Properties

Label 1680.2.dx.h.31.1
Level $1680$
Weight $2$
Character 1680.31
Analytic conductor $13.415$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(31,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.dx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,6,0,0,0,-2,0,-6,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 35 x^{10} - 120 x^{9} + 328 x^{8} - 658 x^{7} + 1045 x^{6} - 1270 x^{5} + 1183 x^{4} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.1
Root \(0.500000 - 0.189815i\) of defining polynomial
Character \(\chi\) \(=\) 1680.31
Dual form 1680.2.dx.h.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} +(-0.866025 + 0.500000i) q^{5} +(-1.57301 + 2.12736i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-1.62387 - 0.937541i) q^{11} -4.52565i q^{13} +1.00000i q^{15} +(2.57799 + 1.48840i) q^{17} +(2.83434 + 4.90922i) q^{19} +(1.05584 + 2.42594i) q^{21} +(5.18469 - 2.99338i) q^{23} +(0.500000 - 0.866025i) q^{25} -1.00000 q^{27} -7.45204 q^{29} +(4.48735 - 7.77232i) q^{31} +(-1.62387 + 0.937541i) q^{33} +(0.298587 - 2.62885i) q^{35} +(-3.86348 - 6.69175i) q^{37} +(-3.91933 - 2.26282i) q^{39} -11.3805i q^{41} +2.86693i q^{43} +(0.866025 + 0.500000i) q^{45} +(-3.60713 - 6.24774i) q^{47} +(-2.05129 - 6.69270i) q^{49} +(2.57799 - 1.48840i) q^{51} +(4.11168 - 7.12164i) q^{53} +1.87508 q^{55} +5.66868 q^{57} +(-5.23100 + 9.06036i) q^{59} +(6.12735 - 3.53762i) q^{61} +(2.62885 + 0.298587i) q^{63} +(2.26282 + 3.91933i) q^{65} +(7.40170 + 4.27337i) q^{67} -5.98676i q^{69} -0.634344i q^{71} +(-0.999540 - 0.577085i) q^{73} +(-0.500000 - 0.866025i) q^{75} +(4.54884 - 1.97979i) q^{77} +(6.36997 - 3.67770i) q^{79} +(-0.500000 + 0.866025i) q^{81} -8.14602 q^{83} -2.97680 q^{85} +(-3.72602 + 6.45366i) q^{87} +(8.82148 - 5.09309i) q^{89} +(9.62766 + 7.11888i) q^{91} +(-4.48735 - 7.77232i) q^{93} +(-4.90922 - 2.83434i) q^{95} +13.3613i q^{97} +1.87508i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} - 2 q^{7} - 6 q^{9} + 10 q^{19} - 4 q^{21} + 12 q^{23} + 6 q^{25} - 12 q^{27} + 8 q^{29} - 2 q^{31} - 4 q^{35} - 10 q^{37} + 6 q^{39} + 2 q^{49} + 16 q^{53} + 20 q^{57} + 24 q^{61} - 2 q^{63}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0 0
\(5\) −0.866025 + 0.500000i −0.387298 + 0.223607i
\(6\) 0 0
\(7\) −1.57301 + 2.12736i −0.594541 + 0.804065i
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −1.62387 0.937541i −0.489615 0.282679i 0.234800 0.972044i \(-0.424557\pi\)
−0.724415 + 0.689364i \(0.757890\pi\)
\(12\) 0 0
\(13\) 4.52565i 1.25519i −0.778541 0.627594i \(-0.784040\pi\)
0.778541 0.627594i \(-0.215960\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 2.57799 + 1.48840i 0.625254 + 0.360991i 0.778912 0.627134i \(-0.215772\pi\)
−0.153658 + 0.988124i \(0.549105\pi\)
\(18\) 0 0
\(19\) 2.83434 + 4.90922i 0.650242 + 1.12625i 0.983064 + 0.183262i \(0.0586658\pi\)
−0.332822 + 0.942990i \(0.608001\pi\)
\(20\) 0 0
\(21\) 1.05584 + 2.42594i 0.230403 + 0.529384i
\(22\) 0 0
\(23\) 5.18469 2.99338i 1.08108 0.624163i 0.149894 0.988702i \(-0.452107\pi\)
0.931188 + 0.364539i \(0.118773\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −7.45204 −1.38381 −0.691905 0.721989i \(-0.743228\pi\)
−0.691905 + 0.721989i \(0.743228\pi\)
\(30\) 0 0
\(31\) 4.48735 7.77232i 0.805952 1.39595i −0.109694 0.993965i \(-0.534987\pi\)
0.915646 0.401985i \(-0.131680\pi\)
\(32\) 0 0
\(33\) −1.62387 + 0.937541i −0.282679 + 0.163205i
\(34\) 0 0
\(35\) 0.298587 2.62885i 0.0504703 0.444357i
\(36\) 0 0
\(37\) −3.86348 6.69175i −0.635153 1.10012i −0.986483 0.163865i \(-0.947604\pi\)
0.351330 0.936252i \(-0.385730\pi\)
\(38\) 0 0
\(39\) −3.91933 2.26282i −0.627594 0.362342i
\(40\) 0 0
\(41\) 11.3805i 1.77734i −0.458549 0.888669i \(-0.651631\pi\)
0.458549 0.888669i \(-0.348369\pi\)
\(42\) 0 0
\(43\) 2.86693i 0.437203i 0.975814 + 0.218601i \(0.0701494\pi\)
−0.975814 + 0.218601i \(0.929851\pi\)
\(44\) 0 0
\(45\) 0.866025 + 0.500000i 0.129099 + 0.0745356i
\(46\) 0 0
\(47\) −3.60713 6.24774i −0.526154 0.911326i −0.999536 0.0304686i \(-0.990300\pi\)
0.473381 0.880858i \(-0.343033\pi\)
\(48\) 0 0
\(49\) −2.05129 6.69270i −0.293042 0.956100i
\(50\) 0 0
\(51\) 2.57799 1.48840i 0.360991 0.208418i
\(52\) 0 0
\(53\) 4.11168 7.12164i 0.564783 0.978233i −0.432287 0.901736i \(-0.642293\pi\)
0.997070 0.0764966i \(-0.0243734\pi\)
\(54\) 0 0
\(55\) 1.87508 0.252836
\(56\) 0 0
\(57\) 5.66868 0.750835
\(58\) 0 0
\(59\) −5.23100 + 9.06036i −0.681018 + 1.17956i 0.293652 + 0.955912i \(0.405129\pi\)
−0.974670 + 0.223646i \(0.928204\pi\)
\(60\) 0 0
\(61\) 6.12735 3.53762i 0.784526 0.452946i −0.0535057 0.998568i \(-0.517040\pi\)
0.838032 + 0.545621i \(0.183706\pi\)
\(62\) 0 0
\(63\) 2.62885 + 0.298587i 0.331204 + 0.0376184i
\(64\) 0 0
\(65\) 2.26282 + 3.91933i 0.280669 + 0.486132i
\(66\) 0 0
\(67\) 7.40170 + 4.27337i 0.904261 + 0.522076i 0.878580 0.477595i \(-0.158491\pi\)
0.0256811 + 0.999670i \(0.491825\pi\)
\(68\) 0 0
\(69\) 5.98676i 0.720722i
\(70\) 0 0
\(71\) 0.634344i 0.0752828i −0.999291 0.0376414i \(-0.988016\pi\)
0.999291 0.0376414i \(-0.0119845\pi\)
\(72\) 0 0
\(73\) −0.999540 0.577085i −0.116987 0.0675427i 0.440365 0.897819i \(-0.354849\pi\)
−0.557352 + 0.830276i \(0.688183\pi\)
\(74\) 0 0
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) 0 0
\(77\) 4.54884 1.97979i 0.518389 0.225618i
\(78\) 0 0
\(79\) 6.36997 3.67770i 0.716677 0.413774i −0.0968512 0.995299i \(-0.530877\pi\)
0.813528 + 0.581525i \(0.197544\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −8.14602 −0.894141 −0.447071 0.894499i \(-0.647533\pi\)
−0.447071 + 0.894499i \(0.647533\pi\)
\(84\) 0 0
\(85\) −2.97680 −0.322880
\(86\) 0 0
\(87\) −3.72602 + 6.45366i −0.399471 + 0.691905i
\(88\) 0 0
\(89\) 8.82148 5.09309i 0.935075 0.539866i 0.0466622 0.998911i \(-0.485142\pi\)
0.888413 + 0.459045i \(0.151808\pi\)
\(90\) 0 0
\(91\) 9.62766 + 7.11888i 1.00925 + 0.746261i
\(92\) 0 0
\(93\) −4.48735 7.77232i −0.465317 0.805952i
\(94\) 0 0
\(95\) −4.90922 2.83434i −0.503675 0.290797i
\(96\) 0 0
\(97\) 13.3613i 1.35664i 0.734769 + 0.678318i \(0.237291\pi\)
−0.734769 + 0.678318i \(0.762709\pi\)
\(98\) 0 0
\(99\) 1.87508i 0.188453i
\(100\) 0 0
\(101\) −10.9074 6.29739i −1.08533 0.626614i −0.152999 0.988226i \(-0.548893\pi\)
−0.932328 + 0.361612i \(0.882226\pi\)
\(102\) 0 0
\(103\) −1.10619 1.91597i −0.108996 0.188786i 0.806368 0.591414i \(-0.201430\pi\)
−0.915364 + 0.402628i \(0.868097\pi\)
\(104\) 0 0
\(105\) −2.12736 1.57301i −0.207609 0.153510i
\(106\) 0 0
\(107\) 2.54219 1.46774i 0.245763 0.141891i −0.372060 0.928209i \(-0.621348\pi\)
0.617823 + 0.786318i \(0.288015\pi\)
\(108\) 0 0
\(109\) 7.27466 12.6001i 0.696786 1.20687i −0.272789 0.962074i \(-0.587946\pi\)
0.969575 0.244794i \(-0.0787205\pi\)
\(110\) 0 0
\(111\) −7.72697 −0.733411
\(112\) 0 0
\(113\) 5.54080 0.521235 0.260617 0.965442i \(-0.416074\pi\)
0.260617 + 0.965442i \(0.416074\pi\)
\(114\) 0 0
\(115\) −2.99338 + 5.18469i −0.279134 + 0.483475i
\(116\) 0 0
\(117\) −3.91933 + 2.26282i −0.362342 + 0.209198i
\(118\) 0 0
\(119\) −7.22156 + 3.14303i −0.661999 + 0.288121i
\(120\) 0 0
\(121\) −3.74203 6.48139i −0.340185 0.589217i
\(122\) 0 0
\(123\) −9.85582 5.69026i −0.888669 0.513073i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 9.92226i 0.880458i 0.897886 + 0.440229i \(0.145103\pi\)
−0.897886 + 0.440229i \(0.854897\pi\)
\(128\) 0 0
\(129\) 2.48283 + 1.43346i 0.218601 + 0.126209i
\(130\) 0 0
\(131\) −7.71881 13.3694i −0.674396 1.16809i −0.976645 0.214859i \(-0.931071\pi\)
0.302249 0.953229i \(-0.402263\pi\)
\(132\) 0 0
\(133\) −14.9021 1.69259i −1.29218 0.146766i
\(134\) 0 0
\(135\) 0.866025 0.500000i 0.0745356 0.0430331i
\(136\) 0 0
\(137\) −0.0825367 + 0.142958i −0.00705158 + 0.0122137i −0.869530 0.493881i \(-0.835578\pi\)
0.862478 + 0.506094i \(0.168911\pi\)
\(138\) 0 0
\(139\) −12.8666 −1.09133 −0.545667 0.838002i \(-0.683724\pi\)
−0.545667 + 0.838002i \(0.683724\pi\)
\(140\) 0 0
\(141\) −7.21427 −0.607551
\(142\) 0 0
\(143\) −4.24298 + 7.34906i −0.354816 + 0.614559i
\(144\) 0 0
\(145\) 6.45366 3.72602i 0.535947 0.309429i
\(146\) 0 0
\(147\) −6.82169 1.56988i −0.562644 0.129481i
\(148\) 0 0
\(149\) −9.38749 16.2596i −0.769053 1.33204i −0.938077 0.346428i \(-0.887395\pi\)
0.169023 0.985612i \(-0.445939\pi\)
\(150\) 0 0
\(151\) 8.81002 + 5.08647i 0.716949 + 0.413931i 0.813629 0.581385i \(-0.197489\pi\)
−0.0966795 + 0.995316i \(0.530822\pi\)
\(152\) 0 0
\(153\) 2.97680i 0.240660i
\(154\) 0 0
\(155\) 8.97471i 0.720866i
\(156\) 0 0
\(157\) 16.8074 + 9.70377i 1.34138 + 0.774445i 0.987010 0.160660i \(-0.0513624\pi\)
0.354369 + 0.935106i \(0.384696\pi\)
\(158\) 0 0
\(159\) −4.11168 7.12164i −0.326078 0.564783i
\(160\) 0 0
\(161\) −1.78757 + 15.7383i −0.140880 + 1.24035i
\(162\) 0 0
\(163\) 11.1093 6.41397i 0.870149 0.502381i 0.00275097 0.999996i \(-0.499124\pi\)
0.867398 + 0.497616i \(0.165791\pi\)
\(164\) 0 0
\(165\) 0.937541 1.62387i 0.0729875 0.126418i
\(166\) 0 0
\(167\) 5.24370 0.405770 0.202885 0.979203i \(-0.434968\pi\)
0.202885 + 0.979203i \(0.434968\pi\)
\(168\) 0 0
\(169\) −7.48148 −0.575498
\(170\) 0 0
\(171\) 2.83434 4.90922i 0.216747 0.375417i
\(172\) 0 0
\(173\) −11.0691 + 6.39077i −0.841571 + 0.485881i −0.857798 0.513987i \(-0.828168\pi\)
0.0162270 + 0.999868i \(0.494835\pi\)
\(174\) 0 0
\(175\) 1.05584 + 2.42594i 0.0798141 + 0.183384i
\(176\) 0 0
\(177\) 5.23100 + 9.06036i 0.393186 + 0.681018i
\(178\) 0 0
\(179\) 15.1207 + 8.72995i 1.13018 + 0.652507i 0.943979 0.330005i \(-0.107050\pi\)
0.186197 + 0.982512i \(0.440384\pi\)
\(180\) 0 0
\(181\) 9.94777i 0.739412i 0.929149 + 0.369706i \(0.120542\pi\)
−0.929149 + 0.369706i \(0.879458\pi\)
\(182\) 0 0
\(183\) 7.07525i 0.523018i
\(184\) 0 0
\(185\) 6.69175 + 3.86348i 0.491987 + 0.284049i
\(186\) 0 0
\(187\) −2.79088 4.83394i −0.204089 0.353493i
\(188\) 0 0
\(189\) 1.57301 2.12736i 0.114419 0.154742i
\(190\) 0 0
\(191\) −9.88439 + 5.70676i −0.715210 + 0.412926i −0.812987 0.582282i \(-0.802160\pi\)
0.0977774 + 0.995208i \(0.468827\pi\)
\(192\) 0 0
\(193\) 6.59852 11.4290i 0.474972 0.822675i −0.524617 0.851338i \(-0.675792\pi\)
0.999589 + 0.0286628i \(0.00912491\pi\)
\(194\) 0 0
\(195\) 4.52565 0.324088
\(196\) 0 0
\(197\) 0.0103779 0.000739396 0.000369698 1.00000i \(-0.499882\pi\)
0.000369698 1.00000i \(0.499882\pi\)
\(198\) 0 0
\(199\) −9.19370 + 15.9240i −0.651724 + 1.12882i 0.330980 + 0.943638i \(0.392621\pi\)
−0.982704 + 0.185182i \(0.940713\pi\)
\(200\) 0 0
\(201\) 7.40170 4.27337i 0.522076 0.301420i
\(202\) 0 0
\(203\) 11.7221 15.8532i 0.822732 1.11267i
\(204\) 0 0
\(205\) 5.69026 + 9.85582i 0.397425 + 0.688360i
\(206\) 0 0
\(207\) −5.18469 2.99338i −0.360361 0.208054i
\(208\) 0 0
\(209\) 10.6292i 0.735240i
\(210\) 0 0
\(211\) 16.5593i 1.13999i 0.821649 + 0.569994i \(0.193054\pi\)
−0.821649 + 0.569994i \(0.806946\pi\)
\(212\) 0 0
\(213\) −0.549358 0.317172i −0.0376414 0.0217323i
\(214\) 0 0
\(215\) −1.43346 2.48283i −0.0977615 0.169328i
\(216\) 0 0
\(217\) 9.47586 + 21.7721i 0.643263 + 1.47799i
\(218\) 0 0
\(219\) −0.999540 + 0.577085i −0.0675427 + 0.0389958i
\(220\) 0 0
\(221\) 6.73598 11.6671i 0.453111 0.784812i
\(222\) 0 0
\(223\) 29.2181 1.95659 0.978294 0.207220i \(-0.0664416\pi\)
0.978294 + 0.207220i \(0.0664416\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 8.86152 15.3486i 0.588160 1.01872i −0.406314 0.913734i \(-0.633186\pi\)
0.994473 0.104989i \(-0.0334807\pi\)
\(228\) 0 0
\(229\) −22.2460 + 12.8437i −1.47005 + 0.848737i −0.999435 0.0335996i \(-0.989303\pi\)
−0.470620 + 0.882336i \(0.655970\pi\)
\(230\) 0 0
\(231\) 0.559874 4.92931i 0.0368370 0.324325i
\(232\) 0 0
\(233\) 3.98378 + 6.90011i 0.260986 + 0.452041i 0.966504 0.256651i \(-0.0826190\pi\)
−0.705518 + 0.708692i \(0.749286\pi\)
\(234\) 0 0
\(235\) 6.24774 + 3.60713i 0.407557 + 0.235303i
\(236\) 0 0
\(237\) 7.35540i 0.477785i
\(238\) 0 0
\(239\) 11.1738i 0.722776i −0.932416 0.361388i \(-0.882303\pi\)
0.932416 0.361388i \(-0.117697\pi\)
\(240\) 0 0
\(241\) 2.80307 + 1.61835i 0.180561 + 0.104247i 0.587556 0.809183i \(-0.300090\pi\)
−0.406995 + 0.913430i \(0.633423\pi\)
\(242\) 0 0
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 5.12282 + 4.77040i 0.327285 + 0.304770i
\(246\) 0 0
\(247\) 22.2174 12.8272i 1.41366 0.816176i
\(248\) 0 0
\(249\) −4.07301 + 7.05466i −0.258116 + 0.447071i
\(250\) 0 0
\(251\) −23.0777 −1.45665 −0.728325 0.685232i \(-0.759701\pi\)
−0.728325 + 0.685232i \(0.759701\pi\)
\(252\) 0 0
\(253\) −11.2257 −0.705752
\(254\) 0 0
\(255\) −1.48840 + 2.57799i −0.0932073 + 0.161440i
\(256\) 0 0
\(257\) −11.6825 + 6.74492i −0.728737 + 0.420737i −0.817960 0.575275i \(-0.804895\pi\)
0.0892228 + 0.996012i \(0.471562\pi\)
\(258\) 0 0
\(259\) 20.3130 + 2.30717i 1.26219 + 0.143360i
\(260\) 0 0
\(261\) 3.72602 + 6.45366i 0.230635 + 0.399471i
\(262\) 0 0
\(263\) −10.6311 6.13786i −0.655541 0.378477i 0.135035 0.990841i \(-0.456885\pi\)
−0.790576 + 0.612364i \(0.790219\pi\)
\(264\) 0 0
\(265\) 8.22336i 0.505157i
\(266\) 0 0
\(267\) 10.1862i 0.623384i
\(268\) 0 0
\(269\) −14.3635 8.29279i −0.875760 0.505620i −0.00650214 0.999979i \(-0.502070\pi\)
−0.869258 + 0.494358i \(0.835403\pi\)
\(270\) 0 0
\(271\) −2.61765 4.53390i −0.159011 0.275415i 0.775501 0.631346i \(-0.217497\pi\)
−0.934512 + 0.355931i \(0.884164\pi\)
\(272\) 0 0
\(273\) 10.9790 4.77836i 0.664477 0.289200i
\(274\) 0 0
\(275\) −1.62387 + 0.937541i −0.0979230 + 0.0565359i
\(276\) 0 0
\(277\) −8.59955 + 14.8949i −0.516697 + 0.894945i 0.483115 + 0.875557i \(0.339505\pi\)
−0.999812 + 0.0193884i \(0.993828\pi\)
\(278\) 0 0
\(279\) −8.97471 −0.537302
\(280\) 0 0
\(281\) −0.275724 −0.0164483 −0.00822417 0.999966i \(-0.502618\pi\)
−0.00822417 + 0.999966i \(0.502618\pi\)
\(282\) 0 0
\(283\) −7.95480 + 13.7781i −0.472864 + 0.819024i −0.999518 0.0310560i \(-0.990113\pi\)
0.526654 + 0.850080i \(0.323446\pi\)
\(284\) 0 0
\(285\) −4.90922 + 2.83434i −0.290797 + 0.167892i
\(286\) 0 0
\(287\) 24.2104 + 17.9016i 1.42910 + 1.05670i
\(288\) 0 0
\(289\) −4.06932 7.04827i −0.239372 0.414604i
\(290\) 0 0
\(291\) 11.5712 + 6.68066i 0.678318 + 0.391627i
\(292\) 0 0
\(293\) 17.0929i 0.998581i 0.866435 + 0.499290i \(0.166406\pi\)
−0.866435 + 0.499290i \(0.833594\pi\)
\(294\) 0 0
\(295\) 10.4620i 0.609121i
\(296\) 0 0
\(297\) 1.62387 + 0.937541i 0.0942264 + 0.0544017i
\(298\) 0 0
\(299\) −13.5470 23.4641i −0.783443 1.35696i
\(300\) 0 0
\(301\) −6.09898 4.50970i −0.351539 0.259935i
\(302\) 0 0
\(303\) −10.9074 + 6.29739i −0.626614 + 0.361776i
\(304\) 0 0
\(305\) −3.53762 + 6.12735i −0.202564 + 0.350851i
\(306\) 0 0
\(307\) −18.8394 −1.07522 −0.537612 0.843192i \(-0.680674\pi\)
−0.537612 + 0.843192i \(0.680674\pi\)
\(308\) 0 0
\(309\) −2.21237 −0.125857
\(310\) 0 0
\(311\) −10.0004 + 17.3212i −0.567069 + 0.982192i 0.429785 + 0.902931i \(0.358589\pi\)
−0.996854 + 0.0792610i \(0.974744\pi\)
\(312\) 0 0
\(313\) 23.3223 13.4651i 1.31825 0.761093i 0.334805 0.942288i \(-0.391330\pi\)
0.983447 + 0.181194i \(0.0579963\pi\)
\(314\) 0 0
\(315\) −2.42594 + 1.05584i −0.136686 + 0.0594899i
\(316\) 0 0
\(317\) 17.4094 + 30.1539i 0.977808 + 1.69361i 0.670340 + 0.742054i \(0.266148\pi\)
0.307468 + 0.951559i \(0.400518\pi\)
\(318\) 0 0
\(319\) 12.1011 + 6.98660i 0.677534 + 0.391174i
\(320\) 0 0
\(321\) 2.93547i 0.163842i
\(322\) 0 0
\(323\) 16.8745i 0.938925i
\(324\) 0 0
\(325\) −3.91933 2.26282i −0.217405 0.125519i
\(326\) 0 0
\(327\) −7.27466 12.6001i −0.402289 0.696786i
\(328\) 0 0
\(329\) 18.9652 + 2.15408i 1.04559 + 0.118758i
\(330\) 0 0
\(331\) 18.4194 10.6345i 1.01242 0.584523i 0.100523 0.994935i \(-0.467948\pi\)
0.911900 + 0.410412i \(0.134615\pi\)
\(332\) 0 0
\(333\) −3.86348 + 6.69175i −0.211718 + 0.366706i
\(334\) 0 0
\(335\) −8.54674 −0.466959
\(336\) 0 0
\(337\) 19.3575 1.05447 0.527234 0.849720i \(-0.323229\pi\)
0.527234 + 0.849720i \(0.323229\pi\)
\(338\) 0 0
\(339\) 2.77040 4.79847i 0.150467 0.260617i
\(340\) 0 0
\(341\) −14.5737 + 8.41416i −0.789213 + 0.455652i
\(342\) 0 0
\(343\) 17.4645 + 6.16384i 0.942992 + 0.332816i
\(344\) 0 0
\(345\) 2.99338 + 5.18469i 0.161158 + 0.279134i
\(346\) 0 0
\(347\) −20.7161 11.9604i −1.11210 0.642070i −0.172726 0.984970i \(-0.555258\pi\)
−0.939372 + 0.342900i \(0.888591\pi\)
\(348\) 0 0
\(349\) 22.7648i 1.21857i −0.792950 0.609286i \(-0.791456\pi\)
0.792950 0.609286i \(-0.208544\pi\)
\(350\) 0 0
\(351\) 4.52565i 0.241561i
\(352\) 0 0
\(353\) 11.1738 + 6.45121i 0.594723 + 0.343363i 0.766963 0.641692i \(-0.221767\pi\)
−0.172240 + 0.985055i \(0.555100\pi\)
\(354\) 0 0
\(355\) 0.317172 + 0.549358i 0.0168337 + 0.0291569i
\(356\) 0 0
\(357\) −0.888834 + 7.82557i −0.0470421 + 0.414173i
\(358\) 0 0
\(359\) 20.7774 11.9958i 1.09659 0.633116i 0.161266 0.986911i \(-0.448442\pi\)
0.935323 + 0.353795i \(0.115109\pi\)
\(360\) 0 0
\(361\) −6.56696 + 11.3743i −0.345629 + 0.598647i
\(362\) 0 0
\(363\) −7.48407 −0.392812
\(364\) 0 0
\(365\) 1.15417 0.0604120
\(366\) 0 0
\(367\) −1.92425 + 3.33290i −0.100445 + 0.173976i −0.911868 0.410483i \(-0.865360\pi\)
0.811423 + 0.584459i \(0.198693\pi\)
\(368\) 0 0
\(369\) −9.85582 + 5.69026i −0.513073 + 0.296223i
\(370\) 0 0
\(371\) 8.68256 + 19.9494i 0.450776 + 1.03572i
\(372\) 0 0
\(373\) −8.57170 14.8466i −0.443826 0.768728i 0.554144 0.832421i \(-0.313046\pi\)
−0.997970 + 0.0636924i \(0.979712\pi\)
\(374\) 0 0
\(375\) 0.866025 + 0.500000i 0.0447214 + 0.0258199i
\(376\) 0 0
\(377\) 33.7253i 1.73694i
\(378\) 0 0
\(379\) 10.5714i 0.543014i −0.962436 0.271507i \(-0.912478\pi\)
0.962436 0.271507i \(-0.0875220\pi\)
\(380\) 0 0
\(381\) 8.59293 + 4.96113i 0.440229 + 0.254166i
\(382\) 0 0
\(383\) −4.13461 7.16135i −0.211269 0.365928i 0.740843 0.671678i \(-0.234426\pi\)
−0.952112 + 0.305750i \(0.901093\pi\)
\(384\) 0 0
\(385\) −2.94952 + 3.98897i −0.150321 + 0.203297i
\(386\) 0 0
\(387\) 2.48283 1.43346i 0.126209 0.0728671i
\(388\) 0 0
\(389\) −5.86397 + 10.1567i −0.297315 + 0.514965i −0.975521 0.219907i \(-0.929425\pi\)
0.678206 + 0.734872i \(0.262758\pi\)
\(390\) 0 0
\(391\) 17.8214 0.901268
\(392\) 0 0
\(393\) −15.4376 −0.778725
\(394\) 0 0
\(395\) −3.67770 + 6.36997i −0.185045 + 0.320508i
\(396\) 0 0
\(397\) 5.82047 3.36045i 0.292121 0.168656i −0.346777 0.937948i \(-0.612724\pi\)
0.638898 + 0.769291i \(0.279391\pi\)
\(398\) 0 0
\(399\) −8.91688 + 12.0593i −0.446402 + 0.603720i
\(400\) 0 0
\(401\) 2.05829 + 3.56506i 0.102786 + 0.178031i 0.912832 0.408336i \(-0.133891\pi\)
−0.810045 + 0.586367i \(0.800558\pi\)
\(402\) 0 0
\(403\) −35.1748 20.3082i −1.75218 1.01162i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 14.4887i 0.718178i
\(408\) 0 0
\(409\) −3.43444 1.98288i −0.169822 0.0980469i 0.412680 0.910876i \(-0.364593\pi\)
−0.582502 + 0.812829i \(0.697926\pi\)
\(410\) 0 0
\(411\) 0.0825367 + 0.142958i 0.00407123 + 0.00705158i
\(412\) 0 0
\(413\) −11.0462 25.3802i −0.543549 1.24888i
\(414\) 0 0
\(415\) 7.05466 4.07301i 0.346299 0.199936i
\(416\) 0 0
\(417\) −6.43332 + 11.1428i −0.315041 + 0.545667i
\(418\) 0 0
\(419\) 6.92874 0.338491 0.169246 0.985574i \(-0.445867\pi\)
0.169246 + 0.985574i \(0.445867\pi\)
\(420\) 0 0
\(421\) 33.2661 1.62129 0.810645 0.585538i \(-0.199117\pi\)
0.810645 + 0.585538i \(0.199117\pi\)
\(422\) 0 0
\(423\) −3.60713 + 6.24774i −0.175385 + 0.303775i
\(424\) 0 0
\(425\) 2.57799 1.48840i 0.125051 0.0721981i
\(426\) 0 0
\(427\) −2.11257 + 18.5998i −0.102235 + 0.900106i
\(428\) 0 0
\(429\) 4.24298 + 7.34906i 0.204853 + 0.354816i
\(430\) 0 0
\(431\) −24.1032 13.9160i −1.16101 0.670310i −0.209465 0.977816i \(-0.567172\pi\)
−0.951546 + 0.307506i \(0.900506\pi\)
\(432\) 0 0
\(433\) 33.4797i 1.60893i 0.593998 + 0.804467i \(0.297549\pi\)
−0.593998 + 0.804467i \(0.702451\pi\)
\(434\) 0 0
\(435\) 7.45204i 0.357298i
\(436\) 0 0
\(437\) 29.3903 + 16.9685i 1.40593 + 0.811714i
\(438\) 0 0
\(439\) −1.36991 2.37276i −0.0653823 0.113245i 0.831481 0.555553i \(-0.187493\pi\)
−0.896864 + 0.442307i \(0.854160\pi\)
\(440\) 0 0
\(441\) −4.77040 + 5.12282i −0.227162 + 0.243944i
\(442\) 0 0
\(443\) 23.3468 13.4793i 1.10924 0.640419i 0.170606 0.985339i \(-0.445428\pi\)
0.938632 + 0.344921i \(0.112094\pi\)
\(444\) 0 0
\(445\) −5.09309 + 8.82148i −0.241435 + 0.418178i
\(446\) 0 0
\(447\) −18.7750 −0.888026
\(448\) 0 0
\(449\) −28.8273 −1.36045 −0.680223 0.733005i \(-0.738117\pi\)
−0.680223 + 0.733005i \(0.738117\pi\)
\(450\) 0 0
\(451\) −10.6697 + 18.4805i −0.502417 + 0.870211i
\(452\) 0 0
\(453\) 8.81002 5.08647i 0.413931 0.238983i
\(454\) 0 0
\(455\) −11.8972 1.35130i −0.557751 0.0633498i
\(456\) 0 0
\(457\) 8.04242 + 13.9299i 0.376208 + 0.651612i 0.990507 0.137462i \(-0.0438944\pi\)
−0.614299 + 0.789074i \(0.710561\pi\)
\(458\) 0 0
\(459\) −2.57799 1.48840i −0.120330 0.0694727i
\(460\) 0 0
\(461\) 4.99187i 0.232494i −0.993220 0.116247i \(-0.962914\pi\)
0.993220 0.116247i \(-0.0370865\pi\)
\(462\) 0 0
\(463\) 31.6923i 1.47287i 0.676509 + 0.736434i \(0.263492\pi\)
−0.676509 + 0.736434i \(0.736508\pi\)
\(464\) 0 0
\(465\) 7.77232 + 4.48735i 0.360433 + 0.208096i
\(466\) 0 0
\(467\) 13.6091 + 23.5716i 0.629752 + 1.09076i 0.987601 + 0.156983i \(0.0501767\pi\)
−0.357850 + 0.933779i \(0.616490\pi\)
\(468\) 0 0
\(469\) −20.7339 + 9.02400i −0.957403 + 0.416690i
\(470\) 0 0
\(471\) 16.8074 9.70377i 0.774445 0.447126i
\(472\) 0 0
\(473\) 2.68786 4.65552i 0.123588 0.214061i
\(474\) 0 0
\(475\) 5.66868 0.260097
\(476\) 0 0
\(477\) −8.22336 −0.376522
\(478\) 0 0
\(479\) 0.465259 0.805852i 0.0212582 0.0368203i −0.855201 0.518297i \(-0.826566\pi\)
0.876459 + 0.481477i \(0.159899\pi\)
\(480\) 0 0
\(481\) −30.2845 + 17.4848i −1.38085 + 0.797237i
\(482\) 0 0
\(483\) 12.7360 + 9.41723i 0.579507 + 0.428499i
\(484\) 0 0
\(485\) −6.68066 11.5712i −0.303353 0.525423i
\(486\) 0 0
\(487\) −7.58152 4.37719i −0.343551 0.198350i 0.318290 0.947993i \(-0.396891\pi\)
−0.661841 + 0.749644i \(0.730225\pi\)
\(488\) 0 0
\(489\) 12.8279i 0.580099i
\(490\) 0 0
\(491\) 26.6319i 1.20188i −0.799293 0.600941i \(-0.794793\pi\)
0.799293 0.600941i \(-0.205207\pi\)
\(492\) 0 0
\(493\) −19.2113 11.0916i −0.865232 0.499542i
\(494\) 0 0
\(495\) −0.937541 1.62387i −0.0421393 0.0729875i
\(496\) 0 0
\(497\) 1.34948 + 0.997828i 0.0605323 + 0.0447587i
\(498\) 0 0
\(499\) 10.2300 5.90631i 0.457959 0.264403i −0.253226 0.967407i \(-0.581492\pi\)
0.711186 + 0.703004i \(0.248158\pi\)
\(500\) 0 0
\(501\) 2.62185 4.54118i 0.117136 0.202885i
\(502\) 0 0
\(503\) −29.1214 −1.29846 −0.649230 0.760592i \(-0.724909\pi\)
−0.649230 + 0.760592i \(0.724909\pi\)
\(504\) 0 0
\(505\) 12.5948 0.560461
\(506\) 0 0
\(507\) −3.74074 + 6.47915i −0.166132 + 0.287749i
\(508\) 0 0
\(509\) 11.3952 6.57904i 0.505085 0.291611i −0.225726 0.974191i \(-0.572475\pi\)
0.730811 + 0.682580i \(0.239142\pi\)
\(510\) 0 0
\(511\) 2.79995 1.21862i 0.123862 0.0539085i
\(512\) 0 0
\(513\) −2.83434 4.90922i −0.125139 0.216747i
\(514\) 0 0
\(515\) 1.91597 + 1.10619i 0.0844278 + 0.0487444i
\(516\) 0 0
\(517\) 13.5273i 0.594932i
\(518\) 0 0
\(519\) 12.7815i 0.561047i
\(520\) 0 0
\(521\) 11.7230 + 6.76830i 0.513596 + 0.296525i 0.734311 0.678814i \(-0.237506\pi\)
−0.220715 + 0.975338i \(0.570839\pi\)
\(522\) 0 0
\(523\) 1.11008 + 1.92272i 0.0485406 + 0.0840748i 0.889275 0.457373i \(-0.151210\pi\)
−0.840734 + 0.541448i \(0.817876\pi\)
\(524\) 0 0
\(525\) 2.62885 + 0.298587i 0.114732 + 0.0130314i
\(526\) 0 0
\(527\) 23.1367 13.3580i 1.00785 0.581882i
\(528\) 0 0
\(529\) 6.42067 11.1209i 0.279160 0.483519i
\(530\) 0 0
\(531\) 10.4620 0.454012
\(532\) 0 0
\(533\) −51.5042 −2.23089
\(534\) 0 0
\(535\) −1.46774 + 2.54219i −0.0634557 + 0.109909i
\(536\) 0 0
\(537\) 15.1207 8.72995i 0.652507 0.376725i
\(538\) 0 0
\(539\) −2.94365 + 12.7912i −0.126792 + 0.550957i
\(540\) 0 0
\(541\) −8.26130 14.3090i −0.355181 0.615192i 0.631968 0.774995i \(-0.282247\pi\)
−0.987149 + 0.159803i \(0.948914\pi\)
\(542\) 0 0
\(543\) 8.61502 + 4.97388i 0.369706 + 0.213450i
\(544\) 0 0
\(545\) 14.5493i 0.623224i
\(546\) 0 0
\(547\) 12.9826i 0.555097i −0.960712 0.277548i \(-0.910478\pi\)
0.960712 0.277548i \(-0.0895219\pi\)
\(548\) 0 0
\(549\) −6.12735 3.53762i −0.261509 0.150982i
\(550\) 0 0
\(551\) −21.1216 36.5837i −0.899811 1.55852i
\(552\) 0 0
\(553\) −2.19622 + 19.3362i −0.0933930 + 0.822261i
\(554\) 0 0
\(555\) 6.69175 3.86348i 0.284049 0.163996i
\(556\) 0 0
\(557\) −6.06010 + 10.4964i −0.256775 + 0.444747i −0.965376 0.260862i \(-0.915993\pi\)
0.708601 + 0.705609i \(0.249326\pi\)
\(558\) 0 0
\(559\) 12.9747 0.548772
\(560\) 0 0
\(561\) −5.58175 −0.235662
\(562\) 0 0
\(563\) 6.92368 11.9922i 0.291798 0.505410i −0.682437 0.730945i \(-0.739080\pi\)
0.974235 + 0.225535i \(0.0724130\pi\)
\(564\) 0 0
\(565\) −4.79847 + 2.77040i −0.201873 + 0.116552i
\(566\) 0 0
\(567\) −1.05584 2.42594i −0.0443411 0.101880i
\(568\) 0 0
\(569\) 3.18848 + 5.52260i 0.133668 + 0.231520i 0.925088 0.379753i \(-0.123991\pi\)
−0.791420 + 0.611273i \(0.790658\pi\)
\(570\) 0 0
\(571\) 8.96399 + 5.17536i 0.375131 + 0.216582i 0.675698 0.737179i \(-0.263842\pi\)
−0.300567 + 0.953761i \(0.597176\pi\)
\(572\) 0 0
\(573\) 11.4135i 0.476806i
\(574\) 0 0
\(575\) 5.98676i 0.249665i
\(576\) 0 0
\(577\) −4.35151 2.51234i −0.181156 0.104590i 0.406680 0.913571i \(-0.366686\pi\)
−0.587835 + 0.808980i \(0.700020\pi\)
\(578\) 0 0
\(579\) −6.59852 11.4290i −0.274225 0.474972i
\(580\) 0 0
\(581\) 12.8137 17.3295i 0.531604 0.718948i
\(582\) 0 0
\(583\) −13.3537 + 7.70974i −0.553052 + 0.319305i
\(584\) 0 0
\(585\) 2.26282 3.91933i 0.0935562 0.162044i
\(586\) 0 0
\(587\) 20.2367 0.835259 0.417629 0.908618i \(-0.362861\pi\)
0.417629 + 0.908618i \(0.362861\pi\)
\(588\) 0 0
\(589\) 50.8747 2.09626
\(590\) 0 0
\(591\) 0.00518896 0.00898754i 0.000213445 0.000369698i
\(592\) 0 0
\(593\) 19.6222 11.3289i 0.805787 0.465221i −0.0397037 0.999211i \(-0.512641\pi\)
0.845491 + 0.533990i \(0.179308\pi\)
\(594\) 0 0
\(595\) 4.68254 6.33272i 0.191965 0.259616i
\(596\) 0 0
\(597\) 9.19370 + 15.9240i 0.376273 + 0.651724i
\(598\) 0 0
\(599\) 4.88840 + 2.82232i 0.199735 + 0.115317i 0.596532 0.802590i \(-0.296545\pi\)
−0.396797 + 0.917906i \(0.629878\pi\)
\(600\) 0 0
\(601\) 1.39017i 0.0567064i 0.999598 + 0.0283532i \(0.00902631\pi\)
−0.999598 + 0.0283532i \(0.990974\pi\)
\(602\) 0 0
\(603\) 8.54674i 0.348050i
\(604\) 0 0
\(605\) 6.48139 + 3.74203i 0.263506 + 0.152135i
\(606\) 0 0
\(607\) −11.9793 20.7488i −0.486225 0.842167i 0.513649 0.858000i \(-0.328293\pi\)
−0.999875 + 0.0158335i \(0.994960\pi\)
\(608\) 0 0
\(609\) −7.86817 18.0782i −0.318834 0.732567i
\(610\) 0 0
\(611\) −28.2751 + 16.3246i −1.14389 + 0.660423i
\(612\) 0 0
\(613\) −6.96316 + 12.0605i −0.281239 + 0.487121i −0.971690 0.236258i \(-0.924079\pi\)
0.690451 + 0.723379i \(0.257412\pi\)
\(614\) 0 0
\(615\) 11.3805 0.458907
\(616\) 0 0
\(617\) 23.5607 0.948519 0.474259 0.880385i \(-0.342716\pi\)
0.474259 + 0.880385i \(0.342716\pi\)
\(618\) 0 0
\(619\) −21.3824 + 37.0354i −0.859431 + 1.48858i 0.0130411 + 0.999915i \(0.495849\pi\)
−0.872472 + 0.488664i \(0.837485\pi\)
\(620\) 0 0
\(621\) −5.18469 + 2.99338i −0.208054 + 0.120120i
\(622\) 0 0
\(623\) −3.04145 + 26.7779i −0.121853 + 1.07283i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −9.20519 5.31462i −0.367620 0.212245i
\(628\) 0 0
\(629\) 23.0017i 0.917137i
\(630\) 0 0
\(631\) 9.25893i 0.368592i 0.982871 + 0.184296i \(0.0590006\pi\)
−0.982871 + 0.184296i \(0.940999\pi\)
\(632\) 0 0
\(633\) 14.3407 + 8.27964i 0.569994 + 0.329086i
\(634\) 0 0
\(635\) −4.96113 8.59293i −0.196876 0.341000i
\(636\) 0 0
\(637\) −30.2888 + 9.28342i −1.20009 + 0.367823i
\(638\) 0 0
\(639\) −0.549358 + 0.317172i −0.0217323 + 0.0125471i
\(640\) 0 0
\(641\) −4.56275 + 7.90292i −0.180218 + 0.312147i −0.941955 0.335740i \(-0.891014\pi\)
0.761737 + 0.647887i \(0.224347\pi\)
\(642\) 0 0
\(643\) −30.0493 −1.18503 −0.592514 0.805560i \(-0.701864\pi\)
−0.592514 + 0.805560i \(0.701864\pi\)
\(644\) 0 0
\(645\) −2.86693 −0.112885
\(646\) 0 0
\(647\) −21.3665 + 37.0079i −0.840005 + 1.45493i 0.0498838 + 0.998755i \(0.484115\pi\)
−0.889889 + 0.456177i \(0.849218\pi\)
\(648\) 0 0
\(649\) 16.9889 9.80856i 0.666874 0.385020i
\(650\) 0 0
\(651\) 23.5931 + 2.67973i 0.924688 + 0.105027i
\(652\) 0 0
\(653\) 1.86588 + 3.23180i 0.0730175 + 0.126470i 0.900222 0.435430i \(-0.143404\pi\)
−0.827205 + 0.561900i \(0.810070\pi\)
\(654\) 0 0
\(655\) 13.3694 + 7.71881i 0.522385 + 0.301599i
\(656\) 0 0
\(657\) 1.15417i 0.0450284i
\(658\) 0 0
\(659\) 17.2197i 0.670784i −0.942079 0.335392i \(-0.891131\pi\)
0.942079 0.335392i \(-0.108869\pi\)
\(660\) 0 0
\(661\) −31.0073 17.9021i −1.20605 0.696310i −0.244152 0.969737i \(-0.578510\pi\)
−0.961893 + 0.273426i \(0.911843\pi\)
\(662\) 0 0
\(663\) −6.73598 11.6671i −0.261604 0.453111i
\(664\) 0 0
\(665\) 13.7519 5.98522i 0.533275 0.232097i
\(666\) 0 0
\(667\) −38.6365 + 22.3068i −1.49601 + 0.863723i
\(668\) 0 0
\(669\) 14.6091 25.3036i 0.564819 0.978294i
\(670\) 0 0
\(671\) −13.2667 −0.512154
\(672\) 0 0
\(673\) 19.8440 0.764931 0.382466 0.923970i \(-0.375075\pi\)
0.382466 + 0.923970i \(0.375075\pi\)
\(674\) 0 0
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) −6.27755 + 3.62435i −0.241266 + 0.139295i −0.615758 0.787935i \(-0.711150\pi\)
0.374492 + 0.927230i \(0.377817\pi\)
\(678\) 0 0
\(679\) −28.4243 21.0175i −1.09082 0.806576i
\(680\) 0 0
\(681\) −8.86152 15.3486i −0.339574 0.588160i
\(682\) 0 0
\(683\) 18.0000 + 10.3923i 0.688749 + 0.397650i 0.803143 0.595786i \(-0.203159\pi\)
−0.114394 + 0.993435i \(0.536493\pi\)
\(684\) 0 0
\(685\) 0.165073i 0.00630713i
\(686\) 0 0
\(687\) 25.6874i 0.980037i
\(688\) 0 0
\(689\) −32.2300 18.6080i −1.22787 0.708909i
\(690\) 0 0
\(691\) −5.23962 9.07528i −0.199324 0.345240i 0.748985 0.662587i \(-0.230541\pi\)
−0.948310 + 0.317347i \(0.897208\pi\)
\(692\) 0 0
\(693\) −3.98897 2.94952i −0.151528 0.112043i
\(694\) 0 0
\(695\) 11.1428 6.43332i 0.422672 0.244030i
\(696\) 0 0
\(697\) 16.9388 29.3388i 0.641602 1.11129i
\(698\) 0 0
\(699\) 7.96756 0.301361
\(700\) 0 0
\(701\) 23.6132 0.891860 0.445930 0.895068i \(-0.352873\pi\)
0.445930 + 0.895068i \(0.352873\pi\)
\(702\) 0 0
\(703\) 21.9008 37.9334i 0.826006 1.43068i
\(704\) 0 0
\(705\) 6.24774 3.60713i 0.235303 0.135852i
\(706\) 0 0
\(707\) 30.5542 13.2981i 1.14911 0.500126i
\(708\) 0 0
\(709\) −17.2701 29.9127i −0.648593 1.12340i −0.983459 0.181131i \(-0.942024\pi\)
0.334866 0.942266i \(-0.391309\pi\)
\(710\) 0 0
\(711\) −6.36997 3.67770i −0.238892 0.137925i
\(712\) 0 0
\(713\) 53.7294i 2.01218i
\(714\) 0 0
\(715\) 8.48596i 0.317357i
\(716\) 0 0
\(717\) −9.67683 5.58692i −0.361388 0.208647i
\(718\) 0 0
\(719\) −2.26385 3.92110i −0.0844273 0.146232i 0.820720 0.571331i \(-0.193573\pi\)
−0.905147 + 0.425099i \(0.860239\pi\)
\(720\) 0 0
\(721\) 5.81599 + 0.660585i 0.216599 + 0.0246015i
\(722\) 0 0
\(723\) 2.80307 1.61835i 0.104247 0.0601871i
\(724\) 0 0
\(725\) −3.72602 + 6.45366i −0.138381 + 0.239683i
\(726\) 0 0
\(727\) −13.3626 −0.495593 −0.247796 0.968812i \(-0.579706\pi\)
−0.247796 + 0.968812i \(0.579706\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −4.26714 + 7.39091i −0.157826 + 0.273363i
\(732\) 0 0
\(733\) 18.3612 10.6009i 0.678187 0.391551i −0.120985 0.992654i \(-0.538605\pi\)
0.799172 + 0.601103i \(0.205272\pi\)
\(734\) 0 0
\(735\) 6.69270 2.05129i 0.246864 0.0756631i
\(736\) 0 0
\(737\) −8.01292 13.8788i −0.295160 0.511232i
\(738\) 0 0
\(739\) −21.6184 12.4814i −0.795244 0.459135i 0.0465611 0.998915i \(-0.485174\pi\)
−0.841806 + 0.539781i \(0.818507\pi\)
\(740\) 0 0
\(741\) 25.6544i 0.942439i
\(742\) 0 0
\(743\) 32.7353i 1.20094i 0.799646 + 0.600471i \(0.205020\pi\)
−0.799646 + 0.600471i \(0.794980\pi\)
\(744\) 0 0
\(745\) 16.2596 + 9.38749i 0.595706 + 0.343931i
\(746\) 0 0
\(747\) 4.07301 + 7.05466i 0.149024 + 0.258116i
\(748\) 0 0
\(749\) −0.876492 + 7.71691i −0.0320263 + 0.281970i
\(750\) 0 0
\(751\) 41.0402 23.6946i 1.49758 0.864628i 0.497583 0.867416i \(-0.334221\pi\)
0.999996 + 0.00278892i \(0.000887743\pi\)
\(752\) 0 0
\(753\) −11.5388 + 19.9859i −0.420499 + 0.728325i
\(754\) 0 0
\(755\) −10.1729 −0.370231
\(756\) 0 0
\(757\) 25.4871 0.926344 0.463172 0.886268i \(-0.346711\pi\)
0.463172 + 0.886268i \(0.346711\pi\)
\(758\) 0 0
\(759\) −5.61284 + 9.72172i −0.203733 + 0.352876i
\(760\) 0 0
\(761\) −19.5014 + 11.2592i −0.706926 + 0.408144i −0.809922 0.586538i \(-0.800491\pi\)
0.102996 + 0.994682i \(0.467157\pi\)
\(762\) 0 0
\(763\) 15.3618 + 35.2958i 0.556133 + 1.27779i
\(764\) 0 0
\(765\) 1.48840 + 2.57799i 0.0538133 + 0.0932073i
\(766\) 0 0
\(767\) 41.0040 + 23.6737i 1.48057 + 0.854807i
\(768\) 0 0
\(769\) 18.6689i 0.673218i 0.941644 + 0.336609i \(0.109280\pi\)
−0.941644 + 0.336609i \(0.890720\pi\)
\(770\) 0 0
\(771\) 13.4898i 0.485825i
\(772\) 0 0
\(773\) −30.6237 17.6806i −1.10146 0.635928i −0.164856 0.986318i \(-0.552716\pi\)
−0.936604 + 0.350390i \(0.886049\pi\)
\(774\) 0 0
\(775\) −4.48735 7.77232i −0.161190 0.279190i
\(776\) 0 0
\(777\) 12.1546 16.4380i 0.436043 0.589711i
\(778\) 0 0
\(779\) 55.8695 32.2562i 2.00173 1.15570i
\(780\) 0 0
\(781\) −0.594724 + 1.03009i −0.0212809 + 0.0368596i
\(782\) 0 0
\(783\) 7.45204 0.266314
\(784\) 0 0
\(785\) −19.4075 −0.692685
\(786\) 0 0
\(787\) −5.68251 + 9.84239i −0.202559 + 0.350843i −0.949352 0.314213i \(-0.898259\pi\)
0.746793 + 0.665057i \(0.231593\pi\)
\(788\) 0 0
\(789\) −10.6311 + 6.13786i −0.378477 + 0.218514i
\(790\) 0 0
\(791\) −8.71572 + 11.7873i −0.309895 + 0.419107i
\(792\) 0 0
\(793\) −16.0100 27.7302i −0.568533 0.984728i
\(794\) 0 0
\(795\) 7.12164 + 4.11168i 0.252579 + 0.145826i
\(796\) 0 0
\(797\) 43.3369i 1.53507i −0.641006 0.767536i \(-0.721482\pi\)
0.641006 0.767536i \(-0.278518\pi\)
\(798\) 0 0
\(799\) 21.4755i 0.759747i
\(800\) 0 0
\(801\) −8.82148 5.09309i −0.311692 0.179955i
\(802\) 0 0
\(803\) 1.08208 + 1.87422i 0.0381858 + 0.0661398i
\(804\) 0 0
\(805\) −6.32107 14.5235i −0.222788 0.511888i
\(806\) 0 0
\(807\) −14.3635 + 8.29279i −0.505620 + 0.291920i
\(808\) 0 0
\(809\) −3.16079 + 5.47464i −0.111127 + 0.192478i −0.916225 0.400664i \(-0.868779\pi\)
0.805098 + 0.593142i \(0.202113\pi\)
\(810\) 0 0
\(811\) −11.9017 −0.417926 −0.208963 0.977924i \(-0.567009\pi\)
−0.208963 + 0.977924i \(0.567009\pi\)
\(812\) 0 0
\(813\) −5.23530 −0.183610
\(814\) 0 0
\(815\) −6.41397 + 11.1093i −0.224671 + 0.389142i
\(816\) 0 0
\(817\) −14.0744 + 8.12585i −0.492400 + 0.284287i
\(818\) 0 0
\(819\) 1.35130 11.8972i 0.0472181 0.415723i
\(820\) 0 0
\(821\) 17.4032 + 30.1433i 0.607377 + 1.05201i 0.991671 + 0.128797i \(0.0411116\pi\)
−0.384294 + 0.923211i \(0.625555\pi\)
\(822\) 0 0
\(823\) −6.60491 3.81335i −0.230233 0.132925i 0.380447 0.924803i \(-0.375770\pi\)
−0.610679 + 0.791878i \(0.709104\pi\)
\(824\) 0 0
\(825\) 1.87508i 0.0652820i
\(826\) 0 0
\(827\) 16.9632i 0.589867i −0.955518 0.294934i \(-0.904702\pi\)
0.955518 0.294934i \(-0.0952976\pi\)
\(828\) 0 0
\(829\) −19.1415 11.0514i −0.664813 0.383830i 0.129295 0.991606i \(-0.458729\pi\)
−0.794109 + 0.607776i \(0.792062\pi\)
\(830\) 0 0
\(831\) 8.59955 + 14.8949i 0.298315 + 0.516697i
\(832\) 0 0
\(833\) 4.67322 20.3068i 0.161917 0.703590i
\(834\) 0 0
\(835\) −4.54118 + 2.62185i −0.157154 + 0.0907329i
\(836\) 0 0
\(837\) −4.48735 + 7.77232i −0.155106 + 0.268651i
\(838\) 0 0
\(839\) 46.1447 1.59309 0.796546 0.604578i \(-0.206658\pi\)
0.796546 + 0.604578i \(0.206658\pi\)
\(840\) 0 0
\(841\) 26.5330 0.914930
\(842\) 0 0
\(843\) −0.137862 + 0.238784i −0.00474823 + 0.00822417i
\(844\) 0 0
\(845\) 6.47915 3.74074i 0.222890 0.128685i
\(846\) 0 0
\(847\) 19.6745 + 2.23464i 0.676023 + 0.0767832i
\(848\) 0 0
\(849\) 7.95480 + 13.7781i 0.273008 + 0.472864i
\(850\) 0 0
\(851\) −40.0619 23.1298i −1.37331 0.792878i
\(852\) 0 0
\(853\) 19.0752i 0.653123i 0.945176 + 0.326561i \(0.105890\pi\)
−0.945176 + 0.326561i \(0.894110\pi\)
\(854\) 0 0
\(855\) 5.66868i 0.193865i
\(856\) 0 0
\(857\) −39.8542 23.0099i −1.36139 0.786002i −0.371585 0.928399i \(-0.621186\pi\)
−0.989810 + 0.142397i \(0.954519\pi\)
\(858\) 0 0
\(859\) −26.3797 45.6909i −0.900063 1.55895i −0.827411 0.561597i \(-0.810187\pi\)
−0.0726518 0.997357i \(-0.523146\pi\)
\(860\) 0 0
\(861\) 27.6085 12.0160i 0.940895 0.409505i
\(862\) 0 0
\(863\) −8.11689 + 4.68629i −0.276302 + 0.159523i −0.631748 0.775174i \(-0.717662\pi\)
0.355446 + 0.934697i \(0.384329\pi\)
\(864\) 0 0
\(865\) 6.39077 11.0691i 0.217293 0.376362i
\(866\) 0 0
\(867\) −8.13864 −0.276403
\(868\) 0 0
\(869\) −13.7920 −0.467861
\(870\) 0 0
\(871\) 19.3398 33.4975i 0.655303 1.13502i
\(872\) 0 0
\(873\) 11.5712 6.68066i 0.391627 0.226106i
\(874\) 0 0
\(875\) −2.12736 1.57301i −0.0719178 0.0531774i
\(876\) 0 0
\(877\) 9.66868 + 16.7466i 0.326488 + 0.565494i 0.981812 0.189854i \(-0.0608014\pi\)
−0.655324 + 0.755348i \(0.727468\pi\)
\(878\) 0 0
\(879\) 14.8029 + 8.54647i 0.499290 + 0.288265i
\(880\) 0 0
\(881\) 31.0888i 1.04741i −0.851900 0.523704i \(-0.824550\pi\)
0.851900 0.523704i \(-0.175450\pi\)
\(882\) 0 0
\(883\) 9.59350i 0.322847i 0.986885 + 0.161424i \(0.0516085\pi\)
−0.986885 + 0.161424i \(0.948391\pi\)
\(884\) 0 0
\(885\) −9.06036 5.23100i −0.304561 0.175838i
\(886\) 0 0
\(887\) −13.9328 24.1323i −0.467817 0.810283i 0.531507 0.847054i \(-0.321626\pi\)
−0.999324 + 0.0367714i \(0.988293\pi\)
\(888\) 0 0
\(889\) −21.1082 15.6078i −0.707946 0.523469i
\(890\) 0 0
\(891\) 1.62387 0.937541i 0.0544017 0.0314088i
\(892\) 0 0
\(893\) 20.4477 35.4164i 0.684255 1.18517i
\(894\) 0 0
\(895\) −17.4599 −0.583620
\(896\) 0 0
\(897\) −27.0940 −0.904642
\(898\) 0 0
\(899\) −33.4400 + 57.9197i −1.11528 + 1.93173i
\(900\) 0 0
\(901\) 21.1997 12.2397i 0.706265 0.407763i
\(902\) 0 0
\(903\) −6.95501 + 3.02702i −0.231448 + 0.100733i
\(904\) 0 0
\(905\) −4.97388 8.61502i −0.165337 0.286373i
\(906\) 0 0
\(907\) −5.52101 3.18756i −0.183322 0.105841i 0.405530 0.914082i \(-0.367087\pi\)
−0.588853 + 0.808240i \(0.700420\pi\)
\(908\) 0 0
\(909\) 12.5948i 0.417743i
\(910\) 0 0
\(911\) 48.1522i 1.59535i 0.603085 + 0.797677i \(0.293938\pi\)
−0.603085 + 0.797677i \(0.706062\pi\)
\(912\) 0 0
\(913\) 13.2281 + 7.63722i 0.437785 + 0.252755i
\(914\) 0 0
\(915\) 3.53762 + 6.12735i 0.116950 + 0.202564i
\(916\) 0 0
\(917\) 40.5832 + 4.60947i 1.34018 + 0.152218i
\(918\) 0 0
\(919\) 25.0624 14.4698i 0.826732 0.477314i −0.0260007 0.999662i \(-0.508277\pi\)
0.852732 + 0.522348i \(0.174944\pi\)
\(920\) 0 0
\(921\) −9.41972 + 16.3154i −0.310390 + 0.537612i
\(922\) 0 0
\(923\) −2.87082 −0.0944941
\(924\) 0 0
\(925\) −7.72697 −0.254061
\(926\) 0 0
\(927\) −1.10619 + 1.91597i −0.0363319 + 0.0629287i
\(928\) 0 0
\(929\) 38.6977 22.3422i 1.26963 0.733022i 0.294714 0.955586i \(-0.404776\pi\)
0.974918 + 0.222563i \(0.0714424\pi\)
\(930\) 0 0
\(931\) 27.0419 29.0396i 0.886261 0.951735i
\(932\) 0 0
\(933\) 10.0004 + 17.3212i 0.327397 + 0.567069i
\(934\) 0 0
\(935\) 4.83394 + 2.79088i 0.158087 + 0.0912714i
\(936\) 0 0
\(937\) 24.9763i 0.815939i −0.912996 0.407969i \(-0.866237\pi\)
0.912996 0.407969i \(-0.133763\pi\)
\(938\) 0 0
\(939\) 26.9302i 0.878835i
\(940\) 0 0
\(941\) 34.9238 + 20.1633i 1.13848 + 0.657303i 0.946054 0.324008i \(-0.105030\pi\)
0.192428 + 0.981311i \(0.438364\pi\)
\(942\) 0 0
\(943\) −34.0662 59.0045i −1.10935 1.92145i
\(944\) 0 0
\(945\) −0.298587 + 2.62885i −0.00971302 + 0.0855165i
\(946\) 0 0
\(947\) 50.8003 29.3295i 1.65079 0.953082i 0.674038 0.738697i \(-0.264559\pi\)
0.976749 0.214385i \(-0.0687748\pi\)
\(948\) 0 0
\(949\) −2.61168 + 4.52357i −0.0847788 + 0.146841i
\(950\) 0 0
\(951\) 34.8187 1.12908
\(952\) 0 0
\(953\) 27.1232 0.878605 0.439303 0.898339i \(-0.355226\pi\)
0.439303 + 0.898339i \(0.355226\pi\)
\(954\) 0 0
\(955\) 5.70676 9.88439i 0.184666 0.319851i
\(956\) 0 0
\(957\) 12.1011 6.98660i 0.391174 0.225845i
\(958\) 0 0
\(959\) −0.174291 0.400459i −0.00562816 0.0129315i
\(960\) 0 0
\(961\) −24.7727 42.9075i −0.799119 1.38411i
\(962\) 0 0
\(963\) −2.54219 1.46774i −0.0819210 0.0472971i
\(964\) 0 0
\(965\) 13.1970i 0.424828i
\(966\) 0 0
\(967\) 4.52047i 0.145369i 0.997355 + 0.0726843i \(0.0231566\pi\)
−0.997355 + 0.0726843i \(0.976843\pi\)
\(968\) 0 0
\(969\) 14.6138 + 8.43727i 0.469462 + 0.271044i
\(970\) 0 0
\(971\) 22.8215 + 39.5280i 0.732377 + 1.26851i 0.955865 + 0.293808i \(0.0949225\pi\)
−0.223487 + 0.974707i \(0.571744\pi\)
\(972\) 0 0
\(973\) 20.2393 27.3719i 0.648843 0.877504i
\(974\) 0 0
\(975\) −3.91933 + 2.26282i −0.125519 + 0.0724683i
\(976\) 0 0
\(977\) −24.2171 + 41.9453i −0.774774 + 1.34195i 0.160147 + 0.987093i \(0.448803\pi\)
−0.934921 + 0.354855i \(0.884530\pi\)
\(978\) 0 0
\(979\) −19.0999 −0.610436
\(980\) 0 0
\(981\) −14.5493 −0.464524
\(982\) 0 0
\(983\) 24.0315 41.6238i 0.766486 1.32759i −0.172972 0.984927i \(-0.555337\pi\)
0.939458 0.342665i \(-0.111330\pi\)
\(984\) 0 0
\(985\) −0.00898754 + 0.00518896i −0.000286367 + 0.000165334i
\(986\) 0 0
\(987\) 11.3481 15.3473i 0.361214 0.488510i
\(988\) 0 0
\(989\) 8.58181 + 14.8641i 0.272886 + 0.472652i
\(990\) 0 0
\(991\) −32.9328 19.0138i −1.04615 0.603993i −0.124578 0.992210i \(-0.539758\pi\)
−0.921568 + 0.388217i \(0.873091\pi\)
\(992\) 0 0
\(993\) 21.2689i 0.674949i
\(994\) 0 0
\(995\) 18.3874i 0.582920i
\(996\) 0 0
\(997\) −21.7005 12.5288i −0.687262 0.396791i 0.115323 0.993328i \(-0.463210\pi\)
−0.802586 + 0.596537i \(0.796543\pi\)
\(998\) 0 0
\(999\) 3.86348 + 6.69175i 0.122235 + 0.211718i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.dx.h.31.1 yes 12
4.3 odd 2 1680.2.dx.f.31.3 12
7.5 odd 6 1680.2.dx.f.271.3 yes 12
28.19 even 6 inner 1680.2.dx.h.271.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.dx.f.31.3 12 4.3 odd 2
1680.2.dx.f.271.3 yes 12 7.5 odd 6
1680.2.dx.h.31.1 yes 12 1.1 even 1 trivial
1680.2.dx.h.271.1 yes 12 28.19 even 6 inner