Properties

Label 1680.2.f.k.881.13
Level $1680$
Weight $2$
Character 1680.881
Analytic conductor $13.415$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(881,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-16,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + x^{14} - 4 x^{13} + 10 x^{12} - 32 x^{11} + 71 x^{10} - 70 x^{9} + 74 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.13
Root \(1.14188 - 1.30235i\) of defining polynomial
Character \(\chi\) \(=\) 1680.881
Dual form 1680.2.f.k.881.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30235 - 1.14188i) q^{3} -1.00000 q^{5} +(1.35345 - 2.27336i) q^{7} +(0.392236 - 2.97425i) q^{9} +5.73062i q^{11} -2.24338i q^{13} +(-1.30235 + 1.14188i) q^{15} +6.50062 q^{17} +0.217877i q^{19} +(-0.833225 - 4.50619i) q^{21} -5.57998i q^{23} +1.00000 q^{25} +(-2.88539 - 4.32140i) q^{27} +1.11432i q^{29} -5.49827i q^{31} +(6.54366 + 7.46328i) q^{33} +(-1.35345 + 2.27336i) q^{35} +10.0863 q^{37} +(-2.56167 - 2.92167i) q^{39} -1.11802 q^{41} -5.89592 q^{43} +(-0.392236 + 2.97425i) q^{45} +7.70789 q^{47} +(-3.33633 - 6.15377i) q^{49} +(8.46609 - 7.42291i) q^{51} -8.37883i q^{53} -5.73062i q^{55} +(0.248789 + 0.283753i) q^{57} -13.4209 q^{59} +1.33454i q^{61} +(-6.23066 - 4.91720i) q^{63} +2.24338i q^{65} -14.5144 q^{67} +(-6.37165 - 7.26709i) q^{69} +7.41245i q^{71} -12.1828i q^{73} +(1.30235 - 1.14188i) q^{75} +(13.0278 + 7.75612i) q^{77} -4.54501 q^{79} +(-8.69230 - 2.33322i) q^{81} +10.9184 q^{83} -6.50062 q^{85} +(1.27242 + 1.45124i) q^{87} +4.45092 q^{89} +(-5.10002 - 3.03631i) q^{91} +(-6.27835 - 7.16068i) q^{93} -0.217877i q^{95} +9.33620i q^{97} +(17.0443 + 2.24776i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{5} - 2 q^{7} - 2 q^{9} + 2 q^{21} + 16 q^{25} + 6 q^{27} - 6 q^{33} + 2 q^{35} + 12 q^{37} - 6 q^{39} - 32 q^{41} - 32 q^{43} + 2 q^{45} + 4 q^{47} - 4 q^{49} - 6 q^{51} - 24 q^{59} + 4 q^{63}+ \cdots + 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.30235 1.14188i 0.751913 0.659263i
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.35345 2.27336i 0.511557 0.859249i
\(8\) 0 0
\(9\) 0.392236 2.97425i 0.130745 0.991416i
\(10\) 0 0
\(11\) 5.73062i 1.72785i 0.503624 + 0.863923i \(0.332000\pi\)
−0.503624 + 0.863923i \(0.668000\pi\)
\(12\) 0 0
\(13\) 2.24338i 0.622202i −0.950377 0.311101i \(-0.899302\pi\)
0.950377 0.311101i \(-0.100698\pi\)
\(14\) 0 0
\(15\) −1.30235 + 1.14188i −0.336266 + 0.294831i
\(16\) 0 0
\(17\) 6.50062 1.57663 0.788316 0.615270i \(-0.210953\pi\)
0.788316 + 0.615270i \(0.210953\pi\)
\(18\) 0 0
\(19\) 0.217877i 0.0499845i 0.999688 + 0.0249923i \(0.00795611\pi\)
−0.999688 + 0.0249923i \(0.992044\pi\)
\(20\) 0 0
\(21\) −0.833225 4.50619i −0.181825 0.983331i
\(22\) 0 0
\(23\) 5.57998i 1.16351i −0.813365 0.581753i \(-0.802367\pi\)
0.813365 0.581753i \(-0.197633\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −2.88539 4.32140i −0.555294 0.831654i
\(28\) 0 0
\(29\) 1.11432i 0.206925i 0.994633 + 0.103462i \(0.0329921\pi\)
−0.994633 + 0.103462i \(0.967008\pi\)
\(30\) 0 0
\(31\) 5.49827i 0.987519i −0.869599 0.493759i \(-0.835622\pi\)
0.869599 0.493759i \(-0.164378\pi\)
\(32\) 0 0
\(33\) 6.54366 + 7.46328i 1.13910 + 1.29919i
\(34\) 0 0
\(35\) −1.35345 + 2.27336i −0.228775 + 0.384268i
\(36\) 0 0
\(37\) 10.0863 1.65818 0.829091 0.559113i \(-0.188858\pi\)
0.829091 + 0.559113i \(0.188858\pi\)
\(38\) 0 0
\(39\) −2.56167 2.92167i −0.410195 0.467842i
\(40\) 0 0
\(41\) −1.11802 −0.174606 −0.0873030 0.996182i \(-0.527825\pi\)
−0.0873030 + 0.996182i \(0.527825\pi\)
\(42\) 0 0
\(43\) −5.89592 −0.899119 −0.449560 0.893250i \(-0.648419\pi\)
−0.449560 + 0.893250i \(0.648419\pi\)
\(44\) 0 0
\(45\) −0.392236 + 2.97425i −0.0584712 + 0.443375i
\(46\) 0 0
\(47\) 7.70789 1.12431 0.562156 0.827031i \(-0.309972\pi\)
0.562156 + 0.827031i \(0.309972\pi\)
\(48\) 0 0
\(49\) −3.33633 6.15377i −0.476618 0.879110i
\(50\) 0 0
\(51\) 8.46609 7.42291i 1.18549 1.03941i
\(52\) 0 0
\(53\) 8.37883i 1.15092i −0.817829 0.575461i \(-0.804823\pi\)
0.817829 0.575461i \(-0.195177\pi\)
\(54\) 0 0
\(55\) 5.73062i 0.772716i
\(56\) 0 0
\(57\) 0.248789 + 0.283753i 0.0329529 + 0.0375840i
\(58\) 0 0
\(59\) −13.4209 −1.74725 −0.873624 0.486602i \(-0.838236\pi\)
−0.873624 + 0.486602i \(0.838236\pi\)
\(60\) 0 0
\(61\) 1.33454i 0.170870i 0.996344 + 0.0854349i \(0.0272280\pi\)
−0.996344 + 0.0854349i \(0.972772\pi\)
\(62\) 0 0
\(63\) −6.23066 4.91720i −0.784990 0.619509i
\(64\) 0 0
\(65\) 2.24338i 0.278257i
\(66\) 0 0
\(67\) −14.5144 −1.77322 −0.886610 0.462517i \(-0.846946\pi\)
−0.886610 + 0.462517i \(0.846946\pi\)
\(68\) 0 0
\(69\) −6.37165 7.26709i −0.767056 0.874855i
\(70\) 0 0
\(71\) 7.41245i 0.879696i 0.898072 + 0.439848i \(0.144968\pi\)
−0.898072 + 0.439848i \(0.855032\pi\)
\(72\) 0 0
\(73\) 12.1828i 1.42589i −0.701220 0.712945i \(-0.747361\pi\)
0.701220 0.712945i \(-0.252639\pi\)
\(74\) 0 0
\(75\) 1.30235 1.14188i 0.150383 0.131853i
\(76\) 0 0
\(77\) 13.0278 + 7.75612i 1.48465 + 0.883892i
\(78\) 0 0
\(79\) −4.54501 −0.511354 −0.255677 0.966762i \(-0.582298\pi\)
−0.255677 + 0.966762i \(0.582298\pi\)
\(80\) 0 0
\(81\) −8.69230 2.33322i −0.965811 0.259246i
\(82\) 0 0
\(83\) 10.9184 1.19845 0.599223 0.800582i \(-0.295476\pi\)
0.599223 + 0.800582i \(0.295476\pi\)
\(84\) 0 0
\(85\) −6.50062 −0.705091
\(86\) 0 0
\(87\) 1.27242 + 1.45124i 0.136418 + 0.155589i
\(88\) 0 0
\(89\) 4.45092 0.471797 0.235898 0.971778i \(-0.424197\pi\)
0.235898 + 0.971778i \(0.424197\pi\)
\(90\) 0 0
\(91\) −5.10002 3.03631i −0.534627 0.318292i
\(92\) 0 0
\(93\) −6.27835 7.16068i −0.651034 0.742528i
\(94\) 0 0
\(95\) 0.217877i 0.0223537i
\(96\) 0 0
\(97\) 9.33620i 0.947948i 0.880539 + 0.473974i \(0.157181\pi\)
−0.880539 + 0.473974i \(0.842819\pi\)
\(98\) 0 0
\(99\) 17.0443 + 2.24776i 1.71301 + 0.225908i
\(100\) 0 0
\(101\) 8.12564 0.808531 0.404266 0.914642i \(-0.367527\pi\)
0.404266 + 0.914642i \(0.367527\pi\)
\(102\) 0 0
\(103\) 3.21987i 0.317263i 0.987338 + 0.158632i \(0.0507082\pi\)
−0.987338 + 0.158632i \(0.949292\pi\)
\(104\) 0 0
\(105\) 0.833225 + 4.50619i 0.0813144 + 0.439759i
\(106\) 0 0
\(107\) 0.352062i 0.0340351i −0.999855 0.0170175i \(-0.994583\pi\)
0.999855 0.0170175i \(-0.00541711\pi\)
\(108\) 0 0
\(109\) 13.8035 1.32214 0.661069 0.750325i \(-0.270103\pi\)
0.661069 + 0.750325i \(0.270103\pi\)
\(110\) 0 0
\(111\) 13.1359 11.5173i 1.24681 1.09318i
\(112\) 0 0
\(113\) 2.52753i 0.237770i 0.992908 + 0.118885i \(0.0379320\pi\)
−0.992908 + 0.118885i \(0.962068\pi\)
\(114\) 0 0
\(115\) 5.57998i 0.520336i
\(116\) 0 0
\(117\) −6.67238 0.879936i −0.616861 0.0813502i
\(118\) 0 0
\(119\) 8.79829 14.7783i 0.806538 1.35472i
\(120\) 0 0
\(121\) −21.8400 −1.98545
\(122\) 0 0
\(123\) −1.45606 + 1.27664i −0.131288 + 0.115111i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −13.2059 −1.17183 −0.585916 0.810372i \(-0.699265\pi\)
−0.585916 + 0.810372i \(0.699265\pi\)
\(128\) 0 0
\(129\) −7.67856 + 6.73241i −0.676059 + 0.592756i
\(130\) 0 0
\(131\) 10.2780 0.897992 0.448996 0.893534i \(-0.351782\pi\)
0.448996 + 0.893534i \(0.351782\pi\)
\(132\) 0 0
\(133\) 0.495314 + 0.294887i 0.0429491 + 0.0255699i
\(134\) 0 0
\(135\) 2.88539 + 4.32140i 0.248335 + 0.371927i
\(136\) 0 0
\(137\) 5.43330i 0.464198i −0.972692 0.232099i \(-0.925441\pi\)
0.972692 0.232099i \(-0.0745594\pi\)
\(138\) 0 0
\(139\) 16.2976i 1.38235i 0.722689 + 0.691173i \(0.242906\pi\)
−0.722689 + 0.691173i \(0.757094\pi\)
\(140\) 0 0
\(141\) 10.0384 8.80146i 0.845384 0.741217i
\(142\) 0 0
\(143\) 12.8560 1.07507
\(144\) 0 0
\(145\) 1.11432i 0.0925395i
\(146\) 0 0
\(147\) −11.3719 4.20470i −0.937940 0.346797i
\(148\) 0 0
\(149\) 9.85697i 0.807514i 0.914866 + 0.403757i \(0.132296\pi\)
−0.914866 + 0.403757i \(0.867704\pi\)
\(150\) 0 0
\(151\) −5.96893 −0.485744 −0.242872 0.970058i \(-0.578090\pi\)
−0.242872 + 0.970058i \(0.578090\pi\)
\(152\) 0 0
\(153\) 2.54978 19.3345i 0.206138 1.56310i
\(154\) 0 0
\(155\) 5.49827i 0.441632i
\(156\) 0 0
\(157\) 7.94202i 0.633842i −0.948452 0.316921i \(-0.897351\pi\)
0.948452 0.316921i \(-0.102649\pi\)
\(158\) 0 0
\(159\) −9.56759 10.9122i −0.758759 0.865392i
\(160\) 0 0
\(161\) −12.6853 7.55224i −0.999742 0.595200i
\(162\) 0 0
\(163\) 18.4764 1.44718 0.723591 0.690229i \(-0.242490\pi\)
0.723591 + 0.690229i \(0.242490\pi\)
\(164\) 0 0
\(165\) −6.54366 7.46328i −0.509423 0.581015i
\(166\) 0 0
\(167\) 2.29590 0.177662 0.0888310 0.996047i \(-0.471687\pi\)
0.0888310 + 0.996047i \(0.471687\pi\)
\(168\) 0 0
\(169\) 7.96723 0.612864
\(170\) 0 0
\(171\) 0.648021 + 0.0854595i 0.0495554 + 0.00653525i
\(172\) 0 0
\(173\) 1.10485 0.0839999 0.0420000 0.999118i \(-0.486627\pi\)
0.0420000 + 0.999118i \(0.486627\pi\)
\(174\) 0 0
\(175\) 1.35345 2.27336i 0.102311 0.171850i
\(176\) 0 0
\(177\) −17.4787 + 15.3250i −1.31378 + 1.15190i
\(178\) 0 0
\(179\) 14.4797i 1.08227i 0.840937 + 0.541133i \(0.182004\pi\)
−0.840937 + 0.541133i \(0.817996\pi\)
\(180\) 0 0
\(181\) 11.5405i 0.857800i −0.903352 0.428900i \(-0.858901\pi\)
0.903352 0.428900i \(-0.141099\pi\)
\(182\) 0 0
\(183\) 1.52388 + 1.73803i 0.112648 + 0.128479i
\(184\) 0 0
\(185\) −10.0863 −0.741562
\(186\) 0 0
\(187\) 37.2526i 2.72418i
\(188\) 0 0
\(189\) −13.7293 + 0.710725i −0.998663 + 0.0516977i
\(190\) 0 0
\(191\) 10.8880i 0.787828i 0.919147 + 0.393914i \(0.128879\pi\)
−0.919147 + 0.393914i \(0.871121\pi\)
\(192\) 0 0
\(193\) 5.56607 0.400654 0.200327 0.979729i \(-0.435800\pi\)
0.200327 + 0.979729i \(0.435800\pi\)
\(194\) 0 0
\(195\) 2.56167 + 2.92167i 0.183445 + 0.209225i
\(196\) 0 0
\(197\) 22.6465i 1.61349i 0.590898 + 0.806746i \(0.298774\pi\)
−0.590898 + 0.806746i \(0.701226\pi\)
\(198\) 0 0
\(199\) 0.111663i 0.00791557i 0.999992 + 0.00395778i \(0.00125980\pi\)
−0.999992 + 0.00395778i \(0.998740\pi\)
\(200\) 0 0
\(201\) −18.9029 + 16.5737i −1.33331 + 1.16902i
\(202\) 0 0
\(203\) 2.53326 + 1.50818i 0.177800 + 0.105854i
\(204\) 0 0
\(205\) 1.11802 0.0780861
\(206\) 0 0
\(207\) −16.5962 2.18867i −1.15352 0.152123i
\(208\) 0 0
\(209\) −1.24857 −0.0863655
\(210\) 0 0
\(211\) 21.8842 1.50657 0.753284 0.657696i \(-0.228469\pi\)
0.753284 + 0.657696i \(0.228469\pi\)
\(212\) 0 0
\(213\) 8.46410 + 9.65361i 0.579951 + 0.661454i
\(214\) 0 0
\(215\) 5.89592 0.402098
\(216\) 0 0
\(217\) −12.4995 7.44165i −0.848525 0.505172i
\(218\) 0 0
\(219\) −13.9113 15.8663i −0.940036 1.07214i
\(220\) 0 0
\(221\) 14.5834i 0.980984i
\(222\) 0 0
\(223\) 21.6804i 1.45183i −0.687787 0.725913i \(-0.741418\pi\)
0.687787 0.725913i \(-0.258582\pi\)
\(224\) 0 0
\(225\) 0.392236 2.97425i 0.0261491 0.198283i
\(226\) 0 0
\(227\) −5.04028 −0.334535 −0.167268 0.985912i \(-0.553494\pi\)
−0.167268 + 0.985912i \(0.553494\pi\)
\(228\) 0 0
\(229\) 12.7545i 0.842838i −0.906866 0.421419i \(-0.861532\pi\)
0.906866 0.421419i \(-0.138468\pi\)
\(230\) 0 0
\(231\) 25.8232 4.77489i 1.69904 0.314165i
\(232\) 0 0
\(233\) 26.1291i 1.71178i 0.517161 + 0.855888i \(0.326989\pi\)
−0.517161 + 0.855888i \(0.673011\pi\)
\(234\) 0 0
\(235\) −7.70789 −0.502807
\(236\) 0 0
\(237\) −5.91920 + 5.18984i −0.384494 + 0.337117i
\(238\) 0 0
\(239\) 1.92107i 0.124264i −0.998068 0.0621319i \(-0.980210\pi\)
0.998068 0.0621319i \(-0.0197899\pi\)
\(240\) 0 0
\(241\) 10.6464i 0.685795i 0.939373 + 0.342898i \(0.111408\pi\)
−0.939373 + 0.342898i \(0.888592\pi\)
\(242\) 0 0
\(243\) −13.9847 + 6.88687i −0.897117 + 0.441793i
\(244\) 0 0
\(245\) 3.33633 + 6.15377i 0.213150 + 0.393150i
\(246\) 0 0
\(247\) 0.488782 0.0311005
\(248\) 0 0
\(249\) 14.2195 12.4674i 0.901127 0.790091i
\(250\) 0 0
\(251\) −12.6445 −0.798113 −0.399056 0.916926i \(-0.630662\pi\)
−0.399056 + 0.916926i \(0.630662\pi\)
\(252\) 0 0
\(253\) 31.9767 2.01036
\(254\) 0 0
\(255\) −8.46609 + 7.42291i −0.530167 + 0.464840i
\(256\) 0 0
\(257\) 7.25380 0.452479 0.226240 0.974072i \(-0.427357\pi\)
0.226240 + 0.974072i \(0.427357\pi\)
\(258\) 0 0
\(259\) 13.6514 22.9299i 0.848255 1.42479i
\(260\) 0 0
\(261\) 3.31427 + 0.437078i 0.205148 + 0.0270545i
\(262\) 0 0
\(263\) 19.7889i 1.22024i −0.792311 0.610118i \(-0.791122\pi\)
0.792311 0.610118i \(-0.208878\pi\)
\(264\) 0 0
\(265\) 8.37883i 0.514708i
\(266\) 0 0
\(267\) 5.79666 5.08240i 0.354750 0.311038i
\(268\) 0 0
\(269\) −23.0527 −1.40555 −0.702773 0.711415i \(-0.748055\pi\)
−0.702773 + 0.711415i \(0.748055\pi\)
\(270\) 0 0
\(271\) 18.2292i 1.10734i 0.832735 + 0.553672i \(0.186774\pi\)
−0.832735 + 0.553672i \(0.813226\pi\)
\(272\) 0 0
\(273\) −10.1091 + 1.86924i −0.611831 + 0.113132i
\(274\) 0 0
\(275\) 5.73062i 0.345569i
\(276\) 0 0
\(277\) −19.8032 −1.18986 −0.594928 0.803779i \(-0.702819\pi\)
−0.594928 + 0.803779i \(0.702819\pi\)
\(278\) 0 0
\(279\) −16.3532 2.15662i −0.979042 0.129114i
\(280\) 0 0
\(281\) 0.0541878i 0.00323257i −0.999999 0.00161629i \(-0.999486\pi\)
0.999999 0.00161629i \(-0.000514480\pi\)
\(282\) 0 0
\(283\) 2.74845i 0.163378i −0.996658 0.0816891i \(-0.973969\pi\)
0.996658 0.0816891i \(-0.0260315\pi\)
\(284\) 0 0
\(285\) −0.248789 0.283753i −0.0147370 0.0168081i
\(286\) 0 0
\(287\) −1.51319 + 2.54167i −0.0893209 + 0.150030i
\(288\) 0 0
\(289\) 25.2581 1.48577
\(290\) 0 0
\(291\) 10.6608 + 12.1590i 0.624947 + 0.712774i
\(292\) 0 0
\(293\) −4.46410 −0.260795 −0.130398 0.991462i \(-0.541625\pi\)
−0.130398 + 0.991462i \(0.541625\pi\)
\(294\) 0 0
\(295\) 13.4209 0.781393
\(296\) 0 0
\(297\) 24.7643 16.5351i 1.43697 0.959463i
\(298\) 0 0
\(299\) −12.5180 −0.723937
\(300\) 0 0
\(301\) −7.97985 + 13.4035i −0.459951 + 0.772568i
\(302\) 0 0
\(303\) 10.5824 9.27848i 0.607945 0.533034i
\(304\) 0 0
\(305\) 1.33454i 0.0764153i
\(306\) 0 0
\(307\) 3.39682i 0.193867i 0.995291 + 0.0969334i \(0.0309034\pi\)
−0.995291 + 0.0969334i \(0.969097\pi\)
\(308\) 0 0
\(309\) 3.67670 + 4.19340i 0.209160 + 0.238554i
\(310\) 0 0
\(311\) −0.473808 −0.0268672 −0.0134336 0.999910i \(-0.504276\pi\)
−0.0134336 + 0.999910i \(0.504276\pi\)
\(312\) 0 0
\(313\) 12.5169i 0.707497i 0.935341 + 0.353749i \(0.115093\pi\)
−0.935341 + 0.353749i \(0.884907\pi\)
\(314\) 0 0
\(315\) 6.23066 + 4.91720i 0.351058 + 0.277053i
\(316\) 0 0
\(317\) 30.3962i 1.70722i 0.520913 + 0.853610i \(0.325592\pi\)
−0.520913 + 0.853610i \(0.674408\pi\)
\(318\) 0 0
\(319\) −6.38576 −0.357534
\(320\) 0 0
\(321\) −0.402011 0.458508i −0.0224381 0.0255914i
\(322\) 0 0
\(323\) 1.41634i 0.0788072i
\(324\) 0 0
\(325\) 2.24338i 0.124440i
\(326\) 0 0
\(327\) 17.9770 15.7619i 0.994132 0.871636i
\(328\) 0 0
\(329\) 10.4323 17.5228i 0.575150 0.966064i
\(330\) 0 0
\(331\) 19.8653 1.09190 0.545948 0.837819i \(-0.316169\pi\)
0.545948 + 0.837819i \(0.316169\pi\)
\(332\) 0 0
\(333\) 3.95623 29.9992i 0.216800 1.64395i
\(334\) 0 0
\(335\) 14.5144 0.793008
\(336\) 0 0
\(337\) 32.7104 1.78185 0.890924 0.454153i \(-0.150058\pi\)
0.890924 + 0.454153i \(0.150058\pi\)
\(338\) 0 0
\(339\) 2.88613 + 3.29173i 0.156753 + 0.178782i
\(340\) 0 0
\(341\) 31.5085 1.70628
\(342\) 0 0
\(343\) −18.5053 0.744166i −0.999192 0.0401812i
\(344\) 0 0
\(345\) 6.37165 + 7.26709i 0.343038 + 0.391247i
\(346\) 0 0
\(347\) 22.7318i 1.22031i 0.792283 + 0.610154i \(0.208893\pi\)
−0.792283 + 0.610154i \(0.791107\pi\)
\(348\) 0 0
\(349\) 8.77997i 0.469981i 0.971998 + 0.234990i \(0.0755059\pi\)
−0.971998 + 0.234990i \(0.924494\pi\)
\(350\) 0 0
\(351\) −9.69455 + 6.47304i −0.517457 + 0.345505i
\(352\) 0 0
\(353\) −12.5148 −0.666098 −0.333049 0.942910i \(-0.608077\pi\)
−0.333049 + 0.942910i \(0.608077\pi\)
\(354\) 0 0
\(355\) 7.41245i 0.393412i
\(356\) 0 0
\(357\) −5.41648 29.2930i −0.286670 1.55035i
\(358\) 0 0
\(359\) 5.22814i 0.275931i −0.990437 0.137965i \(-0.955944\pi\)
0.990437 0.137965i \(-0.0440563\pi\)
\(360\) 0 0
\(361\) 18.9525 0.997502
\(362\) 0 0
\(363\) −28.4433 + 24.9386i −1.49289 + 1.30894i
\(364\) 0 0
\(365\) 12.1828i 0.637677i
\(366\) 0 0
\(367\) 29.7583i 1.55337i 0.629888 + 0.776686i \(0.283101\pi\)
−0.629888 + 0.776686i \(0.716899\pi\)
\(368\) 0 0
\(369\) −0.438530 + 3.32528i −0.0228289 + 0.173107i
\(370\) 0 0
\(371\) −19.0481 11.3404i −0.988928 0.588762i
\(372\) 0 0
\(373\) −14.0263 −0.726256 −0.363128 0.931739i \(-0.618291\pi\)
−0.363128 + 0.931739i \(0.618291\pi\)
\(374\) 0 0
\(375\) −1.30235 + 1.14188i −0.0672531 + 0.0589662i
\(376\) 0 0
\(377\) 2.49985 0.128749
\(378\) 0 0
\(379\) 14.5017 0.744902 0.372451 0.928052i \(-0.378517\pi\)
0.372451 + 0.928052i \(0.378517\pi\)
\(380\) 0 0
\(381\) −17.1987 + 15.0795i −0.881115 + 0.772545i
\(382\) 0 0
\(383\) 9.35624 0.478081 0.239041 0.971010i \(-0.423167\pi\)
0.239041 + 0.971010i \(0.423167\pi\)
\(384\) 0 0
\(385\) −13.0278 7.75612i −0.663956 0.395289i
\(386\) 0 0
\(387\) −2.31259 + 17.5359i −0.117556 + 0.891401i
\(388\) 0 0
\(389\) 7.16415i 0.363237i −0.983369 0.181618i \(-0.941866\pi\)
0.983369 0.181618i \(-0.0581336\pi\)
\(390\) 0 0
\(391\) 36.2733i 1.83442i
\(392\) 0 0
\(393\) 13.3855 11.7362i 0.675211 0.592012i
\(394\) 0 0
\(395\) 4.54501 0.228684
\(396\) 0 0
\(397\) 23.2936i 1.16907i 0.811367 + 0.584537i \(0.198724\pi\)
−0.811367 + 0.584537i \(0.801276\pi\)
\(398\) 0 0
\(399\) 0.981797 0.181541i 0.0491513 0.00908841i
\(400\) 0 0
\(401\) 14.2990i 0.714060i −0.934093 0.357030i \(-0.883789\pi\)
0.934093 0.357030i \(-0.116211\pi\)
\(402\) 0 0
\(403\) −12.3347 −0.614436
\(404\) 0 0
\(405\) 8.69230 + 2.33322i 0.431924 + 0.115938i
\(406\) 0 0
\(407\) 57.8009i 2.86508i
\(408\) 0 0
\(409\) 21.0357i 1.04015i 0.854120 + 0.520075i \(0.174096\pi\)
−0.854120 + 0.520075i \(0.825904\pi\)
\(410\) 0 0
\(411\) −6.20416 7.07607i −0.306029 0.349037i
\(412\) 0 0
\(413\) −18.1645 + 30.5105i −0.893817 + 1.50132i
\(414\) 0 0
\(415\) −10.9184 −0.535962
\(416\) 0 0
\(417\) 18.6099 + 21.2252i 0.911330 + 1.03940i
\(418\) 0 0
\(419\) −32.7044 −1.59771 −0.798857 0.601521i \(-0.794561\pi\)
−0.798857 + 0.601521i \(0.794561\pi\)
\(420\) 0 0
\(421\) −19.1758 −0.934569 −0.467285 0.884107i \(-0.654768\pi\)
−0.467285 + 0.884107i \(0.654768\pi\)
\(422\) 0 0
\(423\) 3.02332 22.9252i 0.146999 1.11466i
\(424\) 0 0
\(425\) 6.50062 0.315326
\(426\) 0 0
\(427\) 3.03388 + 1.80623i 0.146820 + 0.0874097i
\(428\) 0 0
\(429\) 16.7430 14.6799i 0.808359 0.708754i
\(430\) 0 0
\(431\) 19.3591i 0.932495i 0.884654 + 0.466248i \(0.154394\pi\)
−0.884654 + 0.466248i \(0.845606\pi\)
\(432\) 0 0
\(433\) 4.02981i 0.193660i 0.995301 + 0.0968302i \(0.0308704\pi\)
−0.995301 + 0.0968302i \(0.969130\pi\)
\(434\) 0 0
\(435\) −1.27242 1.45124i −0.0610079 0.0695817i
\(436\) 0 0
\(437\) 1.21575 0.0581573
\(438\) 0 0
\(439\) 3.28426i 0.156749i −0.996924 0.0783746i \(-0.975027\pi\)
0.996924 0.0783746i \(-0.0249730\pi\)
\(440\) 0 0
\(441\) −19.6115 + 7.50934i −0.933880 + 0.357587i
\(442\) 0 0
\(443\) 20.2006i 0.959760i 0.877334 + 0.479880i \(0.159320\pi\)
−0.877334 + 0.479880i \(0.840680\pi\)
\(444\) 0 0
\(445\) −4.45092 −0.210994
\(446\) 0 0
\(447\) 11.2554 + 12.8372i 0.532364 + 0.607180i
\(448\) 0 0
\(449\) 2.84898i 0.134452i −0.997738 0.0672259i \(-0.978585\pi\)
0.997738 0.0672259i \(-0.0214148\pi\)
\(450\) 0 0
\(451\) 6.40697i 0.301692i
\(452\) 0 0
\(453\) −7.77364 + 6.81578i −0.365237 + 0.320233i
\(454\) 0 0
\(455\) 5.10002 + 3.03631i 0.239092 + 0.142345i
\(456\) 0 0
\(457\) −22.6864 −1.06123 −0.530613 0.847614i \(-0.678038\pi\)
−0.530613 + 0.847614i \(0.678038\pi\)
\(458\) 0 0
\(459\) −18.7569 28.0918i −0.875495 1.31121i
\(460\) 0 0
\(461\) 16.6309 0.774579 0.387290 0.921958i \(-0.373411\pi\)
0.387290 + 0.921958i \(0.373411\pi\)
\(462\) 0 0
\(463\) 16.8319 0.782247 0.391123 0.920338i \(-0.372087\pi\)
0.391123 + 0.920338i \(0.372087\pi\)
\(464\) 0 0
\(465\) 6.27835 + 7.16068i 0.291151 + 0.332069i
\(466\) 0 0
\(467\) −40.2591 −1.86297 −0.931484 0.363782i \(-0.881485\pi\)
−0.931484 + 0.363782i \(0.881485\pi\)
\(468\) 0 0
\(469\) −19.6446 + 32.9965i −0.907104 + 1.52364i
\(470\) 0 0
\(471\) −9.06880 10.3433i −0.417868 0.476594i
\(472\) 0 0
\(473\) 33.7873i 1.55354i
\(474\) 0 0
\(475\) 0.217877i 0.00999690i
\(476\) 0 0
\(477\) −24.9207 3.28648i −1.14104 0.150478i
\(478\) 0 0
\(479\) 6.90837 0.315651 0.157826 0.987467i \(-0.449552\pi\)
0.157826 + 0.987467i \(0.449552\pi\)
\(480\) 0 0
\(481\) 22.6275i 1.03173i
\(482\) 0 0
\(483\) −25.1444 + 4.64938i −1.14411 + 0.211554i
\(484\) 0 0
\(485\) 9.33620i 0.423935i
\(486\) 0 0
\(487\) −4.57854 −0.207473 −0.103737 0.994605i \(-0.533080\pi\)
−0.103737 + 0.994605i \(0.533080\pi\)
\(488\) 0 0
\(489\) 24.0627 21.0977i 1.08815 0.954073i
\(490\) 0 0
\(491\) 20.0323i 0.904046i 0.892006 + 0.452023i \(0.149297\pi\)
−0.892006 + 0.452023i \(0.850703\pi\)
\(492\) 0 0
\(493\) 7.24380i 0.326244i
\(494\) 0 0
\(495\) −17.0443 2.24776i −0.766083 0.101029i
\(496\) 0 0
\(497\) 16.8512 + 10.0324i 0.755878 + 0.450015i
\(498\) 0 0
\(499\) 14.4917 0.648739 0.324369 0.945930i \(-0.394848\pi\)
0.324369 + 0.945930i \(0.394848\pi\)
\(500\) 0 0
\(501\) 2.99007 2.62163i 0.133586 0.117126i
\(502\) 0 0
\(503\) −44.1442 −1.96829 −0.984145 0.177363i \(-0.943243\pi\)
−0.984145 + 0.177363i \(0.943243\pi\)
\(504\) 0 0
\(505\) −8.12564 −0.361586
\(506\) 0 0
\(507\) 10.3761 9.09760i 0.460820 0.404038i
\(508\) 0 0
\(509\) −27.8389 −1.23394 −0.616968 0.786988i \(-0.711639\pi\)
−0.616968 + 0.786988i \(0.711639\pi\)
\(510\) 0 0
\(511\) −27.6959 16.4889i −1.22519 0.729424i
\(512\) 0 0
\(513\) 0.941535 0.628662i 0.0415698 0.0277561i
\(514\) 0 0
\(515\) 3.21987i 0.141884i
\(516\) 0 0
\(517\) 44.1710i 1.94264i
\(518\) 0 0
\(519\) 1.43890 1.26160i 0.0631606 0.0553780i
\(520\) 0 0
\(521\) −15.5640 −0.681873 −0.340936 0.940086i \(-0.610744\pi\)
−0.340936 + 0.940086i \(0.610744\pi\)
\(522\) 0 0
\(523\) 40.3413i 1.76400i 0.471246 + 0.882002i \(0.343804\pi\)
−0.471246 + 0.882002i \(0.656196\pi\)
\(524\) 0 0
\(525\) −0.833225 4.50619i −0.0363649 0.196666i
\(526\) 0 0
\(527\) 35.7422i 1.55695i
\(528\) 0 0
\(529\) −8.13619 −0.353748
\(530\) 0 0
\(531\) −5.26415 + 39.9170i −0.228445 + 1.73225i
\(532\) 0 0
\(533\) 2.50815i 0.108640i
\(534\) 0 0
\(535\) 0.352062i 0.0152209i
\(536\) 0 0
\(537\) 16.5341 + 18.8577i 0.713498 + 0.813770i
\(538\) 0 0
\(539\) 35.2649 19.1192i 1.51897 0.823523i
\(540\) 0 0
\(541\) 8.24259 0.354377 0.177188 0.984177i \(-0.443300\pi\)
0.177188 + 0.984177i \(0.443300\pi\)
\(542\) 0 0
\(543\) −13.1778 15.0298i −0.565515 0.644990i
\(544\) 0 0
\(545\) −13.8035 −0.591278
\(546\) 0 0
\(547\) 13.2243 0.565430 0.282715 0.959204i \(-0.408765\pi\)
0.282715 + 0.959204i \(0.408765\pi\)
\(548\) 0 0
\(549\) 3.96924 + 0.523454i 0.169403 + 0.0223405i
\(550\) 0 0
\(551\) −0.242786 −0.0103430
\(552\) 0 0
\(553\) −6.15146 + 10.3324i −0.261587 + 0.439380i
\(554\) 0 0
\(555\) −13.1359 + 11.5173i −0.557590 + 0.488884i
\(556\) 0 0
\(557\) 4.39173i 0.186083i −0.995662 0.0930417i \(-0.970341\pi\)
0.995662 0.0930417i \(-0.0296590\pi\)
\(558\) 0 0
\(559\) 13.2268i 0.559434i
\(560\) 0 0
\(561\) 42.5378 + 48.5159i 1.79595 + 2.04834i
\(562\) 0 0
\(563\) 5.30197 0.223451 0.111726 0.993739i \(-0.464362\pi\)
0.111726 + 0.993739i \(0.464362\pi\)
\(564\) 0 0
\(565\) 2.52753i 0.106334i
\(566\) 0 0
\(567\) −17.0689 + 16.6028i −0.716825 + 0.697253i
\(568\) 0 0
\(569\) 16.1380i 0.676541i −0.941049 0.338271i \(-0.890158\pi\)
0.941049 0.338271i \(-0.109842\pi\)
\(570\) 0 0
\(571\) −18.4724 −0.773044 −0.386522 0.922280i \(-0.626324\pi\)
−0.386522 + 0.922280i \(0.626324\pi\)
\(572\) 0 0
\(573\) 12.4327 + 14.1800i 0.519385 + 0.592378i
\(574\) 0 0
\(575\) 5.57998i 0.232701i
\(576\) 0 0
\(577\) 16.2609i 0.676950i 0.940975 + 0.338475i \(0.109911\pi\)
−0.940975 + 0.338475i \(0.890089\pi\)
\(578\) 0 0
\(579\) 7.24897 6.35576i 0.301257 0.264136i
\(580\) 0 0
\(581\) 14.7775 24.8214i 0.613074 1.02976i
\(582\) 0 0
\(583\) 48.0159 1.98862
\(584\) 0 0
\(585\) 6.67238 + 0.879936i 0.275869 + 0.0363809i
\(586\) 0 0
\(587\) 43.2616 1.78560 0.892798 0.450456i \(-0.148739\pi\)
0.892798 + 0.450456i \(0.148739\pi\)
\(588\) 0 0
\(589\) 1.19795 0.0493606
\(590\) 0 0
\(591\) 25.8594 + 29.4936i 1.06372 + 1.21321i
\(592\) 0 0
\(593\) −18.6653 −0.766490 −0.383245 0.923647i \(-0.625194\pi\)
−0.383245 + 0.923647i \(0.625194\pi\)
\(594\) 0 0
\(595\) −8.79829 + 14.7783i −0.360695 + 0.605849i
\(596\) 0 0
\(597\) 0.127505 + 0.145424i 0.00521844 + 0.00595181i
\(598\) 0 0
\(599\) 2.16911i 0.0886273i −0.999018 0.0443136i \(-0.985890\pi\)
0.999018 0.0443136i \(-0.0141101\pi\)
\(600\) 0 0
\(601\) 22.6531i 0.924040i −0.886870 0.462020i \(-0.847125\pi\)
0.886870 0.462020i \(-0.152875\pi\)
\(602\) 0 0
\(603\) −5.69309 + 43.1695i −0.231841 + 1.75800i
\(604\) 0 0
\(605\) 21.8400 0.887922
\(606\) 0 0
\(607\) 38.7693i 1.57360i −0.617210 0.786798i \(-0.711737\pi\)
0.617210 0.786798i \(-0.288263\pi\)
\(608\) 0 0
\(609\) 5.02135 0.928482i 0.203475 0.0376240i
\(610\) 0 0
\(611\) 17.2918i 0.699549i
\(612\) 0 0
\(613\) −31.8640 −1.28697 −0.643486 0.765458i \(-0.722513\pi\)
−0.643486 + 0.765458i \(0.722513\pi\)
\(614\) 0 0
\(615\) 1.45606 1.27664i 0.0587140 0.0514793i
\(616\) 0 0
\(617\) 11.0328i 0.444164i 0.975028 + 0.222082i \(0.0712853\pi\)
−0.975028 + 0.222082i \(0.928715\pi\)
\(618\) 0 0
\(619\) 22.0902i 0.887881i −0.896056 0.443941i \(-0.853580\pi\)
0.896056 0.443941i \(-0.146420\pi\)
\(620\) 0 0
\(621\) −24.1133 + 16.1004i −0.967635 + 0.646089i
\(622\) 0 0
\(623\) 6.02412 10.1185i 0.241351 0.405391i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −1.62608 + 1.42572i −0.0649394 + 0.0569376i
\(628\) 0 0
\(629\) 65.5674 2.61434
\(630\) 0 0
\(631\) −10.3052 −0.410244 −0.205122 0.978736i \(-0.565759\pi\)
−0.205122 + 0.978736i \(0.565759\pi\)
\(632\) 0 0
\(633\) 28.5008 24.9890i 1.13281 0.993223i
\(634\) 0 0
\(635\) 13.2059 0.524059
\(636\) 0 0
\(637\) −13.8053 + 7.48466i −0.546985 + 0.296553i
\(638\) 0 0
\(639\) 22.0465 + 2.90743i 0.872144 + 0.115016i
\(640\) 0 0
\(641\) 49.4982i 1.95506i 0.210790 + 0.977531i \(0.432396\pi\)
−0.210790 + 0.977531i \(0.567604\pi\)
\(642\) 0 0
\(643\) 11.6429i 0.459150i 0.973291 + 0.229575i \(0.0737336\pi\)
−0.973291 + 0.229575i \(0.926266\pi\)
\(644\) 0 0
\(645\) 7.67856 6.73241i 0.302343 0.265088i
\(646\) 0 0
\(647\) −18.0790 −0.710757 −0.355379 0.934722i \(-0.615648\pi\)
−0.355379 + 0.934722i \(0.615648\pi\)
\(648\) 0 0
\(649\) 76.9099i 3.01898i
\(650\) 0 0
\(651\) −24.7762 + 4.58130i −0.971058 + 0.179555i
\(652\) 0 0
\(653\) 30.6974i 1.20128i 0.799518 + 0.600642i \(0.205088\pi\)
−0.799518 + 0.600642i \(0.794912\pi\)
\(654\) 0 0
\(655\) −10.2780 −0.401594
\(656\) 0 0
\(657\) −36.2347 4.77854i −1.41365 0.186429i
\(658\) 0 0
\(659\) 0.244430i 0.00952164i 0.999989 + 0.00476082i \(0.00151542\pi\)
−0.999989 + 0.00476082i \(0.998485\pi\)
\(660\) 0 0
\(661\) 24.0272i 0.934550i −0.884112 0.467275i \(-0.845236\pi\)
0.884112 0.467275i \(-0.154764\pi\)
\(662\) 0 0
\(663\) −16.6524 18.9927i −0.646726 0.737615i
\(664\) 0 0
\(665\) −0.495314 0.294887i −0.0192074 0.0114352i
\(666\) 0 0
\(667\) 6.21790 0.240758
\(668\) 0 0
\(669\) −24.7563 28.2355i −0.957134 1.09165i
\(670\) 0 0
\(671\) −7.64772 −0.295237
\(672\) 0 0
\(673\) −10.2656 −0.395712 −0.197856 0.980231i \(-0.563398\pi\)
−0.197856 + 0.980231i \(0.563398\pi\)
\(674\) 0 0
\(675\) −2.88539 4.32140i −0.111059 0.166331i
\(676\) 0 0
\(677\) 4.72154 0.181463 0.0907317 0.995875i \(-0.471079\pi\)
0.0907317 + 0.995875i \(0.471079\pi\)
\(678\) 0 0
\(679\) 21.2245 + 12.6361i 0.814523 + 0.484930i
\(680\) 0 0
\(681\) −6.56422 + 5.75538i −0.251541 + 0.220547i
\(682\) 0 0
\(683\) 34.9227i 1.33628i −0.744036 0.668139i \(-0.767091\pi\)
0.744036 0.668139i \(-0.232909\pi\)
\(684\) 0 0
\(685\) 5.43330i 0.207596i
\(686\) 0 0
\(687\) −14.5640 16.6108i −0.555652 0.633741i
\(688\) 0 0
\(689\) −18.7969 −0.716106
\(690\) 0 0
\(691\) 42.9041i 1.63215i −0.577948 0.816074i \(-0.696146\pi\)
0.577948 0.816074i \(-0.303854\pi\)
\(692\) 0 0
\(693\) 28.1786 35.7055i 1.07042 1.35634i
\(694\) 0 0
\(695\) 16.2976i 0.618204i
\(696\) 0 0
\(697\) −7.26785 −0.275289
\(698\) 0 0
\(699\) 29.8362 + 34.0293i 1.12851 + 1.28711i
\(700\) 0 0
\(701\) 14.1880i 0.535874i 0.963436 + 0.267937i \(0.0863419\pi\)
−0.963436 + 0.267937i \(0.913658\pi\)
\(702\) 0 0
\(703\) 2.19758i 0.0828834i
\(704\) 0 0
\(705\) −10.0384 + 8.80146i −0.378067 + 0.331482i
\(706\) 0 0
\(707\) 10.9977 18.4725i 0.413610 0.694730i
\(708\) 0 0
\(709\) 43.7048 1.64137 0.820684 0.571382i \(-0.193593\pi\)
0.820684 + 0.571382i \(0.193593\pi\)
\(710\) 0 0
\(711\) −1.78272 + 13.5180i −0.0668572 + 0.506964i
\(712\) 0 0
\(713\) −30.6803 −1.14898
\(714\) 0 0
\(715\) −12.8560 −0.480786
\(716\) 0 0
\(717\) −2.19363 2.50191i −0.0819225 0.0934355i
\(718\) 0 0
\(719\) 9.64243 0.359602 0.179801 0.983703i \(-0.442455\pi\)
0.179801 + 0.983703i \(0.442455\pi\)
\(720\) 0 0
\(721\) 7.31993 + 4.35794i 0.272608 + 0.162298i
\(722\) 0 0
\(723\) 12.1569 + 13.8654i 0.452119 + 0.515658i
\(724\) 0 0
\(725\) 1.11432i 0.0413849i
\(726\) 0 0
\(727\) 47.0202i 1.74388i −0.489611 0.871941i \(-0.662861\pi\)
0.489611 0.871941i \(-0.337139\pi\)
\(728\) 0 0
\(729\) −10.3490 + 24.9379i −0.383296 + 0.923625i
\(730\) 0 0
\(731\) −38.3271 −1.41758
\(732\) 0 0
\(733\) 40.3873i 1.49174i −0.666093 0.745869i \(-0.732035\pi\)
0.666093 0.745869i \(-0.267965\pi\)
\(734\) 0 0
\(735\) 11.3719 + 4.20470i 0.419460 + 0.155093i
\(736\) 0 0
\(737\) 83.1767i 3.06385i
\(738\) 0 0
\(739\) 12.5093 0.460160 0.230080 0.973172i \(-0.426101\pi\)
0.230080 + 0.973172i \(0.426101\pi\)
\(740\) 0 0
\(741\) 0.636566 0.558129i 0.0233848 0.0205034i
\(742\) 0 0
\(743\) 37.6376i 1.38079i −0.723433 0.690395i \(-0.757437\pi\)
0.723433 0.690395i \(-0.242563\pi\)
\(744\) 0 0
\(745\) 9.85697i 0.361131i
\(746\) 0 0
\(747\) 4.28258 32.4739i 0.156691 1.18816i
\(748\) 0 0
\(749\) −0.800363 0.476499i −0.0292446 0.0174109i
\(750\) 0 0
\(751\) −1.45321 −0.0530282 −0.0265141 0.999648i \(-0.508441\pi\)
−0.0265141 + 0.999648i \(0.508441\pi\)
\(752\) 0 0
\(753\) −16.4676 + 14.4384i −0.600111 + 0.526166i
\(754\) 0 0
\(755\) 5.96893 0.217231
\(756\) 0 0
\(757\) 11.1113 0.403848 0.201924 0.979401i \(-0.435281\pi\)
0.201924 + 0.979401i \(0.435281\pi\)
\(758\) 0 0
\(759\) 41.6449 36.5135i 1.51162 1.32536i
\(760\) 0 0
\(761\) 23.4744 0.850946 0.425473 0.904971i \(-0.360108\pi\)
0.425473 + 0.904971i \(0.360108\pi\)
\(762\) 0 0
\(763\) 18.6824 31.3804i 0.676349 1.13605i
\(764\) 0 0
\(765\) −2.54978 + 19.3345i −0.0921875 + 0.699039i
\(766\) 0 0
\(767\) 30.1081i 1.08714i
\(768\) 0 0
\(769\) 13.1458i 0.474051i 0.971503 + 0.237026i \(0.0761725\pi\)
−0.971503 + 0.237026i \(0.923827\pi\)
\(770\) 0 0
\(771\) 9.44699 8.28294i 0.340225 0.298303i
\(772\) 0 0
\(773\) −34.2816 −1.23302 −0.616512 0.787346i \(-0.711455\pi\)
−0.616512 + 0.787346i \(0.711455\pi\)
\(774\) 0 0
\(775\) 5.49827i 0.197504i
\(776\) 0 0
\(777\) −8.40418 45.4509i −0.301498 1.63054i
\(778\) 0 0
\(779\) 0.243592i 0.00872759i
\(780\) 0 0
\(781\) −42.4779 −1.51998
\(782\) 0 0
\(783\) 4.81544 3.21526i 0.172090 0.114904i
\(784\) 0 0
\(785\) 7.94202i 0.283463i
\(786\) 0 0
\(787\) 17.1687i 0.611996i 0.952032 + 0.305998i \(0.0989901\pi\)
−0.952032 + 0.305998i \(0.901010\pi\)
\(788\) 0 0
\(789\) −22.5965 25.7721i −0.804456 0.917511i
\(790\) 0 0
\(791\) 5.74599 + 3.42089i 0.204304 + 0.121633i
\(792\) 0 0
\(793\) 2.99387 0.106316
\(794\) 0 0
\(795\) 9.56759 + 10.9122i 0.339328 + 0.387015i
\(796\) 0 0
\(797\) −43.9928 −1.55830 −0.779152 0.626834i \(-0.784350\pi\)
−0.779152 + 0.626834i \(0.784350\pi\)
\(798\) 0 0
\(799\) 50.1061 1.77263
\(800\) 0 0
\(801\) 1.74581 13.2381i 0.0616853 0.467747i
\(802\) 0 0
\(803\) 69.8150 2.46372
\(804\) 0 0
\(805\) 12.6853 + 7.55224i 0.447098 + 0.266182i
\(806\) 0 0
\(807\) −30.0226 + 26.3233i −1.05685 + 0.926623i
\(808\) 0 0
\(809\) 27.6874i 0.973436i −0.873559 0.486718i \(-0.838194\pi\)
0.873559 0.486718i \(-0.161806\pi\)
\(810\) 0 0
\(811\) 6.48782i 0.227818i −0.993491 0.113909i \(-0.963663\pi\)
0.993491 0.113909i \(-0.0363372\pi\)
\(812\) 0 0
\(813\) 20.8155 + 23.7408i 0.730031 + 0.832627i
\(814\) 0 0
\(815\) −18.4764 −0.647199
\(816\) 0 0
\(817\) 1.28459i 0.0449420i
\(818\) 0 0
\(819\) −11.0312 + 13.9778i −0.385460 + 0.488422i
\(820\) 0 0
\(821\) 2.97361i 0.103780i −0.998653 0.0518899i \(-0.983476\pi\)
0.998653 0.0518899i \(-0.0165245\pi\)
\(822\) 0 0
\(823\) 21.0592 0.734078 0.367039 0.930206i \(-0.380372\pi\)
0.367039 + 0.930206i \(0.380372\pi\)
\(824\) 0 0
\(825\) 6.54366 + 7.46328i 0.227821 + 0.259838i
\(826\) 0 0
\(827\) 8.53762i 0.296882i 0.988921 + 0.148441i \(0.0474255\pi\)
−0.988921 + 0.148441i \(0.952574\pi\)
\(828\) 0 0
\(829\) 38.7564i 1.34607i −0.739612 0.673033i \(-0.764991\pi\)
0.739612 0.673033i \(-0.235009\pi\)
\(830\) 0 0
\(831\) −25.7907 + 22.6128i −0.894668 + 0.784428i
\(832\) 0 0
\(833\) −21.6882 40.0033i −0.751452 1.38603i
\(834\) 0 0
\(835\) −2.29590 −0.0794529
\(836\) 0 0
\(837\) −23.7602 + 15.8647i −0.821274 + 0.548364i
\(838\) 0 0
\(839\) 25.5028 0.880455 0.440228 0.897886i \(-0.354898\pi\)
0.440228 + 0.897886i \(0.354898\pi\)
\(840\) 0 0
\(841\) 27.7583 0.957182
\(842\) 0 0
\(843\) −0.0618758 0.0705715i −0.00213111 0.00243061i
\(844\) 0 0
\(845\) −7.96723 −0.274081
\(846\) 0 0
\(847\) −29.5594 + 49.6501i −1.01567 + 1.70600i
\(848\) 0 0
\(849\) −3.13839 3.57944i −0.107709 0.122846i
\(850\) 0 0
\(851\) 56.2815i 1.92931i
\(852\) 0 0
\(853\) 33.9572i 1.16267i −0.813664 0.581336i \(-0.802530\pi\)
0.813664 0.581336i \(-0.197470\pi\)
\(854\) 0 0
\(855\) −0.648021 0.0854595i −0.0221619 0.00292265i
\(856\) 0 0
\(857\) 15.7208 0.537012 0.268506 0.963278i \(-0.413470\pi\)
0.268506 + 0.963278i \(0.413470\pi\)
\(858\) 0 0
\(859\) 12.3593i 0.421693i 0.977519 + 0.210846i \(0.0676220\pi\)
−0.977519 + 0.210846i \(0.932378\pi\)
\(860\) 0 0
\(861\) 0.931565 + 5.03802i 0.0317476 + 0.171695i
\(862\) 0 0
\(863\) 31.4856i 1.07178i 0.844287 + 0.535892i \(0.180024\pi\)
−0.844287 + 0.535892i \(0.819976\pi\)
\(864\) 0 0
\(865\) −1.10485 −0.0375659
\(866\) 0 0
\(867\) 32.8949 28.8416i 1.11717 0.979512i
\(868\) 0 0
\(869\) 26.0457i 0.883541i
\(870\) 0 0
\(871\) 32.5614i 1.10330i
\(872\) 0 0
\(873\) 27.7682 + 3.66200i 0.939811 + 0.123940i
\(874\) 0 0
\(875\) −1.35345 + 2.27336i −0.0457551 + 0.0768536i
\(876\) 0 0
\(877\) −5.74226 −0.193902 −0.0969511 0.995289i \(-0.530909\pi\)
−0.0969511 + 0.995289i \(0.530909\pi\)
\(878\) 0 0
\(879\) −5.81382 + 5.09745i −0.196095 + 0.171933i
\(880\) 0 0
\(881\) −16.8840 −0.568835 −0.284417 0.958701i \(-0.591800\pi\)
−0.284417 + 0.958701i \(0.591800\pi\)
\(882\) 0 0
\(883\) −29.1875 −0.982236 −0.491118 0.871093i \(-0.663412\pi\)
−0.491118 + 0.871093i \(0.663412\pi\)
\(884\) 0 0
\(885\) 17.4787 15.3250i 0.587539 0.515143i
\(886\) 0 0
\(887\) 50.3734 1.69137 0.845687 0.533680i \(-0.179191\pi\)
0.845687 + 0.533680i \(0.179191\pi\)
\(888\) 0 0
\(889\) −17.8735 + 30.0217i −0.599459 + 1.00690i
\(890\) 0 0
\(891\) 13.3708 49.8123i 0.447938 1.66877i
\(892\) 0 0
\(893\) 1.67938i 0.0561982i
\(894\) 0 0
\(895\) 14.4797i 0.484004i
\(896\) 0 0
\(897\) −16.3029 + 14.2940i −0.544337 + 0.477264i
\(898\) 0 0
\(899\) 6.12685 0.204342
\(900\) 0 0
\(901\) 54.4676i 1.81458i
\(902\) 0 0
\(903\) 4.91263 + 26.5681i 0.163482 + 0.884132i
\(904\) 0 0
\(905\) 11.5405i 0.383620i
\(906\) 0 0
\(907\) 48.7202 1.61773 0.808864 0.587996i \(-0.200083\pi\)
0.808864 + 0.587996i \(0.200083\pi\)
\(908\) 0 0
\(909\) 3.18717 24.1677i 0.105712 0.801591i
\(910\) 0 0
\(911\) 0.0878283i 0.00290988i −0.999999 0.00145494i \(-0.999537\pi\)
0.999999 0.00145494i \(-0.000463122\pi\)
\(912\) 0 0
\(913\) 62.5690i 2.07073i
\(914\) 0 0
\(915\) −1.52388 1.73803i −0.0503778 0.0574576i
\(916\) 0 0
\(917\) 13.9108 23.3656i 0.459374 0.771599i
\(918\) 0 0
\(919\) −53.5379 −1.76605 −0.883026 0.469325i \(-0.844497\pi\)
−0.883026 + 0.469325i \(0.844497\pi\)
\(920\) 0 0
\(921\) 3.87875 + 4.42385i 0.127809 + 0.145771i
\(922\) 0 0
\(923\) 16.6290 0.547349
\(924\) 0 0
\(925\) 10.0863 0.331637
\(926\) 0 0
\(927\) 9.57670 + 1.26295i 0.314540 + 0.0414808i
\(928\) 0 0
\(929\) −5.34086 −0.175228 −0.0876140 0.996155i \(-0.527924\pi\)
−0.0876140 + 0.996155i \(0.527924\pi\)
\(930\) 0 0
\(931\) 1.34077 0.726911i 0.0439419 0.0238235i
\(932\) 0 0
\(933\) −0.617065 + 0.541031i −0.0202018 + 0.0177126i
\(934\) 0 0
\(935\) 37.2526i 1.21829i
\(936\) 0 0
\(937\) 34.5412i 1.12841i 0.825634 + 0.564206i \(0.190818\pi\)
−0.825634 + 0.564206i \(0.809182\pi\)
\(938\) 0 0
\(939\) 14.2928 + 16.3014i 0.466427 + 0.531976i
\(940\) 0 0
\(941\) 11.7648 0.383522 0.191761 0.981442i \(-0.438580\pi\)
0.191761 + 0.981442i \(0.438580\pi\)
\(942\) 0 0
\(943\) 6.23855i 0.203155i
\(944\) 0 0
\(945\) 13.7293 0.710725i 0.446616 0.0231199i
\(946\) 0 0
\(947\) 9.67044i 0.314247i 0.987579 + 0.157124i \(0.0502221\pi\)
−0.987579 + 0.157124i \(0.949778\pi\)
\(948\) 0 0
\(949\) −27.3307 −0.887192
\(950\) 0 0
\(951\) 34.7087 + 39.5865i 1.12551 + 1.28368i
\(952\) 0 0
\(953\) 14.9312i 0.483667i −0.970318 0.241834i \(-0.922251\pi\)
0.970318 0.241834i \(-0.0777489\pi\)
\(954\) 0 0
\(955\) 10.8880i 0.352327i
\(956\) 0 0
\(957\) −8.31651 + 7.29175i −0.268834 + 0.235709i
\(958\) 0 0
\(959\) −12.3518 7.35372i −0.398862 0.237464i
\(960\) 0 0
\(961\) 0.769012 0.0248068
\(962\) 0 0
\(963\) −1.04712 0.138091i −0.0337429 0.00444993i
\(964\) 0 0
\(965\) −5.56607 −0.179178
\(966\) 0 0
\(967\) 60.0002 1.92948 0.964738 0.263211i \(-0.0847815\pi\)
0.964738 + 0.263211i \(0.0847815\pi\)
\(968\) 0 0
\(969\) 1.61728 + 1.84457i 0.0519546 + 0.0592561i
\(970\) 0 0
\(971\) 14.8832 0.477623 0.238812 0.971066i \(-0.423242\pi\)
0.238812 + 0.971066i \(0.423242\pi\)
\(972\) 0 0
\(973\) 37.0504 + 22.0581i 1.18778 + 0.707150i
\(974\) 0 0
\(975\) −2.56167 2.92167i −0.0820390 0.0935684i
\(976\) 0 0
\(977\) 4.39064i 0.140469i 0.997531 + 0.0702345i \(0.0223748\pi\)
−0.997531 + 0.0702345i \(0.977625\pi\)
\(978\) 0 0
\(979\) 25.5065i 0.815192i
\(980\) 0 0
\(981\) 5.41424 41.0551i 0.172863 1.31079i
\(982\) 0 0
\(983\) −35.2167 −1.12324 −0.561620 0.827396i \(-0.689822\pi\)
−0.561620 + 0.827396i \(0.689822\pi\)
\(984\) 0 0
\(985\) 22.6465i 0.721576i
\(986\) 0 0
\(987\) −6.42241 34.7332i −0.204427 1.10557i
\(988\) 0 0
\(989\) 32.8991i 1.04613i
\(990\) 0 0
\(991\) −36.1235 −1.14750 −0.573750 0.819030i \(-0.694512\pi\)
−0.573750 + 0.819030i \(0.694512\pi\)
\(992\) 0 0
\(993\) 25.8716 22.6837i 0.821011 0.719847i
\(994\) 0 0
\(995\) 0.111663i 0.00353995i
\(996\) 0 0
\(997\) 36.1961i 1.14634i −0.819436 0.573170i \(-0.805713\pi\)
0.819436 0.573170i \(-0.194287\pi\)
\(998\) 0 0
\(999\) −29.1030 43.5871i −0.920779 1.37903i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.f.k.881.13 16
3.2 odd 2 1680.2.f.l.881.3 16
4.3 odd 2 840.2.f.a.41.4 yes 16
7.6 odd 2 1680.2.f.l.881.4 16
12.11 even 2 840.2.f.b.41.14 yes 16
21.20 even 2 inner 1680.2.f.k.881.14 16
28.27 even 2 840.2.f.b.41.13 yes 16
84.83 odd 2 840.2.f.a.41.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.f.a.41.3 16 84.83 odd 2
840.2.f.a.41.4 yes 16 4.3 odd 2
840.2.f.b.41.13 yes 16 28.27 even 2
840.2.f.b.41.14 yes 16 12.11 even 2
1680.2.f.k.881.13 16 1.1 even 1 trivial
1680.2.f.k.881.14 16 21.20 even 2 inner
1680.2.f.l.881.3 16 3.2 odd 2
1680.2.f.l.881.4 16 7.6 odd 2