Properties

Label 1680.2.f.k.881.4
Level $1680$
Weight $2$
Character 1680.881
Analytic conductor $13.415$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(881,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-16,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + x^{14} - 4 x^{13} + 10 x^{12} - 32 x^{11} + 71 x^{10} - 70 x^{9} + 74 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.4
Root \(-1.12510 + 1.31688i\) of defining polynomial
Character \(\chi\) \(=\) 1680.881
Dual form 1680.2.f.k.881.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.31688 + 1.12510i) q^{3} -1.00000 q^{5} +(-2.64497 - 0.0644212i) q^{7} +(0.468322 - 2.96322i) q^{9} +2.69896i q^{11} +6.61014i q^{13} +(1.31688 - 1.12510i) q^{15} +7.03420 q^{17} +3.22748i q^{19} +(3.55557 - 2.89100i) q^{21} +2.56574i q^{23} +1.00000 q^{25} +(2.71718 + 4.42910i) q^{27} -8.21890i q^{29} -2.87007i q^{31} +(-3.03659 - 3.55419i) q^{33} +(2.64497 + 0.0644212i) q^{35} -6.79684 q^{37} +(-7.43703 - 8.70473i) q^{39} -10.0478 q^{41} -11.6680 q^{43} +(-0.468322 + 2.96322i) q^{45} -2.56626 q^{47} +(6.99170 + 0.340784i) q^{49} +(-9.26316 + 7.91414i) q^{51} -2.70121i q^{53} -2.69896i q^{55} +(-3.63122 - 4.25019i) q^{57} -3.03797 q^{59} +7.83481i q^{61} +(-1.42959 + 7.80745i) q^{63} -6.61014i q^{65} +12.5077 q^{67} +(-2.88670 - 3.37875i) q^{69} -14.0203i q^{71} -1.81228i q^{73} +(-1.31688 + 1.12510i) q^{75} +(0.173870 - 7.13866i) q^{77} -13.4166 q^{79} +(-8.56135 - 2.77548i) q^{81} +3.01554 q^{83} -7.03420 q^{85} +(9.24705 + 10.8233i) q^{87} -4.17450 q^{89} +(0.425833 - 17.4836i) q^{91} +(3.22911 + 3.77953i) q^{93} -3.22748i q^{95} -9.55176i q^{97} +(7.99761 + 1.26398i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{5} - 2 q^{7} - 2 q^{9} + 2 q^{21} + 16 q^{25} + 6 q^{27} - 6 q^{33} + 2 q^{35} + 12 q^{37} - 6 q^{39} - 32 q^{41} - 32 q^{43} + 2 q^{45} + 4 q^{47} - 4 q^{49} - 6 q^{51} - 24 q^{59} + 4 q^{63}+ \cdots + 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.31688 + 1.12510i −0.760298 + 0.649574i
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.64497 0.0644212i −0.999704 0.0243489i
\(8\) 0 0
\(9\) 0.468322 2.96322i 0.156107 0.987740i
\(10\) 0 0
\(11\) 2.69896i 0.813767i 0.913480 + 0.406884i \(0.133385\pi\)
−0.913480 + 0.406884i \(0.866615\pi\)
\(12\) 0 0
\(13\) 6.61014i 1.83332i 0.399665 + 0.916661i \(0.369127\pi\)
−0.399665 + 0.916661i \(0.630873\pi\)
\(14\) 0 0
\(15\) 1.31688 1.12510i 0.340016 0.290498i
\(16\) 0 0
\(17\) 7.03420 1.70604 0.853022 0.521875i \(-0.174767\pi\)
0.853022 + 0.521875i \(0.174767\pi\)
\(18\) 0 0
\(19\) 3.22748i 0.740435i 0.928945 + 0.370217i \(0.120717\pi\)
−0.928945 + 0.370217i \(0.879283\pi\)
\(20\) 0 0
\(21\) 3.55557 2.89100i 0.775889 0.630869i
\(22\) 0 0
\(23\) 2.56574i 0.534993i 0.963559 + 0.267496i \(0.0861964\pi\)
−0.963559 + 0.267496i \(0.913804\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 2.71718 + 4.42910i 0.522922 + 0.852381i
\(28\) 0 0
\(29\) 8.21890i 1.52621i −0.646273 0.763106i \(-0.723673\pi\)
0.646273 0.763106i \(-0.276327\pi\)
\(30\) 0 0
\(31\) 2.87007i 0.515481i −0.966214 0.257740i \(-0.917022\pi\)
0.966214 0.257740i \(-0.0829779\pi\)
\(32\) 0 0
\(33\) −3.03659 3.55419i −0.528602 0.618706i
\(34\) 0 0
\(35\) 2.64497 + 0.0644212i 0.447081 + 0.0108892i
\(36\) 0 0
\(37\) −6.79684 −1.11739 −0.558697 0.829372i \(-0.688699\pi\)
−0.558697 + 0.829372i \(0.688699\pi\)
\(38\) 0 0
\(39\) −7.43703 8.70473i −1.19088 1.39387i
\(40\) 0 0
\(41\) −10.0478 −1.56920 −0.784600 0.620002i \(-0.787132\pi\)
−0.784600 + 0.620002i \(0.787132\pi\)
\(42\) 0 0
\(43\) −11.6680 −1.77935 −0.889673 0.456599i \(-0.849068\pi\)
−0.889673 + 0.456599i \(0.849068\pi\)
\(44\) 0 0
\(45\) −0.468322 + 2.96322i −0.0698133 + 0.441731i
\(46\) 0 0
\(47\) −2.56626 −0.374328 −0.187164 0.982329i \(-0.559930\pi\)
−0.187164 + 0.982329i \(0.559930\pi\)
\(48\) 0 0
\(49\) 6.99170 + 0.340784i 0.998814 + 0.0486834i
\(50\) 0 0
\(51\) −9.26316 + 7.91414i −1.29710 + 1.10820i
\(52\) 0 0
\(53\) 2.70121i 0.371040i −0.982641 0.185520i \(-0.940603\pi\)
0.982641 0.185520i \(-0.0593969\pi\)
\(54\) 0 0
\(55\) 2.69896i 0.363928i
\(56\) 0 0
\(57\) −3.63122 4.25019i −0.480967 0.562951i
\(58\) 0 0
\(59\) −3.03797 −0.395510 −0.197755 0.980251i \(-0.563365\pi\)
−0.197755 + 0.980251i \(0.563365\pi\)
\(60\) 0 0
\(61\) 7.83481i 1.00315i 0.865116 + 0.501573i \(0.167245\pi\)
−0.865116 + 0.501573i \(0.832755\pi\)
\(62\) 0 0
\(63\) −1.42959 + 7.80745i −0.180111 + 0.983646i
\(64\) 0 0
\(65\) 6.61014i 0.819887i
\(66\) 0 0
\(67\) 12.5077 1.52805 0.764027 0.645184i \(-0.223219\pi\)
0.764027 + 0.645184i \(0.223219\pi\)
\(68\) 0 0
\(69\) −2.88670 3.37875i −0.347517 0.406754i
\(70\) 0 0
\(71\) 14.0203i 1.66391i −0.554846 0.831953i \(-0.687223\pi\)
0.554846 0.831953i \(-0.312777\pi\)
\(72\) 0 0
\(73\) 1.81228i 0.212111i −0.994360 0.106056i \(-0.966178\pi\)
0.994360 0.106056i \(-0.0338222\pi\)
\(74\) 0 0
\(75\) −1.31688 + 1.12510i −0.152060 + 0.129915i
\(76\) 0 0
\(77\) 0.173870 7.13866i 0.0198143 0.813526i
\(78\) 0 0
\(79\) −13.4166 −1.50949 −0.754744 0.656020i \(-0.772239\pi\)
−0.754744 + 0.656020i \(0.772239\pi\)
\(80\) 0 0
\(81\) −8.56135 2.77548i −0.951261 0.308387i
\(82\) 0 0
\(83\) 3.01554 0.330998 0.165499 0.986210i \(-0.447076\pi\)
0.165499 + 0.986210i \(0.447076\pi\)
\(84\) 0 0
\(85\) −7.03420 −0.762966
\(86\) 0 0
\(87\) 9.24705 + 10.8233i 0.991388 + 1.16038i
\(88\) 0 0
\(89\) −4.17450 −0.442496 −0.221248 0.975218i \(-0.571013\pi\)
−0.221248 + 0.975218i \(0.571013\pi\)
\(90\) 0 0
\(91\) 0.425833 17.4836i 0.0446394 1.83278i
\(92\) 0 0
\(93\) 3.22911 + 3.77953i 0.334843 + 0.391919i
\(94\) 0 0
\(95\) 3.22748i 0.331133i
\(96\) 0 0
\(97\) 9.55176i 0.969834i −0.874560 0.484917i \(-0.838850\pi\)
0.874560 0.484917i \(-0.161150\pi\)
\(98\) 0 0
\(99\) 7.99761 + 1.26398i 0.803790 + 0.127035i
\(100\) 0 0
\(101\) −10.5849 −1.05324 −0.526620 0.850101i \(-0.676541\pi\)
−0.526620 + 0.850101i \(0.676541\pi\)
\(102\) 0 0
\(103\) 1.89424i 0.186645i 0.995636 + 0.0933226i \(0.0297488\pi\)
−0.995636 + 0.0933226i \(0.970251\pi\)
\(104\) 0 0
\(105\) −3.55557 + 2.89100i −0.346988 + 0.282133i
\(106\) 0 0
\(107\) 5.25101i 0.507634i −0.967252 0.253817i \(-0.918314\pi\)
0.967252 0.253817i \(-0.0816861\pi\)
\(108\) 0 0
\(109\) −2.53893 −0.243185 −0.121593 0.992580i \(-0.538800\pi\)
−0.121593 + 0.992580i \(0.538800\pi\)
\(110\) 0 0
\(111\) 8.95060 7.64709i 0.849553 0.725830i
\(112\) 0 0
\(113\) 8.73583i 0.821798i 0.911681 + 0.410899i \(0.134785\pi\)
−0.911681 + 0.410899i \(0.865215\pi\)
\(114\) 0 0
\(115\) 2.56574i 0.239256i
\(116\) 0 0
\(117\) 19.5873 + 3.09567i 1.81085 + 0.286195i
\(118\) 0 0
\(119\) −18.6052 0.453151i −1.70554 0.0415403i
\(120\) 0 0
\(121\) 3.71562 0.337783
\(122\) 0 0
\(123\) 13.2317 11.3047i 1.19306 1.01931i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −7.71266 −0.684388 −0.342194 0.939629i \(-0.611170\pi\)
−0.342194 + 0.939629i \(0.611170\pi\)
\(128\) 0 0
\(129\) 15.3652 13.1276i 1.35283 1.15582i
\(130\) 0 0
\(131\) 2.91632 0.254800 0.127400 0.991851i \(-0.459337\pi\)
0.127400 + 0.991851i \(0.459337\pi\)
\(132\) 0 0
\(133\) 0.207918 8.53658i 0.0180288 0.740215i
\(134\) 0 0
\(135\) −2.71718 4.42910i −0.233858 0.381196i
\(136\) 0 0
\(137\) 18.7142i 1.59886i 0.600759 + 0.799430i \(0.294865\pi\)
−0.600759 + 0.799430i \(0.705135\pi\)
\(138\) 0 0
\(139\) 19.5502i 1.65823i −0.559080 0.829114i \(-0.688845\pi\)
0.559080 0.829114i \(-0.311155\pi\)
\(140\) 0 0
\(141\) 3.37945 2.88729i 0.284601 0.243154i
\(142\) 0 0
\(143\) −17.8405 −1.49190
\(144\) 0 0
\(145\) 8.21890i 0.682543i
\(146\) 0 0
\(147\) −9.59061 + 7.41756i −0.791020 + 0.611790i
\(148\) 0 0
\(149\) 3.35377i 0.274751i −0.990519 0.137376i \(-0.956133\pi\)
0.990519 0.137376i \(-0.0438667\pi\)
\(150\) 0 0
\(151\) 6.20015 0.504561 0.252280 0.967654i \(-0.418819\pi\)
0.252280 + 0.967654i \(0.418819\pi\)
\(152\) 0 0
\(153\) 3.29427 20.8439i 0.266326 1.68513i
\(154\) 0 0
\(155\) 2.87007i 0.230530i
\(156\) 0 0
\(157\) 9.90178i 0.790248i 0.918628 + 0.395124i \(0.129298\pi\)
−0.918628 + 0.395124i \(0.870702\pi\)
\(158\) 0 0
\(159\) 3.03912 + 3.55716i 0.241018 + 0.282101i
\(160\) 0 0
\(161\) 0.165288 6.78629i 0.0130265 0.534834i
\(162\) 0 0
\(163\) 13.4953 1.05703 0.528515 0.848924i \(-0.322749\pi\)
0.528515 + 0.848924i \(0.322749\pi\)
\(164\) 0 0
\(165\) 3.03659 + 3.55419i 0.236398 + 0.276694i
\(166\) 0 0
\(167\) −4.40548 −0.340907 −0.170453 0.985366i \(-0.554523\pi\)
−0.170453 + 0.985366i \(0.554523\pi\)
\(168\) 0 0
\(169\) −30.6939 −2.36107
\(170\) 0 0
\(171\) 9.56374 + 1.51150i 0.731357 + 0.115587i
\(172\) 0 0
\(173\) −5.90091 −0.448638 −0.224319 0.974516i \(-0.572016\pi\)
−0.224319 + 0.974516i \(0.572016\pi\)
\(174\) 0 0
\(175\) −2.64497 0.0644212i −0.199941 0.00486978i
\(176\) 0 0
\(177\) 4.00063 3.41801i 0.300706 0.256913i
\(178\) 0 0
\(179\) 7.34159i 0.548736i −0.961625 0.274368i \(-0.911531\pi\)
0.961625 0.274368i \(-0.0884687\pi\)
\(180\) 0 0
\(181\) 17.0168i 1.26485i 0.774623 + 0.632423i \(0.217940\pi\)
−0.774623 + 0.632423i \(0.782060\pi\)
\(182\) 0 0
\(183\) −8.81491 10.3175i −0.651617 0.762690i
\(184\) 0 0
\(185\) 6.79684 0.499714
\(186\) 0 0
\(187\) 18.9850i 1.38832i
\(188\) 0 0
\(189\) −6.90153 11.8899i −0.502012 0.864860i
\(190\) 0 0
\(191\) 1.75110i 0.126705i −0.997991 0.0633525i \(-0.979821\pi\)
0.997991 0.0633525i \(-0.0201792\pi\)
\(192\) 0 0
\(193\) −12.8740 −0.926694 −0.463347 0.886177i \(-0.653352\pi\)
−0.463347 + 0.886177i \(0.653352\pi\)
\(194\) 0 0
\(195\) 7.43703 + 8.70473i 0.532577 + 0.623359i
\(196\) 0 0
\(197\) 7.93648i 0.565451i 0.959201 + 0.282725i \(0.0912385\pi\)
−0.959201 + 0.282725i \(0.908762\pi\)
\(198\) 0 0
\(199\) 8.56247i 0.606977i 0.952835 + 0.303489i \(0.0981515\pi\)
−0.952835 + 0.303489i \(0.901849\pi\)
\(200\) 0 0
\(201\) −16.4710 + 14.0723i −1.16178 + 0.992585i
\(202\) 0 0
\(203\) −0.529471 + 21.7387i −0.0371616 + 1.52576i
\(204\) 0 0
\(205\) 10.0478 0.701768
\(206\) 0 0
\(207\) 7.60284 + 1.20159i 0.528434 + 0.0835163i
\(208\) 0 0
\(209\) −8.71084 −0.602541
\(210\) 0 0
\(211\) 9.30759 0.640761 0.320380 0.947289i \(-0.396189\pi\)
0.320380 + 0.947289i \(0.396189\pi\)
\(212\) 0 0
\(213\) 15.7742 + 18.4630i 1.08083 + 1.26507i
\(214\) 0 0
\(215\) 11.6680 0.795748
\(216\) 0 0
\(217\) −0.184894 + 7.59125i −0.0125514 + 0.515328i
\(218\) 0 0
\(219\) 2.03899 + 2.38655i 0.137782 + 0.161268i
\(220\) 0 0
\(221\) 46.4970i 3.12773i
\(222\) 0 0
\(223\) 19.9132i 1.33349i −0.745287 0.666744i \(-0.767687\pi\)
0.745287 0.666744i \(-0.232313\pi\)
\(224\) 0 0
\(225\) 0.468322 2.96322i 0.0312215 0.197548i
\(226\) 0 0
\(227\) −12.8987 −0.856116 −0.428058 0.903751i \(-0.640802\pi\)
−0.428058 + 0.903751i \(0.640802\pi\)
\(228\) 0 0
\(229\) 6.88453i 0.454942i −0.973785 0.227471i \(-0.926954\pi\)
0.973785 0.227471i \(-0.0730458\pi\)
\(230\) 0 0
\(231\) 7.80271 + 9.59635i 0.513380 + 0.631393i
\(232\) 0 0
\(233\) 15.3574i 1.00610i −0.864258 0.503049i \(-0.832212\pi\)
0.864258 0.503049i \(-0.167788\pi\)
\(234\) 0 0
\(235\) 2.56626 0.167405
\(236\) 0 0
\(237\) 17.6680 15.0950i 1.14766 0.980524i
\(238\) 0 0
\(239\) 22.0305i 1.42504i −0.701654 0.712518i \(-0.747555\pi\)
0.701654 0.712518i \(-0.252445\pi\)
\(240\) 0 0
\(241\) 7.25586i 0.467391i 0.972310 + 0.233695i \(0.0750819\pi\)
−0.972310 + 0.233695i \(0.924918\pi\)
\(242\) 0 0
\(243\) 14.3969 5.97737i 0.923562 0.383448i
\(244\) 0 0
\(245\) −6.99170 0.340784i −0.446683 0.0217719i
\(246\) 0 0
\(247\) −21.3341 −1.35746
\(248\) 0 0
\(249\) −3.97109 + 3.39277i −0.251658 + 0.215008i
\(250\) 0 0
\(251\) −7.87952 −0.497351 −0.248676 0.968587i \(-0.579995\pi\)
−0.248676 + 0.968587i \(0.579995\pi\)
\(252\) 0 0
\(253\) −6.92482 −0.435360
\(254\) 0 0
\(255\) 9.26316 7.91414i 0.580082 0.495603i
\(256\) 0 0
\(257\) 5.11492 0.319060 0.159530 0.987193i \(-0.449002\pi\)
0.159530 + 0.987193i \(0.449002\pi\)
\(258\) 0 0
\(259\) 17.9774 + 0.437861i 1.11706 + 0.0272073i
\(260\) 0 0
\(261\) −24.3544 3.84909i −1.50750 0.238253i
\(262\) 0 0
\(263\) 4.14488i 0.255584i −0.991801 0.127792i \(-0.959211\pi\)
0.991801 0.127792i \(-0.0407890\pi\)
\(264\) 0 0
\(265\) 2.70121i 0.165934i
\(266\) 0 0
\(267\) 5.49730 4.69671i 0.336429 0.287434i
\(268\) 0 0
\(269\) −25.3797 −1.54743 −0.773714 0.633535i \(-0.781603\pi\)
−0.773714 + 0.633535i \(0.781603\pi\)
\(270\) 0 0
\(271\) 4.50193i 0.273473i −0.990607 0.136736i \(-0.956339\pi\)
0.990607 0.136736i \(-0.0436613\pi\)
\(272\) 0 0
\(273\) 19.1099 + 23.5028i 1.15659 + 1.42246i
\(274\) 0 0
\(275\) 2.69896i 0.162753i
\(276\) 0 0
\(277\) 4.75704 0.285823 0.142911 0.989736i \(-0.454354\pi\)
0.142911 + 0.989736i \(0.454354\pi\)
\(278\) 0 0
\(279\) −8.50466 1.34412i −0.509161 0.0804703i
\(280\) 0 0
\(281\) 10.5156i 0.627310i −0.949537 0.313655i \(-0.898447\pi\)
0.949537 0.313655i \(-0.101553\pi\)
\(282\) 0 0
\(283\) 2.59242i 0.154103i 0.997027 + 0.0770517i \(0.0245506\pi\)
−0.997027 + 0.0770517i \(0.975449\pi\)
\(284\) 0 0
\(285\) 3.63122 + 4.25019i 0.215095 + 0.251760i
\(286\) 0 0
\(287\) 26.5761 + 0.647290i 1.56874 + 0.0382083i
\(288\) 0 0
\(289\) 32.4800 1.91059
\(290\) 0 0
\(291\) 10.7466 + 12.5785i 0.629979 + 0.737364i
\(292\) 0 0
\(293\) −11.7742 −0.687856 −0.343928 0.938996i \(-0.611758\pi\)
−0.343928 + 0.938996i \(0.611758\pi\)
\(294\) 0 0
\(295\) 3.03797 0.176878
\(296\) 0 0
\(297\) −11.9540 + 7.33357i −0.693639 + 0.425537i
\(298\) 0 0
\(299\) −16.9599 −0.980815
\(300\) 0 0
\(301\) 30.8613 + 0.751663i 1.77882 + 0.0433251i
\(302\) 0 0
\(303\) 13.9390 11.9090i 0.800776 0.684157i
\(304\) 0 0
\(305\) 7.83481i 0.448620i
\(306\) 0 0
\(307\) 27.4395i 1.56606i 0.621986 + 0.783028i \(0.286326\pi\)
−0.621986 + 0.783028i \(0.713674\pi\)
\(308\) 0 0
\(309\) −2.13120 2.49448i −0.121240 0.141906i
\(310\) 0 0
\(311\) 15.5480 0.881645 0.440822 0.897594i \(-0.354687\pi\)
0.440822 + 0.897594i \(0.354687\pi\)
\(312\) 0 0
\(313\) 12.6650i 0.715869i −0.933747 0.357935i \(-0.883481\pi\)
0.933747 0.357935i \(-0.116519\pi\)
\(314\) 0 0
\(315\) 1.42959 7.80745i 0.0805483 0.439900i
\(316\) 0 0
\(317\) 18.2682i 1.02604i −0.858376 0.513021i \(-0.828526\pi\)
0.858376 0.513021i \(-0.171474\pi\)
\(318\) 0 0
\(319\) 22.1825 1.24198
\(320\) 0 0
\(321\) 5.90789 + 6.91493i 0.329746 + 0.385954i
\(322\) 0 0
\(323\) 22.7027i 1.26321i
\(324\) 0 0
\(325\) 6.61014i 0.366665i
\(326\) 0 0
\(327\) 3.34345 2.85654i 0.184893 0.157967i
\(328\) 0 0
\(329\) 6.78768 + 0.165322i 0.374217 + 0.00911448i
\(330\) 0 0
\(331\) 15.7692 0.866751 0.433376 0.901213i \(-0.357322\pi\)
0.433376 + 0.901213i \(0.357322\pi\)
\(332\) 0 0
\(333\) −3.18311 + 20.1405i −0.174433 + 1.10369i
\(334\) 0 0
\(335\) −12.5077 −0.683367
\(336\) 0 0
\(337\) 3.90831 0.212899 0.106450 0.994318i \(-0.466052\pi\)
0.106450 + 0.994318i \(0.466052\pi\)
\(338\) 0 0
\(339\) −9.82864 11.5040i −0.533819 0.624812i
\(340\) 0 0
\(341\) 7.74622 0.419481
\(342\) 0 0
\(343\) −18.4709 1.35178i −0.997333 0.0729890i
\(344\) 0 0
\(345\) 2.88670 + 3.37875i 0.155415 + 0.181906i
\(346\) 0 0
\(347\) 18.5501i 0.995821i 0.867228 + 0.497911i \(0.165899\pi\)
−0.867228 + 0.497911i \(0.834101\pi\)
\(348\) 0 0
\(349\) 27.1665i 1.45419i −0.686537 0.727095i \(-0.740870\pi\)
0.686537 0.727095i \(-0.259130\pi\)
\(350\) 0 0
\(351\) −29.2770 + 17.9610i −1.56269 + 0.958685i
\(352\) 0 0
\(353\) −29.1433 −1.55114 −0.775569 0.631262i \(-0.782537\pi\)
−0.775569 + 0.631262i \(0.782537\pi\)
\(354\) 0 0
\(355\) 14.0203i 0.744121i
\(356\) 0 0
\(357\) 25.0106 20.3359i 1.32370 1.07629i
\(358\) 0 0
\(359\) 23.0333i 1.21565i 0.794070 + 0.607827i \(0.207958\pi\)
−0.794070 + 0.607827i \(0.792042\pi\)
\(360\) 0 0
\(361\) 8.58337 0.451756
\(362\) 0 0
\(363\) −4.89300 + 4.18042i −0.256816 + 0.219415i
\(364\) 0 0
\(365\) 1.81228i 0.0948591i
\(366\) 0 0
\(367\) 21.3177i 1.11277i 0.830923 + 0.556387i \(0.187813\pi\)
−0.830923 + 0.556387i \(0.812187\pi\)
\(368\) 0 0
\(369\) −4.70560 + 29.7738i −0.244964 + 1.54996i
\(370\) 0 0
\(371\) −0.174015 + 7.14461i −0.00903442 + 0.370930i
\(372\) 0 0
\(373\) 1.49852 0.0775906 0.0387953 0.999247i \(-0.487648\pi\)
0.0387953 + 0.999247i \(0.487648\pi\)
\(374\) 0 0
\(375\) 1.31688 1.12510i 0.0680032 0.0580997i
\(376\) 0 0
\(377\) 54.3281 2.79804
\(378\) 0 0
\(379\) −9.44524 −0.485170 −0.242585 0.970130i \(-0.577995\pi\)
−0.242585 + 0.970130i \(0.577995\pi\)
\(380\) 0 0
\(381\) 10.1566 8.67748i 0.520339 0.444561i
\(382\) 0 0
\(383\) −22.6101 −1.15532 −0.577662 0.816276i \(-0.696035\pi\)
−0.577662 + 0.816276i \(0.696035\pi\)
\(384\) 0 0
\(385\) −0.173870 + 7.13866i −0.00886124 + 0.363820i
\(386\) 0 0
\(387\) −5.46436 + 34.5747i −0.277769 + 1.75753i
\(388\) 0 0
\(389\) 19.4779i 0.987569i 0.869584 + 0.493784i \(0.164387\pi\)
−0.869584 + 0.493784i \(0.835613\pi\)
\(390\) 0 0
\(391\) 18.0479i 0.912721i
\(392\) 0 0
\(393\) −3.84043 + 3.28113i −0.193724 + 0.165511i
\(394\) 0 0
\(395\) 13.4166 0.675063
\(396\) 0 0
\(397\) 4.10316i 0.205932i −0.994685 0.102966i \(-0.967167\pi\)
0.994685 0.102966i \(-0.0328333\pi\)
\(398\) 0 0
\(399\) 9.33066 + 11.4755i 0.467117 + 0.574496i
\(400\) 0 0
\(401\) 2.69031i 0.134348i −0.997741 0.0671738i \(-0.978602\pi\)
0.997741 0.0671738i \(-0.0213982\pi\)
\(402\) 0 0
\(403\) 18.9716 0.945042
\(404\) 0 0
\(405\) 8.56135 + 2.77548i 0.425417 + 0.137915i
\(406\) 0 0
\(407\) 18.3444i 0.909298i
\(408\) 0 0
\(409\) 22.9345i 1.13404i −0.823705 0.567019i \(-0.808097\pi\)
0.823705 0.567019i \(-0.191903\pi\)
\(410\) 0 0
\(411\) −21.0552 24.6442i −1.03858 1.21561i
\(412\) 0 0
\(413\) 8.03533 + 0.195710i 0.395393 + 0.00963024i
\(414\) 0 0
\(415\) −3.01554 −0.148027
\(416\) 0 0
\(417\) 21.9959 + 25.7452i 1.07714 + 1.26075i
\(418\) 0 0
\(419\) −7.76656 −0.379421 −0.189711 0.981840i \(-0.560755\pi\)
−0.189711 + 0.981840i \(0.560755\pi\)
\(420\) 0 0
\(421\) 3.86035 0.188142 0.0940710 0.995565i \(-0.470012\pi\)
0.0940710 + 0.995565i \(0.470012\pi\)
\(422\) 0 0
\(423\) −1.20184 + 7.60441i −0.0584354 + 0.369739i
\(424\) 0 0
\(425\) 7.03420 0.341209
\(426\) 0 0
\(427\) 0.504728 20.7228i 0.0244255 1.00285i
\(428\) 0 0
\(429\) 23.4937 20.0723i 1.13429 0.969098i
\(430\) 0 0
\(431\) 5.05754i 0.243613i −0.992554 0.121807i \(-0.961131\pi\)
0.992554 0.121807i \(-0.0388688\pi\)
\(432\) 0 0
\(433\) 37.7647i 1.81486i 0.420208 + 0.907428i \(0.361957\pi\)
−0.420208 + 0.907428i \(0.638043\pi\)
\(434\) 0 0
\(435\) −9.24705 10.8233i −0.443362 0.518936i
\(436\) 0 0
\(437\) −8.28086 −0.396127
\(438\) 0 0
\(439\) 7.03026i 0.335536i 0.985827 + 0.167768i \(0.0536559\pi\)
−0.985827 + 0.167768i \(0.946344\pi\)
\(440\) 0 0
\(441\) 4.28419 20.5584i 0.204009 0.978969i
\(442\) 0 0
\(443\) 24.2815i 1.15365i 0.816869 + 0.576824i \(0.195708\pi\)
−0.816869 + 0.576824i \(0.804292\pi\)
\(444\) 0 0
\(445\) 4.17450 0.197890
\(446\) 0 0
\(447\) 3.77330 + 4.41649i 0.178471 + 0.208893i
\(448\) 0 0
\(449\) 19.0341i 0.898276i 0.893462 + 0.449138i \(0.148269\pi\)
−0.893462 + 0.449138i \(0.851731\pi\)
\(450\) 0 0
\(451\) 27.1186i 1.27696i
\(452\) 0 0
\(453\) −8.16482 + 6.97575i −0.383617 + 0.327750i
\(454\) 0 0
\(455\) −0.425833 + 17.4836i −0.0199634 + 0.819644i
\(456\) 0 0
\(457\) 7.29974 0.341467 0.170734 0.985317i \(-0.445386\pi\)
0.170734 + 0.985317i \(0.445386\pi\)
\(458\) 0 0
\(459\) 19.1132 + 31.1552i 0.892128 + 1.45420i
\(460\) 0 0
\(461\) −22.3544 −1.04115 −0.520575 0.853816i \(-0.674282\pi\)
−0.520575 + 0.853816i \(0.674282\pi\)
\(462\) 0 0
\(463\) −8.45971 −0.393156 −0.196578 0.980488i \(-0.562983\pi\)
−0.196578 + 0.980488i \(0.562983\pi\)
\(464\) 0 0
\(465\) −3.22911 3.77953i −0.149746 0.175272i
\(466\) 0 0
\(467\) 11.9314 0.552120 0.276060 0.961140i \(-0.410971\pi\)
0.276060 + 0.961140i \(0.410971\pi\)
\(468\) 0 0
\(469\) −33.0824 0.805759i −1.52760 0.0372065i
\(470\) 0 0
\(471\) −11.1404 13.0394i −0.513325 0.600824i
\(472\) 0 0
\(473\) 31.4913i 1.44797i
\(474\) 0 0
\(475\) 3.22748i 0.148087i
\(476\) 0 0
\(477\) −8.00428 1.26504i −0.366491 0.0579221i
\(478\) 0 0
\(479\) −16.4398 −0.751155 −0.375578 0.926791i \(-0.622556\pi\)
−0.375578 + 0.926791i \(0.622556\pi\)
\(480\) 0 0
\(481\) 44.9281i 2.04854i
\(482\) 0 0
\(483\) 7.41755 + 9.12266i 0.337510 + 0.415095i
\(484\) 0 0
\(485\) 9.55176i 0.433723i
\(486\) 0 0
\(487\) −4.41408 −0.200021 −0.100011 0.994986i \(-0.531888\pi\)
−0.100011 + 0.994986i \(0.531888\pi\)
\(488\) 0 0
\(489\) −17.7716 + 15.1835i −0.803659 + 0.686620i
\(490\) 0 0
\(491\) 15.2188i 0.686817i −0.939186 0.343408i \(-0.888419\pi\)
0.939186 0.343408i \(-0.111581\pi\)
\(492\) 0 0
\(493\) 57.8134i 2.60378i
\(494\) 0 0
\(495\) −7.99761 1.26398i −0.359466 0.0568118i
\(496\) 0 0
\(497\) −0.903206 + 37.0833i −0.0405143 + 1.66341i
\(498\) 0 0
\(499\) −33.3095 −1.49114 −0.745570 0.666427i \(-0.767823\pi\)
−0.745570 + 0.666427i \(0.767823\pi\)
\(500\) 0 0
\(501\) 5.80147 4.95659i 0.259191 0.221444i
\(502\) 0 0
\(503\) −9.24941 −0.412411 −0.206205 0.978509i \(-0.566111\pi\)
−0.206205 + 0.978509i \(0.566111\pi\)
\(504\) 0 0
\(505\) 10.5849 0.471023
\(506\) 0 0
\(507\) 40.4201 34.5336i 1.79512 1.53369i
\(508\) 0 0
\(509\) 13.0016 0.576286 0.288143 0.957587i \(-0.406962\pi\)
0.288143 + 0.957587i \(0.406962\pi\)
\(510\) 0 0
\(511\) −0.116749 + 4.79342i −0.00516468 + 0.212048i
\(512\) 0 0
\(513\) −14.2948 + 8.76965i −0.631132 + 0.387190i
\(514\) 0 0
\(515\) 1.89424i 0.0834702i
\(516\) 0 0
\(517\) 6.92624i 0.304616i
\(518\) 0 0
\(519\) 7.77076 6.63908i 0.341099 0.291423i
\(520\) 0 0
\(521\) 1.37469 0.0602262 0.0301131 0.999546i \(-0.490413\pi\)
0.0301131 + 0.999546i \(0.490413\pi\)
\(522\) 0 0
\(523\) 4.30714i 0.188338i 0.995556 + 0.0941690i \(0.0300194\pi\)
−0.995556 + 0.0941690i \(0.969981\pi\)
\(524\) 0 0
\(525\) 3.55557 2.89100i 0.155178 0.126174i
\(526\) 0 0
\(527\) 20.1887i 0.879432i
\(528\) 0 0
\(529\) 16.4170 0.713783
\(530\) 0 0
\(531\) −1.42275 + 9.00218i −0.0617421 + 0.390661i
\(532\) 0 0
\(533\) 66.4173i 2.87685i
\(534\) 0 0
\(535\) 5.25101i 0.227021i
\(536\) 0 0
\(537\) 8.25999 + 9.66796i 0.356445 + 0.417203i
\(538\) 0 0
\(539\) −0.919762 + 18.8703i −0.0396169 + 0.812802i
\(540\) 0 0
\(541\) −13.7698 −0.592011 −0.296006 0.955186i \(-0.595655\pi\)
−0.296006 + 0.955186i \(0.595655\pi\)
\(542\) 0 0
\(543\) −19.1455 22.4090i −0.821611 0.961660i
\(544\) 0 0
\(545\) 2.53893 0.108756
\(546\) 0 0
\(547\) −11.9601 −0.511375 −0.255688 0.966759i \(-0.582302\pi\)
−0.255688 + 0.966759i \(0.582302\pi\)
\(548\) 0 0
\(549\) 23.2163 + 3.66922i 0.990847 + 0.156598i
\(550\) 0 0
\(551\) 26.5263 1.13006
\(552\) 0 0
\(553\) 35.4865 + 0.864314i 1.50904 + 0.0367544i
\(554\) 0 0
\(555\) −8.95060 + 7.64709i −0.379932 + 0.324601i
\(556\) 0 0
\(557\) 8.97976i 0.380485i −0.981737 0.190242i \(-0.939073\pi\)
0.981737 0.190242i \(-0.0609274\pi\)
\(558\) 0 0
\(559\) 77.1268i 3.26211i
\(560\) 0 0
\(561\) −21.3600 25.0009i −0.901818 1.05554i
\(562\) 0 0
\(563\) 6.48868 0.273465 0.136733 0.990608i \(-0.456340\pi\)
0.136733 + 0.990608i \(0.456340\pi\)
\(564\) 0 0
\(565\) 8.73583i 0.367519i
\(566\) 0 0
\(567\) 22.4657 + 7.89259i 0.943470 + 0.331458i
\(568\) 0 0
\(569\) 22.1663i 0.929260i 0.885505 + 0.464630i \(0.153813\pi\)
−0.885505 + 0.464630i \(0.846187\pi\)
\(570\) 0 0
\(571\) 23.6346 0.989077 0.494539 0.869156i \(-0.335337\pi\)
0.494539 + 0.869156i \(0.335337\pi\)
\(572\) 0 0
\(573\) 1.97015 + 2.30598i 0.0823043 + 0.0963336i
\(574\) 0 0
\(575\) 2.56574i 0.106999i
\(576\) 0 0
\(577\) 35.1403i 1.46291i 0.681890 + 0.731455i \(0.261158\pi\)
−0.681890 + 0.731455i \(0.738842\pi\)
\(578\) 0 0
\(579\) 16.9535 14.4845i 0.704564 0.601956i
\(580\) 0 0
\(581\) −7.97600 0.194265i −0.330900 0.00805945i
\(582\) 0 0
\(583\) 7.29046 0.301940
\(584\) 0 0
\(585\) −19.5873 3.09567i −0.809835 0.127990i
\(586\) 0 0
\(587\) −6.59955 −0.272393 −0.136196 0.990682i \(-0.543488\pi\)
−0.136196 + 0.990682i \(0.543488\pi\)
\(588\) 0 0
\(589\) 9.26311 0.381680
\(590\) 0 0
\(591\) −8.92929 10.4514i −0.367302 0.429911i
\(592\) 0 0
\(593\) 9.20187 0.377876 0.188938 0.981989i \(-0.439496\pi\)
0.188938 + 0.981989i \(0.439496\pi\)
\(594\) 0 0
\(595\) 18.6052 + 0.453151i 0.762740 + 0.0185774i
\(596\) 0 0
\(597\) −9.63359 11.2757i −0.394277 0.461484i
\(598\) 0 0
\(599\) 23.7274i 0.969476i 0.874659 + 0.484738i \(0.161085\pi\)
−0.874659 + 0.484738i \(0.838915\pi\)
\(600\) 0 0
\(601\) 6.04185i 0.246452i 0.992379 + 0.123226i \(0.0393240\pi\)
−0.992379 + 0.123226i \(0.960676\pi\)
\(602\) 0 0
\(603\) 5.85762 37.0630i 0.238541 1.50932i
\(604\) 0 0
\(605\) −3.71562 −0.151061
\(606\) 0 0
\(607\) 42.3266i 1.71799i 0.511988 + 0.858993i \(0.328909\pi\)
−0.511988 + 0.858993i \(0.671091\pi\)
\(608\) 0 0
\(609\) −23.7609 29.2229i −0.962840 1.18417i
\(610\) 0 0
\(611\) 16.9634i 0.686264i
\(612\) 0 0
\(613\) 26.8987 1.08643 0.543215 0.839594i \(-0.317207\pi\)
0.543215 + 0.839594i \(0.317207\pi\)
\(614\) 0 0
\(615\) −13.2317 + 11.3047i −0.533553 + 0.455850i
\(616\) 0 0
\(617\) 40.3624i 1.62493i −0.583010 0.812465i \(-0.698125\pi\)
0.583010 0.812465i \(-0.301875\pi\)
\(618\) 0 0
\(619\) 24.1095i 0.969042i 0.874780 + 0.484521i \(0.161006\pi\)
−0.874780 + 0.484521i \(0.838994\pi\)
\(620\) 0 0
\(621\) −11.3639 + 6.97157i −0.456018 + 0.279760i
\(622\) 0 0
\(623\) 11.0414 + 0.268926i 0.442365 + 0.0107743i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 11.4711 9.80052i 0.458111 0.391395i
\(628\) 0 0
\(629\) −47.8103 −1.90632
\(630\) 0 0
\(631\) −7.34458 −0.292383 −0.146191 0.989256i \(-0.546702\pi\)
−0.146191 + 0.989256i \(0.546702\pi\)
\(632\) 0 0
\(633\) −12.2569 + 10.4719i −0.487170 + 0.416222i
\(634\) 0 0
\(635\) 7.71266 0.306068
\(636\) 0 0
\(637\) −2.25263 + 46.2161i −0.0892524 + 1.83115i
\(638\) 0 0
\(639\) −41.5453 6.56603i −1.64351 0.259748i
\(640\) 0 0
\(641\) 20.2949i 0.801601i 0.916165 + 0.400800i \(0.131268\pi\)
−0.916165 + 0.400800i \(0.868732\pi\)
\(642\) 0 0
\(643\) 43.6248i 1.72040i 0.509961 + 0.860198i \(0.329660\pi\)
−0.509961 + 0.860198i \(0.670340\pi\)
\(644\) 0 0
\(645\) −15.3652 + 13.1276i −0.605006 + 0.516897i
\(646\) 0 0
\(647\) 17.1667 0.674894 0.337447 0.941345i \(-0.390437\pi\)
0.337447 + 0.941345i \(0.390437\pi\)
\(648\) 0 0
\(649\) 8.19936i 0.321853i
\(650\) 0 0
\(651\) −8.29740 10.2048i −0.325201 0.399956i
\(652\) 0 0
\(653\) 19.3345i 0.756619i 0.925679 + 0.378309i \(0.123494\pi\)
−0.925679 + 0.378309i \(0.876506\pi\)
\(654\) 0 0
\(655\) −2.91632 −0.113950
\(656\) 0 0
\(657\) −5.37019 0.848731i −0.209511 0.0331122i
\(658\) 0 0
\(659\) 1.43175i 0.0557731i 0.999611 + 0.0278866i \(0.00887772\pi\)
−0.999611 + 0.0278866i \(0.991122\pi\)
\(660\) 0 0
\(661\) 33.9771i 1.32156i −0.750582 0.660778i \(-0.770227\pi\)
0.750582 0.660778i \(-0.229773\pi\)
\(662\) 0 0
\(663\) −52.3136 61.2308i −2.03169 2.37801i
\(664\) 0 0
\(665\) −0.207918 + 8.53658i −0.00806272 + 0.331034i
\(666\) 0 0
\(667\) 21.0875 0.816513
\(668\) 0 0
\(669\) 22.4043 + 26.2232i 0.866199 + 1.01385i
\(670\) 0 0
\(671\) −21.1458 −0.816326
\(672\) 0 0
\(673\) −5.78793 −0.223108 −0.111554 0.993758i \(-0.535583\pi\)
−0.111554 + 0.993758i \(0.535583\pi\)
\(674\) 0 0
\(675\) 2.71718 + 4.42910i 0.104584 + 0.170476i
\(676\) 0 0
\(677\) −21.3272 −0.819672 −0.409836 0.912159i \(-0.634414\pi\)
−0.409836 + 0.912159i \(0.634414\pi\)
\(678\) 0 0
\(679\) −0.615336 + 25.2641i −0.0236144 + 0.969547i
\(680\) 0 0
\(681\) 16.9860 14.5122i 0.650904 0.556111i
\(682\) 0 0
\(683\) 31.4723i 1.20425i −0.798401 0.602127i \(-0.794320\pi\)
0.798401 0.602127i \(-0.205680\pi\)
\(684\) 0 0
\(685\) 18.7142i 0.715032i
\(686\) 0 0
\(687\) 7.74575 + 9.06607i 0.295519 + 0.345892i
\(688\) 0 0
\(689\) 17.8554 0.680236
\(690\) 0 0
\(691\) 35.8993i 1.36568i 0.730570 + 0.682838i \(0.239254\pi\)
−0.730570 + 0.682838i \(0.760746\pi\)
\(692\) 0 0
\(693\) −21.0720 3.85841i −0.800459 0.146569i
\(694\) 0 0
\(695\) 19.5502i 0.741582i
\(696\) 0 0
\(697\) −70.6781 −2.67713
\(698\) 0 0
\(699\) 17.2786 + 20.2238i 0.653535 + 0.764934i
\(700\) 0 0
\(701\) 41.8942i 1.58232i 0.611609 + 0.791160i \(0.290523\pi\)
−0.611609 + 0.791160i \(0.709477\pi\)
\(702\) 0 0
\(703\) 21.9367i 0.827357i
\(704\) 0 0
\(705\) −3.37945 + 2.88729i −0.127277 + 0.108742i
\(706\) 0 0
\(707\) 27.9968 + 0.681893i 1.05293 + 0.0256452i
\(708\) 0 0
\(709\) −28.6731 −1.07684 −0.538420 0.842676i \(-0.680979\pi\)
−0.538420 + 0.842676i \(0.680979\pi\)
\(710\) 0 0
\(711\) −6.28330 + 39.7564i −0.235642 + 1.49098i
\(712\) 0 0
\(713\) 7.36385 0.275778
\(714\) 0 0
\(715\) 17.8405 0.667197
\(716\) 0 0
\(717\) 24.7864 + 29.0114i 0.925666 + 1.08345i
\(718\) 0 0
\(719\) 31.6353 1.17980 0.589899 0.807477i \(-0.299168\pi\)
0.589899 + 0.807477i \(0.299168\pi\)
\(720\) 0 0
\(721\) 0.122029 5.01021i 0.00454461 0.186590i
\(722\) 0 0
\(723\) −8.16353 9.55506i −0.303605 0.355357i
\(724\) 0 0
\(725\) 8.21890i 0.305242i
\(726\) 0 0
\(727\) 3.14677i 0.116707i −0.998296 0.0583536i \(-0.981415\pi\)
0.998296 0.0583536i \(-0.0185851\pi\)
\(728\) 0 0
\(729\) −12.2338 + 24.0693i −0.453105 + 0.891457i
\(730\) 0 0
\(731\) −82.0747 −3.03564
\(732\) 0 0
\(733\) 12.4598i 0.460213i −0.973165 0.230106i \(-0.926093\pi\)
0.973165 0.230106i \(-0.0739074\pi\)
\(734\) 0 0
\(735\) 9.59061 7.41756i 0.353755 0.273601i
\(736\) 0 0
\(737\) 33.7577i 1.24348i
\(738\) 0 0
\(739\) −23.1373 −0.851118 −0.425559 0.904931i \(-0.639923\pi\)
−0.425559 + 0.904931i \(0.639923\pi\)
\(740\) 0 0
\(741\) 28.0943 24.0029i 1.03207 0.881768i
\(742\) 0 0
\(743\) 29.0418i 1.06544i −0.846292 0.532720i \(-0.821170\pi\)
0.846292 0.532720i \(-0.178830\pi\)
\(744\) 0 0
\(745\) 3.35377i 0.122872i
\(746\) 0 0
\(747\) 1.41224 8.93571i 0.0516713 0.326940i
\(748\) 0 0
\(749\) −0.338276 + 13.8887i −0.0123603 + 0.507484i
\(750\) 0 0
\(751\) 5.94574 0.216963 0.108482 0.994098i \(-0.465401\pi\)
0.108482 + 0.994098i \(0.465401\pi\)
\(752\) 0 0
\(753\) 10.3764 8.86521i 0.378135 0.323066i
\(754\) 0 0
\(755\) −6.20015 −0.225646
\(756\) 0 0
\(757\) −43.8676 −1.59439 −0.797197 0.603719i \(-0.793685\pi\)
−0.797197 + 0.603719i \(0.793685\pi\)
\(758\) 0 0
\(759\) 9.11912 7.79108i 0.331003 0.282798i
\(760\) 0 0
\(761\) 26.6453 0.965893 0.482946 0.875650i \(-0.339567\pi\)
0.482946 + 0.875650i \(0.339567\pi\)
\(762\) 0 0
\(763\) 6.71538 + 0.163561i 0.243113 + 0.00592130i
\(764\) 0 0
\(765\) −3.29427 + 20.8439i −0.119105 + 0.753612i
\(766\) 0 0
\(767\) 20.0814i 0.725098i
\(768\) 0 0
\(769\) 18.3596i 0.662065i 0.943619 + 0.331032i \(0.107397\pi\)
−0.943619 + 0.331032i \(0.892603\pi\)
\(770\) 0 0
\(771\) −6.73571 + 5.75477i −0.242581 + 0.207253i
\(772\) 0 0
\(773\) −2.57902 −0.0927610 −0.0463805 0.998924i \(-0.514769\pi\)
−0.0463805 + 0.998924i \(0.514769\pi\)
\(774\) 0 0
\(775\) 2.87007i 0.103096i
\(776\) 0 0
\(777\) −24.1667 + 19.6497i −0.866974 + 0.704929i
\(778\) 0 0
\(779\) 32.4290i 1.16189i
\(780\) 0 0
\(781\) 37.8403 1.35403
\(782\) 0 0
\(783\) 36.4023 22.3323i 1.30091 0.798090i
\(784\) 0 0
\(785\) 9.90178i 0.353410i
\(786\) 0 0
\(787\) 31.5892i 1.12603i −0.826446 0.563016i \(-0.809641\pi\)
0.826446 0.563016i \(-0.190359\pi\)
\(788\) 0 0
\(789\) 4.66338 + 5.45829i 0.166021 + 0.194320i
\(790\) 0 0
\(791\) 0.562773 23.1060i 0.0200099 0.821555i
\(792\) 0 0
\(793\) −51.7892 −1.83909
\(794\) 0 0
\(795\) −3.03912 3.55716i −0.107786 0.126159i
\(796\) 0 0
\(797\) 17.2603 0.611393 0.305696 0.952129i \(-0.401111\pi\)
0.305696 + 0.952129i \(0.401111\pi\)
\(798\) 0 0
\(799\) −18.0516 −0.638620
\(800\) 0 0
\(801\) −1.95501 + 12.3700i −0.0690769 + 0.437071i
\(802\) 0 0
\(803\) 4.89127 0.172609
\(804\) 0 0
\(805\) −0.165288 + 6.78629i −0.00582563 + 0.239185i
\(806\) 0 0
\(807\) 33.4219 28.5546i 1.17651 1.00517i
\(808\) 0 0
\(809\) 20.6539i 0.726152i −0.931760 0.363076i \(-0.881727\pi\)
0.931760 0.363076i \(-0.118273\pi\)
\(810\) 0 0
\(811\) 21.0641i 0.739660i −0.929099 0.369830i \(-0.879416\pi\)
0.929099 0.369830i \(-0.120584\pi\)
\(812\) 0 0
\(813\) 5.06510 + 5.92848i 0.177641 + 0.207921i
\(814\) 0 0
\(815\) −13.4953 −0.472718
\(816\) 0 0
\(817\) 37.6581i 1.31749i
\(818\) 0 0
\(819\) −51.6083 9.44979i −1.80334 0.330202i
\(820\) 0 0
\(821\) 40.7909i 1.42361i −0.702376 0.711806i \(-0.747877\pi\)
0.702376 0.711806i \(-0.252123\pi\)
\(822\) 0 0
\(823\) 12.5422 0.437194 0.218597 0.975815i \(-0.429852\pi\)
0.218597 + 0.975815i \(0.429852\pi\)
\(824\) 0 0
\(825\) −3.03659 3.55419i −0.105720 0.123741i
\(826\) 0 0
\(827\) 10.0641i 0.349964i −0.984572 0.174982i \(-0.944013\pi\)
0.984572 0.174982i \(-0.0559867\pi\)
\(828\) 0 0
\(829\) 26.1382i 0.907816i 0.891049 + 0.453908i \(0.149971\pi\)
−0.891049 + 0.453908i \(0.850029\pi\)
\(830\) 0 0
\(831\) −6.26442 + 5.35212i −0.217310 + 0.185663i
\(832\) 0 0
\(833\) 49.1810 + 2.39714i 1.70402 + 0.0830560i
\(834\) 0 0
\(835\) 4.40548 0.152458
\(836\) 0 0
\(837\) 12.7118 7.79852i 0.439386 0.269556i
\(838\) 0 0
\(839\) 35.0785 1.21105 0.605523 0.795828i \(-0.292964\pi\)
0.605523 + 0.795828i \(0.292964\pi\)
\(840\) 0 0
\(841\) −38.5504 −1.32932
\(842\) 0 0
\(843\) 11.8311 + 13.8478i 0.407484 + 0.476943i
\(844\) 0 0
\(845\) 30.6939 1.05590
\(846\) 0 0
\(847\) −9.82768 0.239364i −0.337683 0.00822465i
\(848\) 0 0
\(849\) −2.91672 3.41389i −0.100101 0.117165i
\(850\) 0 0
\(851\) 17.4389i 0.597798i
\(852\) 0 0
\(853\) 11.2995i 0.386889i 0.981111 + 0.193444i \(0.0619659\pi\)
−0.981111 + 0.193444i \(0.938034\pi\)
\(854\) 0 0
\(855\) −9.56374 1.51150i −0.327073 0.0516922i
\(856\) 0 0
\(857\) −45.4081 −1.55111 −0.775556 0.631279i \(-0.782530\pi\)
−0.775556 + 0.631279i \(0.782530\pi\)
\(858\) 0 0
\(859\) 5.83938i 0.199237i −0.995026 0.0996186i \(-0.968238\pi\)
0.995026 0.0996186i \(-0.0317623\pi\)
\(860\) 0 0
\(861\) −35.7256 + 29.0482i −1.21753 + 0.989960i
\(862\) 0 0
\(863\) 40.2731i 1.37091i 0.728113 + 0.685457i \(0.240397\pi\)
−0.728113 + 0.685457i \(0.759603\pi\)
\(864\) 0 0
\(865\) 5.90091 0.200637
\(866\) 0 0
\(867\) −42.7721 + 36.5430i −1.45262 + 1.24107i
\(868\) 0 0
\(869\) 36.2109i 1.22837i
\(870\) 0 0
\(871\) 82.6774i 2.80142i
\(872\) 0 0
\(873\) −28.3040 4.47330i −0.957944 0.151398i
\(874\) 0 0
\(875\) 2.64497 + 0.0644212i 0.0894162 + 0.00217783i
\(876\) 0 0
\(877\) −31.2384 −1.05484 −0.527422 0.849603i \(-0.676841\pi\)
−0.527422 + 0.849603i \(0.676841\pi\)
\(878\) 0 0
\(879\) 15.5052 13.2471i 0.522976 0.446813i
\(880\) 0 0
\(881\) 31.3074 1.05477 0.527387 0.849625i \(-0.323172\pi\)
0.527387 + 0.849625i \(0.323172\pi\)
\(882\) 0 0
\(883\) −43.3854 −1.46003 −0.730017 0.683429i \(-0.760488\pi\)
−0.730017 + 0.683429i \(0.760488\pi\)
\(884\) 0 0
\(885\) −4.00063 + 3.41801i −0.134480 + 0.114895i
\(886\) 0 0
\(887\) 18.2749 0.613609 0.306805 0.951772i \(-0.400740\pi\)
0.306805 + 0.951772i \(0.400740\pi\)
\(888\) 0 0
\(889\) 20.3997 + 0.496859i 0.684185 + 0.0166641i
\(890\) 0 0
\(891\) 7.49092 23.1067i 0.250955 0.774105i
\(892\) 0 0
\(893\) 8.28257i 0.277166i
\(894\) 0 0
\(895\) 7.34159i 0.245402i
\(896\) 0 0
\(897\) 22.3340 19.0815i 0.745712 0.637112i
\(898\) 0 0
\(899\) −23.5889 −0.786733
\(900\) 0 0
\(901\) 19.0009i 0.633010i
\(902\) 0 0
\(903\) −41.4862 + 33.7321i −1.38058 + 1.12253i
\(904\) 0 0
\(905\) 17.0168i 0.565656i
\(906\) 0 0
\(907\) −41.4276 −1.37558 −0.687790 0.725910i \(-0.741419\pi\)
−0.687790 + 0.725910i \(0.741419\pi\)
\(908\) 0 0
\(909\) −4.95715 + 31.3655i −0.164418 + 1.04033i
\(910\) 0 0
\(911\) 3.58416i 0.118748i −0.998236 0.0593742i \(-0.981089\pi\)
0.998236 0.0593742i \(-0.0189105\pi\)
\(912\) 0 0
\(913\) 8.13882i 0.269356i
\(914\) 0 0
\(915\) 8.81491 + 10.3175i 0.291412 + 0.341085i
\(916\) 0 0
\(917\) −7.71356 0.187873i −0.254724 0.00620410i
\(918\) 0 0
\(919\) 20.5460 0.677749 0.338874 0.940832i \(-0.389954\pi\)
0.338874 + 0.940832i \(0.389954\pi\)
\(920\) 0 0
\(921\) −30.8721 36.1344i −1.01727 1.19067i
\(922\) 0 0
\(923\) 92.6763 3.05048
\(924\) 0 0
\(925\) −6.79684 −0.223479
\(926\) 0 0
\(927\) 5.61305 + 0.887115i 0.184357 + 0.0291367i
\(928\) 0 0
\(929\) 20.6332 0.676953 0.338477 0.940975i \(-0.390088\pi\)
0.338477 + 0.940975i \(0.390088\pi\)
\(930\) 0 0
\(931\) −1.09987 + 22.5656i −0.0360469 + 0.739557i
\(932\) 0 0
\(933\) −20.4747 + 17.4929i −0.670313 + 0.572693i
\(934\) 0 0
\(935\) 18.9850i 0.620877i
\(936\) 0 0
\(937\) 18.9657i 0.619581i 0.950805 + 0.309791i \(0.100259\pi\)
−0.950805 + 0.309791i \(0.899741\pi\)
\(938\) 0 0
\(939\) 14.2493 + 16.6782i 0.465010 + 0.544274i
\(940\) 0 0
\(941\) 21.1459 0.689337 0.344668 0.938725i \(-0.387991\pi\)
0.344668 + 0.938725i \(0.387991\pi\)
\(942\) 0 0
\(943\) 25.7800i 0.839511i
\(944\) 0 0
\(945\) 6.90153 + 11.8899i 0.224507 + 0.386777i
\(946\) 0 0
\(947\) 43.7955i 1.42316i −0.702604 0.711581i \(-0.747979\pi\)
0.702604 0.711581i \(-0.252021\pi\)
\(948\) 0 0
\(949\) 11.9794 0.388869
\(950\) 0 0
\(951\) 20.5534 + 24.0569i 0.666490 + 0.780098i
\(952\) 0 0
\(953\) 22.0324i 0.713701i −0.934162 0.356850i \(-0.883851\pi\)
0.934162 0.356850i \(-0.116149\pi\)
\(954\) 0 0
\(955\) 1.75110i 0.0566642i
\(956\) 0 0
\(957\) −29.2116 + 24.9574i −0.944276 + 0.806758i
\(958\) 0 0
\(959\) 1.20559 49.4984i 0.0389305 1.59839i
\(960\) 0 0
\(961\) 22.7627 0.734280
\(962\) 0 0
\(963\) −15.5599 2.45916i −0.501411 0.0792455i
\(964\) 0 0
\(965\) 12.8740 0.414430
\(966\) 0 0
\(967\) −32.8422 −1.05613 −0.528066 0.849203i \(-0.677083\pi\)
−0.528066 + 0.849203i \(0.677083\pi\)
\(968\) 0 0
\(969\) −25.5427 29.8967i −0.820551 0.960420i
\(970\) 0 0
\(971\) −37.7928 −1.21283 −0.606414 0.795149i \(-0.707393\pi\)
−0.606414 + 0.795149i \(0.707393\pi\)
\(972\) 0 0
\(973\) −1.25945 + 51.7097i −0.0403761 + 1.65774i
\(974\) 0 0
\(975\) −7.43703 8.70473i −0.238176 0.278774i
\(976\) 0 0
\(977\) 15.8791i 0.508017i −0.967202 0.254008i \(-0.918251\pi\)
0.967202 0.254008i \(-0.0817491\pi\)
\(978\) 0 0
\(979\) 11.2668i 0.360089i
\(980\) 0 0
\(981\) −1.18904 + 7.52341i −0.0379630 + 0.240204i
\(982\) 0 0
\(983\) −21.7320 −0.693142 −0.346571 0.938024i \(-0.612654\pi\)
−0.346571 + 0.938024i \(0.612654\pi\)
\(984\) 0 0
\(985\) 7.93648i 0.252877i
\(986\) 0 0
\(987\) −9.12454 + 7.41908i −0.290437 + 0.236152i
\(988\) 0 0
\(989\) 29.9369i 0.951937i
\(990\) 0 0
\(991\) 33.1739 1.05380 0.526902 0.849926i \(-0.323354\pi\)
0.526902 + 0.849926i \(0.323354\pi\)
\(992\) 0 0
\(993\) −20.7660 + 17.7418i −0.658990 + 0.563019i
\(994\) 0 0
\(995\) 8.56247i 0.271449i
\(996\) 0 0
\(997\) 3.50680i 0.111061i 0.998457 + 0.0555307i \(0.0176851\pi\)
−0.998457 + 0.0555307i \(0.982315\pi\)
\(998\) 0 0
\(999\) −18.4683 30.1039i −0.584310 0.952445i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.f.k.881.4 16
3.2 odd 2 1680.2.f.l.881.14 16
4.3 odd 2 840.2.f.a.41.13 16
7.6 odd 2 1680.2.f.l.881.13 16
12.11 even 2 840.2.f.b.41.3 yes 16
21.20 even 2 inner 1680.2.f.k.881.3 16
28.27 even 2 840.2.f.b.41.4 yes 16
84.83 odd 2 840.2.f.a.41.14 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.f.a.41.13 16 4.3 odd 2
840.2.f.a.41.14 yes 16 84.83 odd 2
840.2.f.b.41.3 yes 16 12.11 even 2
840.2.f.b.41.4 yes 16 28.27 even 2
1680.2.f.k.881.3 16 21.20 even 2 inner
1680.2.f.k.881.4 16 1.1 even 1 trivial
1680.2.f.l.881.13 16 7.6 odd 2
1680.2.f.l.881.14 16 3.2 odd 2