Properties

Label 1680.2.dx.h.31.4
Level $1680$
Weight $2$
Character 1680.31
Analytic conductor $13.415$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(31,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.dx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,6,0,0,0,-2,0,-6,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 35 x^{10} - 120 x^{9} + 328 x^{8} - 658 x^{7} + 1045 x^{6} - 1270 x^{5} + 1183 x^{4} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.4
Root \(0.500000 + 0.280541i\) of defining polynomial
Character \(\chi\) \(=\) 1680.31
Dual form 1680.2.dx.h.271.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} +(0.866025 - 0.500000i) q^{5} +(-2.52722 + 0.783034i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-3.57422 - 2.06357i) q^{11} +6.61553i q^{13} -1.00000i q^{15} +(0.894746 + 0.516582i) q^{17} +(2.61021 + 4.52102i) q^{19} +(-0.585484 + 2.58016i) q^{21} +(2.85625 - 1.64906i) q^{23} +(0.500000 - 0.866025i) q^{25} -1.00000 q^{27} +2.30501 q^{29} +(-1.56951 + 2.71848i) q^{31} +(-3.57422 + 2.06357i) q^{33} +(-1.79712 + 1.94174i) q^{35} +(4.14373 + 7.17715i) q^{37} +(5.72922 + 3.30776i) q^{39} +7.90476i q^{41} -0.130144i q^{43} +(-0.866025 - 0.500000i) q^{45} +(5.85920 + 10.1484i) q^{47} +(5.77372 - 3.95780i) q^{49} +(0.894746 - 0.516582i) q^{51} +(0.829031 - 1.43592i) q^{53} -4.12715 q^{55} +5.22043 q^{57} +(2.28498 - 3.95771i) q^{59} +(8.22919 - 4.75113i) q^{61} +(1.94174 + 1.79712i) q^{63} +(3.30776 + 5.72922i) q^{65} +(-5.66625 - 3.27141i) q^{67} -3.29812i q^{69} -5.00499i q^{71} +(-0.175670 - 0.101423i) q^{73} +(-0.500000 - 0.866025i) q^{75} +(10.6487 + 2.41638i) q^{77} +(-7.06366 + 4.07821i) q^{79} +(-0.500000 + 0.866025i) q^{81} -10.0544 q^{83} +1.03316 q^{85} +(1.15251 - 1.99620i) q^{87} +(-13.0711 + 7.54663i) q^{89} +(-5.18018 - 16.7189i) q^{91} +(1.56951 + 2.71848i) q^{93} +(4.52102 + 2.61021i) q^{95} +8.29245i q^{97} +4.12715i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} - 2 q^{7} - 6 q^{9} + 10 q^{19} - 4 q^{21} + 12 q^{23} + 6 q^{25} - 12 q^{27} + 8 q^{29} - 2 q^{31} - 4 q^{35} - 10 q^{37} + 6 q^{39} + 2 q^{49} + 16 q^{53} + 20 q^{57} + 24 q^{61} - 2 q^{63}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0 0
\(5\) 0.866025 0.500000i 0.387298 0.223607i
\(6\) 0 0
\(7\) −2.52722 + 0.783034i −0.955201 + 0.295959i
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −3.57422 2.06357i −1.07767 0.622191i −0.147401 0.989077i \(-0.547091\pi\)
−0.930266 + 0.366886i \(0.880424\pi\)
\(12\) 0 0
\(13\) 6.61553i 1.83482i 0.397946 + 0.917409i \(0.369723\pi\)
−0.397946 + 0.917409i \(0.630277\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 0.894746 + 0.516582i 0.217008 + 0.125289i 0.604564 0.796557i \(-0.293347\pi\)
−0.387556 + 0.921846i \(0.626681\pi\)
\(18\) 0 0
\(19\) 2.61021 + 4.52102i 0.598824 + 1.03719i 0.992995 + 0.118157i \(0.0376986\pi\)
−0.394171 + 0.919037i \(0.628968\pi\)
\(20\) 0 0
\(21\) −0.585484 + 2.58016i −0.127763 + 0.563036i
\(22\) 0 0
\(23\) 2.85625 1.64906i 0.595570 0.343853i −0.171727 0.985145i \(-0.554935\pi\)
0.767297 + 0.641292i \(0.221601\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 2.30501 0.428030 0.214015 0.976830i \(-0.431346\pi\)
0.214015 + 0.976830i \(0.431346\pi\)
\(30\) 0 0
\(31\) −1.56951 + 2.71848i −0.281893 + 0.488253i −0.971851 0.235596i \(-0.924296\pi\)
0.689958 + 0.723850i \(0.257629\pi\)
\(32\) 0 0
\(33\) −3.57422 + 2.06357i −0.622191 + 0.359222i
\(34\) 0 0
\(35\) −1.79712 + 1.94174i −0.303769 + 0.328214i
\(36\) 0 0
\(37\) 4.14373 + 7.17715i 0.681225 + 1.17992i 0.974607 + 0.223921i \(0.0718859\pi\)
−0.293382 + 0.955995i \(0.594781\pi\)
\(38\) 0 0
\(39\) 5.72922 + 3.30776i 0.917409 + 0.529666i
\(40\) 0 0
\(41\) 7.90476i 1.23452i 0.786761 + 0.617258i \(0.211757\pi\)
−0.786761 + 0.617258i \(0.788243\pi\)
\(42\) 0 0
\(43\) 0.130144i 0.0198467i −0.999951 0.00992337i \(-0.996841\pi\)
0.999951 0.00992337i \(-0.00315876\pi\)
\(44\) 0 0
\(45\) −0.866025 0.500000i −0.129099 0.0745356i
\(46\) 0 0
\(47\) 5.85920 + 10.1484i 0.854652 + 1.48030i 0.876967 + 0.480550i \(0.159563\pi\)
−0.0223151 + 0.999751i \(0.507104\pi\)
\(48\) 0 0
\(49\) 5.77372 3.95780i 0.824817 0.565400i
\(50\) 0 0
\(51\) 0.894746 0.516582i 0.125289 0.0723359i
\(52\) 0 0
\(53\) 0.829031 1.43592i 0.113876 0.197239i −0.803454 0.595367i \(-0.797007\pi\)
0.917330 + 0.398128i \(0.130340\pi\)
\(54\) 0 0
\(55\) −4.12715 −0.556505
\(56\) 0 0
\(57\) 5.22043 0.691463
\(58\) 0 0
\(59\) 2.28498 3.95771i 0.297480 0.515250i −0.678079 0.734989i \(-0.737187\pi\)
0.975559 + 0.219739i \(0.0705206\pi\)
\(60\) 0 0
\(61\) 8.22919 4.75113i 1.05364 0.608319i 0.129974 0.991517i \(-0.458511\pi\)
0.923666 + 0.383198i \(0.125177\pi\)
\(62\) 0 0
\(63\) 1.94174 + 1.79712i 0.244636 + 0.226416i
\(64\) 0 0
\(65\) 3.30776 + 5.72922i 0.410278 + 0.710622i
\(66\) 0 0
\(67\) −5.66625 3.27141i −0.692243 0.399667i 0.112209 0.993685i \(-0.464207\pi\)
−0.804452 + 0.594018i \(0.797541\pi\)
\(68\) 0 0
\(69\) 3.29812i 0.397047i
\(70\) 0 0
\(71\) 5.00499i 0.593983i −0.954880 0.296991i \(-0.904017\pi\)
0.954880 0.296991i \(-0.0959832\pi\)
\(72\) 0 0
\(73\) −0.175670 0.101423i −0.0205607 0.0118707i 0.489684 0.871900i \(-0.337112\pi\)
−0.510245 + 0.860029i \(0.670445\pi\)
\(74\) 0 0
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) 0 0
\(77\) 10.6487 + 2.41638i 1.21353 + 0.275372i
\(78\) 0 0
\(79\) −7.06366 + 4.07821i −0.794724 + 0.458834i −0.841623 0.540066i \(-0.818399\pi\)
0.0468990 + 0.998900i \(0.485066\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −10.0544 −1.10362 −0.551809 0.833970i \(-0.686062\pi\)
−0.551809 + 0.833970i \(0.686062\pi\)
\(84\) 0 0
\(85\) 1.03316 0.112062
\(86\) 0 0
\(87\) 1.15251 1.99620i 0.123562 0.214015i
\(88\) 0 0
\(89\) −13.0711 + 7.54663i −1.38554 + 0.799941i −0.992809 0.119713i \(-0.961802\pi\)
−0.392730 + 0.919654i \(0.628469\pi\)
\(90\) 0 0
\(91\) −5.18018 16.7189i −0.543031 1.75262i
\(92\) 0 0
\(93\) 1.56951 + 2.71848i 0.162751 + 0.281893i
\(94\) 0 0
\(95\) 4.52102 + 2.61021i 0.463847 + 0.267802i
\(96\) 0 0
\(97\) 8.29245i 0.841971i 0.907067 + 0.420985i \(0.138316\pi\)
−0.907067 + 0.420985i \(0.861684\pi\)
\(98\) 0 0
\(99\) 4.12715i 0.414794i
\(100\) 0 0
\(101\) −8.49886 4.90682i −0.845668 0.488247i 0.0135186 0.999909i \(-0.495697\pi\)
−0.859187 + 0.511662i \(0.829030\pi\)
\(102\) 0 0
\(103\) −2.77576 4.80775i −0.273503 0.473722i 0.696253 0.717796i \(-0.254849\pi\)
−0.969756 + 0.244075i \(0.921516\pi\)
\(104\) 0 0
\(105\) 0.783034 + 2.52722i 0.0764163 + 0.246632i
\(106\) 0 0
\(107\) 9.11853 5.26459i 0.881522 0.508947i 0.0103620 0.999946i \(-0.496702\pi\)
0.871160 + 0.490999i \(0.163368\pi\)
\(108\) 0 0
\(109\) −7.11565 + 12.3247i −0.681556 + 1.18049i 0.292950 + 0.956128i \(0.405363\pi\)
−0.974506 + 0.224362i \(0.927970\pi\)
\(110\) 0 0
\(111\) 8.28746 0.786611
\(112\) 0 0
\(113\) 8.62883 0.811732 0.405866 0.913933i \(-0.366970\pi\)
0.405866 + 0.913933i \(0.366970\pi\)
\(114\) 0 0
\(115\) 1.64906 2.85625i 0.153776 0.266347i
\(116\) 0 0
\(117\) 5.72922 3.30776i 0.529666 0.305803i
\(118\) 0 0
\(119\) −2.66572 0.604901i −0.244366 0.0554512i
\(120\) 0 0
\(121\) 3.01668 + 5.22505i 0.274244 + 0.475004i
\(122\) 0 0
\(123\) 6.84572 + 3.95238i 0.617258 + 0.356374i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 1.15780i 0.102738i −0.998680 0.0513692i \(-0.983641\pi\)
0.998680 0.0513692i \(-0.0163585\pi\)
\(128\) 0 0
\(129\) −0.112708 0.0650719i −0.00992337 0.00572926i
\(130\) 0 0
\(131\) 5.03017 + 8.71251i 0.439488 + 0.761215i 0.997650 0.0685165i \(-0.0218266\pi\)
−0.558162 + 0.829732i \(0.688493\pi\)
\(132\) 0 0
\(133\) −10.1367 9.38175i −0.878964 0.813501i
\(134\) 0 0
\(135\) −0.866025 + 0.500000i −0.0745356 + 0.0430331i
\(136\) 0 0
\(137\) −4.58298 + 7.93795i −0.391550 + 0.678185i −0.992654 0.120986i \(-0.961394\pi\)
0.601104 + 0.799171i \(0.294728\pi\)
\(138\) 0 0
\(139\) −0.0166158 −0.00140933 −0.000704667 1.00000i \(-0.500224\pi\)
−0.000704667 1.00000i \(0.500224\pi\)
\(140\) 0 0
\(141\) 11.7184 0.986867
\(142\) 0 0
\(143\) 13.6516 23.6453i 1.14161 1.97732i
\(144\) 0 0
\(145\) 1.99620 1.15251i 0.165775 0.0957105i
\(146\) 0 0
\(147\) −0.540700 6.97909i −0.0445962 0.575625i
\(148\) 0 0
\(149\) 3.80974 + 6.59866i 0.312106 + 0.540583i 0.978818 0.204732i \(-0.0656322\pi\)
−0.666712 + 0.745315i \(0.732299\pi\)
\(150\) 0 0
\(151\) −5.01873 2.89757i −0.408419 0.235801i 0.281691 0.959505i \(-0.409105\pi\)
−0.690110 + 0.723704i \(0.742438\pi\)
\(152\) 0 0
\(153\) 1.03316i 0.0835263i
\(154\) 0 0
\(155\) 3.13903i 0.252133i
\(156\) 0 0
\(157\) 17.8758 + 10.3206i 1.42665 + 0.823676i 0.996855 0.0792516i \(-0.0252530\pi\)
0.429793 + 0.902927i \(0.358586\pi\)
\(158\) 0 0
\(159\) −0.829031 1.43592i −0.0657464 0.113876i
\(160\) 0 0
\(161\) −5.92712 + 6.40409i −0.467123 + 0.504713i
\(162\) 0 0
\(163\) −20.4148 + 11.7865i −1.59901 + 0.923190i −0.607334 + 0.794447i \(0.707761\pi\)
−0.991678 + 0.128743i \(0.958906\pi\)
\(164\) 0 0
\(165\) −2.06357 + 3.57422i −0.160649 + 0.278252i
\(166\) 0 0
\(167\) 19.3518 1.49749 0.748745 0.662858i \(-0.230657\pi\)
0.748745 + 0.662858i \(0.230657\pi\)
\(168\) 0 0
\(169\) −30.7652 −2.36656
\(170\) 0 0
\(171\) 2.61021 4.52102i 0.199608 0.345731i
\(172\) 0 0
\(173\) 13.4292 7.75333i 1.02100 0.589475i 0.106607 0.994301i \(-0.466001\pi\)
0.914394 + 0.404826i \(0.132668\pi\)
\(174\) 0 0
\(175\) −0.585484 + 2.58016i −0.0442585 + 0.195042i
\(176\) 0 0
\(177\) −2.28498 3.95771i −0.171750 0.297480i
\(178\) 0 0
\(179\) 4.91542 + 2.83792i 0.367396 + 0.212116i 0.672320 0.740261i \(-0.265298\pi\)
−0.304925 + 0.952377i \(0.598631\pi\)
\(180\) 0 0
\(181\) 14.1447i 1.05137i −0.850679 0.525685i \(-0.823809\pi\)
0.850679 0.525685i \(-0.176191\pi\)
\(182\) 0 0
\(183\) 9.50225i 0.702427i
\(184\) 0 0
\(185\) 7.17715 + 4.14373i 0.527675 + 0.304653i
\(186\) 0 0
\(187\) −2.13201 3.69275i −0.155908 0.270041i
\(188\) 0 0
\(189\) 2.52722 0.783034i 0.183828 0.0569573i
\(190\) 0 0
\(191\) −17.0972 + 9.87108i −1.23711 + 0.714246i −0.968503 0.249003i \(-0.919897\pi\)
−0.268608 + 0.963249i \(0.586564\pi\)
\(192\) 0 0
\(193\) −0.426237 + 0.738264i −0.0306812 + 0.0531414i −0.880958 0.473194i \(-0.843101\pi\)
0.850277 + 0.526335i \(0.176434\pi\)
\(194\) 0 0
\(195\) 6.61553 0.473748
\(196\) 0 0
\(197\) 25.9587 1.84948 0.924741 0.380596i \(-0.124281\pi\)
0.924741 + 0.380596i \(0.124281\pi\)
\(198\) 0 0
\(199\) −12.7263 + 22.0425i −0.902140 + 1.56255i −0.0774298 + 0.996998i \(0.524671\pi\)
−0.824711 + 0.565555i \(0.808662\pi\)
\(200\) 0 0
\(201\) −5.66625 + 3.27141i −0.399667 + 0.230748i
\(202\) 0 0
\(203\) −5.82528 + 1.80490i −0.408855 + 0.126679i
\(204\) 0 0
\(205\) 3.95238 + 6.84572i 0.276046 + 0.478126i
\(206\) 0 0
\(207\) −2.85625 1.64906i −0.198523 0.114618i
\(208\) 0 0
\(209\) 21.5455i 1.49033i
\(210\) 0 0
\(211\) 17.4963i 1.20449i 0.798310 + 0.602246i \(0.205727\pi\)
−0.798310 + 0.602246i \(0.794273\pi\)
\(212\) 0 0
\(213\) −4.33444 2.50249i −0.296991 0.171468i
\(214\) 0 0
\(215\) −0.0650719 0.112708i −0.00443787 0.00768661i
\(216\) 0 0
\(217\) 1.83785 8.09919i 0.124762 0.549809i
\(218\) 0 0
\(219\) −0.175670 + 0.101423i −0.0118707 + 0.00685355i
\(220\) 0 0
\(221\) −3.41746 + 5.91922i −0.229883 + 0.398170i
\(222\) 0 0
\(223\) −6.28803 −0.421078 −0.210539 0.977585i \(-0.567522\pi\)
−0.210539 + 0.977585i \(0.567522\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 2.81939 4.88333i 0.187130 0.324118i −0.757163 0.653227i \(-0.773415\pi\)
0.944292 + 0.329109i \(0.106748\pi\)
\(228\) 0 0
\(229\) 5.96603 3.44449i 0.394246 0.227618i −0.289752 0.957102i \(-0.593573\pi\)
0.683998 + 0.729483i \(0.260239\pi\)
\(230\) 0 0
\(231\) 7.41699 8.01385i 0.488002 0.527272i
\(232\) 0 0
\(233\) −9.74766 16.8834i −0.638591 1.10607i −0.985742 0.168262i \(-0.946184\pi\)
0.347152 0.937809i \(-0.387149\pi\)
\(234\) 0 0
\(235\) 10.1484 + 5.85920i 0.662011 + 0.382212i
\(236\) 0 0
\(237\) 8.15641i 0.529816i
\(238\) 0 0
\(239\) 6.88564i 0.445395i −0.974888 0.222697i \(-0.928514\pi\)
0.974888 0.222697i \(-0.0714862\pi\)
\(240\) 0 0
\(241\) −11.3287 6.54062i −0.729745 0.421318i 0.0885842 0.996069i \(-0.471766\pi\)
−0.818329 + 0.574750i \(0.805099\pi\)
\(242\) 0 0
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 3.02128 6.31442i 0.193023 0.403413i
\(246\) 0 0
\(247\) −29.9090 + 17.2680i −1.90306 + 1.09873i
\(248\) 0 0
\(249\) −5.02722 + 8.70741i −0.318587 + 0.551809i
\(250\) 0 0
\(251\) 19.3042 1.21847 0.609235 0.792989i \(-0.291476\pi\)
0.609235 + 0.792989i \(0.291476\pi\)
\(252\) 0 0
\(253\) −13.6118 −0.855768
\(254\) 0 0
\(255\) 0.516582 0.894746i 0.0323496 0.0560312i
\(256\) 0 0
\(257\) −5.35258 + 3.09031i −0.333885 + 0.192768i −0.657564 0.753398i \(-0.728413\pi\)
0.323680 + 0.946167i \(0.395080\pi\)
\(258\) 0 0
\(259\) −16.0921 14.8936i −0.999914 0.925442i
\(260\) 0 0
\(261\) −1.15251 1.99620i −0.0713384 0.123562i
\(262\) 0 0
\(263\) 19.5925 + 11.3117i 1.20813 + 0.697512i 0.962350 0.271815i \(-0.0876238\pi\)
0.245776 + 0.969327i \(0.420957\pi\)
\(264\) 0 0
\(265\) 1.65806i 0.101854i
\(266\) 0 0
\(267\) 15.0933i 0.923692i
\(268\) 0 0
\(269\) −21.9236 12.6576i −1.33670 0.771746i −0.350386 0.936605i \(-0.613950\pi\)
−0.986317 + 0.164859i \(0.947283\pi\)
\(270\) 0 0
\(271\) 3.77665 + 6.54135i 0.229415 + 0.397359i 0.957635 0.287985i \(-0.0929853\pi\)
−0.728220 + 0.685344i \(0.759652\pi\)
\(272\) 0 0
\(273\) −17.0691 3.87329i −1.03307 0.234422i
\(274\) 0 0
\(275\) −3.57422 + 2.06357i −0.215533 + 0.124438i
\(276\) 0 0
\(277\) 3.05473 5.29095i 0.183541 0.317902i −0.759543 0.650457i \(-0.774577\pi\)
0.943084 + 0.332555i \(0.107911\pi\)
\(278\) 0 0
\(279\) 3.13903 0.187929
\(280\) 0 0
\(281\) −10.6235 −0.633744 −0.316872 0.948468i \(-0.602633\pi\)
−0.316872 + 0.948468i \(0.602633\pi\)
\(282\) 0 0
\(283\) 14.9476 25.8901i 0.888544 1.53900i 0.0469479 0.998897i \(-0.485051\pi\)
0.841597 0.540107i \(-0.181616\pi\)
\(284\) 0 0
\(285\) 4.52102 2.61021i 0.267802 0.154616i
\(286\) 0 0
\(287\) −6.18970 19.9771i −0.365366 1.17921i
\(288\) 0 0
\(289\) −7.96629 13.7980i −0.468605 0.811648i
\(290\) 0 0
\(291\) 7.18147 + 4.14622i 0.420985 + 0.243056i
\(292\) 0 0
\(293\) 27.1903i 1.58847i 0.607608 + 0.794237i \(0.292129\pi\)
−0.607608 + 0.794237i \(0.707871\pi\)
\(294\) 0 0
\(295\) 4.56997i 0.266074i
\(296\) 0 0
\(297\) 3.57422 + 2.06357i 0.207397 + 0.119741i
\(298\) 0 0
\(299\) 10.9094 + 18.8956i 0.630907 + 1.09276i
\(300\) 0 0
\(301\) 0.101907 + 0.328902i 0.00587382 + 0.0189576i
\(302\) 0 0
\(303\) −8.49886 + 4.90682i −0.488247 + 0.281889i
\(304\) 0 0
\(305\) 4.75113 8.22919i 0.272049 0.471202i
\(306\) 0 0
\(307\) −16.1475 −0.921586 −0.460793 0.887508i \(-0.652435\pi\)
−0.460793 + 0.887508i \(0.652435\pi\)
\(308\) 0 0
\(309\) −5.55151 −0.315814
\(310\) 0 0
\(311\) −8.65793 + 14.9960i −0.490946 + 0.850343i −0.999946 0.0104233i \(-0.996682\pi\)
0.509000 + 0.860767i \(0.330015\pi\)
\(312\) 0 0
\(313\) −10.3161 + 5.95602i −0.583102 + 0.336654i −0.762365 0.647147i \(-0.775962\pi\)
0.179263 + 0.983801i \(0.442629\pi\)
\(314\) 0 0
\(315\) 2.58016 + 0.585484i 0.145375 + 0.0329883i
\(316\) 0 0
\(317\) −3.96271 6.86362i −0.222568 0.385499i 0.733019 0.680208i \(-0.238111\pi\)
−0.955587 + 0.294709i \(0.904777\pi\)
\(318\) 0 0
\(319\) −8.23862 4.75657i −0.461274 0.266317i
\(320\) 0 0
\(321\) 10.5292i 0.587681i
\(322\) 0 0
\(323\) 5.39356i 0.300106i
\(324\) 0 0
\(325\) 5.72922 + 3.30776i 0.317800 + 0.183482i
\(326\) 0 0
\(327\) 7.11565 + 12.3247i 0.393497 + 0.681556i
\(328\) 0 0
\(329\) −22.7541 21.0594i −1.25447 1.16104i
\(330\) 0 0
\(331\) −0.704494 + 0.406740i −0.0387225 + 0.0223564i −0.519236 0.854631i \(-0.673784\pi\)
0.480514 + 0.876987i \(0.340450\pi\)
\(332\) 0 0
\(333\) 4.14373 7.17715i 0.227075 0.393306i
\(334\) 0 0
\(335\) −6.54283 −0.357473
\(336\) 0 0
\(337\) 22.9573 1.25056 0.625282 0.780399i \(-0.284984\pi\)
0.625282 + 0.780399i \(0.284984\pi\)
\(338\) 0 0
\(339\) 4.31442 7.47279i 0.234327 0.405866i
\(340\) 0 0
\(341\) 11.2196 6.47762i 0.607574 0.350783i
\(342\) 0 0
\(343\) −11.4924 + 14.5233i −0.620530 + 0.784183i
\(344\) 0 0
\(345\) −1.64906 2.85625i −0.0887824 0.153776i
\(346\) 0 0
\(347\) −8.32883 4.80865i −0.447115 0.258142i 0.259496 0.965744i \(-0.416444\pi\)
−0.706611 + 0.707602i \(0.749777\pi\)
\(348\) 0 0
\(349\) 28.7303i 1.53790i −0.639310 0.768949i \(-0.720780\pi\)
0.639310 0.768949i \(-0.279220\pi\)
\(350\) 0 0
\(351\) 6.61553i 0.353111i
\(352\) 0 0
\(353\) −27.5718 15.9186i −1.46750 0.847262i −0.468163 0.883642i \(-0.655084\pi\)
−0.999338 + 0.0363802i \(0.988417\pi\)
\(354\) 0 0
\(355\) −2.50249 4.33444i −0.132819 0.230048i
\(356\) 0 0
\(357\) −1.85672 + 2.00613i −0.0982681 + 0.106176i
\(358\) 0 0
\(359\) 11.3821 6.57147i 0.600725 0.346829i −0.168602 0.985684i \(-0.553925\pi\)
0.769327 + 0.638855i \(0.220592\pi\)
\(360\) 0 0
\(361\) −4.12644 + 7.14721i −0.217181 + 0.376169i
\(362\) 0 0
\(363\) 6.03336 0.316669
\(364\) 0 0
\(365\) −0.202847 −0.0106175
\(366\) 0 0
\(367\) 7.22312 12.5108i 0.377044 0.653059i −0.613587 0.789627i \(-0.710274\pi\)
0.990631 + 0.136568i \(0.0436074\pi\)
\(368\) 0 0
\(369\) 6.84572 3.95238i 0.356374 0.205753i
\(370\) 0 0
\(371\) −0.970770 + 4.27806i −0.0503998 + 0.222106i
\(372\) 0 0
\(373\) −5.00580 8.67030i −0.259191 0.448931i 0.706835 0.707379i \(-0.250122\pi\)
−0.966025 + 0.258448i \(0.916789\pi\)
\(374\) 0 0
\(375\) −0.866025 0.500000i −0.0447214 0.0258199i
\(376\) 0 0
\(377\) 15.2489i 0.785357i
\(378\) 0 0
\(379\) 30.6798i 1.57592i −0.615729 0.787958i \(-0.711139\pi\)
0.615729 0.787958i \(-0.288861\pi\)
\(380\) 0 0
\(381\) −1.00269 0.578901i −0.0513692 0.0296580i
\(382\) 0 0
\(383\) 15.2758 + 26.4584i 0.780556 + 1.35196i 0.931618 + 0.363438i \(0.118397\pi\)
−0.151062 + 0.988524i \(0.548269\pi\)
\(384\) 0 0
\(385\) 10.4302 3.23170i 0.531574 0.164703i
\(386\) 0 0
\(387\) −0.112708 + 0.0650719i −0.00572926 + 0.00330779i
\(388\) 0 0
\(389\) 14.1030 24.4271i 0.715051 1.23851i −0.247888 0.968789i \(-0.579737\pi\)
0.962940 0.269717i \(-0.0869300\pi\)
\(390\) 0 0
\(391\) 3.40750 0.172324
\(392\) 0 0
\(393\) 10.0603 0.507477
\(394\) 0 0
\(395\) −4.07821 + 7.06366i −0.205197 + 0.355411i
\(396\) 0 0
\(397\) 11.4781 6.62687i 0.576068 0.332593i −0.183501 0.983019i \(-0.558743\pi\)
0.759569 + 0.650427i \(0.225410\pi\)
\(398\) 0 0
\(399\) −13.1932 + 4.08777i −0.660486 + 0.204645i
\(400\) 0 0
\(401\) −13.5079 23.3964i −0.674552 1.16836i −0.976600 0.215065i \(-0.931004\pi\)
0.302048 0.953293i \(-0.402330\pi\)
\(402\) 0 0
\(403\) −17.9842 10.3832i −0.895856 0.517223i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 34.2036i 1.69541i
\(408\) 0 0
\(409\) −18.6089 10.7438i −0.920149 0.531248i −0.0364665 0.999335i \(-0.511610\pi\)
−0.883683 + 0.468087i \(0.844944\pi\)
\(410\) 0 0
\(411\) 4.58298 + 7.93795i 0.226062 + 0.391550i
\(412\) 0 0
\(413\) −2.67565 + 11.7912i −0.131660 + 0.580209i
\(414\) 0 0
\(415\) −8.70741 + 5.02722i −0.427430 + 0.246777i
\(416\) 0 0
\(417\) −0.00830791 + 0.0143897i −0.000406840 + 0.000704667i
\(418\) 0 0
\(419\) 33.3478 1.62914 0.814572 0.580062i \(-0.196972\pi\)
0.814572 + 0.580062i \(0.196972\pi\)
\(420\) 0 0
\(421\) 14.9806 0.730110 0.365055 0.930986i \(-0.381050\pi\)
0.365055 + 0.930986i \(0.381050\pi\)
\(422\) 0 0
\(423\) 5.85920 10.1484i 0.284884 0.493434i
\(424\) 0 0
\(425\) 0.894746 0.516582i 0.0434016 0.0250579i
\(426\) 0 0
\(427\) −17.0767 + 18.4509i −0.826400 + 0.892901i
\(428\) 0 0
\(429\) −13.6516 23.6453i −0.659107 1.14161i
\(430\) 0 0
\(431\) −23.9972 13.8548i −1.15591 0.667363i −0.205587 0.978639i \(-0.565910\pi\)
−0.950320 + 0.311276i \(0.899244\pi\)
\(432\) 0 0
\(433\) 20.0565i 0.963854i −0.876211 0.481927i \(-0.839937\pi\)
0.876211 0.481927i \(-0.160063\pi\)
\(434\) 0 0
\(435\) 2.30501i 0.110517i
\(436\) 0 0
\(437\) 14.9109 + 8.60880i 0.713284 + 0.411815i
\(438\) 0 0
\(439\) 8.92508 + 15.4587i 0.425971 + 0.737803i 0.996511 0.0834667i \(-0.0265992\pi\)
−0.570540 + 0.821270i \(0.693266\pi\)
\(440\) 0 0
\(441\) −6.31442 3.02128i −0.300686 0.143871i
\(442\) 0 0
\(443\) −13.0756 + 7.54920i −0.621241 + 0.358673i −0.777352 0.629066i \(-0.783437\pi\)
0.156111 + 0.987739i \(0.450104\pi\)
\(444\) 0 0
\(445\) −7.54663 + 13.0711i −0.357744 + 0.619631i
\(446\) 0 0
\(447\) 7.61948 0.360389
\(448\) 0 0
\(449\) −19.3459 −0.912991 −0.456496 0.889726i \(-0.650896\pi\)
−0.456496 + 0.889726i \(0.650896\pi\)
\(450\) 0 0
\(451\) 16.3121 28.2533i 0.768105 1.33040i
\(452\) 0 0
\(453\) −5.01873 + 2.89757i −0.235801 + 0.136140i
\(454\) 0 0
\(455\) −12.8456 11.8889i −0.602212 0.557361i
\(456\) 0 0
\(457\) 16.4300 + 28.4577i 0.768565 + 1.33119i 0.938341 + 0.345711i \(0.112362\pi\)
−0.169776 + 0.985483i \(0.554304\pi\)
\(458\) 0 0
\(459\) −0.894746 0.516582i −0.0417632 0.0241120i
\(460\) 0 0
\(461\) 1.76716i 0.0823047i −0.999153 0.0411523i \(-0.986897\pi\)
0.999153 0.0411523i \(-0.0131029\pi\)
\(462\) 0 0
\(463\) 0.373594i 0.0173624i −0.999962 0.00868118i \(-0.997237\pi\)
0.999962 0.00868118i \(-0.00276334\pi\)
\(464\) 0 0
\(465\) 2.71848 + 1.56951i 0.126066 + 0.0727845i
\(466\) 0 0
\(467\) −4.14402 7.17765i −0.191762 0.332142i 0.754072 0.656792i \(-0.228087\pi\)
−0.945834 + 0.324650i \(0.894754\pi\)
\(468\) 0 0
\(469\) 16.8815 + 3.83072i 0.779516 + 0.176886i
\(470\) 0 0
\(471\) 17.8758 10.3206i 0.823676 0.475549i
\(472\) 0 0
\(473\) −0.268561 + 0.465162i −0.0123485 + 0.0213882i
\(474\) 0 0
\(475\) 5.22043 0.239530
\(476\) 0 0
\(477\) −1.65806 −0.0759174
\(478\) 0 0
\(479\) 10.0176 17.3509i 0.457714 0.792783i −0.541126 0.840942i \(-0.682002\pi\)
0.998840 + 0.0481581i \(0.0153351\pi\)
\(480\) 0 0
\(481\) −47.4807 + 27.4130i −2.16493 + 1.24992i
\(482\) 0 0
\(483\) 2.58254 + 8.33508i 0.117510 + 0.379259i
\(484\) 0 0
\(485\) 4.14622 + 7.18147i 0.188270 + 0.326094i
\(486\) 0 0
\(487\) 23.3329 + 13.4713i 1.05732 + 0.610441i 0.924688 0.380725i \(-0.124325\pi\)
0.132627 + 0.991166i \(0.457659\pi\)
\(488\) 0 0
\(489\) 23.5730i 1.06601i
\(490\) 0 0
\(491\) 12.8001i 0.577659i 0.957381 + 0.288830i \(0.0932661\pi\)
−0.957381 + 0.288830i \(0.906734\pi\)
\(492\) 0 0
\(493\) 2.06240 + 1.19073i 0.0928859 + 0.0536277i
\(494\) 0 0
\(495\) 2.06357 + 3.57422i 0.0927508 + 0.160649i
\(496\) 0 0
\(497\) 3.91907 + 12.6487i 0.175794 + 0.567373i
\(498\) 0 0
\(499\) −9.07074 + 5.23700i −0.406062 + 0.234440i −0.689096 0.724670i \(-0.741992\pi\)
0.283034 + 0.959110i \(0.408659\pi\)
\(500\) 0 0
\(501\) 9.67592 16.7592i 0.432288 0.748745i
\(502\) 0 0
\(503\) −14.1978 −0.633051 −0.316525 0.948584i \(-0.602516\pi\)
−0.316525 + 0.948584i \(0.602516\pi\)
\(504\) 0 0
\(505\) −9.81364 −0.436701
\(506\) 0 0
\(507\) −15.3826 + 26.6435i −0.683166 + 1.18328i
\(508\) 0 0
\(509\) −36.2907 + 20.9525i −1.60856 + 0.928701i −0.618864 + 0.785498i \(0.712407\pi\)
−0.989693 + 0.143203i \(0.954260\pi\)
\(510\) 0 0
\(511\) 0.523376 + 0.118764i 0.0231528 + 0.00525379i
\(512\) 0 0
\(513\) −2.61021 4.52102i −0.115244 0.199608i
\(514\) 0 0
\(515\) −4.80775 2.77576i −0.211855 0.122314i
\(516\) 0 0
\(517\) 48.3636i 2.12703i
\(518\) 0 0
\(519\) 15.5067i 0.680667i
\(520\) 0 0
\(521\) −0.361218 0.208549i −0.0158253 0.00913672i 0.492066 0.870558i \(-0.336242\pi\)
−0.507892 + 0.861421i \(0.669575\pi\)
\(522\) 0 0
\(523\) 15.4485 + 26.7576i 0.675517 + 1.17003i 0.976317 + 0.216343i \(0.0694129\pi\)
−0.300800 + 0.953687i \(0.597254\pi\)
\(524\) 0 0
\(525\) 1.94174 + 1.79712i 0.0847444 + 0.0784329i
\(526\) 0 0
\(527\) −2.80863 + 1.62157i −0.122346 + 0.0706365i
\(528\) 0 0
\(529\) −6.06121 + 10.4983i −0.263531 + 0.456449i
\(530\) 0 0
\(531\) −4.56997 −0.198320
\(532\) 0 0
\(533\) −52.2942 −2.26511
\(534\) 0 0
\(535\) 5.26459 9.11853i 0.227608 0.394229i
\(536\) 0 0
\(537\) 4.91542 2.83792i 0.212116 0.122465i
\(538\) 0 0
\(539\) −28.8037 + 2.23155i −1.24066 + 0.0961196i
\(540\) 0 0
\(541\) 2.56205 + 4.43760i 0.110151 + 0.190787i 0.915831 0.401564i \(-0.131533\pi\)
−0.805680 + 0.592351i \(0.798200\pi\)
\(542\) 0 0
\(543\) −12.2497 7.07237i −0.525685 0.303504i
\(544\) 0 0
\(545\) 14.2313i 0.609602i
\(546\) 0 0
\(547\) 6.78023i 0.289902i 0.989439 + 0.144951i \(0.0463024\pi\)
−0.989439 + 0.144951i \(0.953698\pi\)
\(548\) 0 0
\(549\) −8.22919 4.75113i −0.351213 0.202773i
\(550\) 0 0
\(551\) 6.01658 + 10.4210i 0.256315 + 0.443950i
\(552\) 0 0
\(553\) 14.6581 15.8376i 0.623325 0.673484i
\(554\) 0 0
\(555\) 7.17715 4.14373i 0.304653 0.175892i
\(556\) 0 0
\(557\) 11.5156 19.9455i 0.487930 0.845119i −0.511974 0.859001i \(-0.671086\pi\)
0.999904 + 0.0138820i \(0.00441891\pi\)
\(558\) 0 0
\(559\) 0.860970 0.0364152
\(560\) 0 0
\(561\) −4.26402 −0.180027
\(562\) 0 0
\(563\) 10.7679 18.6505i 0.453812 0.786026i −0.544807 0.838562i \(-0.683397\pi\)
0.998619 + 0.0525355i \(0.0167303\pi\)
\(564\) 0 0
\(565\) 7.47279 4.31442i 0.314383 0.181509i
\(566\) 0 0
\(567\) 0.585484 2.58016i 0.0245880 0.108356i
\(568\) 0 0
\(569\) 19.8062 + 34.3053i 0.830318 + 1.43815i 0.897786 + 0.440432i \(0.145175\pi\)
−0.0674674 + 0.997721i \(0.521492\pi\)
\(570\) 0 0
\(571\) −2.11083 1.21869i −0.0883354 0.0510005i 0.455182 0.890399i \(-0.349574\pi\)
−0.543517 + 0.839398i \(0.682908\pi\)
\(572\) 0 0
\(573\) 19.7422i 0.824741i
\(574\) 0 0
\(575\) 3.29812i 0.137541i
\(576\) 0 0
\(577\) −14.7858 8.53656i −0.615539 0.355382i 0.159591 0.987183i \(-0.448982\pi\)
−0.775130 + 0.631802i \(0.782316\pi\)
\(578\) 0 0
\(579\) 0.426237 + 0.738264i 0.0177138 + 0.0306812i
\(580\) 0 0
\(581\) 25.4098 7.87297i 1.05418 0.326626i
\(582\) 0 0
\(583\) −5.92627 + 3.42154i −0.245441 + 0.141706i
\(584\) 0 0
\(585\) 3.30776 5.72922i 0.136759 0.236874i
\(586\) 0 0
\(587\) 40.6886 1.67940 0.839699 0.543053i \(-0.182732\pi\)
0.839699 + 0.543053i \(0.182732\pi\)
\(588\) 0 0
\(589\) −16.3871 −0.675218
\(590\) 0 0
\(591\) 12.9794 22.4809i 0.533900 0.924741i
\(592\) 0 0
\(593\) 38.1175 22.0071i 1.56530 0.903724i 0.568591 0.822621i \(-0.307489\pi\)
0.996706 0.0811037i \(-0.0258445\pi\)
\(594\) 0 0
\(595\) −2.61104 + 0.809002i −0.107042 + 0.0331659i
\(596\) 0 0
\(597\) 12.7263 + 22.0425i 0.520851 + 0.902140i
\(598\) 0 0
\(599\) 41.4461 + 23.9289i 1.69344 + 0.977710i 0.951702 + 0.307025i \(0.0993334\pi\)
0.741742 + 0.670685i \(0.234000\pi\)
\(600\) 0 0
\(601\) 16.5232i 0.673995i −0.941506 0.336997i \(-0.890589\pi\)
0.941506 0.336997i \(-0.109411\pi\)
\(602\) 0 0
\(603\) 6.54283i 0.266444i
\(604\) 0 0
\(605\) 5.22505 + 3.01668i 0.212428 + 0.122646i
\(606\) 0 0
\(607\) 23.3334 + 40.4147i 0.947075 + 1.64038i 0.751543 + 0.659685i \(0.229310\pi\)
0.195532 + 0.980697i \(0.437357\pi\)
\(608\) 0 0
\(609\) −1.34955 + 5.94729i −0.0546865 + 0.240997i
\(610\) 0 0
\(611\) −67.1372 + 38.7617i −2.71608 + 1.56813i
\(612\) 0 0
\(613\) 3.59308 6.22341i 0.145123 0.251361i −0.784296 0.620387i \(-0.786975\pi\)
0.929419 + 0.369026i \(0.120309\pi\)
\(614\) 0 0
\(615\) 7.90476 0.318751
\(616\) 0 0
\(617\) 16.0989 0.648118 0.324059 0.946037i \(-0.394952\pi\)
0.324059 + 0.946037i \(0.394952\pi\)
\(618\) 0 0
\(619\) −2.73407 + 4.73555i −0.109892 + 0.190338i −0.915726 0.401803i \(-0.868384\pi\)
0.805835 + 0.592141i \(0.201717\pi\)
\(620\) 0 0
\(621\) −2.85625 + 1.64906i −0.114618 + 0.0661745i
\(622\) 0 0
\(623\) 27.1244 29.3072i 1.08672 1.17417i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −18.6589 10.7727i −0.745167 0.430222i
\(628\) 0 0
\(629\) 8.56230i 0.341401i
\(630\) 0 0
\(631\) 33.6308i 1.33882i −0.742893 0.669410i \(-0.766547\pi\)
0.742893 0.669410i \(-0.233453\pi\)
\(632\) 0 0
\(633\) 15.1522 + 8.74813i 0.602246 + 0.347707i
\(634\) 0 0
\(635\) −0.578901 1.00269i −0.0229730 0.0397904i
\(636\) 0 0
\(637\) 26.1830 + 38.1962i 1.03741 + 1.51339i
\(638\) 0 0
\(639\) −4.33444 + 2.50249i −0.171468 + 0.0989971i
\(640\) 0 0
\(641\) 11.3261 19.6174i 0.447355 0.774842i −0.550858 0.834599i \(-0.685699\pi\)
0.998213 + 0.0597575i \(0.0190327\pi\)
\(642\) 0 0
\(643\) 50.0029 1.97192 0.985962 0.166972i \(-0.0533989\pi\)
0.985962 + 0.166972i \(0.0533989\pi\)
\(644\) 0 0
\(645\) −0.130144 −0.00512441
\(646\) 0 0
\(647\) 13.3724 23.1616i 0.525722 0.910578i −0.473829 0.880617i \(-0.657128\pi\)
0.999551 0.0299609i \(-0.00953827\pi\)
\(648\) 0 0
\(649\) −16.3341 + 9.43047i −0.641168 + 0.370178i
\(650\) 0 0
\(651\) −6.09518 5.64122i −0.238889 0.221097i
\(652\) 0 0
\(653\) −16.9276 29.3194i −0.662427 1.14736i −0.979976 0.199115i \(-0.936193\pi\)
0.317549 0.948242i \(-0.397140\pi\)
\(654\) 0 0
\(655\) 8.71251 + 5.03017i 0.340426 + 0.196545i
\(656\) 0 0
\(657\) 0.202847i 0.00791380i
\(658\) 0 0
\(659\) 33.0953i 1.28921i −0.764516 0.644604i \(-0.777022\pi\)
0.764516 0.644604i \(-0.222978\pi\)
\(660\) 0 0
\(661\) 10.6420 + 6.14416i 0.413926 + 0.238980i 0.692475 0.721442i \(-0.256520\pi\)
−0.278549 + 0.960422i \(0.589854\pi\)
\(662\) 0 0
\(663\) 3.41746 + 5.91922i 0.132723 + 0.229883i
\(664\) 0 0
\(665\) −13.4695 3.05648i −0.522326 0.118525i
\(666\) 0 0
\(667\) 6.58370 3.80110i 0.254922 0.147179i
\(668\) 0 0
\(669\) −3.14402 + 5.44560i −0.121555 + 0.210539i
\(670\) 0 0
\(671\) −39.2172 −1.51396
\(672\) 0 0
\(673\) −10.7864 −0.415785 −0.207893 0.978152i \(-0.566660\pi\)
−0.207893 + 0.978152i \(0.566660\pi\)
\(674\) 0 0
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) 26.1193 15.0800i 1.00385 0.579570i 0.0944617 0.995528i \(-0.469887\pi\)
0.909384 + 0.415958i \(0.136554\pi\)
\(678\) 0 0
\(679\) −6.49327 20.9569i −0.249189 0.804251i
\(680\) 0 0
\(681\) −2.81939 4.88333i −0.108039 0.187130i
\(682\) 0 0
\(683\) −24.0260 13.8714i −0.919330 0.530776i −0.0359089 0.999355i \(-0.511433\pi\)
−0.883421 + 0.468580i \(0.844766\pi\)
\(684\) 0 0
\(685\) 9.16595i 0.350213i
\(686\) 0 0
\(687\) 6.88898i 0.262831i
\(688\) 0 0
\(689\) 9.49940 + 5.48448i 0.361898 + 0.208942i
\(690\) 0 0
\(691\) 4.71795 + 8.17173i 0.179479 + 0.310867i 0.941702 0.336447i \(-0.109225\pi\)
−0.762223 + 0.647314i \(0.775892\pi\)
\(692\) 0 0
\(693\) −3.23170 10.4302i −0.122762 0.396212i
\(694\) 0 0
\(695\) −0.0143897 + 0.00830791i −0.000545833 + 0.000315137i
\(696\) 0 0
\(697\) −4.08346 + 7.07275i −0.154672 + 0.267900i
\(698\) 0 0
\(699\) −19.4953 −0.737381
\(700\) 0 0
\(701\) 46.0773 1.74031 0.870157 0.492774i \(-0.164017\pi\)
0.870157 + 0.492774i \(0.164017\pi\)
\(702\) 0 0
\(703\) −21.6321 + 37.4678i −0.815869 + 1.41313i
\(704\) 0 0
\(705\) 10.1484 5.85920i 0.382212 0.220670i
\(706\) 0 0
\(707\) 25.3207 + 5.74573i 0.952284 + 0.216091i
\(708\) 0 0
\(709\) −10.6812 18.5004i −0.401141 0.694797i 0.592723 0.805407i \(-0.298053\pi\)
−0.993864 + 0.110610i \(0.964720\pi\)
\(710\) 0 0
\(711\) 7.06366 + 4.07821i 0.264908 + 0.152945i
\(712\) 0 0
\(713\) 10.3529i 0.387719i
\(714\) 0 0
\(715\) 27.3033i 1.02108i
\(716\) 0 0
\(717\) −5.96314 3.44282i −0.222697 0.128574i
\(718\) 0 0
\(719\) −26.1733 45.3334i −0.976098 1.69065i −0.676265 0.736659i \(-0.736402\pi\)
−0.299833 0.953992i \(-0.596931\pi\)
\(720\) 0 0
\(721\) 10.7796 + 9.97675i 0.401453 + 0.371553i
\(722\) 0 0
\(723\) −11.3287 + 6.54062i −0.421318 + 0.243248i
\(724\) 0 0
\(725\) 1.15251 1.99620i 0.0428030 0.0741370i
\(726\) 0 0
\(727\) −33.2600 −1.23355 −0.616773 0.787141i \(-0.711560\pi\)
−0.616773 + 0.787141i \(0.711560\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0.0672299 0.116446i 0.00248659 0.00430690i
\(732\) 0 0
\(733\) −10.8156 + 6.24440i −0.399484 + 0.230642i −0.686261 0.727355i \(-0.740749\pi\)
0.286777 + 0.957997i \(0.407416\pi\)
\(734\) 0 0
\(735\) −3.95780 5.77372i −0.145986 0.212967i
\(736\) 0 0
\(737\) 13.5016 + 23.3855i 0.497338 + 0.861415i
\(738\) 0 0
\(739\) 11.9229 + 6.88368i 0.438590 + 0.253220i 0.702999 0.711190i \(-0.251844\pi\)
−0.264409 + 0.964411i \(0.585177\pi\)
\(740\) 0 0
\(741\) 34.5359i 1.26871i
\(742\) 0 0
\(743\) 41.5627i 1.52479i 0.647113 + 0.762394i \(0.275976\pi\)
−0.647113 + 0.762394i \(0.724024\pi\)
\(744\) 0 0
\(745\) 6.59866 + 3.80974i 0.241756 + 0.139578i
\(746\) 0 0
\(747\) 5.02722 + 8.70741i 0.183936 + 0.318587i
\(748\) 0 0
\(749\) −18.9222 + 20.4449i −0.691403 + 0.747041i
\(750\) 0 0
\(751\) −17.1062 + 9.87628i −0.624215 + 0.360391i −0.778508 0.627634i \(-0.784023\pi\)
0.154293 + 0.988025i \(0.450690\pi\)
\(752\) 0 0
\(753\) 9.65211 16.7179i 0.351742 0.609235i
\(754\) 0 0
\(755\) −5.79513 −0.210906
\(756\) 0 0
\(757\) −36.2853 −1.31881 −0.659406 0.751787i \(-0.729192\pi\)
−0.659406 + 0.751787i \(0.729192\pi\)
\(758\) 0 0
\(759\) −6.80591 + 11.7882i −0.247039 + 0.427884i
\(760\) 0 0
\(761\) −19.4517 + 11.2304i −0.705123 + 0.407103i −0.809253 0.587461i \(-0.800128\pi\)
0.104129 + 0.994564i \(0.466794\pi\)
\(762\) 0 0
\(763\) 8.33221 36.7190i 0.301646 1.32932i
\(764\) 0 0
\(765\) −0.516582 0.894746i −0.0186771 0.0323496i
\(766\) 0 0
\(767\) 26.1823 + 15.1164i 0.945389 + 0.545821i
\(768\) 0 0
\(769\) 9.04388i 0.326131i −0.986615 0.163065i \(-0.947862\pi\)
0.986615 0.163065i \(-0.0521381\pi\)
\(770\) 0 0
\(771\) 6.18062i 0.222590i
\(772\) 0 0
\(773\) 15.9583 + 9.21351i 0.573979 + 0.331387i 0.758737 0.651397i \(-0.225817\pi\)
−0.184758 + 0.982784i \(0.559150\pi\)
\(774\) 0 0
\(775\) 1.56951 + 2.71848i 0.0563786 + 0.0976507i
\(776\) 0 0
\(777\) −20.9443 + 6.48936i −0.751371 + 0.232805i
\(778\) 0 0
\(779\) −35.7376 + 20.6331i −1.28043 + 0.739258i
\(780\) 0 0
\(781\) −10.3282 + 17.8889i −0.369571 + 0.640115i
\(782\) 0 0
\(783\) −2.30501 −0.0823744
\(784\) 0 0
\(785\) 20.6413 0.736718
\(786\) 0 0
\(787\) 23.2608 40.2890i 0.829160 1.43615i −0.0695387 0.997579i \(-0.522153\pi\)
0.898698 0.438567i \(-0.144514\pi\)
\(788\) 0 0
\(789\) 19.5925 11.3117i 0.697512 0.402709i
\(790\) 0 0
\(791\) −21.8070 + 6.75667i −0.775367 + 0.240239i
\(792\) 0 0
\(793\) 31.4312 + 54.4404i 1.11615 + 1.93324i
\(794\) 0 0
\(795\) −1.43592 0.829031i −0.0509270 0.0294027i
\(796\) 0 0
\(797\) 33.2995i 1.17953i 0.807575 + 0.589764i \(0.200779\pi\)
−0.807575 + 0.589764i \(0.799221\pi\)
\(798\) 0 0
\(799\) 12.1070i 0.428316i
\(800\) 0 0
\(801\) 13.0711 + 7.54663i 0.461846 + 0.266647i
\(802\) 0 0
\(803\) 0.418589 + 0.725018i 0.0147717 + 0.0255853i
\(804\) 0 0
\(805\) −1.93100 + 8.50966i −0.0680587 + 0.299926i
\(806\) 0 0
\(807\) −21.9236 + 12.6576i −0.771746 + 0.445568i
\(808\) 0 0
\(809\) 7.79307 13.4980i 0.273990 0.474564i −0.695890 0.718148i \(-0.744990\pi\)
0.969880 + 0.243584i \(0.0783232\pi\)
\(810\) 0 0
\(811\) 44.5340 1.56380 0.781900 0.623404i \(-0.214251\pi\)
0.781900 + 0.623404i \(0.214251\pi\)
\(812\) 0 0
\(813\) 7.55330 0.264906
\(814\) 0 0
\(815\) −11.7865 + 20.4148i −0.412863 + 0.715100i
\(816\) 0 0
\(817\) 0.588383 0.339703i 0.0205849 0.0118847i
\(818\) 0 0
\(819\) −11.8889 + 12.8456i −0.415432 + 0.448863i
\(820\) 0 0
\(821\) −5.80712 10.0582i −0.202670 0.351034i 0.746718 0.665141i \(-0.231628\pi\)
−0.949388 + 0.314106i \(0.898295\pi\)
\(822\) 0 0
\(823\) −31.4145 18.1372i −1.09504 0.632223i −0.160128 0.987096i \(-0.551191\pi\)
−0.934914 + 0.354874i \(0.884524\pi\)
\(824\) 0 0
\(825\) 4.12715i 0.143689i
\(826\) 0 0
\(827\) 2.95704i 0.102826i 0.998677 + 0.0514131i \(0.0163725\pi\)
−0.998677 + 0.0514131i \(0.983627\pi\)
\(828\) 0 0
\(829\) 27.3000 + 15.7617i 0.948169 + 0.547426i 0.892512 0.451024i \(-0.148941\pi\)
0.0556576 + 0.998450i \(0.482274\pi\)
\(830\) 0 0
\(831\) −3.05473 5.29095i −0.105967 0.183541i
\(832\) 0 0
\(833\) 7.21054 0.558631i 0.249830 0.0193554i
\(834\) 0 0
\(835\) 16.7592 9.67592i 0.579975 0.334849i
\(836\) 0 0
\(837\) 1.56951 2.71848i 0.0542504 0.0939644i
\(838\) 0 0
\(839\) −18.8148 −0.649559 −0.324779 0.945790i \(-0.605290\pi\)
−0.324779 + 0.945790i \(0.605290\pi\)
\(840\) 0 0
\(841\) −23.6869 −0.816790
\(842\) 0 0
\(843\) −5.31174 + 9.20020i −0.182946 + 0.316872i
\(844\) 0 0
\(845\) −26.6435 + 15.3826i −0.916563 + 0.529178i
\(846\) 0 0
\(847\) −11.7152 10.8427i −0.402540 0.372559i
\(848\) 0 0
\(849\) −14.9476 25.8901i −0.513001 0.888544i
\(850\) 0 0
\(851\) 23.6711 + 13.6665i 0.811435 + 0.468482i
\(852\) 0 0
\(853\) 2.71110i 0.0928263i −0.998922 0.0464132i \(-0.985221\pi\)
0.998922 0.0464132i \(-0.0147791\pi\)
\(854\) 0 0
\(855\) 5.22043i 0.178535i
\(856\) 0 0
\(857\) 11.9290 + 6.88721i 0.407487 + 0.235263i 0.689709 0.724086i \(-0.257738\pi\)
−0.282222 + 0.959349i \(0.591072\pi\)
\(858\) 0 0
\(859\) −4.44373 7.69676i −0.151618 0.262610i 0.780204 0.625525i \(-0.215115\pi\)
−0.931822 + 0.362914i \(0.881782\pi\)
\(860\) 0 0
\(861\) −20.3955 4.62811i −0.695077 0.157726i
\(862\) 0 0
\(863\) −26.4367 + 15.2632i −0.899916 + 0.519567i −0.877173 0.480174i \(-0.840573\pi\)
−0.0227433 + 0.999741i \(0.507240\pi\)
\(864\) 0 0
\(865\) 7.75333 13.4292i 0.263621 0.456605i
\(866\) 0 0
\(867\) −15.9326 −0.541099
\(868\) 0 0
\(869\) 33.6627 1.14193
\(870\) 0 0
\(871\) 21.6421 37.4853i 0.733315 1.27014i
\(872\) 0 0
\(873\) 7.18147 4.14622i 0.243056 0.140328i
\(874\) 0 0
\(875\) 0.783034 + 2.52722i 0.0264714 + 0.0854357i
\(876\) 0 0
\(877\) 9.22043 + 15.9703i 0.311352 + 0.539277i 0.978655 0.205509i \(-0.0658849\pi\)
−0.667303 + 0.744786i \(0.732552\pi\)
\(878\) 0 0
\(879\) 23.5475 + 13.5952i 0.794237 + 0.458553i
\(880\) 0 0
\(881\) 1.25682i 0.0423434i 0.999776 + 0.0211717i \(0.00673967\pi\)
−0.999776 + 0.0211717i \(0.993260\pi\)
\(882\) 0 0
\(883\) 38.3476i 1.29050i 0.763972 + 0.645249i \(0.223246\pi\)
−0.763972 + 0.645249i \(0.776754\pi\)
\(884\) 0 0
\(885\) −3.95771 2.28498i −0.133037 0.0768089i
\(886\) 0 0
\(887\) 18.5284 + 32.0921i 0.622121 + 1.07755i 0.989090 + 0.147313i \(0.0470623\pi\)
−0.366969 + 0.930233i \(0.619604\pi\)
\(888\) 0 0
\(889\) 0.906599 + 2.92603i 0.0304063 + 0.0981358i
\(890\) 0 0
\(891\) 3.57422 2.06357i 0.119741 0.0691324i
\(892\) 0 0
\(893\) −30.5875 + 52.9792i −1.02357 + 1.77288i
\(894\) 0 0
\(895\) 5.67583 0.189722
\(896\) 0 0
\(897\) 21.8188 0.728508
\(898\) 0 0
\(899\) −3.61775 + 6.26613i −0.120659 + 0.208987i
\(900\) 0 0
\(901\) 1.48354 0.856525i 0.0494240 0.0285350i
\(902\) 0 0
\(903\) 0.335791 + 0.0761972i 0.0111744 + 0.00253568i
\(904\) 0 0
\(905\) −7.07237 12.2497i −0.235093 0.407194i
\(906\) 0 0
\(907\) 17.1370 + 9.89407i 0.569026 + 0.328527i 0.756760 0.653693i \(-0.226781\pi\)
−0.187734 + 0.982220i \(0.560114\pi\)
\(908\) 0 0
\(909\) 9.81364i 0.325498i
\(910\) 0 0
\(911\) 35.6168i 1.18004i 0.807390 + 0.590018i \(0.200879\pi\)
−0.807390 + 0.590018i \(0.799121\pi\)
\(912\) 0 0
\(913\) 35.9368 + 20.7481i 1.18933 + 0.686662i
\(914\) 0 0
\(915\) −4.75113 8.22919i −0.157067 0.272049i
\(916\) 0 0
\(917\) −19.5346 18.0797i −0.645088 0.597043i
\(918\) 0 0
\(919\) 33.5619 19.3770i 1.10710 0.639187i 0.169027 0.985611i \(-0.445938\pi\)
0.938078 + 0.346424i \(0.112604\pi\)
\(920\) 0 0
\(921\) −8.07375 + 13.9841i −0.266039 + 0.460793i
\(922\) 0 0
\(923\) 33.1106 1.08985
\(924\) 0 0
\(925\) 8.28746 0.272490
\(926\) 0 0
\(927\) −2.77576 + 4.80775i −0.0911678 + 0.157907i
\(928\) 0 0
\(929\) 41.2685 23.8264i 1.35397 0.781717i 0.365171 0.930941i \(-0.381011\pi\)
0.988804 + 0.149223i \(0.0476772\pi\)
\(930\) 0 0
\(931\) 32.9640 + 15.7724i 1.08035 + 0.516919i
\(932\) 0 0
\(933\) 8.65793 + 14.9960i 0.283448 + 0.490946i
\(934\) 0 0
\(935\) −3.69275 2.13201i −0.120766 0.0697242i
\(936\) 0 0
\(937\) 14.8030i 0.483593i −0.970327 0.241796i \(-0.922263\pi\)
0.970327 0.241796i \(-0.0777366\pi\)
\(938\) 0 0
\(939\) 11.9120i 0.388735i
\(940\) 0 0
\(941\) 11.2774 + 6.51104i 0.367634 + 0.212254i 0.672424 0.740166i \(-0.265253\pi\)
−0.304790 + 0.952420i \(0.598586\pi\)
\(942\) 0 0
\(943\) 13.0354 + 22.5780i 0.424492 + 0.735241i
\(944\) 0 0
\(945\) 1.79712 1.94174i 0.0584604 0.0631648i
\(946\) 0 0
\(947\) −3.47305 + 2.00516i −0.112859 + 0.0651591i −0.555367 0.831605i \(-0.687422\pi\)
0.442508 + 0.896765i \(0.354089\pi\)
\(948\) 0 0
\(949\) 0.670969 1.16215i 0.0217806 0.0377251i
\(950\) 0 0
\(951\) −7.92543 −0.257000
\(952\) 0 0
\(953\) −23.0850 −0.747796 −0.373898 0.927470i \(-0.621979\pi\)
−0.373898 + 0.927470i \(0.621979\pi\)
\(954\) 0 0
\(955\) −9.87108 + 17.0972i −0.319421 + 0.553253i
\(956\) 0 0
\(957\) −8.23862 + 4.75657i −0.266317 + 0.153758i
\(958\) 0 0
\(959\) 5.36652 23.6496i 0.173294 0.763685i
\(960\) 0 0
\(961\) 10.5732 + 18.3134i 0.341072 + 0.590755i
\(962\) 0 0
\(963\) −9.11853 5.26459i −0.293841 0.169649i
\(964\) 0 0
\(965\) 0.852473i 0.0274421i
\(966\) 0 0
\(967\) 9.68718i 0.311519i 0.987795 + 0.155759i \(0.0497824\pi\)
−0.987795 + 0.155759i \(0.950218\pi\)
\(968\) 0 0
\(969\) 4.67096 + 2.69678i 0.150053 + 0.0866330i
\(970\) 0 0
\(971\) −11.8548 20.5330i −0.380437 0.658937i 0.610688 0.791872i \(-0.290893\pi\)
−0.991125 + 0.132935i \(0.957560\pi\)
\(972\) 0 0
\(973\) 0.0419919 0.0130107i 0.00134620 0.000417105i
\(974\) 0 0
\(975\) 5.72922 3.30776i 0.183482 0.105933i
\(976\) 0 0
\(977\) −4.00221 + 6.93204i −0.128042 + 0.221776i −0.922918 0.384997i \(-0.874203\pi\)
0.794876 + 0.606772i \(0.207536\pi\)
\(978\) 0 0
\(979\) 62.2921 1.99086
\(980\) 0 0
\(981\) 14.2313 0.454371
\(982\) 0 0
\(983\) −0.859471 + 1.48865i −0.0274129 + 0.0474805i −0.879406 0.476072i \(-0.842060\pi\)
0.851994 + 0.523552i \(0.175394\pi\)
\(984\) 0 0
\(985\) 22.4809 12.9794i 0.716301 0.413557i
\(986\) 0 0
\(987\) −29.6150 + 9.17590i −0.942656 + 0.292072i
\(988\) 0 0
\(989\) −0.214615 0.371724i −0.00682436 0.0118201i
\(990\) 0 0
\(991\) 29.4356 + 16.9947i 0.935054 + 0.539854i 0.888407 0.459058i \(-0.151813\pi\)
0.0466477 + 0.998911i \(0.485146\pi\)
\(992\) 0 0
\(993\) 0.813479i 0.0258150i
\(994\) 0 0
\(995\) 25.4525i 0.806899i
\(996\) 0 0
\(997\) 45.2103 + 26.1022i 1.43182 + 0.826664i 0.997260 0.0739773i \(-0.0235692\pi\)
0.434564 + 0.900641i \(0.356903\pi\)
\(998\) 0 0
\(999\) −4.14373 7.17715i −0.131102 0.227075i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.dx.h.31.4 yes 12
4.3 odd 2 1680.2.dx.f.31.6 12
7.5 odd 6 1680.2.dx.f.271.6 yes 12
28.19 even 6 inner 1680.2.dx.h.271.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.dx.f.31.6 12 4.3 odd 2
1680.2.dx.f.271.6 yes 12 7.5 odd 6
1680.2.dx.h.31.4 yes 12 1.1 even 1 trivial
1680.2.dx.h.271.4 yes 12 28.19 even 6 inner