Properties

Label 1680.2.f.k.881.12
Level $1680$
Weight $2$
Character 1680.881
Analytic conductor $13.415$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(881,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-16,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + x^{14} - 4 x^{13} + 10 x^{12} - 32 x^{11} + 71 x^{10} - 70 x^{9} + 74 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.12
Root \(-1.34935 - 1.08593i\) of defining polynomial
Character \(\chi\) \(=\) 1680.881
Dual form 1680.2.f.k.881.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.08593 + 1.34935i) q^{3} -1.00000 q^{5} +(-2.53123 - 0.769995i) q^{7} +(-0.641511 + 2.93061i) q^{9} -1.53432i q^{11} -1.09114i q^{13} +(-1.08593 - 1.34935i) q^{15} -1.57385 q^{17} -4.32690i q^{19} +(-1.70974 - 4.25168i) q^{21} -6.09548i q^{23} +1.00000 q^{25} +(-4.65106 + 2.31681i) q^{27} -0.867889i q^{29} -4.03607i q^{31} +(2.07034 - 1.66616i) q^{33} +(2.53123 + 0.769995i) q^{35} +11.4253 q^{37} +(1.47233 - 1.18490i) q^{39} +2.70250 q^{41} +1.74571 q^{43} +(0.641511 - 2.93061i) q^{45} -10.3471 q^{47} +(5.81421 + 3.89807i) q^{49} +(-1.70909 - 2.12368i) q^{51} -4.51290i q^{53} +1.53432i q^{55} +(5.83851 - 4.69871i) q^{57} -2.72120 q^{59} -10.7041i q^{61} +(3.88036 - 6.92407i) q^{63} +1.09114i q^{65} -3.69294 q^{67} +(8.22496 - 6.61927i) q^{69} -11.7996i q^{71} +2.71268i q^{73} +(1.08593 + 1.34935i) q^{75} +(-1.18142 + 3.88371i) q^{77} +7.04200 q^{79} +(-8.17693 - 3.76003i) q^{81} -6.68497 q^{83} +1.57385 q^{85} +(1.17109 - 0.942467i) q^{87} +4.13646 q^{89} +(-0.840170 + 2.76191i) q^{91} +(5.44608 - 4.38289i) q^{93} +4.32690i q^{95} +16.9687i q^{97} +(4.49649 + 0.984283i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{5} - 2 q^{7} - 2 q^{9} + 2 q^{21} + 16 q^{25} + 6 q^{27} - 6 q^{33} + 2 q^{35} + 12 q^{37} - 6 q^{39} - 32 q^{41} - 32 q^{43} + 2 q^{45} + 4 q^{47} - 4 q^{49} - 6 q^{51} - 24 q^{59} + 4 q^{63}+ \cdots + 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.08593 + 1.34935i 0.626962 + 0.779050i
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.53123 0.769995i −0.956714 0.291031i
\(8\) 0 0
\(9\) −0.641511 + 2.93061i −0.213837 + 0.976869i
\(10\) 0 0
\(11\) 1.53432i 0.462615i −0.972881 0.231307i \(-0.925700\pi\)
0.972881 0.231307i \(-0.0743003\pi\)
\(12\) 0 0
\(13\) 1.09114i 0.302627i −0.988486 0.151313i \(-0.951650\pi\)
0.988486 0.151313i \(-0.0483503\pi\)
\(14\) 0 0
\(15\) −1.08593 1.34935i −0.280386 0.348402i
\(16\) 0 0
\(17\) −1.57385 −0.381714 −0.190857 0.981618i \(-0.561127\pi\)
−0.190857 + 0.981618i \(0.561127\pi\)
\(18\) 0 0
\(19\) 4.32690i 0.992658i −0.868135 0.496329i \(-0.834681\pi\)
0.868135 0.496329i \(-0.165319\pi\)
\(20\) 0 0
\(21\) −1.70974 4.25168i −0.373096 0.927793i
\(22\) 0 0
\(23\) 6.09548i 1.27100i −0.772103 0.635498i \(-0.780795\pi\)
0.772103 0.635498i \(-0.219205\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.65106 + 2.31681i −0.895097 + 0.445871i
\(28\) 0 0
\(29\) 0.867889i 0.161163i −0.996748 0.0805814i \(-0.974322\pi\)
0.996748 0.0805814i \(-0.0256777\pi\)
\(30\) 0 0
\(31\) 4.03607i 0.724899i −0.932003 0.362450i \(-0.881940\pi\)
0.932003 0.362450i \(-0.118060\pi\)
\(32\) 0 0
\(33\) 2.07034 1.66616i 0.360400 0.290042i
\(34\) 0 0
\(35\) 2.53123 + 0.769995i 0.427855 + 0.130153i
\(36\) 0 0
\(37\) 11.4253 1.87831 0.939155 0.343493i \(-0.111610\pi\)
0.939155 + 0.343493i \(0.111610\pi\)
\(38\) 0 0
\(39\) 1.47233 1.18490i 0.235761 0.189736i
\(40\) 0 0
\(41\) 2.70250 0.422060 0.211030 0.977480i \(-0.432318\pi\)
0.211030 + 0.977480i \(0.432318\pi\)
\(42\) 0 0
\(43\) 1.74571 0.266218 0.133109 0.991101i \(-0.457504\pi\)
0.133109 + 0.991101i \(0.457504\pi\)
\(44\) 0 0
\(45\) 0.641511 2.93061i 0.0956308 0.436869i
\(46\) 0 0
\(47\) −10.3471 −1.50928 −0.754639 0.656140i \(-0.772188\pi\)
−0.754639 + 0.656140i \(0.772188\pi\)
\(48\) 0 0
\(49\) 5.81421 + 3.89807i 0.830602 + 0.556867i
\(50\) 0 0
\(51\) −1.70909 2.12368i −0.239321 0.297375i
\(52\) 0 0
\(53\) 4.51290i 0.619895i −0.950754 0.309947i \(-0.899689\pi\)
0.950754 0.309947i \(-0.100311\pi\)
\(54\) 0 0
\(55\) 1.53432i 0.206888i
\(56\) 0 0
\(57\) 5.83851 4.69871i 0.773330 0.622359i
\(58\) 0 0
\(59\) −2.72120 −0.354270 −0.177135 0.984187i \(-0.556683\pi\)
−0.177135 + 0.984187i \(0.556683\pi\)
\(60\) 0 0
\(61\) 10.7041i 1.37052i −0.728298 0.685261i \(-0.759688\pi\)
0.728298 0.685261i \(-0.240312\pi\)
\(62\) 0 0
\(63\) 3.88036 6.92407i 0.488880 0.872351i
\(64\) 0 0
\(65\) 1.09114i 0.135339i
\(66\) 0 0
\(67\) −3.69294 −0.451165 −0.225582 0.974224i \(-0.572428\pi\)
−0.225582 + 0.974224i \(0.572428\pi\)
\(68\) 0 0
\(69\) 8.22496 6.61927i 0.990169 0.796866i
\(70\) 0 0
\(71\) 11.7996i 1.40036i −0.713967 0.700179i \(-0.753104\pi\)
0.713967 0.700179i \(-0.246896\pi\)
\(72\) 0 0
\(73\) 2.71268i 0.317495i 0.987319 + 0.158748i \(0.0507456\pi\)
−0.987319 + 0.158748i \(0.949254\pi\)
\(74\) 0 0
\(75\) 1.08593 + 1.34935i 0.125392 + 0.155810i
\(76\) 0 0
\(77\) −1.18142 + 3.88371i −0.134635 + 0.442590i
\(78\) 0 0
\(79\) 7.04200 0.792286 0.396143 0.918189i \(-0.370348\pi\)
0.396143 + 0.918189i \(0.370348\pi\)
\(80\) 0 0
\(81\) −8.17693 3.76003i −0.908548 0.417781i
\(82\) 0 0
\(83\) −6.68497 −0.733771 −0.366885 0.930266i \(-0.619576\pi\)
−0.366885 + 0.930266i \(0.619576\pi\)
\(84\) 0 0
\(85\) 1.57385 0.170708
\(86\) 0 0
\(87\) 1.17109 0.942467i 0.125554 0.101043i
\(88\) 0 0
\(89\) 4.13646 0.438464 0.219232 0.975673i \(-0.429645\pi\)
0.219232 + 0.975673i \(0.429645\pi\)
\(90\) 0 0
\(91\) −0.840170 + 2.76191i −0.0880738 + 0.289527i
\(92\) 0 0
\(93\) 5.44608 4.38289i 0.564733 0.454484i
\(94\) 0 0
\(95\) 4.32690i 0.443930i
\(96\) 0 0
\(97\) 16.9687i 1.72291i 0.507831 + 0.861457i \(0.330447\pi\)
−0.507831 + 0.861457i \(0.669553\pi\)
\(98\) 0 0
\(99\) 4.49649 + 0.984283i 0.451914 + 0.0989242i
\(100\) 0 0
\(101\) −19.4582 −1.93616 −0.968082 0.250633i \(-0.919361\pi\)
−0.968082 + 0.250633i \(0.919361\pi\)
\(102\) 0 0
\(103\) 13.0633i 1.28716i −0.765377 0.643582i \(-0.777448\pi\)
0.765377 0.643582i \(-0.222552\pi\)
\(104\) 0 0
\(105\) 1.70974 + 4.25168i 0.166853 + 0.414922i
\(106\) 0 0
\(107\) 0.409687i 0.0396059i −0.999804 0.0198030i \(-0.993696\pi\)
0.999804 0.0198030i \(-0.00630389\pi\)
\(108\) 0 0
\(109\) −13.3416 −1.27789 −0.638946 0.769251i \(-0.720629\pi\)
−0.638946 + 0.769251i \(0.720629\pi\)
\(110\) 0 0
\(111\) 12.4071 + 15.4168i 1.17763 + 1.46330i
\(112\) 0 0
\(113\) 9.57195i 0.900454i −0.892914 0.450227i \(-0.851343\pi\)
0.892914 0.450227i \(-0.148657\pi\)
\(114\) 0 0
\(115\) 6.09548i 0.568407i
\(116\) 0 0
\(117\) 3.19769 + 0.699976i 0.295627 + 0.0647128i
\(118\) 0 0
\(119\) 3.98377 + 1.21186i 0.365191 + 0.111091i
\(120\) 0 0
\(121\) 8.64586 0.785987
\(122\) 0 0
\(123\) 2.93473 + 3.64663i 0.264615 + 0.328805i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 8.66734 0.769102 0.384551 0.923104i \(-0.374356\pi\)
0.384551 + 0.923104i \(0.374356\pi\)
\(128\) 0 0
\(129\) 1.89572 + 2.35558i 0.166909 + 0.207397i
\(130\) 0 0
\(131\) 7.48846 0.654270 0.327135 0.944978i \(-0.393917\pi\)
0.327135 + 0.944978i \(0.393917\pi\)
\(132\) 0 0
\(133\) −3.33169 + 10.9524i −0.288894 + 0.949689i
\(134\) 0 0
\(135\) 4.65106 2.31681i 0.400300 0.199399i
\(136\) 0 0
\(137\) 11.2768i 0.963445i −0.876324 0.481722i \(-0.840011\pi\)
0.876324 0.481722i \(-0.159989\pi\)
\(138\) 0 0
\(139\) 5.95689i 0.505256i −0.967563 0.252628i \(-0.918705\pi\)
0.967563 0.252628i \(-0.0812950\pi\)
\(140\) 0 0
\(141\) −11.2362 13.9619i −0.946260 1.17580i
\(142\) 0 0
\(143\) −1.67415 −0.140000
\(144\) 0 0
\(145\) 0.867889i 0.0720742i
\(146\) 0 0
\(147\) 1.05396 + 12.0785i 0.0869293 + 0.996214i
\(148\) 0 0
\(149\) 4.90815i 0.402091i 0.979582 + 0.201046i \(0.0644340\pi\)
−0.979582 + 0.201046i \(0.935566\pi\)
\(150\) 0 0
\(151\) 17.9251 1.45872 0.729362 0.684128i \(-0.239817\pi\)
0.729362 + 0.684128i \(0.239817\pi\)
\(152\) 0 0
\(153\) 1.00964 4.61233i 0.0816246 0.372885i
\(154\) 0 0
\(155\) 4.03607i 0.324185i
\(156\) 0 0
\(157\) 11.9270i 0.951877i 0.879478 + 0.475939i \(0.157892\pi\)
−0.879478 + 0.475939i \(0.842108\pi\)
\(158\) 0 0
\(159\) 6.08950 4.90070i 0.482929 0.388651i
\(160\) 0 0
\(161\) −4.69349 + 15.4290i −0.369899 + 1.21598i
\(162\) 0 0
\(163\) −17.6018 −1.37868 −0.689340 0.724438i \(-0.742100\pi\)
−0.689340 + 0.724438i \(0.742100\pi\)
\(164\) 0 0
\(165\) −2.07034 + 1.66616i −0.161176 + 0.129711i
\(166\) 0 0
\(167\) −25.1048 −1.94266 −0.971332 0.237726i \(-0.923598\pi\)
−0.971332 + 0.237726i \(0.923598\pi\)
\(168\) 0 0
\(169\) 11.8094 0.908417
\(170\) 0 0
\(171\) 12.6804 + 2.77575i 0.969697 + 0.212267i
\(172\) 0 0
\(173\) −10.4879 −0.797381 −0.398690 0.917086i \(-0.630535\pi\)
−0.398690 + 0.917086i \(0.630535\pi\)
\(174\) 0 0
\(175\) −2.53123 0.769995i −0.191343 0.0582062i
\(176\) 0 0
\(177\) −2.95504 3.67187i −0.222114 0.275994i
\(178\) 0 0
\(179\) 21.6843i 1.62076i 0.585906 + 0.810379i \(0.300739\pi\)
−0.585906 + 0.810379i \(0.699261\pi\)
\(180\) 0 0
\(181\) 6.48943i 0.482356i 0.970481 + 0.241178i \(0.0775337\pi\)
−0.970481 + 0.241178i \(0.922466\pi\)
\(182\) 0 0
\(183\) 14.4436 11.6239i 1.06770 0.859265i
\(184\) 0 0
\(185\) −11.4253 −0.840006
\(186\) 0 0
\(187\) 2.41479i 0.176587i
\(188\) 0 0
\(189\) 13.5568 2.28308i 0.986114 0.166069i
\(190\) 0 0
\(191\) 3.28120i 0.237420i −0.992929 0.118710i \(-0.962124\pi\)
0.992929 0.118710i \(-0.0378758\pi\)
\(192\) 0 0
\(193\) −10.2288 −0.736284 −0.368142 0.929770i \(-0.620006\pi\)
−0.368142 + 0.929770i \(0.620006\pi\)
\(194\) 0 0
\(195\) −1.47233 + 1.18490i −0.105436 + 0.0848523i
\(196\) 0 0
\(197\) 0.906822i 0.0646084i −0.999478 0.0323042i \(-0.989715\pi\)
0.999478 0.0323042i \(-0.0102845\pi\)
\(198\) 0 0
\(199\) 21.1896i 1.50209i −0.660252 0.751044i \(-0.729550\pi\)
0.660252 0.751044i \(-0.270450\pi\)
\(200\) 0 0
\(201\) −4.01028 4.98308i −0.282863 0.351480i
\(202\) 0 0
\(203\) −0.668270 + 2.19682i −0.0469034 + 0.154187i
\(204\) 0 0
\(205\) −2.70250 −0.188751
\(206\) 0 0
\(207\) 17.8635 + 3.91032i 1.24160 + 0.271786i
\(208\) 0 0
\(209\) −6.63884 −0.459218
\(210\) 0 0
\(211\) 11.4616 0.789050 0.394525 0.918885i \(-0.370909\pi\)
0.394525 + 0.918885i \(0.370909\pi\)
\(212\) 0 0
\(213\) 15.9219 12.8136i 1.09095 0.877971i
\(214\) 0 0
\(215\) −1.74571 −0.119056
\(216\) 0 0
\(217\) −3.10775 + 10.2162i −0.210968 + 0.693521i
\(218\) 0 0
\(219\) −3.66036 + 2.94578i −0.247345 + 0.199057i
\(220\) 0 0
\(221\) 1.71728i 0.115517i
\(222\) 0 0
\(223\) 4.71035i 0.315429i 0.987485 + 0.157714i \(0.0504125\pi\)
−0.987485 + 0.157714i \(0.949587\pi\)
\(224\) 0 0
\(225\) −0.641511 + 2.93061i −0.0427674 + 0.195374i
\(226\) 0 0
\(227\) −6.90224 −0.458118 −0.229059 0.973413i \(-0.573565\pi\)
−0.229059 + 0.973413i \(0.573565\pi\)
\(228\) 0 0
\(229\) 11.8856i 0.785420i −0.919662 0.392710i \(-0.871538\pi\)
0.919662 0.392710i \(-0.128462\pi\)
\(230\) 0 0
\(231\) −6.52344 + 2.62329i −0.429211 + 0.172600i
\(232\) 0 0
\(233\) 15.8951i 1.04132i −0.853763 0.520662i \(-0.825685\pi\)
0.853763 0.520662i \(-0.174315\pi\)
\(234\) 0 0
\(235\) 10.3471 0.674970
\(236\) 0 0
\(237\) 7.64712 + 9.50214i 0.496734 + 0.617231i
\(238\) 0 0
\(239\) 0.613794i 0.0397031i −0.999803 0.0198515i \(-0.993681\pi\)
0.999803 0.0198515i \(-0.00631935\pi\)
\(240\) 0 0
\(241\) 15.4578i 0.995722i −0.867257 0.497861i \(-0.834119\pi\)
0.867257 0.497861i \(-0.165881\pi\)
\(242\) 0 0
\(243\) −3.80596 15.1167i −0.244152 0.969737i
\(244\) 0 0
\(245\) −5.81421 3.89807i −0.371457 0.249038i
\(246\) 0 0
\(247\) −4.72123 −0.300405
\(248\) 0 0
\(249\) −7.25941 9.02039i −0.460047 0.571644i
\(250\) 0 0
\(251\) 13.6257 0.860049 0.430025 0.902817i \(-0.358505\pi\)
0.430025 + 0.902817i \(0.358505\pi\)
\(252\) 0 0
\(253\) −9.35242 −0.587982
\(254\) 0 0
\(255\) 1.70909 + 2.12368i 0.107027 + 0.132990i
\(256\) 0 0
\(257\) 2.87557 0.179373 0.0896867 0.995970i \(-0.471413\pi\)
0.0896867 + 0.995970i \(0.471413\pi\)
\(258\) 0 0
\(259\) −28.9201 8.79744i −1.79701 0.546646i
\(260\) 0 0
\(261\) 2.54344 + 0.556760i 0.157435 + 0.0344626i
\(262\) 0 0
\(263\) 29.5720i 1.82349i 0.410756 + 0.911745i \(0.365265\pi\)
−0.410756 + 0.911745i \(0.634735\pi\)
\(264\) 0 0
\(265\) 4.51290i 0.277225i
\(266\) 0 0
\(267\) 4.49190 + 5.58154i 0.274900 + 0.341585i
\(268\) 0 0
\(269\) 15.5642 0.948967 0.474483 0.880264i \(-0.342635\pi\)
0.474483 + 0.880264i \(0.342635\pi\)
\(270\) 0 0
\(271\) 10.7575i 0.653470i 0.945116 + 0.326735i \(0.105949\pi\)
−0.945116 + 0.326735i \(0.894051\pi\)
\(272\) 0 0
\(273\) −4.63917 + 1.86556i −0.280775 + 0.112909i
\(274\) 0 0
\(275\) 1.53432i 0.0925230i
\(276\) 0 0
\(277\) −22.9044 −1.37619 −0.688095 0.725621i \(-0.741553\pi\)
−0.688095 + 0.725621i \(0.741553\pi\)
\(278\) 0 0
\(279\) 11.8281 + 2.58918i 0.708132 + 0.155010i
\(280\) 0 0
\(281\) 1.54489i 0.0921604i −0.998938 0.0460802i \(-0.985327\pi\)
0.998938 0.0460802i \(-0.0146730\pi\)
\(282\) 0 0
\(283\) 13.8395i 0.822672i 0.911484 + 0.411336i \(0.134938\pi\)
−0.911484 + 0.411336i \(0.865062\pi\)
\(284\) 0 0
\(285\) −5.83851 + 4.69871i −0.345844 + 0.278327i
\(286\) 0 0
\(287\) −6.84064 2.08091i −0.403790 0.122832i
\(288\) 0 0
\(289\) −14.5230 −0.854294
\(290\) 0 0
\(291\) −22.8968 + 18.4269i −1.34224 + 1.08020i
\(292\) 0 0
\(293\) −11.9219 −0.696483 −0.348241 0.937405i \(-0.613221\pi\)
−0.348241 + 0.937405i \(0.613221\pi\)
\(294\) 0 0
\(295\) 2.72120 0.158435
\(296\) 0 0
\(297\) 3.55473 + 7.13622i 0.206266 + 0.414086i
\(298\) 0 0
\(299\) −6.65100 −0.384638
\(300\) 0 0
\(301\) −4.41879 1.34419i −0.254695 0.0774777i
\(302\) 0 0
\(303\) −21.1303 26.2560i −1.21390 1.50837i
\(304\) 0 0
\(305\) 10.7041i 0.612916i
\(306\) 0 0
\(307\) 25.2763i 1.44259i −0.692626 0.721297i \(-0.743546\pi\)
0.692626 0.721297i \(-0.256454\pi\)
\(308\) 0 0
\(309\) 17.6270 14.1858i 1.00276 0.807003i
\(310\) 0 0
\(311\) −16.6410 −0.943623 −0.471811 0.881700i \(-0.656400\pi\)
−0.471811 + 0.881700i \(0.656400\pi\)
\(312\) 0 0
\(313\) 31.6334i 1.78802i −0.448042 0.894012i \(-0.647879\pi\)
0.448042 0.894012i \(-0.352121\pi\)
\(314\) 0 0
\(315\) −3.88036 + 6.92407i −0.218634 + 0.390127i
\(316\) 0 0
\(317\) 29.1888i 1.63941i 0.572787 + 0.819705i \(0.305862\pi\)
−0.572787 + 0.819705i \(0.694138\pi\)
\(318\) 0 0
\(319\) −1.33162 −0.0745564
\(320\) 0 0
\(321\) 0.552812 0.444891i 0.0308550 0.0248314i
\(322\) 0 0
\(323\) 6.80988i 0.378912i
\(324\) 0 0
\(325\) 1.09114i 0.0605254i
\(326\) 0 0
\(327\) −14.4880 18.0025i −0.801190 0.995542i
\(328\) 0 0
\(329\) 26.1908 + 7.96721i 1.44395 + 0.439247i
\(330\) 0 0
\(331\) −8.58488 −0.471868 −0.235934 0.971769i \(-0.575815\pi\)
−0.235934 + 0.971769i \(0.575815\pi\)
\(332\) 0 0
\(333\) −7.32946 + 33.4831i −0.401652 + 1.83486i
\(334\) 0 0
\(335\) 3.69294 0.201767
\(336\) 0 0
\(337\) −5.08040 −0.276747 −0.138373 0.990380i \(-0.544187\pi\)
−0.138373 + 0.990380i \(0.544187\pi\)
\(338\) 0 0
\(339\) 12.9160 10.3945i 0.701498 0.564550i
\(340\) 0 0
\(341\) −6.19262 −0.335349
\(342\) 0 0
\(343\) −11.7156 14.3438i −0.632583 0.774493i
\(344\) 0 0
\(345\) −8.22496 + 6.61927i −0.442817 + 0.356369i
\(346\) 0 0
\(347\) 20.3423i 1.09203i 0.837775 + 0.546016i \(0.183856\pi\)
−0.837775 + 0.546016i \(0.816144\pi\)
\(348\) 0 0
\(349\) 13.1780i 0.705401i −0.935736 0.352701i \(-0.885263\pi\)
0.935736 0.352701i \(-0.114737\pi\)
\(350\) 0 0
\(351\) 2.52796 + 5.07495i 0.134932 + 0.270881i
\(352\) 0 0
\(353\) 10.2645 0.546325 0.273163 0.961968i \(-0.411930\pi\)
0.273163 + 0.961968i \(0.411930\pi\)
\(354\) 0 0
\(355\) 11.7996i 0.626259i
\(356\) 0 0
\(357\) 2.69087 + 6.69150i 0.142416 + 0.354152i
\(358\) 0 0
\(359\) 30.5613i 1.61297i −0.591258 0.806483i \(-0.701368\pi\)
0.591258 0.806483i \(-0.298632\pi\)
\(360\) 0 0
\(361\) 0.277972 0.0146301
\(362\) 0 0
\(363\) 9.38880 + 11.6663i 0.492784 + 0.612323i
\(364\) 0 0
\(365\) 2.71268i 0.141988i
\(366\) 0 0
\(367\) 30.4092i 1.58735i 0.608345 + 0.793673i \(0.291834\pi\)
−0.608345 + 0.793673i \(0.708166\pi\)
\(368\) 0 0
\(369\) −1.73368 + 7.91997i −0.0902519 + 0.412297i
\(370\) 0 0
\(371\) −3.47491 + 11.4232i −0.180409 + 0.593062i
\(372\) 0 0
\(373\) 29.7881 1.54237 0.771184 0.636612i \(-0.219665\pi\)
0.771184 + 0.636612i \(0.219665\pi\)
\(374\) 0 0
\(375\) −1.08593 1.34935i −0.0560772 0.0696803i
\(376\) 0 0
\(377\) −0.946985 −0.0487722
\(378\) 0 0
\(379\) −26.8457 −1.37897 −0.689485 0.724300i \(-0.742163\pi\)
−0.689485 + 0.724300i \(0.742163\pi\)
\(380\) 0 0
\(381\) 9.41213 + 11.6953i 0.482198 + 0.599169i
\(382\) 0 0
\(383\) 28.1644 1.43913 0.719566 0.694424i \(-0.244341\pi\)
0.719566 + 0.694424i \(0.244341\pi\)
\(384\) 0 0
\(385\) 1.18142 3.88371i 0.0602107 0.197932i
\(386\) 0 0
\(387\) −1.11989 + 5.11599i −0.0569273 + 0.260060i
\(388\) 0 0
\(389\) 13.9816i 0.708893i 0.935076 + 0.354447i \(0.115331\pi\)
−0.935076 + 0.354447i \(0.884669\pi\)
\(390\) 0 0
\(391\) 9.59337i 0.485158i
\(392\) 0 0
\(393\) 8.13195 + 10.1046i 0.410203 + 0.509709i
\(394\) 0 0
\(395\) −7.04200 −0.354321
\(396\) 0 0
\(397\) 15.6830i 0.787108i 0.919302 + 0.393554i \(0.128755\pi\)
−0.919302 + 0.393554i \(0.871245\pi\)
\(398\) 0 0
\(399\) −18.3966 + 7.39786i −0.920981 + 0.370356i
\(400\) 0 0
\(401\) 39.1483i 1.95497i 0.210997 + 0.977487i \(0.432329\pi\)
−0.210997 + 0.977487i \(0.567671\pi\)
\(402\) 0 0
\(403\) −4.40390 −0.219374
\(404\) 0 0
\(405\) 8.17693 + 3.76003i 0.406315 + 0.186838i
\(406\) 0 0
\(407\) 17.5301i 0.868935i
\(408\) 0 0
\(409\) 12.4242i 0.614335i −0.951655 0.307167i \(-0.900619\pi\)
0.951655 0.307167i \(-0.0993812\pi\)
\(410\) 0 0
\(411\) 15.2164 12.2459i 0.750571 0.604043i
\(412\) 0 0
\(413\) 6.88798 + 2.09531i 0.338935 + 0.103104i
\(414\) 0 0
\(415\) 6.68497 0.328152
\(416\) 0 0
\(417\) 8.03795 6.46876i 0.393620 0.316777i
\(418\) 0 0
\(419\) 28.1376 1.37461 0.687305 0.726369i \(-0.258794\pi\)
0.687305 + 0.726369i \(0.258794\pi\)
\(420\) 0 0
\(421\) 9.59168 0.467470 0.233735 0.972300i \(-0.424905\pi\)
0.233735 + 0.972300i \(0.424905\pi\)
\(422\) 0 0
\(423\) 6.63777 30.3233i 0.322739 1.47437i
\(424\) 0 0
\(425\) −1.57385 −0.0763429
\(426\) 0 0
\(427\) −8.24212 + 27.0945i −0.398864 + 1.31120i
\(428\) 0 0
\(429\) −1.81801 2.25902i −0.0877745 0.109067i
\(430\) 0 0
\(431\) 20.1415i 0.970182i −0.874464 0.485091i \(-0.838786\pi\)
0.874464 0.485091i \(-0.161214\pi\)
\(432\) 0 0
\(433\) 15.9297i 0.765531i 0.923846 + 0.382766i \(0.125028\pi\)
−0.923846 + 0.382766i \(0.874972\pi\)
\(434\) 0 0
\(435\) −1.17109 + 0.942467i −0.0561494 + 0.0451878i
\(436\) 0 0
\(437\) −26.3745 −1.26166
\(438\) 0 0
\(439\) 28.3864i 1.35481i 0.735610 + 0.677405i \(0.236896\pi\)
−0.735610 + 0.677405i \(0.763104\pi\)
\(440\) 0 0
\(441\) −15.1536 + 14.5385i −0.721599 + 0.692311i
\(442\) 0 0
\(443\) 22.3721i 1.06293i 0.847080 + 0.531465i \(0.178358\pi\)
−0.847080 + 0.531465i \(0.821642\pi\)
\(444\) 0 0
\(445\) −4.13646 −0.196087
\(446\) 0 0
\(447\) −6.62283 + 5.32991i −0.313249 + 0.252096i
\(448\) 0 0
\(449\) 17.4948i 0.825629i −0.910815 0.412814i \(-0.864546\pi\)
0.910815 0.412814i \(-0.135454\pi\)
\(450\) 0 0
\(451\) 4.14650i 0.195251i
\(452\) 0 0
\(453\) 19.4654 + 24.1873i 0.914564 + 1.13642i
\(454\) 0 0
\(455\) 0.840170 2.76191i 0.0393878 0.129481i
\(456\) 0 0
\(457\) −1.26772 −0.0593014 −0.0296507 0.999560i \(-0.509439\pi\)
−0.0296507 + 0.999560i \(0.509439\pi\)
\(458\) 0 0
\(459\) 7.32007 3.64631i 0.341672 0.170195i
\(460\) 0 0
\(461\) −11.9339 −0.555815 −0.277908 0.960608i \(-0.589641\pi\)
−0.277908 + 0.960608i \(0.589641\pi\)
\(462\) 0 0
\(463\) 24.3173 1.13012 0.565060 0.825050i \(-0.308853\pi\)
0.565060 + 0.825050i \(0.308853\pi\)
\(464\) 0 0
\(465\) −5.44608 + 4.38289i −0.252556 + 0.203252i
\(466\) 0 0
\(467\) −8.72666 −0.403822 −0.201911 0.979404i \(-0.564715\pi\)
−0.201911 + 0.979404i \(0.564715\pi\)
\(468\) 0 0
\(469\) 9.34767 + 2.84355i 0.431635 + 0.131303i
\(470\) 0 0
\(471\) −16.0937 + 12.9519i −0.741560 + 0.596791i
\(472\) 0 0
\(473\) 2.67848i 0.123157i
\(474\) 0 0
\(475\) 4.32690i 0.198532i
\(476\) 0 0
\(477\) 13.2255 + 2.89508i 0.605556 + 0.132556i
\(478\) 0 0
\(479\) −31.8295 −1.45433 −0.727163 0.686464i \(-0.759162\pi\)
−0.727163 + 0.686464i \(0.759162\pi\)
\(480\) 0 0
\(481\) 12.4666i 0.568427i
\(482\) 0 0
\(483\) −25.9160 + 10.4217i −1.17922 + 0.474203i
\(484\) 0 0
\(485\) 16.9687i 0.770510i
\(486\) 0 0
\(487\) −17.0463 −0.772443 −0.386221 0.922406i \(-0.626220\pi\)
−0.386221 + 0.922406i \(0.626220\pi\)
\(488\) 0 0
\(489\) −19.1143 23.7511i −0.864381 1.07406i
\(490\) 0 0
\(491\) 22.2615i 1.00465i −0.864679 0.502324i \(-0.832478\pi\)
0.864679 0.502324i \(-0.167522\pi\)
\(492\) 0 0
\(493\) 1.36593i 0.0615182i
\(494\) 0 0
\(495\) −4.49649 0.984283i −0.202102 0.0442402i
\(496\) 0 0
\(497\) −9.08566 + 29.8675i −0.407547 + 1.33974i
\(498\) 0 0
\(499\) 16.4554 0.736647 0.368323 0.929698i \(-0.379932\pi\)
0.368323 + 0.929698i \(0.379932\pi\)
\(500\) 0 0
\(501\) −27.2620 33.8752i −1.21798 1.51343i
\(502\) 0 0
\(503\) 29.3172 1.30719 0.653596 0.756844i \(-0.273260\pi\)
0.653596 + 0.756844i \(0.273260\pi\)
\(504\) 0 0
\(505\) 19.4582 0.865879
\(506\) 0 0
\(507\) 12.8242 + 15.9351i 0.569543 + 0.707702i
\(508\) 0 0
\(509\) −8.22719 −0.364664 −0.182332 0.983237i \(-0.558365\pi\)
−0.182332 + 0.983237i \(0.558365\pi\)
\(510\) 0 0
\(511\) 2.08875 6.86641i 0.0924009 0.303752i
\(512\) 0 0
\(513\) 10.0246 + 20.1247i 0.442597 + 0.888526i
\(514\) 0 0
\(515\) 13.0633i 0.575637i
\(516\) 0 0
\(517\) 15.8757i 0.698215i
\(518\) 0 0
\(519\) −11.3891 14.1519i −0.499928 0.621199i
\(520\) 0 0
\(521\) 25.3656 1.11129 0.555643 0.831421i \(-0.312472\pi\)
0.555643 + 0.831421i \(0.312472\pi\)
\(522\) 0 0
\(523\) 20.6469i 0.902826i 0.892315 + 0.451413i \(0.149080\pi\)
−0.892315 + 0.451413i \(0.850920\pi\)
\(524\) 0 0
\(525\) −1.70974 4.25168i −0.0746191 0.185559i
\(526\) 0 0
\(527\) 6.35216i 0.276705i
\(528\) 0 0
\(529\) −14.1549 −0.615431
\(530\) 0 0
\(531\) 1.74568 7.97478i 0.0757561 0.346076i
\(532\) 0 0
\(533\) 2.94880i 0.127727i
\(534\) 0 0
\(535\) 0.409687i 0.0177123i
\(536\) 0 0
\(537\) −29.2597 + 23.5476i −1.26265 + 1.01615i
\(538\) 0 0
\(539\) 5.98088 8.92087i 0.257615 0.384249i
\(540\) 0 0
\(541\) 33.4184 1.43677 0.718385 0.695646i \(-0.244882\pi\)
0.718385 + 0.695646i \(0.244882\pi\)
\(542\) 0 0
\(543\) −8.75654 + 7.04707i −0.375779 + 0.302419i
\(544\) 0 0
\(545\) 13.3416 0.571491
\(546\) 0 0
\(547\) 10.9289 0.467286 0.233643 0.972322i \(-0.424935\pi\)
0.233643 + 0.972322i \(0.424935\pi\)
\(548\) 0 0
\(549\) 31.3696 + 6.86680i 1.33882 + 0.293068i
\(550\) 0 0
\(551\) −3.75526 −0.159980
\(552\) 0 0
\(553\) −17.8249 5.42231i −0.757991 0.230580i
\(554\) 0 0
\(555\) −12.4071 15.4168i −0.526652 0.654406i
\(556\) 0 0
\(557\) 30.9445i 1.31116i 0.755125 + 0.655580i \(0.227576\pi\)
−0.755125 + 0.655580i \(0.772424\pi\)
\(558\) 0 0
\(559\) 1.90481i 0.0805648i
\(560\) 0 0
\(561\) −3.25840 + 2.62229i −0.137570 + 0.110713i
\(562\) 0 0
\(563\) −6.97402 −0.293920 −0.146960 0.989142i \(-0.546949\pi\)
−0.146960 + 0.989142i \(0.546949\pi\)
\(564\) 0 0
\(565\) 9.57195i 0.402695i
\(566\) 0 0
\(567\) 17.8024 + 15.8137i 0.747633 + 0.664113i
\(568\) 0 0
\(569\) 10.7199i 0.449400i −0.974428 0.224700i \(-0.927860\pi\)
0.974428 0.224700i \(-0.0721401\pi\)
\(570\) 0 0
\(571\) −8.89387 −0.372197 −0.186099 0.982531i \(-0.559584\pi\)
−0.186099 + 0.982531i \(0.559584\pi\)
\(572\) 0 0
\(573\) 4.42751 3.56316i 0.184962 0.148853i
\(574\) 0 0
\(575\) 6.09548i 0.254199i
\(576\) 0 0
\(577\) 24.7135i 1.02884i −0.857540 0.514418i \(-0.828008\pi\)
0.857540 0.514418i \(-0.171992\pi\)
\(578\) 0 0
\(579\) −11.1077 13.8023i −0.461622 0.573602i
\(580\) 0 0
\(581\) 16.9212 + 5.14740i 0.702009 + 0.213550i
\(582\) 0 0
\(583\) −6.92424 −0.286773
\(584\) 0 0
\(585\) −3.19769 0.699976i −0.132208 0.0289404i
\(586\) 0 0
\(587\) −40.9528 −1.69030 −0.845151 0.534528i \(-0.820489\pi\)
−0.845151 + 0.534528i \(0.820489\pi\)
\(588\) 0 0
\(589\) −17.4636 −0.719577
\(590\) 0 0
\(591\) 1.22362 0.984745i 0.0503331 0.0405070i
\(592\) 0 0
\(593\) 34.9172 1.43388 0.716938 0.697137i \(-0.245543\pi\)
0.716938 + 0.697137i \(0.245543\pi\)
\(594\) 0 0
\(595\) −3.98377 1.21186i −0.163319 0.0496813i
\(596\) 0 0
\(597\) 28.5922 23.0104i 1.17020 0.941753i
\(598\) 0 0
\(599\) 16.5174i 0.674882i −0.941347 0.337441i \(-0.890439\pi\)
0.941347 0.337441i \(-0.109561\pi\)
\(600\) 0 0
\(601\) 9.90367i 0.403979i −0.979388 0.201990i \(-0.935259\pi\)
0.979388 0.201990i \(-0.0647407\pi\)
\(602\) 0 0
\(603\) 2.36906 10.8226i 0.0964756 0.440729i
\(604\) 0 0
\(605\) −8.64586 −0.351504
\(606\) 0 0
\(607\) 46.2519i 1.87731i 0.344863 + 0.938653i \(0.387925\pi\)
−0.344863 + 0.938653i \(0.612075\pi\)
\(608\) 0 0
\(609\) −3.68999 + 1.48386i −0.149526 + 0.0601292i
\(610\) 0 0
\(611\) 11.2901i 0.456748i
\(612\) 0 0
\(613\) 1.96567 0.0793927 0.0396963 0.999212i \(-0.487361\pi\)
0.0396963 + 0.999212i \(0.487361\pi\)
\(614\) 0 0
\(615\) −2.93473 3.64663i −0.118340 0.147046i
\(616\) 0 0
\(617\) 36.6378i 1.47498i −0.675356 0.737492i \(-0.736010\pi\)
0.675356 0.737492i \(-0.263990\pi\)
\(618\) 0 0
\(619\) 22.1198i 0.889071i 0.895761 + 0.444536i \(0.146631\pi\)
−0.895761 + 0.444536i \(0.853369\pi\)
\(620\) 0 0
\(621\) 14.1221 + 28.3505i 0.566700 + 1.13767i
\(622\) 0 0
\(623\) −10.4703 3.18505i −0.419484 0.127606i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −7.20932 8.95815i −0.287913 0.357754i
\(628\) 0 0
\(629\) −17.9817 −0.716978
\(630\) 0 0
\(631\) 23.5970 0.939383 0.469692 0.882830i \(-0.344365\pi\)
0.469692 + 0.882830i \(0.344365\pi\)
\(632\) 0 0
\(633\) 12.4465 + 15.4658i 0.494704 + 0.614709i
\(634\) 0 0
\(635\) −8.66734 −0.343953
\(636\) 0 0
\(637\) 4.25332 6.34410i 0.168523 0.251362i
\(638\) 0 0
\(639\) 34.5801 + 7.56959i 1.36797 + 0.299448i
\(640\) 0 0
\(641\) 5.22645i 0.206432i 0.994659 + 0.103216i \(0.0329133\pi\)
−0.994659 + 0.103216i \(0.967087\pi\)
\(642\) 0 0
\(643\) 2.94341i 0.116077i 0.998314 + 0.0580384i \(0.0184846\pi\)
−0.998314 + 0.0580384i \(0.981515\pi\)
\(644\) 0 0
\(645\) −1.89572 2.35558i −0.0746439 0.0927509i
\(646\) 0 0
\(647\) 19.4203 0.763492 0.381746 0.924267i \(-0.375323\pi\)
0.381746 + 0.924267i \(0.375323\pi\)
\(648\) 0 0
\(649\) 4.17520i 0.163891i
\(650\) 0 0
\(651\) −17.1601 + 6.90062i −0.672556 + 0.270457i
\(652\) 0 0
\(653\) 33.2213i 1.30005i −0.759913 0.650025i \(-0.774758\pi\)
0.759913 0.650025i \(-0.225242\pi\)
\(654\) 0 0
\(655\) −7.48846 −0.292599
\(656\) 0 0
\(657\) −7.94980 1.74021i −0.310151 0.0678922i
\(658\) 0 0
\(659\) 13.4515i 0.523995i −0.965069 0.261998i \(-0.915619\pi\)
0.965069 0.261998i \(-0.0843812\pi\)
\(660\) 0 0
\(661\) 22.8185i 0.887536i −0.896142 0.443768i \(-0.853641\pi\)
0.896142 0.443768i \(-0.146359\pi\)
\(662\) 0 0
\(663\) −2.31722 + 1.86485i −0.0899935 + 0.0724248i
\(664\) 0 0
\(665\) 3.33169 10.9524i 0.129197 0.424714i
\(666\) 0 0
\(667\) −5.29020 −0.204837
\(668\) 0 0
\(669\) −6.35593 + 5.11512i −0.245735 + 0.197762i
\(670\) 0 0
\(671\) −16.4235 −0.634024
\(672\) 0 0
\(673\) −11.1495 −0.429783 −0.214892 0.976638i \(-0.568940\pi\)
−0.214892 + 0.976638i \(0.568940\pi\)
\(674\) 0 0
\(675\) −4.65106 + 2.31681i −0.179019 + 0.0891741i
\(676\) 0 0
\(677\) 1.38580 0.0532605 0.0266302 0.999645i \(-0.491522\pi\)
0.0266302 + 0.999645i \(0.491522\pi\)
\(678\) 0 0
\(679\) 13.0658 42.9517i 0.501421 1.64833i
\(680\) 0 0
\(681\) −7.49535 9.31357i −0.287223 0.356897i
\(682\) 0 0
\(683\) 50.1211i 1.91783i 0.283695 + 0.958914i \(0.408440\pi\)
−0.283695 + 0.958914i \(0.591560\pi\)
\(684\) 0 0
\(685\) 11.2768i 0.430866i
\(686\) 0 0
\(687\) 16.0378 12.9069i 0.611882 0.492429i
\(688\) 0 0
\(689\) −4.92419 −0.187597
\(690\) 0 0
\(691\) 14.9423i 0.568431i −0.958760 0.284216i \(-0.908267\pi\)
0.958760 0.284216i \(-0.0917332\pi\)
\(692\) 0 0
\(693\) −10.6237 5.95372i −0.403563 0.226163i
\(694\) 0 0
\(695\) 5.95689i 0.225958i
\(696\) 0 0
\(697\) −4.25333 −0.161106
\(698\) 0 0
\(699\) 21.4481 17.2610i 0.811243 0.652871i
\(700\) 0 0
\(701\) 4.15524i 0.156941i −0.996916 0.0784706i \(-0.974996\pi\)
0.996916 0.0784706i \(-0.0250037\pi\)
\(702\) 0 0
\(703\) 49.4362i 1.86452i
\(704\) 0 0
\(705\) 11.2362 + 13.9619i 0.423180 + 0.525835i
\(706\) 0 0
\(707\) 49.2531 + 14.9827i 1.85235 + 0.563484i
\(708\) 0 0
\(709\) −25.6215 −0.962236 −0.481118 0.876656i \(-0.659769\pi\)
−0.481118 + 0.876656i \(0.659769\pi\)
\(710\) 0 0
\(711\) −4.51752 + 20.6373i −0.169420 + 0.773960i
\(712\) 0 0
\(713\) −24.6018 −0.921344
\(714\) 0 0
\(715\) 1.67415 0.0626098
\(716\) 0 0
\(717\) 0.828226 0.666538i 0.0309307 0.0248923i
\(718\) 0 0
\(719\) 26.9307 1.00435 0.502173 0.864767i \(-0.332534\pi\)
0.502173 + 0.864767i \(0.332534\pi\)
\(720\) 0 0
\(721\) −10.0587 + 33.0661i −0.374604 + 1.23145i
\(722\) 0 0
\(723\) 20.8580 16.7861i 0.775717 0.624280i
\(724\) 0 0
\(725\) 0.867889i 0.0322326i
\(726\) 0 0
\(727\) 19.1560i 0.710457i 0.934779 + 0.355229i \(0.115597\pi\)
−0.934779 + 0.355229i \(0.884403\pi\)
\(728\) 0 0
\(729\) 16.2648 21.5513i 0.602399 0.798195i
\(730\) 0 0
\(731\) −2.74748 −0.101619
\(732\) 0 0
\(733\) 48.7421i 1.80033i −0.435550 0.900165i \(-0.643446\pi\)
0.435550 0.900165i \(-0.356554\pi\)
\(734\) 0 0
\(735\) −1.05396 12.0785i −0.0388760 0.445521i
\(736\) 0 0
\(737\) 5.66615i 0.208715i
\(738\) 0 0
\(739\) 11.8269 0.435058 0.217529 0.976054i \(-0.430200\pi\)
0.217529 + 0.976054i \(0.430200\pi\)
\(740\) 0 0
\(741\) −5.12693 6.37062i −0.188343 0.234030i
\(742\) 0 0
\(743\) 5.29633i 0.194303i 0.995270 + 0.0971517i \(0.0309732\pi\)
−0.995270 + 0.0971517i \(0.969027\pi\)
\(744\) 0 0
\(745\) 4.90815i 0.179821i
\(746\) 0 0
\(747\) 4.28848 19.5910i 0.156907 0.716798i
\(748\) 0 0
\(749\) −0.315457 + 1.03701i −0.0115265 + 0.0378915i
\(750\) 0 0
\(751\) 37.4873 1.36793 0.683966 0.729514i \(-0.260254\pi\)
0.683966 + 0.729514i \(0.260254\pi\)
\(752\) 0 0
\(753\) 14.7966 + 18.3860i 0.539218 + 0.670021i
\(754\) 0 0
\(755\) −17.9251 −0.652361
\(756\) 0 0
\(757\) 16.5354 0.600990 0.300495 0.953783i \(-0.402848\pi\)
0.300495 + 0.953783i \(0.402848\pi\)
\(758\) 0 0
\(759\) −10.1561 12.6197i −0.368642 0.458067i
\(760\) 0 0
\(761\) 40.4921 1.46784 0.733918 0.679238i \(-0.237690\pi\)
0.733918 + 0.679238i \(0.237690\pi\)
\(762\) 0 0
\(763\) 33.7706 + 10.2730i 1.22258 + 0.371906i
\(764\) 0 0
\(765\) −1.00964 + 4.61233i −0.0365037 + 0.166759i
\(766\) 0 0
\(767\) 2.96920i 0.107212i
\(768\) 0 0
\(769\) 40.8507i 1.47311i −0.676376 0.736556i \(-0.736451\pi\)
0.676376 0.736556i \(-0.263549\pi\)
\(770\) 0 0
\(771\) 3.12267 + 3.88017i 0.112460 + 0.139741i
\(772\) 0 0
\(773\) −41.5333 −1.49385 −0.746924 0.664909i \(-0.768470\pi\)
−0.746924 + 0.664909i \(0.768470\pi\)
\(774\) 0 0
\(775\) 4.03607i 0.144980i
\(776\) 0 0
\(777\) −19.5343 48.5768i −0.700790 1.74268i
\(778\) 0 0
\(779\) 11.6934i 0.418961i
\(780\) 0 0
\(781\) −18.1044 −0.647826
\(782\) 0 0
\(783\) 2.01073 + 4.03661i 0.0718578 + 0.144257i
\(784\) 0 0
\(785\) 11.9270i 0.425692i
\(786\) 0 0
\(787\) 18.9154i 0.674263i 0.941458 + 0.337131i \(0.109457\pi\)
−0.941458 + 0.337131i \(0.890543\pi\)
\(788\) 0 0
\(789\) −39.9032 + 32.1132i −1.42059 + 1.14326i
\(790\) 0 0
\(791\) −7.37036 + 24.2288i −0.262060 + 0.861476i
\(792\) 0 0
\(793\) −11.6797 −0.414757
\(794\) 0 0
\(795\) −6.08950 + 4.90070i −0.215972 + 0.173810i
\(796\) 0 0
\(797\) 15.3516 0.543780 0.271890 0.962328i \(-0.412351\pi\)
0.271890 + 0.962328i \(0.412351\pi\)
\(798\) 0 0
\(799\) 16.2848 0.576113
\(800\) 0 0
\(801\) −2.65358 + 12.1223i −0.0937597 + 0.428322i
\(802\) 0 0
\(803\) 4.16212 0.146878
\(804\) 0 0
\(805\) 4.69349 15.4290i 0.165424 0.543802i
\(806\) 0 0
\(807\) 16.9017 + 21.0016i 0.594966 + 0.739292i
\(808\) 0 0
\(809\) 41.6642i 1.46483i −0.680856 0.732417i \(-0.738392\pi\)
0.680856 0.732417i \(-0.261608\pi\)
\(810\) 0 0
\(811\) 54.4198i 1.91094i −0.295091 0.955469i \(-0.595350\pi\)
0.295091 0.955469i \(-0.404650\pi\)
\(812\) 0 0
\(813\) −14.5156 + 11.6819i −0.509086 + 0.409701i
\(814\) 0 0
\(815\) 17.6018 0.616565
\(816\) 0 0
\(817\) 7.55350i 0.264264i
\(818\) 0 0
\(819\) −7.55511 4.23401i −0.263997 0.147948i
\(820\) 0 0
\(821\) 44.8506i 1.56530i −0.622463 0.782649i \(-0.713868\pi\)
0.622463 0.782649i \(-0.286132\pi\)
\(822\) 0 0
\(823\) 11.2429 0.391904 0.195952 0.980614i \(-0.437220\pi\)
0.195952 + 0.980614i \(0.437220\pi\)
\(824\) 0 0
\(825\) 2.07034 1.66616i 0.0720800 0.0580084i
\(826\) 0 0
\(827\) 20.1971i 0.702322i −0.936315 0.351161i \(-0.885787\pi\)
0.936315 0.351161i \(-0.114213\pi\)
\(828\) 0 0
\(829\) 38.1151i 1.32379i 0.749596 + 0.661895i \(0.230248\pi\)
−0.749596 + 0.661895i \(0.769752\pi\)
\(830\) 0 0
\(831\) −24.8725 30.9061i −0.862819 1.07212i
\(832\) 0 0
\(833\) −9.15070 6.13497i −0.317053 0.212564i
\(834\) 0 0
\(835\) 25.1048 0.868786
\(836\) 0 0
\(837\) 9.35081 + 18.7720i 0.323211 + 0.648855i
\(838\) 0 0
\(839\) 26.9797 0.931444 0.465722 0.884931i \(-0.345795\pi\)
0.465722 + 0.884931i \(0.345795\pi\)
\(840\) 0 0
\(841\) 28.2468 0.974027
\(842\) 0 0
\(843\) 2.08460 1.67764i 0.0717975 0.0577811i
\(844\) 0 0
\(845\) −11.8094 −0.406256
\(846\) 0 0
\(847\) −21.8846 6.65727i −0.751965 0.228747i
\(848\) 0 0
\(849\) −18.6744 + 15.0287i −0.640902 + 0.515784i
\(850\) 0 0
\(851\) 69.6428i 2.38733i
\(852\) 0 0
\(853\) 17.5403i 0.600570i −0.953850 0.300285i \(-0.902918\pi\)
0.953850 0.300285i \(-0.0970817\pi\)
\(854\) 0 0
\(855\) −12.6804 2.77575i −0.433662 0.0949287i
\(856\) 0 0
\(857\) −37.3123 −1.27456 −0.637282 0.770631i \(-0.719941\pi\)
−0.637282 + 0.770631i \(0.719941\pi\)
\(858\) 0 0
\(859\) 49.6194i 1.69299i 0.532394 + 0.846497i \(0.321292\pi\)
−0.532394 + 0.846497i \(0.678708\pi\)
\(860\) 0 0
\(861\) −4.62057 11.4902i −0.157469 0.391584i
\(862\) 0 0
\(863\) 26.1184i 0.889080i −0.895759 0.444540i \(-0.853367\pi\)
0.895759 0.444540i \(-0.146633\pi\)
\(864\) 0 0
\(865\) 10.4879 0.356600
\(866\) 0 0
\(867\) −15.7710 19.5967i −0.535610 0.665538i
\(868\) 0 0
\(869\) 10.8047i 0.366524i
\(870\) 0 0
\(871\) 4.02950i 0.136535i
\(872\) 0 0
\(873\) −49.7287 10.8856i −1.68306 0.368422i
\(874\) 0 0
\(875\) 2.53123 + 0.769995i 0.0855711 + 0.0260306i
\(876\) 0 0
\(877\) −27.5345 −0.929773 −0.464887 0.885370i \(-0.653905\pi\)
−0.464887 + 0.885370i \(0.653905\pi\)
\(878\) 0 0
\(879\) −12.9463 16.0868i −0.436668 0.542595i
\(880\) 0 0
\(881\) 35.4312 1.19371 0.596854 0.802350i \(-0.296417\pi\)
0.596854 + 0.802350i \(0.296417\pi\)
\(882\) 0 0
\(883\) 12.2636 0.412703 0.206351 0.978478i \(-0.433841\pi\)
0.206351 + 0.978478i \(0.433841\pi\)
\(884\) 0 0
\(885\) 2.95504 + 3.67187i 0.0993325 + 0.123428i
\(886\) 0 0
\(887\) 37.8263 1.27008 0.635041 0.772478i \(-0.280983\pi\)
0.635041 + 0.772478i \(0.280983\pi\)
\(888\) 0 0
\(889\) −21.9390 6.67381i −0.735811 0.223833i
\(890\) 0 0
\(891\) −5.76910 + 12.5460i −0.193272 + 0.420308i
\(892\) 0 0
\(893\) 44.7708i 1.49820i
\(894\) 0 0
\(895\) 21.6843i 0.724825i
\(896\) 0 0
\(897\) −7.22253 8.97456i −0.241153 0.299652i
\(898\) 0 0
\(899\) −3.50286 −0.116827
\(900\) 0 0
\(901\) 7.10263i 0.236623i
\(902\) 0 0
\(903\) −2.98471 7.42220i −0.0993249 0.246995i
\(904\) 0 0
\(905\) 6.48943i 0.215716i
\(906\) 0 0
\(907\) −9.93839 −0.329999 −0.164999 0.986294i \(-0.552762\pi\)
−0.164999 + 0.986294i \(0.552762\pi\)
\(908\) 0 0
\(909\) 12.4827 57.0244i 0.414023 1.89138i
\(910\) 0 0
\(911\) 5.48580i 0.181753i −0.995862 0.0908764i \(-0.971033\pi\)
0.995862 0.0908764i \(-0.0289668\pi\)
\(912\) 0 0
\(913\) 10.2569i 0.339453i
\(914\) 0 0
\(915\) −14.4436 + 11.6239i −0.477492 + 0.384275i
\(916\) 0 0
\(917\) −18.9550 5.76608i −0.625949 0.190413i
\(918\) 0 0
\(919\) −19.4292 −0.640911 −0.320456 0.947264i \(-0.603836\pi\)
−0.320456 + 0.947264i \(0.603836\pi\)
\(920\) 0 0
\(921\) 34.1066 27.4483i 1.12385 0.904452i
\(922\) 0 0
\(923\) −12.8750 −0.423786
\(924\) 0 0
\(925\) 11.4253 0.375662
\(926\) 0 0
\(927\) 38.2834 + 8.38024i 1.25739 + 0.275243i
\(928\) 0 0
\(929\) −11.3268 −0.371622 −0.185811 0.982586i \(-0.559491\pi\)
−0.185811 + 0.982586i \(0.559491\pi\)
\(930\) 0 0
\(931\) 16.8665 25.1575i 0.552778 0.824504i
\(932\) 0 0
\(933\) −18.0709 22.4545i −0.591616 0.735129i
\(934\) 0 0
\(935\) 2.41479i 0.0789720i
\(936\) 0 0
\(937\) 49.6626i 1.62241i 0.584764 + 0.811203i \(0.301187\pi\)
−0.584764 + 0.811203i \(0.698813\pi\)
\(938\) 0 0
\(939\) 42.6846 34.3517i 1.39296 1.12102i
\(940\) 0 0
\(941\) 20.4749 0.667464 0.333732 0.942668i \(-0.391692\pi\)
0.333732 + 0.942668i \(0.391692\pi\)
\(942\) 0 0
\(943\) 16.4730i 0.536436i
\(944\) 0 0
\(945\) −13.5568 + 2.28308i −0.441004 + 0.0742685i
\(946\) 0 0
\(947\) 47.1306i 1.53154i −0.643115 0.765770i \(-0.722358\pi\)
0.643115 0.765770i \(-0.277642\pi\)
\(948\) 0 0
\(949\) 2.95990 0.0960826
\(950\) 0 0
\(951\) −39.3861 + 31.6971i −1.27718 + 1.02785i
\(952\) 0 0
\(953\) 28.3599i 0.918669i −0.888263 0.459334i \(-0.848088\pi\)
0.888263 0.459334i \(-0.151912\pi\)
\(954\) 0 0
\(955\) 3.28120i 0.106177i
\(956\) 0 0
\(957\) −1.44605 1.79683i −0.0467440 0.0580831i
\(958\) 0 0
\(959\) −8.68311 + 28.5442i −0.280392 + 0.921741i
\(960\) 0 0
\(961\) 14.7102 0.474521
\(962\) 0 0
\(963\) 1.20063 + 0.262818i 0.0386898 + 0.00846920i
\(964\) 0 0
\(965\) 10.2288 0.329276
\(966\) 0 0
\(967\) −21.0726 −0.677650 −0.338825 0.940849i \(-0.610029\pi\)
−0.338825 + 0.940849i \(0.610029\pi\)
\(968\) 0 0
\(969\) −9.18894 + 7.39506i −0.295191 + 0.237563i
\(970\) 0 0
\(971\) 10.0620 0.322905 0.161452 0.986880i \(-0.448382\pi\)
0.161452 + 0.986880i \(0.448382\pi\)
\(972\) 0 0
\(973\) −4.58678 + 15.0782i −0.147045 + 0.483386i
\(974\) 0 0
\(975\) 1.47233 1.18490i 0.0471523 0.0379471i
\(976\) 0 0
\(977\) 46.0967i 1.47476i −0.675476 0.737382i \(-0.736062\pi\)
0.675476 0.737382i \(-0.263938\pi\)
\(978\) 0 0
\(979\) 6.34665i 0.202840i
\(980\) 0 0
\(981\) 8.55877 39.0990i 0.273261 1.24833i
\(982\) 0 0
\(983\) 7.74364 0.246984 0.123492 0.992346i \(-0.460591\pi\)
0.123492 + 0.992346i \(0.460591\pi\)
\(984\) 0 0
\(985\) 0.906822i 0.0288937i
\(986\) 0 0
\(987\) 17.6908 + 43.9925i 0.563105 + 1.40030i
\(988\) 0 0
\(989\) 10.6409i 0.338362i
\(990\) 0 0
\(991\) −34.4156 −1.09325 −0.546624 0.837378i \(-0.684087\pi\)
−0.546624 + 0.837378i \(0.684087\pi\)
\(992\) 0 0
\(993\) −9.32259 11.5840i −0.295843 0.367609i
\(994\) 0 0
\(995\) 21.1896i 0.671754i
\(996\) 0 0
\(997\) 52.5355i 1.66382i −0.554913 0.831908i \(-0.687249\pi\)
0.554913 0.831908i \(-0.312751\pi\)
\(998\) 0 0
\(999\) −53.1399 + 26.4703i −1.68127 + 0.837483i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.f.k.881.12 16
3.2 odd 2 1680.2.f.l.881.6 16
4.3 odd 2 840.2.f.a.41.5 16
7.6 odd 2 1680.2.f.l.881.5 16
12.11 even 2 840.2.f.b.41.11 yes 16
21.20 even 2 inner 1680.2.f.k.881.11 16
28.27 even 2 840.2.f.b.41.12 yes 16
84.83 odd 2 840.2.f.a.41.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.f.a.41.5 16 4.3 odd 2
840.2.f.a.41.6 yes 16 84.83 odd 2
840.2.f.b.41.11 yes 16 12.11 even 2
840.2.f.b.41.12 yes 16 28.27 even 2
1680.2.f.k.881.11 16 21.20 even 2 inner
1680.2.f.k.881.12 16 1.1 even 1 trivial
1680.2.f.l.881.5 16 7.6 odd 2
1680.2.f.l.881.6 16 3.2 odd 2