i 0.599343i
\(266\) 0 0
\(267\) 6.19115 10.6739i 0.378892 0.653230i
\(268\) 0 0
\(269\) 4.23229 0.258047 0.129024 0.991642i \(-0.458816\pi\)
0.129024 + 0.991642i \(0.458816\pi\)
\(270\) 0 0
\(271\) 2.11109i 0.128240i −0.997942 0.0641199i \(-0.979576\pi\)
0.997942 0.0641199i \(-0.0204240\pi\)
\(272\) 0 0
\(273\) 19.9015 17.9850i 1.20449 1.08850i
\(274\) 0 0
\(275\) 0.541366i 0.0326456i
\(276\) 0 0
\(277\) −10.9024 −0.655062 −0.327531 0.944840i \(-0.606217\pi\)
−0.327531 + 0.944840i \(0.606217\pi\)
\(278\) 0 0
\(279\) 23.4139 13.3930i 1.40175 0.801820i
\(280\) 0 0
\(281\) 21.6151i 1.28945i 0.764415 + 0.644724i \(0.223028\pi\)
−0.764415 + 0.644724i \(0.776972\pi\)
\(282\) 0 0
\(283\) 13.9033i 0.826463i −0.910626 0.413231i \(-0.864400\pi\)
0.910626 0.413231i \(-0.135600\pi\)
\(284\) 0 0
\(285\) 8.61426 + 4.99652i 0.510265 + 0.295968i
\(286\) 0 0
\(287\) −4.17383 + 13.0149i −0.246373 + 0.768244i
\(288\) 0 0
\(289\) 21.6991 1.27642
\(290\) 0 0
\(291\) −4.86366 2.82106i −0.285113 0.165373i
\(292\) 0 0
\(293\) −3.86654 −0.225885 −0.112943 0.993602i \(-0.536028\pi\)
−0.112943 + 0.993602i \(0.536028\pi\)
\(294\) 0 0
\(295\) 9.76727 0.568672
\(296\) 0 0
\(297\) 0.0169317 2.81297i 0.000982476 0.163225i
\(298\) 0 0
\(299\) 38.3676 2.21885
\(300\) 0 0
\(301\) 2.00598 6.25508i 0.115623 0.360537i
\(302\) 0 0
\(303\) −13.0218 + 22.4502i −0.748081 + 1.28973i
\(304\) 0 0
\(305\) 0.433188i 0.0248043i
\(306\) 0 0
\(307\) 5.12531i 0.292517i 0.989246 + 0.146258i \(0.0467231\pi\)
−0.989246 + 0.146258i \(0.953277\pi\)
\(308\) 0 0
\(309\) −19.4946 11.3074i −1.10901 0.643257i
\(310\) 0 0
\(311\) −18.8443 −1.06856 −0.534280 0.845307i \(-0.679417\pi\)
−0.534280 + 0.845307i \(0.679417\pi\)
\(312\) 0 0
\(313\) 9.36435i 0.529304i −0.964344 0.264652i \(-0.914743\pi\)
0.964344 0.264652i \(-0.0852571\pi\)
\(314\) 0 0
\(315\) 7.76412 1.64879i 0.437458 0.0928987i
\(316\) 0 0
\(317\) 19.1203i 1.07390i −0.843613 0.536952i \(-0.819576\pi\)
0.843613 0.536952i \(-0.180424\pi\)
\(318\) 0 0
\(319\) 2.86055 0.160160
\(320\) 0 0
\(321\) −18.1358 10.5193i −1.01224 0.587129i
\(322\) 0 0
\(323\) 35.7669i 1.99013i
\(324\) 0 0
\(325\) 5.85348i 0.324693i
\(326\) 0 0
\(327\) 1.22673 2.11494i 0.0678381 0.116956i
\(328\) 0 0
\(329\) −1.69344 + 5.28051i −0.0933624 + 0.291124i
\(330\) 0 0
\(331\) −7.94896 −0.436915 −0.218457 0.975847i \(-0.570102\pi\)
−0.218457 + 0.975847i \(0.570102\pi\)
\(332\) 0 0
\(333\) −10.9246 19.0985i −0.598663 1.04659i
\(334\) 0 0
\(335\) −8.26790 −0.451724
\(336\) 0 0
\(337\) −5.34820 −0.291335 −0.145667 0.989334i \(-0.546533\pi\)
−0.145667 + 0.989334i \(0.546533\pi\)
\(338\) 0 0
\(339\) 13.1808 + 7.64521i 0.715880 + 0.415231i
\(340\) 0 0
\(341\) 4.86755 0.263593
\(342\) 0 0
\(343\) −14.8573 + 11.0571i −0.802220 + 0.597029i
\(344\) 0 0
\(345\) 9.82057 + 5.69621i 0.528722 + 0.306674i
\(346\) 0 0
\(347\) 7.49471i 0.402337i 0.979557 + 0.201169i \(0.0644739\pi\)
−0.979557 + 0.201169i \(0.935526\pi\)
\(348\) 0 0
\(349\) 25.1595i 1.34676i 0.739297 + 0.673379i \(0.235158\pi\)
−0.739297 + 0.673379i \(0.764842\pi\)
\(350\) 0 0
\(351\) 0.183073 30.4150i 0.00977170 1.62343i
\(352\) 0 0
\(353\) −7.26591 −0.386726 −0.193363 0.981127i \(-0.561939\pi\)
−0.193363 + 0.981127i \(0.561939\pi\)
\(354\) 0 0
\(355\) 5.25045i 0.278665i
\(356\) 0 0
\(357\) −19.1138 21.1505i −1.01161 1.11941i
\(358\) 0 0
\(359\) 5.72746i 0.302284i 0.988512 + 0.151142i \(0.0482950\pi\)
−0.988512 + 0.151142i \(0.951705\pi\)
\(360\) 0 0
\(361\) −14.0569 −0.739838
\(362\) 0 0
\(363\) −9.30467 + 16.0417i −0.488369 + 0.841973i
\(364\) 0 0
\(365\) 9.42155i 0.493146i
\(366\) 0 0
\(367\) 13.2019i 0.689132i 0.938762 + 0.344566i \(0.111974\pi\)
−0.938762 + 0.344566i \(0.888026\pi\)
\(368\) 0 0
\(369\) 7.69498 + 13.4525i 0.400585 + 0.700308i
\(370\) 0 0
\(371\) 24.5805 + 7.88287i 1.27615 + 0.409258i
\(372\) 0 0
\(373\) −37.5328 −1.94338 −0.971688 0.236266i \(-0.924076\pi\)
−0.971688 + 0.236266i \(0.924076\pi\)
\(374\) 0 0
\(375\) 0.869033 1.49826i 0.0448767 0.0773698i
\(376\) 0 0
\(377\) 30.9295 1.59295
\(378\) 0 0
\(379\) −6.85408 −0.352070 −0.176035 0.984384i \(-0.556327\pi\)
−0.176035 + 0.984384i \(0.556327\pi\)
\(380\) 0 0
\(381\) 0.749045 1.29139i 0.0383748 0.0661601i
\(382\) 0 0
\(383\) 19.8927 1.01647 0.508234 0.861219i \(-0.330298\pi\)
0.508234 + 0.861219i \(0.330298\pi\)
\(384\) 0 0
\(385\) 1.36390 + 0.437398i 0.0695107 + 0.0222918i
\(386\) 0 0
\(387\) −3.69828 6.46539i −0.187994 0.328654i
\(388\) 0 0
\(389\) 25.4577i 1.29076i 0.763864 + 0.645378i \(0.223300\pi\)
−0.763864 + 0.645378i \(0.776700\pi\)
\(390\) 0 0
\(391\) 40.7756i 2.06211i
\(392\) 0 0
\(393\) 8.64112 14.8978i 0.435887 0.751492i
\(394\) 0 0
\(395\) 17.3885 0.874908
\(396\) 0 0
\(397\) 28.3280i 1.42174i −0.703322 0.710871i \(-0.748301\pi\)
0.703322 0.710871i \(-0.251699\pi\)
\(398\) 0 0
\(399\) −19.5480 + 17.6655i −0.978623 + 0.884384i
\(400\) 0 0
\(401\) 37.1327i 1.85432i −0.374666 0.927160i \(-0.622243\pi\)
0.374666 0.927160i \(-0.377757\pi\)
\(402\) 0 0
\(403\) 52.6301 2.62169
\(404\) 0 0
\(405\) 4.56241 7.75786i 0.226708 0.385491i
\(406\) 0 0
\(407\) 3.97042i 0.196806i
\(408\) 0 0
\(409\) 9.94224i 0.491612i −0.969319 0.245806i \(-0.920947\pi\)
0.969319 0.245806i \(-0.0790527\pi\)
\(410\) 0 0
\(411\) 18.6291 + 10.8054i 0.918906 + 0.532992i
\(412\) 0 0
\(413\) −7.89149 + 24.6073i −0.388315 + 1.21085i
\(414\) 0 0
\(415\) −14.8593 −0.729415
\(416\) 0 0
\(417\) 7.66857 + 4.44799i 0.375531 + 0.217819i
\(418\) 0 0
\(419\) 13.7361 0.671052 0.335526 0.942031i \(-0.391086\pi\)
0.335526 + 0.942031i \(0.391086\pi\)
\(420\) 0 0
\(421\) −23.8838 −1.16402 −0.582012 0.813181i \(-0.697734\pi\)
−0.582012 + 0.813181i \(0.697734\pi\)
\(422\) 0 0
\(423\) 3.12207 + 5.45805i 0.151800 + 0.265379i
\(424\) 0 0
\(425\) −6.22086 −0.301756
\(426\) 0 0
\(427\) 1.09136 + 0.349995i 0.0528146 + 0.0169374i
\(428\) 0 0
\(429\) 2.75386 4.74780i 0.132957 0.229226i
\(430\) 0 0
\(431\) 11.2319i 0.541022i 0.962717 + 0.270511i \(0.0871927\pi\)
−0.962717 + 0.270511i \(0.912807\pi\)
\(432\) 0 0
\(433\) 5.14457i 0.247232i 0.992330 + 0.123616i \(0.0394492\pi\)
−0.992330 + 0.123616i \(0.960551\pi\)
\(434\) 0 0
\(435\) 7.91673 + 4.59193i 0.379578 + 0.220166i
\(436\) 0 0
\(437\) −37.6861 −1.80277
\(438\) 0 0
\(439\) 39.7058i 1.89506i 0.319672 + 0.947528i \(0.396427\pi\)
−0.319672 + 0.947528i \(0.603573\pi\)
\(440\) 0 0
\(441\) −2.11913 + 20.8928i −0.100911 + 0.994895i
\(442\) 0 0
\(443\) 13.7817i 0.654789i 0.944888 + 0.327395i \(0.106171\pi\)
−0.944888 + 0.327395i \(0.893829\pi\)
\(444\) 0 0
\(445\) 7.12418 0.337719
\(446\) 0 0
\(447\) −5.61753 3.25833i −0.265700 0.154114i
\(448\) 0 0
\(449\) 40.7969i 1.92532i −0.270707 0.962662i \(-0.587257\pi\)
0.270707 0.962662i \(-0.412743\pi\)
\(450\) 0 0
\(451\) 2.79666i 0.131689i
\(452\) 0 0
\(453\) −2.89564 + 4.99224i −0.136049 + 0.234556i
\(454\) 0 0
\(455\) 14.7471 + 4.72933i 0.691353 + 0.221715i
\(456\) 0 0
\(457\) 10.4973 0.491044 0.245522 0.969391i \(-0.421041\pi\)
0.245522 + 0.969391i \(0.421041\pi\)
\(458\) 0 0
\(459\) −32.3240 0.194563i −1.50875 0.00908142i
\(460\) 0 0
\(461\) 39.7172 1.84982 0.924908 0.380192i \(-0.124142\pi\)
0.924908 + 0.380192i \(0.124142\pi\)
\(462\) 0 0
\(463\) −35.3647 −1.64353 −0.821767 0.569823i \(-0.807012\pi\)
−0.821767 + 0.569823i \(0.807012\pi\)
\(464\) 0 0
\(465\) 13.4712 + 7.81370i 0.624713 + 0.362351i
\(466\) 0 0
\(467\) −9.44968 −0.437279 −0.218640 0.975806i \(-0.570162\pi\)
−0.218640 + 0.975806i \(0.570162\pi\)
\(468\) 0 0
\(469\) 6.68007 20.8299i 0.308457 0.961834i
\(470\) 0 0
\(471\) −4.12847 2.39463i −0.190230 0.110339i
\(472\) 0 0
\(473\) 1.34410i 0.0618018i
\(474\) 0 0
\(475\) 5.74951i 0.263806i
\(476\) 0 0
\(477\) 25.4069 14.5331i 1.16330 0.665424i
\(478\) 0 0
\(479\) −15.2364 −0.696168 −0.348084 0.937463i \(-0.613168\pi\)
−0.348084 + 0.937463i \(0.613168\pi\)
\(480\) 0 0
\(481\) 42.9299i 1.95744i
\(482\) 0 0
\(483\) −22.2854 + 20.1394i −1.01402 + 0.916373i
\(484\) 0 0
\(485\) 3.24620i 0.147403i
\(486\) 0 0
\(487\) 24.3328 1.10263 0.551313 0.834299i \(-0.314127\pi\)
0.551313 + 0.834299i \(0.314127\pi\)
\(488\) 0 0
\(489\) 10.0922 17.3995i 0.456385 0.786832i
\(490\) 0 0
\(491\) 2.14825i 0.0969494i −0.998824 0.0484747i \(-0.984564\pi\)
0.998824 0.0484747i \(-0.0154360\pi\)
\(492\) 0 0
\(493\) 32.8707i 1.48042i
\(494\) 0 0
\(495\) 1.40976 0.806398i 0.0633638 0.0362449i
\(496\) 0 0
\(497\) −13.2278 4.24211i −0.593348 0.190285i
\(498\) 0 0
\(499\) −6.22753 −0.278783 −0.139391 0.990237i \(-0.544515\pi\)
−0.139391 + 0.990237i \(0.544515\pi\)
\(500\) 0 0
\(501\) 6.82762 11.7712i 0.305036 0.525898i
\(502\) 0 0
\(503\) 19.1213 0.852575 0.426288 0.904588i \(-0.359821\pi\)
0.426288 + 0.904588i \(0.359821\pi\)
\(504\) 0 0
\(505\) −14.9842 −0.666788
\(506\) 0 0
\(507\) 18.4785 31.8579i 0.820658 1.41486i
\(508\) 0 0
\(509\) 32.3463 1.43372 0.716861 0.697216i \(-0.245578\pi\)
0.716861 + 0.697216i \(0.245578\pi\)
\(510\) 0 0
\(511\) 23.7363 + 7.61216i 1.05003 + 0.336742i
\(512\) 0 0
\(513\) −0.179821 + 29.8748i −0.00793929 + 1.31901i
\(514\) 0 0
\(515\) 13.0115i 0.573355i
\(516\) 0 0
\(517\) 1.13468i 0.0499033i
\(518\) 0 0
\(519\) 5.06193 8.72704i 0.222194 0.383075i
\(520\) 0 0
\(521\) −23.3045 −1.02099 −0.510494 0.859881i \(-0.670537\pi\)
−0.510494 + 0.859881i \(0.670537\pi\)
\(522\) 0 0
\(523\) 8.56564i 0.374549i −0.982308 0.187275i \(-0.940035\pi\)
0.982308 0.187275i \(-0.0599654\pi\)
\(524\) 0 0
\(525\) 3.07253 + 3.39994i 0.134096 + 0.148385i
\(526\) 0 0
\(527\) 55.9333i 2.43649i
\(528\) 0 0
\(529\) −19.9635 −0.867978
\(530\) 0 0
\(531\) 14.5490 + 25.4347i 0.631371 + 1.10377i
\(532\) 0 0
\(533\) 30.2387i 1.30978i
\(534\) 0 0
\(535\) 12.1046i 0.523326i
\(536\) 0 0
\(537\) −15.7559 9.13884i −0.679915 0.394370i
\(538\) 0 0
\(539\) −2.20393 + 3.08277i −0.0949300 + 0.132784i
\(540\) 0 0
\(541\) −12.3978 −0.533021 −0.266511 0.963832i \(-0.585871\pi\)
−0.266511 + 0.963832i \(0.585871\pi\)
\(542\) 0 0
\(543\) −3.42219 1.98497i −0.146860 0.0851831i
\(544\) 0 0
\(545\) 1.41160 0.0604662
\(546\) 0 0
\(547\) 16.9082 0.722944 0.361472 0.932383i \(-0.382274\pi\)
0.361472 + 0.932383i \(0.382274\pi\)
\(548\) 0 0
\(549\) 1.12805 0.645260i 0.0481441 0.0275390i
\(550\) 0 0
\(551\) −30.3802 −1.29424
\(552\) 0 0
\(553\) −14.0490 + 43.8079i −0.597426 + 1.86290i
\(554\) 0 0
\(555\) 6.37356 10.9884i 0.270543 0.466430i
\(556\) 0 0
\(557\) 45.7000i 1.93637i 0.250235 + 0.968185i \(0.419492\pi\)
−0.250235 + 0.968185i \(0.580508\pi\)
\(558\) 0 0
\(559\) 14.5330i 0.614681i
\(560\) 0 0
\(561\) −5.04578 2.92670i −0.213033 0.123565i
\(562\) 0 0
\(563\) 2.39076 0.100759 0.0503793 0.998730i \(-0.483957\pi\)
0.0503793 + 0.998730i \(0.483957\pi\)
\(564\) 0 0
\(565\) 8.79738i 0.370108i
\(566\) 0 0
\(567\) 15.8587 + 17.7624i 0.666003 + 0.745949i
\(568\) 0 0
\(569\) 21.3765i 0.896151i 0.893996 + 0.448075i \(0.147890\pi\)
−0.893996 + 0.448075i \(0.852110\pi\)
\(570\) 0 0
\(571\) 10.2563 0.429214 0.214607 0.976701i \(-0.431153\pi\)
0.214607 + 0.976701i \(0.431153\pi\)
\(572\) 0 0
\(573\) 6.38856 + 3.70555i 0.266886 + 0.154801i
\(574\) 0 0
\(575\) 6.55465i 0.273348i
\(576\) 0 0
\(577\) 15.6181i 0.650189i 0.945682 + 0.325094i \(0.105396\pi\)
−0.945682 + 0.325094i \(0.894604\pi\)
\(578\) 0 0
\(579\) 6.97645 12.0278i 0.289931 0.499857i
\(580\) 0 0
\(581\) 12.0056 37.4361i 0.498077 1.55311i
\(582\) 0 0
\(583\) 5.28189 0.218754
\(584\) 0 0
\(585\) 15.2429 8.71913i 0.630216 0.360492i
\(586\) 0 0
\(587\) −34.1826 −1.41087 −0.705433 0.708777i \(-0.749247\pi\)
−0.705433 + 0.708777i \(0.749247\pi\)
\(588\) 0 0
\(589\) −51.6953 −2.13007
\(590\) 0 0
\(591\) 16.9328 + 9.82152i 0.696524 + 0.404004i
\(592\) 0 0
\(593\) −13.3917 −0.549932 −0.274966 0.961454i \(-0.588667\pi\)
−0.274966 + 0.961454i \(0.588667\pi\)
\(594\) 0 0
\(595\) 5.02616 15.6726i 0.206052 0.642516i
\(596\) 0 0
\(597\) −13.2862 7.70637i −0.543767 0.315401i
\(598\) 0 0
\(599\) 13.1768i 0.538388i −0.963086 0.269194i \(-0.913243\pi\)
0.963086 0.269194i \(-0.0867572\pi\)
\(600\) 0 0
\(601\) 3.11187i 0.126936i 0.997984 + 0.0634678i \(0.0202160\pi\)
−0.997984 + 0.0634678i \(0.979784\pi\)
\(602\) 0 0
\(603\) −12.3156 21.5302i −0.501528 0.876778i
\(604\) 0 0
\(605\) −10.7069 −0.435298
\(606\) 0 0
\(607\) 6.97466i 0.283093i −0.989932 0.141546i \(-0.954793\pi\)
0.989932 0.141546i \(-0.0452075\pi\)
\(608\) 0 0
\(609\) −17.9651 + 16.2351i −0.727983 + 0.657879i
\(610\) 0 0
\(611\) 12.2687i 0.496338i
\(612\) 0 0
\(613\) 26.1829 1.05752 0.528759 0.848772i \(-0.322658\pi\)
0.528759 + 0.848772i \(0.322658\pi\)
\(614\) 0 0
\(615\) −4.48937 + 7.73991i −0.181029 + 0.312103i
\(616\) 0 0
\(617\) 15.1290i 0.609070i −0.952501 0.304535i \(-0.901499\pi\)
0.952501 0.304535i \(-0.0985010\pi\)
\(618\) 0 0
\(619\) 8.76028i 0.352105i 0.984381 + 0.176053i \(0.0563329\pi\)
−0.984381 + 0.176053i \(0.943667\pi\)
\(620\) 0 0
\(621\) −0.205002 + 34.0584i −0.00822647 + 1.36672i
\(622\) 0 0
\(623\) −5.75600 + 17.9484i −0.230609 + 0.719089i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −2.70494 + 4.66347i −0.108025 + 0.186241i
\(628\) 0 0
\(629\) −45.6243 −1.81916
\(630\) 0 0
\(631\) −4.79895 −0.191043 −0.0955215 0.995427i \(-0.530452\pi\)
−0.0955215 + 0.995427i \(0.530452\pi\)
\(632\) 0 0
\(633\) 18.7081 32.2537i 0.743579 1.28197i
\(634\) 0 0
\(635\) 0.861929 0.0342046
\(636\) 0 0
\(637\) −23.8299 + 33.3322i −0.944174 + 1.32067i
\(638\) 0 0
\(639\) −13.6726 + 7.82087i −0.540878 + 0.309389i
\(640\) 0 0
\(641\) 0.836584i 0.0330431i −0.999864 0.0165215i \(-0.994741\pi\)
0.999864 0.0165215i \(-0.00525921\pi\)
\(642\) 0 0
\(643\) 8.91098i 0.351415i −0.984442 0.175707i \(-0.943779\pi\)
0.984442 0.175707i \(-0.0562212\pi\)
\(644\) 0 0
\(645\) 2.15763 3.71987i 0.0849567 0.146470i
\(646\) 0 0
\(647\) −25.8709 −1.01709 −0.508544 0.861036i \(-0.669816\pi\)
−0.508544 + 0.861036i \(0.669816\pi\)
\(648\) 0 0
\(649\) 5.28766i 0.207559i
\(650\) 0 0
\(651\) −30.5697 + 27.6259i −1.19812 + 1.08274i
\(652\) 0 0
\(653\) 18.2837i 0.715495i −0.933818 0.357747i \(-0.883545\pi\)
0.933818 0.357747i \(-0.116455\pi\)
\(654\) 0 0
\(655\) 9.94338 0.388520
\(656\) 0 0
\(657\) 24.5344 14.0340i 0.957178 0.547518i
\(658\) 0 0
\(659\) 9.66460i 0.376479i 0.982123 + 0.188240i \(0.0602782\pi\)
−0.982123 + 0.188240i \(0.939722\pi\)
\(660\) 0 0
\(661\) 19.6253i 0.763336i 0.924299 + 0.381668i \(0.124650\pi\)
−0.924299 + 0.381668i \(0.875350\pi\)
\(662\) 0 0
\(663\) −54.5572 31.6447i −2.11883 1.22898i
\(664\) 0 0
\(665\) −14.4851 4.64533i −0.561710 0.180138i
\(666\) 0 0
\(667\) −34.6345 −1.34105
\(668\) 0 0
\(669\) 16.3472 + 9.48184i 0.632019 + 0.366589i
\(670\) 0 0
\(671\) 0.234513 0.00905327
\(672\) 0 0
\(673\) −11.8787 −0.457889 −0.228945 0.973439i \(-0.573527\pi\)
−0.228945 + 0.973439i \(0.573527\pi\)
\(674\) 0 0
\(675\) 5.19606 + 0.0312759i 0.199996 + 0.00120381i
\(676\) 0 0
\(677\) 32.7301 1.25792 0.628961 0.777437i \(-0.283481\pi\)
0.628961 + 0.777437i \(0.283481\pi\)
\(678\) 0 0
\(679\) 8.17838 + 2.62278i 0.313858 + 0.100653i
\(680\) 0 0
\(681\) −16.9122 + 29.1576i −0.648078 + 1.11732i
\(682\) 0 0
\(683\) 18.9837i 0.726391i −0.931713 0.363196i \(-0.881686\pi\)
0.931713 0.363196i \(-0.118314\pi\)
\(684\) 0 0
\(685\) 12.4338i 0.475072i
\(686\) 0 0
\(687\) −28.1842 16.3476i −1.07529 0.623701i
\(688\) 0 0
\(689\) 57.1101 2.17572
\(690\) 0 0
\(691\) 25.8425i 0.983095i −0.870851 0.491547i \(-0.836431\pi\)
0.870851 0.491547i \(-0.163569\pi\)
\(692\) 0 0
\(693\) 0.892597 + 4.20323i 0.0339070 + 0.159667i
\(694\) 0 0
\(695\) 5.11832i 0.194149i
\(696\) 0 0
\(697\) 32.1366 1.21726
\(698\) 0 0
\(699\) −10.5149 6.09893i −0.397709 0.230683i
\(700\) 0 0
\(701\) 34.9210i 1.31895i −0.751727 0.659475i \(-0.770779\pi\)
0.751727 0.659475i \(-0.229221\pi\)
\(702\) 0 0
\(703\) 42.1674i 1.59037i
\(704\) 0 0
\(705\) −1.82146 + 3.14030i −0.0686003 + 0.118271i
\(706\) 0 0
\(707\) 12.1065 37.7507i 0.455313 1.41976i
\(708\) 0 0
\(709\) −2.52065 −0.0946648 −0.0473324 0.998879i \(-0.515072\pi\)
−0.0473324 + 0.998879i \(0.515072\pi\)
\(710\) 0 0
\(711\) 25.9012 + 45.2808i 0.971371 + 1.69816i
\(712\) 0 0
\(713\) −58.9345 −2.20712
\(714\) 0 0
\(715\) 3.16887 0.118509
\(716\) 0 0
\(717\) −12.8929 7.47827i −0.481496 0.279281i
\(718\) 0 0
\(719\) 22.1230 0.825049 0.412524 0.910947i \(-0.364647\pi\)
0.412524 + 0.910947i \(0.364647\pi\)
\(720\) 0 0
\(721\) 32.7808 + 10.5127i 1.22082 + 0.391512i
\(722\) 0 0
\(723\) 18.6066 + 10.7924i 0.691988 + 0.401373i
\(724\) 0 0
\(725\) 5.28395i 0.196241i
\(726\) 0 0
\(727\) 15.2639i 0.566107i 0.959104 + 0.283054i \(0.0913474\pi\)
−0.959104 + 0.283054i \(0.908653\pi\)
\(728\) 0 0
\(729\) 26.9980 + 0.325022i 0.999928 + 0.0120379i
\(730\) 0 0
\(731\) −15.4451 −0.571259
\(732\) 0 0
\(733\) 18.2260i 0.673191i −0.941649 0.336596i \(-0.890724\pi\)
0.941649 0.336596i \(-0.109276\pi\)
\(734\) 0 0
\(735\) −11.0481 + 4.99384i −0.407517 + 0.184201i
\(736\) 0 0
\(737\) 4.47596i 0.164874i
\(738\) 0 0
\(739\) −3.67453 −0.135170 −0.0675849 0.997714i \(-0.521529\pi\)
−0.0675849 + 0.997714i \(0.521529\pi\)
\(740\) 0 0
\(741\) −29.2470 + 50.4234i −1.07442 + 1.85235i
\(742\) 0 0
\(743\) 1.79110i 0.0657090i 0.999460 + 0.0328545i \(0.0104598\pi\)
−0.999460 + 0.0328545i \(0.989540\pi\)
\(744\) 0 0
\(745\) 3.74937i 0.137366i
\(746\) 0 0
\(747\) −22.1339 38.6947i −0.809836 1.41577i
\(748\) 0 0
\(749\) 30.4959 + 9.77992i 1.11430 + 0.357351i
\(750\) 0 0
\(751\) 39.0699 1.42568 0.712840 0.701327i \(-0.247409\pi\)
0.712840 + 0.701327i \(0.247409\pi\)
\(752\) 0 0
\(753\) 6.75926 11.6533i 0.246321 0.424671i
\(754\) 0 0
\(755\) −3.33203 −0.121265
\(756\) 0 0
\(757\) 42.9534 1.56117 0.780583 0.625052i \(-0.214922\pi\)
0.780583 + 0.625052i \(0.214922\pi\)
\(758\) 0 0
\(759\) −3.08373 + 5.31652i −0.111932 + 0.192977i
\(760\) 0 0
\(761\) −19.0235 −0.689603 −0.344801 0.938676i \(-0.612054\pi\)
−0.344801 + 0.938676i \(0.612054\pi\)
\(762\) 0 0
\(763\) −1.14050 + 3.55633i −0.0412890 + 0.128748i
\(764\) 0 0
\(765\) −9.26636 16.1996i −0.335026 0.585697i
\(766\) 0 0
\(767\) 57.1725i 2.06438i
\(768\) 0 0
\(769\) 48.9415i 1.76488i 0.470429 + 0.882438i \(0.344099\pi\)
−0.470429 + 0.882438i \(0.655901\pi\)
\(770\) 0 0
\(771\) −20.9725 + 36.1578i −0.755308 + 1.30219i
\(772\) 0 0
\(773\) −14.2306 −0.511840 −0.255920 0.966698i \(-0.582378\pi\)
−0.255920 + 0.966698i \(0.582378\pi\)
\(774\) 0 0
\(775\) 8.99125i 0.322975i
\(776\) 0 0
\(777\) 22.5342 + 24.9354i 0.808409 + 0.894553i
\(778\) 0 0
\(779\) 29.7016i 1.06417i
\(780\) 0 0
\(781\) −2.84241 −0.101710
\(782\) 0 0
\(783\) −0.165260 + 27.4557i −0.00590592 + 0.981188i
\(784\) 0 0
\(785\) 2.75551i 0.0983484i
\(786\) 0 0
\(787\) 39.6962i 1.41502i −0.706705 0.707508i \(-0.749819\pi\)
0.706705 0.707508i \(-0.250181\pi\)
\(788\) 0 0
\(789\) −16.1549 9.37030i −0.575130 0.333592i
\(790\) 0 0
\(791\) −22.1638 7.10786i −0.788055 0.252726i
\(792\) 0 0
\(793\) 2.53566 0.0900438
\(794\) 0 0
\(795\) 14.6179 + 8.47881i 0.518444 + 0.300713i
\(796\) 0 0
\(797\) −4.31625 −0.152890 −0.0764448 0.997074i \(-0.524357\pi\)
−0.0764448 + 0.997074i \(0.524357\pi\)
\(798\) 0 0
\(799\) 13.0387 0.461276
\(800\) 0 0
\(801\) 10.6119 + 18.5519i 0.374954 + 0.655499i
\(802\) 0 0
\(803\) 5.10050 0.179993
\(804\) 0 0
\(805\) −16.5136 5.29585i −0.582027 0.186654i
\(806\) 0 0
\(807\) −3.67800 + 6.34107i −0.129472 + 0.223216i
\(808\) 0 0
\(809\) 24.0182i 0.844434i −0.906495 0.422217i \(-0.861252\pi\)
0.906495 0.422217i \(-0.138748\pi\)
\(810\) 0 0
\(811\) 12.3193i 0.432589i 0.976328 + 0.216294i \(0.0693971\pi\)
−0.976328 + 0.216294i \(0.930603\pi\)
\(812\) 0 0
\(813\) 3.16297 + 1.83461i 0.110930 + 0.0643426i
\(814\) 0 0
\(815\) 11.6131 0.406791
\(816\) 0 0
\(817\) 14.2749i 0.499415i
\(818\) 0 0
\(819\) 9.65115 + 45.4471i 0.337238 + 1.58805i
\(820\) 0 0
\(821\) 7.25501i 0.253202i −0.991954 0.126601i \(-0.959593\pi\)
0.991954 0.126601i \(-0.0404067\pi\)
\(822\) 0 0
\(823\) −53.1582 −1.85298 −0.926489 0.376321i \(-0.877189\pi\)
−0.926489 + 0.376321i \(0.877189\pi\)
\(824\) 0 0
\(825\) 0.811106 + 0.470465i 0.0282391 + 0.0163795i
\(826\) 0 0
\(827\) 41.3798i 1.43892i −0.694536 0.719458i \(-0.744390\pi\)
0.694536 0.719458i \(-0.255610\pi\)
\(828\) 0 0
\(829\) 1.37838i 0.0478730i 0.999713 + 0.0239365i \(0.00761996\pi\)
−0.999713 + 0.0239365i \(0.992380\pi\)
\(830\) 0 0
\(831\) 9.47455 16.3346i 0.328668 0.566642i
\(832\) 0 0
\(833\) 35.4242 + 25.3255i 1.22738 + 0.877476i
\(834\) 0 0
\(835\) 7.85657 0.271888
\(836\) 0 0
\(837\) −0.281209 + 46.7191i −0.00972001 + 1.61485i
\(838\) 0 0
\(839\) −0.647037 −0.0223382 −0.0111691 0.999938i \(-0.503555\pi\)
−0.0111691 + 0.999938i \(0.503555\pi\)
\(840\) 0 0
\(841\) 1.07983 0.0372357
\(842\) 0 0
\(843\) −32.3850 18.7842i −1.11540 0.646963i
\(844\) 0 0
\(845\) 21.2633 0.731478
\(846\) 0 0
\(847\) 8.65068 26.9747i 0.297241 0.926861i
\(848\) 0 0
\(849\) 20.8307 + 12.0824i 0.714907 + 0.414667i
\(850\) 0 0
\(851\) 48.0724i 1.64790i
\(852\) 0 0
\(853\) 43.9133i 1.50356i 0.659412 + 0.751782i \(0.270805\pi\)
−0.659412 + 0.751782i \(0.729195\pi\)
\(854\) 0 0
\(855\) −14.9722 + 8.56426i −0.512037 + 0.292892i
\(856\) 0 0
\(857\) −27.6363 −0.944039 −0.472019 0.881588i \(-0.656475\pi\)
−0.472019 + 0.881588i \(0.656475\pi\)
\(858\) 0 0
\(859\) 43.0054i 1.46733i 0.679513 + 0.733663i \(0.262191\pi\)
−0.679513 + 0.733663i \(0.737809\pi\)
\(860\) 0 0
\(861\) −15.8725 17.5638i −0.540933 0.598574i
\(862\) 0 0
\(863\) 5.18506i 0.176501i 0.996098 + 0.0882507i \(0.0281277\pi\)
−0.996098 + 0.0882507i \(0.971872\pi\)
\(864\) 0 0
\(865\) 5.82479 0.198049
\(866\) 0 0
\(867\) −18.8573 + 32.5109i −0.640426 + 1.10413i
\(868\) 0 0
\(869\) 9.41351i 0.319332i
\(870\) 0 0
\(871\) 48.3960i 1.63984i
\(872\) 0 0
\(873\) 8.45336 4.83542i 0.286103 0.163654i
\(874\) 0 0
\(875\) −0.807952 + 2.51937i −0.0273138 + 0.0851702i
\(876\) 0 0
\(877\) 31.8853 1.07669 0.538346 0.842724i \(-0.319049\pi\)
0.538346 + 0.842724i \(0.319049\pi\)
\(878\) 0 0
\(879\) 3.36015 5.79307i 0.113335 0.195396i
\(880\) 0 0
\(881\) −22.8971 −0.771422 −0.385711 0.922620i \(-0.626044\pi\)
−0.385711 + 0.922620i \(0.626044\pi\)
\(882\) 0 0
\(883\) −0.815622 −0.0274479 −0.0137239 0.999906i \(-0.504369\pi\)
−0.0137239 + 0.999906i \(0.504369\pi\)
\(884\) 0 0
\(885\) −8.48808 + 14.6339i −0.285324 + 0.491913i
\(886\) 0 0
\(887\) 29.9931 1.00707 0.503535 0.863975i \(-0.332033\pi\)
0.503535 + 0.863975i \(0.332033\pi\)
\(888\) 0 0
\(889\) −0.696398 + 2.17152i −0.0233564 + 0.0728303i
\(890\) 0 0
\(891\) 4.19984 + 2.46993i 0.140700 + 0.0827458i
\(892\) 0 0
\(893\) 12.0508i 0.403264i
\(894\) 0 0
\(895\) 10.5161i 0.351515i
\(896\) 0 0
\(897\) −33.3427 + 57.4845i −1.11328 + 1.91935i
\(898\) 0 0
\(899\) −47.5094 −1.58453
\(900\) 0 0
\(901\) 60.6945i 2.02203i
\(902\) 0 0
\(903\) 7.62846 + 8.44135i 0.253859 + 0.280910i
\(904\) 0 0
\(905\) 2.28411i 0.0759264i
\(906\) 0 0
\(907\) −34.0918 −1.13200 −0.566000 0.824405i \(-0.691510\pi\)
−0.566000 + 0.824405i \(0.691510\pi\)
\(908\) 0 0
\(909\) −22.3199 39.0200i −0.740305 1.29421i
\(910\) 0 0
\(911\) 14.3838i 0.476558i 0.971197 + 0.238279i \(0.0765832\pi\)
−0.971197 + 0.238279i \(0.923417\pi\)
\(912\) 0 0
\(913\) 8.04432i 0.266228i
\(914\) 0 0
\(915\) 0.649028 + 0.376454i 0.0214562 + 0.0124452i
\(916\) 0 0
\(917\) −8.03377 + 25.0510i −0.265299 + 0.827258i
\(918\) 0 0
\(919\) −32.0149 −1.05608 −0.528038 0.849221i \(-0.677072\pi\)
−0.528038 + 0.849221i \(0.677072\pi\)
\(920\) 0 0
\(921\) −7.67904 4.45406i −0.253033 0.146766i
\(922\) 0 0
\(923\) −30.7334 −1.01160
\(924\) 0 0
\(925\) 7.33408 0.241143
\(926\) 0 0
\(927\) 33.8829 19.3814i 1.11286 0.636570i
\(928\) 0 0
\(929\) 19.3260 0.634064 0.317032 0.948415i \(-0.397314\pi\)
0.317032 + 0.948415i \(0.397314\pi\)
\(930\) 0 0
\(931\) 23.4066 32.7402i 0.767121 1.07302i
\(932\) 0 0
\(933\) 16.3763 28.2336i 0.536136 0.924327i
\(934\) 0 0
\(935\) 3.36776i 0.110138i
\(936\) 0 0
\(937\) 7.81494i 0.255303i 0.991819 + 0.127651i \(0.0407439\pi\)
−0.991819 + 0.127651i \(0.959256\pi\)
\(938\) 0 0
\(939\) 14.0302 + 8.13793i 0.457859 + 0.265571i
\(940\) 0 0
\(941\) 5.16553 0.168391 0.0841957 0.996449i \(-0.473168\pi\)
0.0841957 + 0.996449i \(0.473168\pi\)
\(942\) 0 0
\(943\) 33.8609i 1.10266i
\(944\) 0 0
\(945\) −4.27696 + 13.0655i −0.139130 + 0.425021i
\(946\) 0 0
\(947\) 8.58998i 0.279137i 0.990212 + 0.139568i \(0.0445715\pi\)
−0.990212 + 0.139568i \(0.955428\pi\)
\(948\) 0 0
\(949\) 55.1489 1.79021
\(950\) 0 0
\(951\) 28.6472 + 16.6162i 0.928949 + 0.538817i
\(952\) 0 0
\(953\) 55.0367i 1.78281i −0.453205 0.891406i \(-0.649719\pi\)
0.453205 0.891406i \(-0.350281\pi\)
\(954\) 0 0
\(955\) 4.26399i 0.137979i
\(956\) 0 0
\(957\) −2.48591 + 4.28585i −0.0803582 + 0.138542i
\(958\) 0 0
\(959\) −31.3254 10.0459i −1.01155 0.324400i
\(960\) 0 0
\(961\) −49.8426 −1.60783
\(962\) 0 0
\(963\) 31.5212 18.0305i 1.01576 0.581026i
\(964\) 0 0
\(965\) 8.02782 0.258425
\(966\) 0 0
\(967\) 44.3877 1.42741 0.713707 0.700445i \(-0.247015\pi\)
0.713707 + 0.700445i \(0.247015\pi\)
\(968\) 0 0
\(969\) 53.5882 + 31.0827i 1.72150 + 0.998519i
\(970\) 0 0
\(971\) 12.7190 0.408172 0.204086 0.978953i \(-0.434578\pi\)
0.204086 + 0.978953i \(0.434578\pi\)
\(972\) 0 0
\(973\) −12.8949 4.13536i −0.413392 0.132573i
\(974\) 0 0
\(975\) 8.77004 + 5.08687i 0.280866 + 0.162910i
\(976\) 0 0
\(977\) 33.1021i 1.05903i −0.848300 0.529516i \(-0.822374\pi\)
0.848300 0.529516i \(-0.177626\pi\)
\(978\) 0 0
\(979\) 3.85679i 0.123263i
\(980\) 0 0
\(981\) 2.10266 + 3.67590i 0.0671329 + 0.117363i
\(982\) 0 0
\(983\) −33.7287 −1.07578 −0.537889 0.843016i \(-0.680778\pi\)
−0.537889 + 0.843016i \(0.680778\pi\)
\(984\) 0 0
\(985\) 11.3017i 0.360101i
\(986\) 0 0
\(987\) −6.43991 7.12615i −0.204985 0.226828i
\(988\) 0 0
\(989\) 16.2739i 0.517479i
\(990\) 0 0
\(991\) −24.4912 −0.777990 −0.388995 0.921240i \(-0.627178\pi\)
−0.388995 + 0.921240i \(0.627178\pi\)
\(992\) 0 0
\(993\) 6.90791 11.9096i 0.219216 0.377940i
\(994\) 0 0
\(995\) 8.86775i 0.281127i
\(996\) 0 0
\(997\) 43.8446i 1.38857i 0.719700 + 0.694286i \(0.244280\pi\)
−0.719700 + 0.694286i \(0.755720\pi\)
\(998\) 0 0
\(999\) 38.1083 + 0.229380i 1.20569 + 0.00725726i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.f.k.881.6 16
3.2 odd 2 1680.2.f.l.881.12 16
4.3 odd 2 840.2.f.a.41.11 16
7.6 odd 2 1680.2.f.l.881.11 16
12.11 even 2 840.2.f.b.41.5 yes 16
21.20 even 2 inner 1680.2.f.k.881.5 16
28.27 even 2 840.2.f.b.41.6 yes 16
84.83 odd 2 840.2.f.a.41.12 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.f.a.41.11 16 4.3 odd 2
840.2.f.a.41.12 yes 16 84.83 odd 2
840.2.f.b.41.5 yes 16 12.11 even 2
840.2.f.b.41.6 yes 16 28.27 even 2
1680.2.f.k.881.5 16 21.20 even 2 inner
1680.2.f.k.881.6 16 1.1 even 1 trivial
1680.2.f.l.881.11 16 7.6 odd 2
1680.2.f.l.881.12 16 3.2 odd 2