Properties

Label 1680.2.dx.f.271.5
Level $1680$
Weight $2$
Character 1680.271
Analytic conductor $13.415$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(31,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.dx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-6,0,0,0,2,0,-6,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 35 x^{10} - 120 x^{9} + 328 x^{8} - 658 x^{7} + 1045 x^{6} - 1270 x^{5} + 1183 x^{4} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.5
Root \(0.500000 + 1.60175i\) of defining polynomial
Character \(\chi\) \(=\) 1680.271
Dual form 1680.2.dx.f.31.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(0.866025 + 0.500000i) q^{5} +(0.407721 - 2.61415i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(-5.57010 + 3.21590i) q^{11} +1.38806i q^{13} -1.00000i q^{15} +(3.91777 - 2.26192i) q^{17} +(-3.88789 + 6.73403i) q^{19} +(-2.46778 + 0.953976i) q^{21} +(3.02783 + 1.74812i) q^{23} +(0.500000 + 0.866025i) q^{25} +1.00000 q^{27} +9.76080 q^{29} +(1.90023 + 3.29129i) q^{31} +(5.57010 + 3.21590i) q^{33} +(1.66017 - 2.06006i) q^{35} +(-4.66988 + 8.08846i) q^{37} +(1.20210 - 0.694031i) q^{39} +7.82852i q^{41} +0.143761i q^{43} +(-0.866025 + 0.500000i) q^{45} +(4.69975 - 8.14020i) q^{47} +(-6.66753 - 2.13169i) q^{49} +(-3.91777 - 2.26192i) q^{51} +(-2.93556 - 5.08453i) q^{53} -6.43180 q^{55} +7.77579 q^{57} +(-0.870353 - 1.50750i) q^{59} +(8.62835 + 4.98158i) q^{61} +(2.06006 + 1.66017i) q^{63} +(-0.694031 + 1.20210i) q^{65} +(4.20817 - 2.42959i) q^{67} -3.49624i q^{69} -1.97521i q^{71} +(5.53477 - 3.19550i) q^{73} +(0.500000 - 0.866025i) q^{75} +(6.13578 + 15.8723i) q^{77} +(-2.49151 - 1.43848i) q^{79} +(-0.500000 - 0.866025i) q^{81} +5.81544 q^{83} +4.52385 q^{85} +(-4.88040 - 8.45310i) q^{87} +(1.02870 + 0.593918i) q^{89} +(3.62860 + 0.565943i) q^{91} +(1.90023 - 3.29129i) q^{93} +(-6.73403 + 3.88789i) q^{95} +12.3645i q^{97} -6.43180i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} + 2 q^{7} - 6 q^{9} - 10 q^{19} - 4 q^{21} - 12 q^{23} + 6 q^{25} + 12 q^{27} + 8 q^{29} + 2 q^{31} + 4 q^{35} - 10 q^{37} - 6 q^{39} + 2 q^{49} + 16 q^{53} + 20 q^{57} + 24 q^{61} + 2 q^{63}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 0.866025 + 0.500000i 0.387298 + 0.223607i
\(6\) 0 0
\(7\) 0.407721 2.61415i 0.154104 0.988055i
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −5.57010 + 3.21590i −1.67945 + 0.969630i −0.717437 + 0.696624i \(0.754685\pi\)
−0.962012 + 0.273006i \(0.911982\pi\)
\(12\) 0 0
\(13\) 1.38806i 0.384979i 0.981299 + 0.192490i \(0.0616562\pi\)
−0.981299 + 0.192490i \(0.938344\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 3.91777 2.26192i 0.950198 0.548597i 0.0570555 0.998371i \(-0.481829\pi\)
0.893142 + 0.449774i \(0.148495\pi\)
\(18\) 0 0
\(19\) −3.88789 + 6.73403i −0.891944 + 1.54489i −0.0544021 + 0.998519i \(0.517325\pi\)
−0.837542 + 0.546373i \(0.816008\pi\)
\(20\) 0 0
\(21\) −2.46778 + 0.953976i −0.538513 + 0.208175i
\(22\) 0 0
\(23\) 3.02783 + 1.74812i 0.631347 + 0.364508i 0.781274 0.624189i \(-0.214570\pi\)
−0.149926 + 0.988697i \(0.547904\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 9.76080 1.81253 0.906267 0.422705i \(-0.138920\pi\)
0.906267 + 0.422705i \(0.138920\pi\)
\(30\) 0 0
\(31\) 1.90023 + 3.29129i 0.341291 + 0.591133i 0.984673 0.174413i \(-0.0558026\pi\)
−0.643382 + 0.765545i \(0.722469\pi\)
\(32\) 0 0
\(33\) 5.57010 + 3.21590i 0.969630 + 0.559816i
\(34\) 0 0
\(35\) 1.66017 2.06006i 0.280620 0.348213i
\(36\) 0 0
\(37\) −4.66988 + 8.08846i −0.767723 + 1.32973i 0.171072 + 0.985259i \(0.445277\pi\)
−0.938795 + 0.344476i \(0.888056\pi\)
\(38\) 0 0
\(39\) 1.20210 0.694031i 0.192490 0.111134i
\(40\) 0 0
\(41\) 7.82852i 1.22261i 0.791395 + 0.611304i \(0.209355\pi\)
−0.791395 + 0.611304i \(0.790645\pi\)
\(42\) 0 0
\(43\) 0.143761i 0.0219233i 0.999940 + 0.0109616i \(0.00348927\pi\)
−0.999940 + 0.0109616i \(0.996511\pi\)
\(44\) 0 0
\(45\) −0.866025 + 0.500000i −0.129099 + 0.0745356i
\(46\) 0 0
\(47\) 4.69975 8.14020i 0.685529 1.18737i −0.287742 0.957708i \(-0.592904\pi\)
0.973270 0.229663i \(-0.0737622\pi\)
\(48\) 0 0
\(49\) −6.66753 2.13169i −0.952504 0.304527i
\(50\) 0 0
\(51\) −3.91777 2.26192i −0.548597 0.316733i
\(52\) 0 0
\(53\) −2.93556 5.08453i −0.403230 0.698414i 0.590884 0.806757i \(-0.298779\pi\)
−0.994114 + 0.108342i \(0.965446\pi\)
\(54\) 0 0
\(55\) −6.43180 −0.867264
\(56\) 0 0
\(57\) 7.77579 1.02993
\(58\) 0 0
\(59\) −0.870353 1.50750i −0.113310 0.196259i 0.803793 0.594909i \(-0.202812\pi\)
−0.917103 + 0.398650i \(0.869479\pi\)
\(60\) 0 0
\(61\) 8.62835 + 4.98158i 1.10475 + 0.637826i 0.937464 0.348083i \(-0.113167\pi\)
0.167283 + 0.985909i \(0.446501\pi\)
\(62\) 0 0
\(63\) 2.06006 + 1.66017i 0.259543 + 0.209162i
\(64\) 0 0
\(65\) −0.694031 + 1.20210i −0.0860840 + 0.149102i
\(66\) 0 0
\(67\) 4.20817 2.42959i 0.514110 0.296822i −0.220411 0.975407i \(-0.570740\pi\)
0.734522 + 0.678585i \(0.237407\pi\)
\(68\) 0 0
\(69\) 3.49624i 0.420898i
\(70\) 0 0
\(71\) 1.97521i 0.234415i −0.993107 0.117207i \(-0.962606\pi\)
0.993107 0.117207i \(-0.0373942\pi\)
\(72\) 0 0
\(73\) 5.53477 3.19550i 0.647796 0.374005i −0.139815 0.990178i \(-0.544651\pi\)
0.787611 + 0.616172i \(0.211318\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0 0
\(77\) 6.13578 + 15.8723i 0.699237 + 1.80881i
\(78\) 0 0
\(79\) −2.49151 1.43848i −0.280317 0.161841i 0.353250 0.935529i \(-0.385077\pi\)
−0.633567 + 0.773688i \(0.718410\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 5.81544 0.638328 0.319164 0.947700i \(-0.396598\pi\)
0.319164 + 0.947700i \(0.396598\pi\)
\(84\) 0 0
\(85\) 4.52385 0.490680
\(86\) 0 0
\(87\) −4.88040 8.45310i −0.523234 0.906267i
\(88\) 0 0
\(89\) 1.02870 + 0.593918i 0.109042 + 0.0629552i 0.553529 0.832830i \(-0.313281\pi\)
−0.444487 + 0.895785i \(0.646614\pi\)
\(90\) 0 0
\(91\) 3.62860 + 0.565943i 0.380381 + 0.0593269i
\(92\) 0 0
\(93\) 1.90023 3.29129i 0.197044 0.341291i
\(94\) 0 0
\(95\) −6.73403 + 3.88789i −0.690897 + 0.398889i
\(96\) 0 0
\(97\) 12.3645i 1.25543i 0.778444 + 0.627714i \(0.216009\pi\)
−0.778444 + 0.627714i \(0.783991\pi\)
\(98\) 0 0
\(99\) 6.43180i 0.646420i
\(100\) 0 0
\(101\) −3.83564 + 2.21451i −0.381661 + 0.220352i −0.678541 0.734563i \(-0.737387\pi\)
0.296880 + 0.954915i \(0.404054\pi\)
\(102\) 0 0
\(103\) −8.02040 + 13.8917i −0.790274 + 1.36879i 0.135524 + 0.990774i \(0.456728\pi\)
−0.925797 + 0.378020i \(0.876605\pi\)
\(104\) 0 0
\(105\) −2.61415 0.407721i −0.255115 0.0397895i
\(106\) 0 0
\(107\) 10.6282 + 6.13618i 1.02747 + 0.593207i 0.916257 0.400590i \(-0.131195\pi\)
0.111208 + 0.993797i \(0.464528\pi\)
\(108\) 0 0
\(109\) −2.20359 3.81672i −0.211065 0.365576i 0.740983 0.671524i \(-0.234360\pi\)
−0.952048 + 0.305948i \(0.901027\pi\)
\(110\) 0 0
\(111\) 9.33975 0.886490
\(112\) 0 0
\(113\) −14.3597 −1.35085 −0.675424 0.737429i \(-0.736039\pi\)
−0.675424 + 0.737429i \(0.736039\pi\)
\(114\) 0 0
\(115\) 1.74812 + 3.02783i 0.163013 + 0.282347i
\(116\) 0 0
\(117\) −1.20210 0.694031i −0.111134 0.0641632i
\(118\) 0 0
\(119\) −4.31564 11.1638i −0.395614 1.02339i
\(120\) 0 0
\(121\) 15.1840 26.2995i 1.38037 2.39086i
\(122\) 0 0
\(123\) 6.77969 3.91426i 0.611304 0.352937i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 20.1471i 1.78777i 0.448300 + 0.893883i \(0.352030\pi\)
−0.448300 + 0.893883i \(0.647970\pi\)
\(128\) 0 0
\(129\) 0.124500 0.0718803i 0.0109616 0.00632871i
\(130\) 0 0
\(131\) 1.76419 3.05567i 0.154138 0.266975i −0.778607 0.627512i \(-0.784073\pi\)
0.932745 + 0.360537i \(0.117407\pi\)
\(132\) 0 0
\(133\) 16.0186 + 12.9091i 1.38899 + 1.11936i
\(134\) 0 0
\(135\) 0.866025 + 0.500000i 0.0745356 + 0.0430331i
\(136\) 0 0
\(137\) 6.71754 + 11.6351i 0.573918 + 0.994055i 0.996158 + 0.0875713i \(0.0279105\pi\)
−0.422240 + 0.906484i \(0.638756\pi\)
\(138\) 0 0
\(139\) 2.02416 0.171687 0.0858437 0.996309i \(-0.472641\pi\)
0.0858437 + 0.996309i \(0.472641\pi\)
\(140\) 0 0
\(141\) −9.39950 −0.791580
\(142\) 0 0
\(143\) −4.46387 7.73165i −0.373288 0.646553i
\(144\) 0 0
\(145\) 8.45310 + 4.88040i 0.701991 + 0.405295i
\(146\) 0 0
\(147\) 1.48767 + 6.84009i 0.122701 + 0.564161i
\(148\) 0 0
\(149\) −5.53998 + 9.59553i −0.453853 + 0.786096i −0.998621 0.0524903i \(-0.983284\pi\)
0.544769 + 0.838586i \(0.316617\pi\)
\(150\) 0 0
\(151\) −3.19701 + 1.84580i −0.260169 + 0.150209i −0.624412 0.781095i \(-0.714661\pi\)
0.364243 + 0.931304i \(0.381328\pi\)
\(152\) 0 0
\(153\) 4.52385i 0.365731i
\(154\) 0 0
\(155\) 3.80045i 0.305260i
\(156\) 0 0
\(157\) −6.60934 + 3.81591i −0.527483 + 0.304542i −0.739991 0.672617i \(-0.765170\pi\)
0.212508 + 0.977159i \(0.431837\pi\)
\(158\) 0 0
\(159\) −2.93556 + 5.08453i −0.232805 + 0.403230i
\(160\) 0 0
\(161\) 5.80436 7.20246i 0.457448 0.567633i
\(162\) 0 0
\(163\) 13.0726 + 7.54749i 1.02393 + 0.591165i 0.915239 0.402910i \(-0.132001\pi\)
0.108689 + 0.994076i \(0.465335\pi\)
\(164\) 0 0
\(165\) 3.21590 + 5.57010i 0.250357 + 0.433632i
\(166\) 0 0
\(167\) −6.08701 −0.471027 −0.235514 0.971871i \(-0.575677\pi\)
−0.235514 + 0.971871i \(0.575677\pi\)
\(168\) 0 0
\(169\) 11.0733 0.851791
\(170\) 0 0
\(171\) −3.88789 6.73403i −0.297315 0.514964i
\(172\) 0 0
\(173\) 0.0409579 + 0.0236471i 0.00311397 + 0.00179785i 0.501556 0.865125i \(-0.332761\pi\)
−0.498442 + 0.866923i \(0.666094\pi\)
\(174\) 0 0
\(175\) 2.46778 0.953976i 0.186546 0.0721138i
\(176\) 0 0
\(177\) −0.870353 + 1.50750i −0.0654197 + 0.113310i
\(178\) 0 0
\(179\) −0.0149916 + 0.00865543i −0.00112053 + 0.000646937i −0.500560 0.865702i \(-0.666873\pi\)
0.499440 + 0.866349i \(0.333539\pi\)
\(180\) 0 0
\(181\) 12.7350i 0.946584i 0.880905 + 0.473292i \(0.156935\pi\)
−0.880905 + 0.473292i \(0.843065\pi\)
\(182\) 0 0
\(183\) 9.96316i 0.736498i
\(184\) 0 0
\(185\) −8.08846 + 4.66988i −0.594676 + 0.343336i
\(186\) 0 0
\(187\) −14.5482 + 25.1983i −1.06387 + 1.84268i
\(188\) 0 0
\(189\) 0.407721 2.61415i 0.0296574 0.190151i
\(190\) 0 0
\(191\) 18.2428 + 10.5325i 1.32000 + 0.762105i 0.983729 0.179658i \(-0.0574993\pi\)
0.336276 + 0.941764i \(0.390833\pi\)
\(192\) 0 0
\(193\) −6.41058 11.1035i −0.461444 0.799244i 0.537589 0.843207i \(-0.319335\pi\)
−0.999033 + 0.0439627i \(0.986002\pi\)
\(194\) 0 0
\(195\) 1.38806 0.0994012
\(196\) 0 0
\(197\) 9.93803 0.708056 0.354028 0.935235i \(-0.384812\pi\)
0.354028 + 0.935235i \(0.384812\pi\)
\(198\) 0 0
\(199\) −4.22790 7.32293i −0.299708 0.519109i 0.676361 0.736570i \(-0.263556\pi\)
−0.976069 + 0.217461i \(0.930222\pi\)
\(200\) 0 0
\(201\) −4.20817 2.42959i −0.296822 0.171370i
\(202\) 0 0
\(203\) 3.97969 25.5162i 0.279319 1.79088i
\(204\) 0 0
\(205\) −3.91426 + 6.77969i −0.273384 + 0.473514i
\(206\) 0 0
\(207\) −3.02783 + 1.74812i −0.210449 + 0.121503i
\(208\) 0 0
\(209\) 50.0123i 3.45942i
\(210\) 0 0
\(211\) 2.61292i 0.179881i −0.995947 0.0899403i \(-0.971332\pi\)
0.995947 0.0899403i \(-0.0286676\pi\)
\(212\) 0 0
\(213\) −1.71058 + 0.987606i −0.117207 + 0.0676697i
\(214\) 0 0
\(215\) −0.0718803 + 0.124500i −0.00490220 + 0.00849086i
\(216\) 0 0
\(217\) 9.37867 3.62554i 0.636666 0.246118i
\(218\) 0 0
\(219\) −5.53477 3.19550i −0.374005 0.215932i
\(220\) 0 0
\(221\) 3.13969 + 5.43811i 0.211199 + 0.365807i
\(222\) 0 0
\(223\) 1.55133 0.103885 0.0519423 0.998650i \(-0.483459\pi\)
0.0519423 + 0.998650i \(0.483459\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −10.3235 17.8808i −0.685196 1.18679i −0.973375 0.229217i \(-0.926383\pi\)
0.288180 0.957576i \(-0.406950\pi\)
\(228\) 0 0
\(229\) −20.8104 12.0149i −1.37519 0.793966i −0.383613 0.923494i \(-0.625320\pi\)
−0.991576 + 0.129528i \(0.958654\pi\)
\(230\) 0 0
\(231\) 10.6779 13.2499i 0.702553 0.871778i
\(232\) 0 0
\(233\) 11.8446 20.5155i 0.775969 1.34402i −0.158280 0.987394i \(-0.550595\pi\)
0.934248 0.356623i \(-0.116072\pi\)
\(234\) 0 0
\(235\) 8.14020 4.69975i 0.531008 0.306578i
\(236\) 0 0
\(237\) 2.87695i 0.186878i
\(238\) 0 0
\(239\) 22.3450i 1.44538i −0.691173 0.722689i \(-0.742906\pi\)
0.691173 0.722689i \(-0.257094\pi\)
\(240\) 0 0
\(241\) −22.1999 + 12.8171i −1.43002 + 0.825623i −0.997122 0.0758196i \(-0.975843\pi\)
−0.432899 + 0.901442i \(0.642509\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) −4.70840 5.17986i −0.300809 0.330929i
\(246\) 0 0
\(247\) −9.34726 5.39664i −0.594752 0.343380i
\(248\) 0 0
\(249\) −2.90772 5.03632i −0.184269 0.319164i
\(250\) 0 0
\(251\) −24.0041 −1.51513 −0.757563 0.652762i \(-0.773610\pi\)
−0.757563 + 0.652762i \(0.773610\pi\)
\(252\) 0 0
\(253\) −22.4871 −1.41375
\(254\) 0 0
\(255\) −2.26192 3.91777i −0.141647 0.245340i
\(256\) 0 0
\(257\) 2.44375 + 1.41090i 0.152437 + 0.0880095i 0.574278 0.818660i \(-0.305283\pi\)
−0.421841 + 0.906670i \(0.638616\pi\)
\(258\) 0 0
\(259\) 19.2404 + 15.5056i 1.19554 + 0.963470i
\(260\) 0 0
\(261\) −4.88040 + 8.45310i −0.302089 + 0.523234i
\(262\) 0 0
\(263\) 6.51271 3.76012i 0.401591 0.231859i −0.285579 0.958355i \(-0.592186\pi\)
0.687170 + 0.726496i \(0.258853\pi\)
\(264\) 0 0
\(265\) 5.87111i 0.360660i
\(266\) 0 0
\(267\) 1.18784i 0.0726943i
\(268\) 0 0
\(269\) −15.7270 + 9.08000i −0.958893 + 0.553617i −0.895832 0.444393i \(-0.853420\pi\)
−0.0630608 + 0.998010i \(0.520086\pi\)
\(270\) 0 0
\(271\) −8.68872 + 15.0493i −0.527802 + 0.914180i 0.471673 + 0.881774i \(0.343650\pi\)
−0.999475 + 0.0324063i \(0.989683\pi\)
\(272\) 0 0
\(273\) −1.32418 3.42543i −0.0801430 0.207317i
\(274\) 0 0
\(275\) −5.57010 3.21590i −0.335890 0.193926i
\(276\) 0 0
\(277\) 5.26098 + 9.11229i 0.316102 + 0.547504i 0.979671 0.200610i \(-0.0642926\pi\)
−0.663569 + 0.748115i \(0.730959\pi\)
\(278\) 0 0
\(279\) −3.80045 −0.227527
\(280\) 0 0
\(281\) 19.5202 1.16448 0.582240 0.813017i \(-0.302176\pi\)
0.582240 + 0.813017i \(0.302176\pi\)
\(282\) 0 0
\(283\) −1.59612 2.76456i −0.0948793 0.164336i 0.814679 0.579912i \(-0.196913\pi\)
−0.909558 + 0.415577i \(0.863580\pi\)
\(284\) 0 0
\(285\) 6.73403 + 3.88789i 0.398889 + 0.230299i
\(286\) 0 0
\(287\) 20.4649 + 3.19185i 1.20800 + 0.188409i
\(288\) 0 0
\(289\) 1.73259 3.00094i 0.101917 0.176526i
\(290\) 0 0
\(291\) 10.7080 6.18227i 0.627714 0.362411i
\(292\) 0 0
\(293\) 14.0026i 0.818041i −0.912525 0.409020i \(-0.865870\pi\)
0.912525 0.409020i \(-0.134130\pi\)
\(294\) 0 0
\(295\) 1.74071i 0.101348i
\(296\) 0 0
\(297\) −5.57010 + 3.21590i −0.323210 + 0.186605i
\(298\) 0 0
\(299\) −2.42650 + 4.20283i −0.140328 + 0.243056i
\(300\) 0 0
\(301\) 0.375811 + 0.0586143i 0.0216614 + 0.00337847i
\(302\) 0 0
\(303\) 3.83564 + 2.21451i 0.220352 + 0.127220i
\(304\) 0 0
\(305\) 4.98158 + 8.62835i 0.285244 + 0.494058i
\(306\) 0 0
\(307\) −25.2166 −1.43919 −0.719593 0.694396i \(-0.755672\pi\)
−0.719593 + 0.694396i \(0.755672\pi\)
\(308\) 0 0
\(309\) 16.0408 0.912529
\(310\) 0 0
\(311\) −5.19981 9.00634i −0.294854 0.510703i 0.680097 0.733122i \(-0.261938\pi\)
−0.974951 + 0.222420i \(0.928604\pi\)
\(312\) 0 0
\(313\) −26.4986 15.2990i −1.49779 0.864750i −0.497794 0.867296i \(-0.665856\pi\)
−0.999997 + 0.00254595i \(0.999190\pi\)
\(314\) 0 0
\(315\) 0.953976 + 2.46778i 0.0537505 + 0.139044i
\(316\) 0 0
\(317\) −9.87861 + 17.1103i −0.554838 + 0.961008i 0.443078 + 0.896483i \(0.353886\pi\)
−0.997916 + 0.0645246i \(0.979447\pi\)
\(318\) 0 0
\(319\) −54.3686 + 31.3897i −3.04406 + 1.75749i
\(320\) 0 0
\(321\) 12.2724i 0.684977i
\(322\) 0 0
\(323\) 35.1765i 1.95727i
\(324\) 0 0
\(325\) −1.20210 + 0.694031i −0.0666804 + 0.0384979i
\(326\) 0 0
\(327\) −2.20359 + 3.81672i −0.121859 + 0.211065i
\(328\) 0 0
\(329\) −19.3635 15.6048i −1.06754 0.860319i
\(330\) 0 0
\(331\) 27.8018 + 16.0514i 1.52813 + 0.882265i 0.999440 + 0.0334483i \(0.0106489\pi\)
0.528687 + 0.848817i \(0.322684\pi\)
\(332\) 0 0
\(333\) −4.66988 8.08846i −0.255908 0.443245i
\(334\) 0 0
\(335\) 4.85918 0.265485
\(336\) 0 0
\(337\) −14.2949 −0.778693 −0.389346 0.921091i \(-0.627299\pi\)
−0.389346 + 0.921091i \(0.627299\pi\)
\(338\) 0 0
\(339\) 7.17986 + 12.4359i 0.389956 + 0.675424i
\(340\) 0 0
\(341\) −21.1689 12.2219i −1.14636 0.661851i
\(342\) 0 0
\(343\) −8.29104 + 16.5608i −0.447674 + 0.894197i
\(344\) 0 0
\(345\) 1.74812 3.02783i 0.0941157 0.163013i
\(346\) 0 0
\(347\) 4.25012 2.45381i 0.228158 0.131727i −0.381564 0.924343i \(-0.624614\pi\)
0.609722 + 0.792615i \(0.291281\pi\)
\(348\) 0 0
\(349\) 25.2236i 1.35019i −0.737732 0.675093i \(-0.764103\pi\)
0.737732 0.675093i \(-0.235897\pi\)
\(350\) 0 0
\(351\) 1.38806i 0.0740893i
\(352\) 0 0
\(353\) −9.39006 + 5.42135i −0.499783 + 0.288550i −0.728624 0.684914i \(-0.759840\pi\)
0.228841 + 0.973464i \(0.426506\pi\)
\(354\) 0 0
\(355\) 0.987606 1.71058i 0.0524167 0.0907884i
\(356\) 0 0
\(357\) −7.51036 + 9.31938i −0.397490 + 0.493234i
\(358\) 0 0
\(359\) 23.8674 + 13.7799i 1.25967 + 0.727273i 0.973011 0.230758i \(-0.0741206\pi\)
0.286663 + 0.958031i \(0.407454\pi\)
\(360\) 0 0
\(361\) −20.7314 35.9079i −1.09113 1.88989i
\(362\) 0 0
\(363\) −30.3680 −1.59391
\(364\) 0 0
\(365\) 6.39100 0.334520
\(366\) 0 0
\(367\) 8.67211 + 15.0205i 0.452681 + 0.784066i 0.998552 0.0538035i \(-0.0171344\pi\)
−0.545871 + 0.837869i \(0.683801\pi\)
\(368\) 0 0
\(369\) −6.77969 3.91426i −0.352937 0.203768i
\(370\) 0 0
\(371\) −14.4886 + 5.60090i −0.752211 + 0.290784i
\(372\) 0 0
\(373\) 7.17323 12.4244i 0.371416 0.643311i −0.618368 0.785889i \(-0.712206\pi\)
0.989784 + 0.142578i \(0.0455390\pi\)
\(374\) 0 0
\(375\) 0.866025 0.500000i 0.0447214 0.0258199i
\(376\) 0 0
\(377\) 13.5486i 0.697788i
\(378\) 0 0
\(379\) 2.88120i 0.147998i 0.997258 + 0.0739988i \(0.0235761\pi\)
−0.997258 + 0.0739988i \(0.976424\pi\)
\(380\) 0 0
\(381\) 17.4479 10.0735i 0.893883 0.516084i
\(382\) 0 0
\(383\) −7.27219 + 12.5958i −0.371592 + 0.643616i −0.989811 0.142390i \(-0.954521\pi\)
0.618219 + 0.786006i \(0.287854\pi\)
\(384\) 0 0
\(385\) −2.62238 + 16.8137i −0.133649 + 0.856904i
\(386\) 0 0
\(387\) −0.124500 0.0718803i −0.00632871 0.00365388i
\(388\) 0 0
\(389\) −10.3553 17.9358i −0.525032 0.909383i −0.999575 0.0291501i \(-0.990720\pi\)
0.474543 0.880232i \(-0.342613\pi\)
\(390\) 0 0
\(391\) 15.8165 0.799873
\(392\) 0 0
\(393\) −3.52838 −0.177983
\(394\) 0 0
\(395\) −1.43848 2.49151i −0.0723776 0.125362i
\(396\) 0 0
\(397\) 23.1074 + 13.3411i 1.15973 + 0.669570i 0.951239 0.308455i \(-0.0998119\pi\)
0.208490 + 0.978025i \(0.433145\pi\)
\(398\) 0 0
\(399\) 3.17035 20.3270i 0.158716 1.01763i
\(400\) 0 0
\(401\) 1.56396 2.70887i 0.0781007 0.135274i −0.824330 0.566110i \(-0.808448\pi\)
0.902430 + 0.430836i \(0.141781\pi\)
\(402\) 0 0
\(403\) −4.56851 + 2.63763i −0.227574 + 0.131390i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 60.0714i 2.97763i
\(408\) 0 0
\(409\) 19.2645 11.1224i 0.952570 0.549967i 0.0586917 0.998276i \(-0.481307\pi\)
0.893878 + 0.448310i \(0.147974\pi\)
\(410\) 0 0
\(411\) 6.71754 11.6351i 0.331352 0.573918i
\(412\) 0 0
\(413\) −4.29568 + 1.66059i −0.211376 + 0.0817124i
\(414\) 0 0
\(415\) 5.03632 + 2.90772i 0.247223 + 0.142734i
\(416\) 0 0
\(417\) −1.01208 1.75298i −0.0495619 0.0858437i
\(418\) 0 0
\(419\) −16.7928 −0.820380 −0.410190 0.912000i \(-0.634538\pi\)
−0.410190 + 0.912000i \(0.634538\pi\)
\(420\) 0 0
\(421\) −26.8579 −1.30897 −0.654487 0.756073i \(-0.727115\pi\)
−0.654487 + 0.756073i \(0.727115\pi\)
\(422\) 0 0
\(423\) 4.69975 + 8.14020i 0.228510 + 0.395790i
\(424\) 0 0
\(425\) 3.91777 + 2.26192i 0.190040 + 0.109719i
\(426\) 0 0
\(427\) 16.5405 20.5247i 0.800453 0.993259i
\(428\) 0 0
\(429\) −4.46387 + 7.73165i −0.215518 + 0.373288i
\(430\) 0 0
\(431\) 5.68521 3.28236i 0.273847 0.158106i −0.356788 0.934186i \(-0.616128\pi\)
0.630635 + 0.776080i \(0.282795\pi\)
\(432\) 0 0
\(433\) 3.02710i 0.145473i 0.997351 + 0.0727365i \(0.0231732\pi\)
−0.997351 + 0.0727365i \(0.976827\pi\)
\(434\) 0 0
\(435\) 9.76080i 0.467994i
\(436\) 0 0
\(437\) −23.5438 + 13.5930i −1.12625 + 0.650242i
\(438\) 0 0
\(439\) 4.45148 7.71020i 0.212458 0.367988i −0.740025 0.672579i \(-0.765187\pi\)
0.952483 + 0.304591i \(0.0985199\pi\)
\(440\) 0 0
\(441\) 5.17986 4.70840i 0.246660 0.224210i
\(442\) 0 0
\(443\) −12.8791 7.43576i −0.611905 0.353283i 0.161806 0.986823i \(-0.448268\pi\)
−0.773711 + 0.633539i \(0.781602\pi\)
\(444\) 0 0
\(445\) 0.593918 + 1.02870i 0.0281544 + 0.0487649i
\(446\) 0 0
\(447\) 11.0800 0.524064
\(448\) 0 0
\(449\) −15.4308 −0.728226 −0.364113 0.931355i \(-0.618628\pi\)
−0.364113 + 0.931355i \(0.618628\pi\)
\(450\) 0 0
\(451\) −25.1757 43.6056i −1.18548 2.05331i
\(452\) 0 0
\(453\) 3.19701 + 1.84580i 0.150209 + 0.0867231i
\(454\) 0 0
\(455\) 2.85949 + 2.30442i 0.134055 + 0.108033i
\(456\) 0 0
\(457\) 7.35418 12.7378i 0.344014 0.595849i −0.641160 0.767407i \(-0.721547\pi\)
0.985174 + 0.171558i \(0.0548800\pi\)
\(458\) 0 0
\(459\) 3.91777 2.26192i 0.182866 0.105578i
\(460\) 0 0
\(461\) 6.60397i 0.307577i 0.988104 + 0.153789i \(0.0491475\pi\)
−0.988104 + 0.153789i \(0.950852\pi\)
\(462\) 0 0
\(463\) 20.7567i 0.964645i −0.875994 0.482322i \(-0.839793\pi\)
0.875994 0.482322i \(-0.160207\pi\)
\(464\) 0 0
\(465\) 3.29129 1.90023i 0.152630 0.0881209i
\(466\) 0 0
\(467\) 1.77566 3.07554i 0.0821679 0.142319i −0.822013 0.569469i \(-0.807149\pi\)
0.904181 + 0.427150i \(0.140482\pi\)
\(468\) 0 0
\(469\) −4.63554 11.9914i −0.214049 0.553710i
\(470\) 0 0
\(471\) 6.60934 + 3.81591i 0.304542 + 0.175828i
\(472\) 0 0
\(473\) −0.462320 0.800761i −0.0212575 0.0368191i
\(474\) 0 0
\(475\) −7.77579 −0.356778
\(476\) 0 0
\(477\) 5.87111 0.268820
\(478\) 0 0
\(479\) 10.2286 + 17.7165i 0.467358 + 0.809488i 0.999304 0.0372900i \(-0.0118725\pi\)
−0.531946 + 0.846778i \(0.678539\pi\)
\(480\) 0 0
\(481\) −11.2273 6.48208i −0.511921 0.295557i
\(482\) 0 0
\(483\) −9.13969 1.42549i −0.415870 0.0648622i
\(484\) 0 0
\(485\) −6.18227 + 10.7080i −0.280722 + 0.486225i
\(486\) 0 0
\(487\) 7.36027 4.24945i 0.333525 0.192561i −0.323880 0.946098i \(-0.604987\pi\)
0.657405 + 0.753537i \(0.271654\pi\)
\(488\) 0 0
\(489\) 15.0950i 0.682619i
\(490\) 0 0
\(491\) 14.9445i 0.674436i 0.941426 + 0.337218i \(0.109486\pi\)
−0.941426 + 0.337218i \(0.890514\pi\)
\(492\) 0 0
\(493\) 38.2405 22.0782i 1.72227 0.994351i
\(494\) 0 0
\(495\) 3.21590 5.57010i 0.144544 0.250357i
\(496\) 0 0
\(497\) −5.16349 0.805336i −0.231614 0.0361243i
\(498\) 0 0
\(499\) 30.3188 + 17.5046i 1.35726 + 0.783613i 0.989253 0.146211i \(-0.0467079\pi\)
0.368004 + 0.929824i \(0.380041\pi\)
\(500\) 0 0
\(501\) 3.04351 + 5.27151i 0.135974 + 0.235514i
\(502\) 0 0
\(503\) 9.36092 0.417383 0.208691 0.977982i \(-0.433080\pi\)
0.208691 + 0.977982i \(0.433080\pi\)
\(504\) 0 0
\(505\) −4.42902 −0.197089
\(506\) 0 0
\(507\) −5.53664 9.58974i −0.245891 0.425895i
\(508\) 0 0
\(509\) 10.1976 + 5.88758i 0.452000 + 0.260963i 0.708675 0.705535i \(-0.249293\pi\)
−0.256674 + 0.966498i \(0.582627\pi\)
\(510\) 0 0
\(511\) −6.09686 15.7716i −0.269709 0.697693i
\(512\) 0 0
\(513\) −3.88789 + 6.73403i −0.171655 + 0.297315i
\(514\) 0 0
\(515\) −13.8917 + 8.02040i −0.612143 + 0.353421i
\(516\) 0 0
\(517\) 60.4557i 2.65884i
\(518\) 0 0
\(519\) 0.0472942i 0.00207598i
\(520\) 0 0
\(521\) 14.6470 8.45646i 0.641698 0.370484i −0.143570 0.989640i \(-0.545858\pi\)
0.785268 + 0.619156i \(0.212525\pi\)
\(522\) 0 0
\(523\) 0.921114 1.59542i 0.0402775 0.0697626i −0.845184 0.534476i \(-0.820509\pi\)
0.885461 + 0.464713i \(0.153842\pi\)
\(524\) 0 0
\(525\) −2.06006 1.66017i −0.0899082 0.0724558i
\(526\) 0 0
\(527\) 14.8893 + 8.59633i 0.648587 + 0.374462i
\(528\) 0 0
\(529\) −5.38814 9.33254i −0.234267 0.405763i
\(530\) 0 0
\(531\) 1.74071 0.0755402
\(532\) 0 0
\(533\) −10.8665 −0.470679
\(534\) 0 0
\(535\) 6.13618 + 10.6282i 0.265290 + 0.459496i
\(536\) 0 0
\(537\) 0.0149916 + 0.00865543i 0.000646937 + 0.000373509i
\(538\) 0 0
\(539\) 43.9941 9.56838i 1.89496 0.412139i
\(540\) 0 0
\(541\) −14.5908 + 25.2719i −0.627305 + 1.08652i 0.360785 + 0.932649i \(0.382509\pi\)
−0.988090 + 0.153876i \(0.950824\pi\)
\(542\) 0 0
\(543\) 11.0288 6.36750i 0.473292 0.273255i
\(544\) 0 0
\(545\) 4.40717i 0.188783i
\(546\) 0 0
\(547\) 8.27812i 0.353947i −0.984216 0.176974i \(-0.943369\pi\)
0.984216 0.176974i \(-0.0566307\pi\)
\(548\) 0 0
\(549\) −8.62835 + 4.98158i −0.368249 + 0.212609i
\(550\) 0 0
\(551\) −37.9489 + 65.7295i −1.61668 + 2.80017i
\(552\) 0 0
\(553\) −4.77623 + 5.92669i −0.203106 + 0.252028i
\(554\) 0 0
\(555\) 8.08846 + 4.66988i 0.343336 + 0.198225i
\(556\) 0 0
\(557\) −3.00849 5.21086i −0.127474 0.220791i 0.795223 0.606317i \(-0.207354\pi\)
−0.922697 + 0.385525i \(0.874020\pi\)
\(558\) 0 0
\(559\) −0.199549 −0.00844002
\(560\) 0 0
\(561\) 29.0965 1.22845
\(562\) 0 0
\(563\) −17.8362 30.8931i −0.751704 1.30199i −0.946996 0.321245i \(-0.895899\pi\)
0.195292 0.980745i \(-0.437435\pi\)
\(564\) 0 0
\(565\) −12.4359 7.17986i −0.523181 0.302059i
\(566\) 0 0
\(567\) −2.46778 + 0.953976i −0.103637 + 0.0400632i
\(568\) 0 0
\(569\) 15.9914 27.6979i 0.670394 1.16116i −0.307398 0.951581i \(-0.599458\pi\)
0.977792 0.209576i \(-0.0672083\pi\)
\(570\) 0 0
\(571\) −0.773374 + 0.446508i −0.0323647 + 0.0186858i −0.516095 0.856531i \(-0.672615\pi\)
0.483730 + 0.875217i \(0.339282\pi\)
\(572\) 0 0
\(573\) 21.0650i 0.880003i
\(574\) 0 0
\(575\) 3.49624i 0.145803i
\(576\) 0 0
\(577\) 33.8200 19.5260i 1.40795 0.812878i 0.412756 0.910841i \(-0.364566\pi\)
0.995190 + 0.0979632i \(0.0312327\pi\)
\(578\) 0 0
\(579\) −6.41058 + 11.1035i −0.266415 + 0.461444i
\(580\) 0 0
\(581\) 2.37108 15.2024i 0.0983690 0.630703i
\(582\) 0 0
\(583\) 32.7027 + 18.8809i 1.35441 + 0.781967i
\(584\) 0 0
\(585\) −0.694031 1.20210i −0.0286947 0.0497006i
\(586\) 0 0
\(587\) 38.1746 1.57563 0.787817 0.615909i \(-0.211211\pi\)
0.787817 + 0.615909i \(0.211211\pi\)
\(588\) 0 0
\(589\) −29.5515 −1.21765
\(590\) 0 0
\(591\) −4.96902 8.60659i −0.204398 0.354028i
\(592\) 0 0
\(593\) 7.69309 + 4.44160i 0.315917 + 0.182395i 0.649571 0.760301i \(-0.274948\pi\)
−0.333654 + 0.942696i \(0.608282\pi\)
\(594\) 0 0
\(595\) 1.84447 11.8260i 0.0756159 0.484819i
\(596\) 0 0
\(597\) −4.22790 + 7.32293i −0.173036 + 0.299708i
\(598\) 0 0
\(599\) 33.2013 19.1688i 1.35657 0.783215i 0.367409 0.930059i \(-0.380245\pi\)
0.989160 + 0.146844i \(0.0469115\pi\)
\(600\) 0 0
\(601\) 18.4807i 0.753845i 0.926245 + 0.376922i \(0.123018\pi\)
−0.926245 + 0.376922i \(0.876982\pi\)
\(602\) 0 0
\(603\) 4.85918i 0.197881i
\(604\) 0 0
\(605\) 26.2995 15.1840i 1.06923 0.617318i
\(606\) 0 0
\(607\) −20.1917 + 34.9731i −0.819556 + 1.41951i 0.0864536 + 0.996256i \(0.472447\pi\)
−0.906010 + 0.423257i \(0.860887\pi\)
\(608\) 0 0
\(609\) −24.0875 + 9.31157i −0.976074 + 0.377324i
\(610\) 0 0
\(611\) 11.2991 + 6.52355i 0.457113 + 0.263914i
\(612\) 0 0
\(613\) −7.43842 12.8837i −0.300435 0.520368i 0.675800 0.737085i \(-0.263798\pi\)
−0.976234 + 0.216717i \(0.930465\pi\)
\(614\) 0 0
\(615\) 7.82852 0.315676
\(616\) 0 0
\(617\) 13.6805 0.550755 0.275377 0.961336i \(-0.411197\pi\)
0.275377 + 0.961336i \(0.411197\pi\)
\(618\) 0 0
\(619\) −11.3724 19.6975i −0.457094 0.791710i 0.541712 0.840564i \(-0.317776\pi\)
−0.998806 + 0.0488543i \(0.984443\pi\)
\(620\) 0 0
\(621\) 3.02783 + 1.74812i 0.121503 + 0.0701497i
\(622\) 0 0
\(623\) 1.97201 2.44701i 0.0790069 0.0980373i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −43.3119 + 25.0062i −1.72971 + 0.998649i
\(628\) 0 0
\(629\) 42.2516i 1.68468i
\(630\) 0 0
\(631\) 16.1342i 0.642293i 0.947030 + 0.321146i \(0.104068\pi\)
−0.947030 + 0.321146i \(0.895932\pi\)
\(632\) 0 0
\(633\) −2.26285 + 1.30646i −0.0899403 + 0.0519271i
\(634\) 0 0
\(635\) −10.0735 + 17.4479i −0.399757 + 0.692399i
\(636\) 0 0
\(637\) 2.95892 9.25495i 0.117237 0.366694i
\(638\) 0 0
\(639\) 1.71058 + 0.987606i 0.0676697 + 0.0390691i
\(640\) 0 0
\(641\) −6.99921 12.1230i −0.276452 0.478829i 0.694048 0.719928i \(-0.255825\pi\)
−0.970500 + 0.241099i \(0.922492\pi\)
\(642\) 0 0
\(643\) −16.5420 −0.652354 −0.326177 0.945309i \(-0.605761\pi\)
−0.326177 + 0.945309i \(0.605761\pi\)
\(644\) 0 0
\(645\) 0.143761 0.00566057
\(646\) 0 0
\(647\) −5.85475 10.1407i −0.230174 0.398673i 0.727685 0.685911i \(-0.240596\pi\)
−0.957859 + 0.287238i \(0.907263\pi\)
\(648\) 0 0
\(649\) 9.69591 + 5.59794i 0.380598 + 0.219738i
\(650\) 0 0
\(651\) −7.82915 6.30940i −0.306848 0.247285i
\(652\) 0 0
\(653\) 12.6616 21.9305i 0.495486 0.858207i −0.504500 0.863412i \(-0.668323\pi\)
0.999986 + 0.00520419i \(0.00165655\pi\)
\(654\) 0 0
\(655\) 3.05567 1.76419i 0.119395 0.0689327i
\(656\) 0 0
\(657\) 6.39100i 0.249337i
\(658\) 0 0
\(659\) 25.0183i 0.974574i −0.873242 0.487287i \(-0.837987\pi\)
0.873242 0.487287i \(-0.162013\pi\)
\(660\) 0 0
\(661\) 9.42113 5.43929i 0.366439 0.211564i −0.305462 0.952204i \(-0.598811\pi\)
0.671902 + 0.740640i \(0.265478\pi\)
\(662\) 0 0
\(663\) 3.13969 5.43811i 0.121936 0.211199i
\(664\) 0 0
\(665\) 7.41792 + 19.1889i 0.287654 + 0.744114i
\(666\) 0 0
\(667\) 29.5541 + 17.0631i 1.14434 + 0.660684i
\(668\) 0 0
\(669\) −0.775663 1.34349i −0.0299889 0.0519423i
\(670\) 0 0
\(671\) −64.0810 −2.47382
\(672\) 0 0
\(673\) −21.9568 −0.846371 −0.423186 0.906043i \(-0.639088\pi\)
−0.423186 + 0.906043i \(0.639088\pi\)
\(674\) 0 0
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) 11.1776 + 6.45337i 0.429589 + 0.248023i 0.699171 0.714954i \(-0.253552\pi\)
−0.269583 + 0.962977i \(0.586886\pi\)
\(678\) 0 0
\(679\) 32.3227 + 5.04129i 1.24043 + 0.193467i
\(680\) 0 0
\(681\) −10.3235 + 17.8808i −0.395598 + 0.685196i
\(682\) 0 0
\(683\) 24.8995 14.3757i 0.952753 0.550072i 0.0588179 0.998269i \(-0.481267\pi\)
0.893935 + 0.448197i \(0.147934\pi\)
\(684\) 0 0
\(685\) 13.4351i 0.513328i
\(686\) 0 0
\(687\) 24.0298i 0.916793i
\(688\) 0 0
\(689\) 7.05765 4.07474i 0.268875 0.155235i
\(690\) 0 0
\(691\) 13.2400 22.9323i 0.503672 0.872386i −0.496319 0.868141i \(-0.665315\pi\)
0.999991 0.00424581i \(-0.00135149\pi\)
\(692\) 0 0
\(693\) −16.8137 2.62238i −0.638698 0.0996161i
\(694\) 0 0
\(695\) 1.75298 + 1.01208i 0.0664942 + 0.0383905i
\(696\) 0 0
\(697\) 17.7075 + 30.6703i 0.670720 + 1.16172i
\(698\) 0 0
\(699\) −23.6893 −0.896012
\(700\) 0 0
\(701\) −14.1098 −0.532918 −0.266459 0.963846i \(-0.585854\pi\)
−0.266459 + 0.963846i \(0.585854\pi\)
\(702\) 0 0
\(703\) −36.3120 62.8942i −1.36953 2.37210i
\(704\) 0 0
\(705\) −8.14020 4.69975i −0.306578 0.177003i
\(706\) 0 0
\(707\) 4.22518 + 10.9298i 0.158904 + 0.411059i
\(708\) 0 0
\(709\) 20.9840 36.3453i 0.788070 1.36498i −0.139077 0.990282i \(-0.544414\pi\)
0.927148 0.374696i \(-0.122253\pi\)
\(710\) 0 0
\(711\) 2.49151 1.43848i 0.0934391 0.0539471i
\(712\) 0 0
\(713\) 13.2873i 0.497613i
\(714\) 0 0
\(715\) 8.92774i 0.333879i
\(716\) 0 0
\(717\) −19.3513 + 11.1725i −0.722689 + 0.417245i
\(718\) 0 0
\(719\) −6.06491 + 10.5047i −0.226183 + 0.391761i −0.956674 0.291162i \(-0.905958\pi\)
0.730491 + 0.682923i \(0.239291\pi\)
\(720\) 0 0
\(721\) 33.0450 + 26.6305i 1.23066 + 0.991770i
\(722\) 0 0
\(723\) 22.1999 + 12.8171i 0.825623 + 0.476674i
\(724\) 0 0
\(725\) 4.88040 + 8.45310i 0.181253 + 0.313940i
\(726\) 0 0
\(727\) −35.2582 −1.30766 −0.653828 0.756643i \(-0.726838\pi\)
−0.653828 + 0.756643i \(0.726838\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0.325176 + 0.563221i 0.0120271 + 0.0208315i
\(732\) 0 0
\(733\) 41.3079 + 23.8491i 1.52574 + 0.880887i 0.999534 + 0.0305304i \(0.00971964\pi\)
0.526207 + 0.850357i \(0.323614\pi\)
\(734\) 0 0
\(735\) −2.13169 + 6.66753i −0.0786285 + 0.245935i
\(736\) 0 0
\(737\) −15.6266 + 27.0661i −0.575614 + 0.996993i
\(738\) 0 0
\(739\) 6.91840 3.99434i 0.254497 0.146934i −0.367324 0.930093i \(-0.619726\pi\)
0.621822 + 0.783159i \(0.286393\pi\)
\(740\) 0 0
\(741\) 10.7933i 0.396501i
\(742\) 0 0
\(743\) 9.51187i 0.348957i −0.984661 0.174478i \(-0.944176\pi\)
0.984661 0.174478i \(-0.0558239\pi\)
\(744\) 0 0
\(745\) −9.59553 + 5.53998i −0.351553 + 0.202969i
\(746\) 0 0
\(747\) −2.90772 + 5.03632i −0.106388 + 0.184269i
\(748\) 0 0
\(749\) 20.3742 25.2818i 0.744458 0.923776i
\(750\) 0 0
\(751\) −18.8028 10.8558i −0.686125 0.396134i 0.116034 0.993245i \(-0.462982\pi\)
−0.802159 + 0.597111i \(0.796315\pi\)
\(752\) 0 0
\(753\) 12.0021 + 20.7882i 0.437379 + 0.757563i
\(754\) 0 0
\(755\) −3.69159 −0.134351
\(756\) 0 0
\(757\) −0.255827 −0.00929819 −0.00464909 0.999989i \(-0.501480\pi\)
−0.00464909 + 0.999989i \(0.501480\pi\)
\(758\) 0 0
\(759\) 11.2436 + 19.4744i 0.408116 + 0.706877i
\(760\) 0 0
\(761\) −8.11750 4.68664i −0.294259 0.169891i 0.345602 0.938381i \(-0.387675\pi\)
−0.639861 + 0.768491i \(0.721008\pi\)
\(762\) 0 0
\(763\) −10.8759 + 4.20434i −0.393735 + 0.152207i
\(764\) 0 0
\(765\) −2.26192 + 3.91777i −0.0817800 + 0.141647i
\(766\) 0 0
\(767\) 2.09250 1.20810i 0.0755558 0.0436221i
\(768\) 0 0
\(769\) 36.8290i 1.32809i 0.747693 + 0.664044i \(0.231161\pi\)
−0.747693 + 0.664044i \(0.768839\pi\)
\(770\) 0 0
\(771\) 2.82180i 0.101625i
\(772\) 0 0
\(773\) 8.39905 4.84920i 0.302093 0.174413i −0.341290 0.939958i \(-0.610864\pi\)
0.643383 + 0.765545i \(0.277530\pi\)
\(774\) 0 0
\(775\) −1.90023 + 3.29129i −0.0682581 + 0.118227i
\(776\) 0 0
\(777\) 3.80802 24.4155i 0.136612 0.875901i
\(778\) 0 0
\(779\) −52.7175 30.4364i −1.88880 1.09050i
\(780\) 0 0
\(781\) 6.35208 + 11.0021i 0.227295 + 0.393687i
\(782\) 0 0
\(783\) 9.76080 0.348822
\(784\) 0 0
\(785\) −7.63181 −0.272391
\(786\) 0 0
\(787\) 19.7098 + 34.1383i 0.702577 + 1.21690i 0.967559 + 0.252646i \(0.0813007\pi\)
−0.264982 + 0.964253i \(0.585366\pi\)
\(788\) 0 0
\(789\) −6.51271 3.76012i −0.231859 0.133864i
\(790\) 0 0
\(791\) −5.85476 + 37.5384i −0.208171 + 1.33471i
\(792\) 0 0
\(793\) −6.91475 + 11.9767i −0.245550 + 0.425305i
\(794\) 0 0
\(795\) −5.08453 + 2.93556i −0.180330 + 0.104113i
\(796\) 0 0
\(797\) 24.9449i 0.883593i −0.897115 0.441797i \(-0.854341\pi\)
0.897115 0.441797i \(-0.145659\pi\)
\(798\) 0 0
\(799\) 42.5219i 1.50432i
\(800\) 0 0
\(801\) −1.02870 + 0.593918i −0.0363472 + 0.0209851i
\(802\) 0 0
\(803\) −20.5528 + 35.5985i −0.725293 + 1.25624i
\(804\) 0 0
\(805\) 8.62795 3.33533i 0.304095 0.117555i
\(806\) 0 0
\(807\) 15.7270 + 9.08000i 0.553617 + 0.319631i
\(808\) 0 0
\(809\) 11.0968 + 19.2201i 0.390141 + 0.675744i 0.992468 0.122506i \(-0.0390929\pi\)
−0.602327 + 0.798250i \(0.705760\pi\)
\(810\) 0 0
\(811\) 25.9516 0.911283 0.455642 0.890163i \(-0.349410\pi\)
0.455642 + 0.890163i \(0.349410\pi\)
\(812\) 0 0
\(813\) 17.3774 0.609453
\(814\) 0 0
\(815\) 7.54749 + 13.0726i 0.264377 + 0.457915i
\(816\) 0 0
\(817\) −0.968089 0.558926i −0.0338691 0.0195544i
\(818\) 0 0
\(819\) −2.30442 + 2.85949i −0.0805230 + 0.0999186i
\(820\) 0 0
\(821\) −25.0678 + 43.4187i −0.874871 + 1.51532i −0.0179718 + 0.999838i \(0.505721\pi\)
−0.856900 + 0.515483i \(0.827612\pi\)
\(822\) 0 0
\(823\) −14.5241 + 8.38549i −0.506278 + 0.292300i −0.731302 0.682053i \(-0.761087\pi\)
0.225024 + 0.974353i \(0.427754\pi\)
\(824\) 0 0
\(825\) 6.43180i 0.223927i
\(826\) 0 0
\(827\) 17.7882i 0.618555i 0.950972 + 0.309278i \(0.100087\pi\)
−0.950972 + 0.309278i \(0.899913\pi\)
\(828\) 0 0
\(829\) −10.8454 + 6.26160i −0.376676 + 0.217474i −0.676371 0.736561i \(-0.736448\pi\)
0.299695 + 0.954035i \(0.403115\pi\)
\(830\) 0 0
\(831\) 5.26098 9.11229i 0.182501 0.316102i
\(832\) 0 0
\(833\) −30.9435 + 6.72998i −1.07213 + 0.233180i
\(834\) 0 0
\(835\) −5.27151 3.04351i −0.182428 0.105325i
\(836\) 0 0
\(837\) 1.90023 + 3.29129i 0.0656814 + 0.113764i
\(838\) 0 0
\(839\) 13.2933 0.458935 0.229467 0.973316i \(-0.426302\pi\)
0.229467 + 0.973316i \(0.426302\pi\)
\(840\) 0 0
\(841\) 66.2731 2.28528
\(842\) 0 0
\(843\) −9.76012 16.9050i −0.336156 0.582240i
\(844\) 0 0
\(845\) 9.58974 + 5.53664i 0.329897 + 0.190466i
\(846\) 0 0
\(847\) −62.5599 50.4161i −2.14958 1.73232i
\(848\) 0 0
\(849\) −1.59612 + 2.76456i −0.0547786 + 0.0948793i
\(850\) 0 0
\(851\) −28.2792 + 16.3270i −0.969399 + 0.559683i
\(852\) 0 0
\(853\) 29.0157i 0.993480i −0.867899 0.496740i \(-0.834530\pi\)
0.867899 0.496740i \(-0.165470\pi\)
\(854\) 0 0
\(855\) 7.77579i 0.265926i
\(856\) 0 0
\(857\) 4.84421 2.79680i 0.165475 0.0955370i −0.414975 0.909833i \(-0.636210\pi\)
0.580450 + 0.814296i \(0.302877\pi\)
\(858\) 0 0
\(859\) 16.7480 29.0083i 0.571433 0.989751i −0.424986 0.905200i \(-0.639721\pi\)
0.996419 0.0845513i \(-0.0269457\pi\)
\(860\) 0 0
\(861\) −7.46822 19.3190i −0.254516 0.658391i
\(862\) 0 0
\(863\) 14.7957 + 8.54228i 0.503650 + 0.290783i 0.730220 0.683212i \(-0.239418\pi\)
−0.226570 + 0.973995i \(0.572751\pi\)
\(864\) 0 0
\(865\) 0.0236471 + 0.0409579i 0.000804025 + 0.00139261i
\(866\) 0 0
\(867\) −3.46519 −0.117684
\(868\) 0 0
\(869\) 18.5040 0.627705
\(870\) 0 0
\(871\) 3.37242 + 5.84121i 0.114270 + 0.197922i
\(872\) 0 0
\(873\) −10.7080 6.18227i −0.362411 0.209238i
\(874\) 0 0
\(875\) 2.61415 + 0.407721i 0.0883743 + 0.0137835i
\(876\) 0 0
\(877\) 11.7758 20.3963i 0.397640 0.688733i −0.595794 0.803137i \(-0.703163\pi\)
0.993434 + 0.114404i \(0.0364959\pi\)
\(878\) 0 0
\(879\) −12.1266 + 7.00130i −0.409020 + 0.236148i
\(880\) 0 0
\(881\) 54.8901i 1.84929i −0.380825 0.924647i \(-0.624360\pi\)
0.380825 0.924647i \(-0.375640\pi\)
\(882\) 0 0
\(883\) 22.4675i 0.756092i 0.925787 + 0.378046i \(0.123404\pi\)
−0.925787 + 0.378046i \(0.876596\pi\)
\(884\) 0 0
\(885\) −1.50750 + 0.870353i −0.0506739 + 0.0292566i
\(886\) 0 0
\(887\) 5.53075 9.57954i 0.185704 0.321650i −0.758109 0.652128i \(-0.773877\pi\)
0.943814 + 0.330478i \(0.107210\pi\)
\(888\) 0 0
\(889\) 52.6675 + 8.21440i 1.76641 + 0.275502i
\(890\) 0 0
\(891\) 5.57010 + 3.21590i 0.186605 + 0.107737i
\(892\) 0 0
\(893\) 36.5442 + 63.2965i 1.22291 + 2.11814i
\(894\) 0 0
\(895\) −0.0173109 −0.000578638
\(896\) 0 0
\(897\) 4.85300 0.162037
\(898\) 0 0
\(899\) 18.5477 + 32.1256i 0.618601 + 1.07145i
\(900\) 0 0
\(901\) −23.0016 13.2800i −0.766296 0.442421i
\(902\) 0 0
\(903\) −0.137144 0.354769i −0.00456388 0.0118060i
\(904\) 0 0
\(905\) −6.36750 + 11.0288i −0.211663 + 0.366611i
\(906\) 0 0
\(907\) 40.5349 23.4029i 1.34594 0.777079i 0.358269 0.933618i \(-0.383367\pi\)
0.987672 + 0.156539i \(0.0500338\pi\)
\(908\) 0 0
\(909\) 4.42902i 0.146901i
\(910\) 0 0
\(911\) 23.9321i 0.792906i −0.918055 0.396453i \(-0.870241\pi\)
0.918055 0.396453i \(-0.129759\pi\)
\(912\) 0 0
\(913\) −32.3926 + 18.7019i −1.07204 + 0.618942i
\(914\) 0 0
\(915\) 4.98158 8.62835i 0.164686 0.285244i
\(916\) 0 0
\(917\) −7.26867 5.85772i −0.240033 0.193439i
\(918\) 0 0
\(919\) −17.4110 10.0522i −0.574336 0.331593i 0.184543 0.982824i \(-0.440919\pi\)
−0.758879 + 0.651231i \(0.774253\pi\)
\(920\) 0 0
\(921\) 12.6083 + 21.8382i 0.415457 + 0.719593i
\(922\) 0 0
\(923\) 2.74172 0.0902448
\(924\) 0 0
\(925\) −9.33975 −0.307089
\(926\) 0 0
\(927\) −8.02040 13.8917i −0.263425 0.456265i
\(928\) 0 0
\(929\) −5.21975 3.01362i −0.171254 0.0988737i 0.411923 0.911219i \(-0.364857\pi\)
−0.583177 + 0.812345i \(0.698191\pi\)
\(930\) 0 0
\(931\) 40.2775 36.6115i 1.32004 1.19989i
\(932\) 0 0
\(933\) −5.19981 + 9.00634i −0.170234 + 0.294854i
\(934\) 0 0
\(935\) −25.1983 + 14.5482i −0.824072 + 0.475778i
\(936\) 0 0
\(937\) 0.141626i 0.00462671i −0.999997 0.00231336i \(-0.999264\pi\)
0.999997 0.00231336i \(-0.000736365\pi\)
\(938\) 0 0
\(939\) 30.5980i 0.998527i
\(940\) 0 0
\(941\) −4.35563 + 2.51472i −0.141989 + 0.0819777i −0.569312 0.822122i \(-0.692790\pi\)
0.427322 + 0.904099i \(0.359457\pi\)
\(942\) 0 0
\(943\) −13.6852 + 23.7035i −0.445651 + 0.771891i
\(944\) 0 0
\(945\) 1.66017 2.06006i 0.0540053 0.0670137i
\(946\) 0 0
\(947\) 12.7646 + 7.36967i 0.414795 + 0.239482i 0.692848 0.721084i \(-0.256356\pi\)
−0.278053 + 0.960566i \(0.589689\pi\)
\(948\) 0 0
\(949\) 4.43556 + 7.68261i 0.143984 + 0.249388i
\(950\) 0 0
\(951\) 19.7572 0.640672
\(952\) 0 0
\(953\) 49.9423 1.61779 0.808895 0.587953i \(-0.200066\pi\)
0.808895 + 0.587953i \(0.200066\pi\)
\(954\) 0 0
\(955\) 10.5325 + 18.2428i 0.340824 + 0.590324i
\(956\) 0 0
\(957\) 54.3686 + 31.3897i 1.75749 + 1.01469i
\(958\) 0 0
\(959\) 33.1548 12.8167i 1.07062 0.413874i
\(960\) 0 0
\(961\) 8.27829 14.3384i 0.267041 0.462529i
\(962\) 0 0
\(963\) −10.6282 + 6.13618i −0.342488 + 0.197736i
\(964\) 0 0
\(965\) 12.8212i 0.412728i
\(966\) 0 0
\(967\) 13.5753i 0.436551i −0.975887 0.218276i \(-0.929957\pi\)
0.975887 0.218276i \(-0.0700432\pi\)
\(968\) 0 0
\(969\) 30.4637 17.5882i 0.978636 0.565015i
\(970\) 0 0
\(971\) −12.1793 + 21.0952i −0.390852 + 0.676976i −0.992562 0.121739i \(-0.961153\pi\)
0.601710 + 0.798715i \(0.294486\pi\)
\(972\) 0 0
\(973\) 0.825295 5.29146i 0.0264577 0.169636i
\(974\) 0 0
\(975\) 1.20210 + 0.694031i 0.0384979 + 0.0222268i
\(976\) 0 0
\(977\) 22.6843 + 39.2903i 0.725735 + 1.25701i 0.958671 + 0.284517i \(0.0918332\pi\)
−0.232936 + 0.972492i \(0.574833\pi\)
\(978\) 0 0
\(979\) −7.63992 −0.244173
\(980\) 0 0
\(981\) 4.40717 0.140710
\(982\) 0 0
\(983\) −17.9519 31.0936i −0.572577 0.991733i −0.996300 0.0859411i \(-0.972610\pi\)
0.423723 0.905792i \(-0.360723\pi\)
\(984\) 0 0
\(985\) 8.60659 + 4.96902i 0.274229 + 0.158326i
\(986\) 0 0
\(987\) −3.83238 + 24.5717i −0.121986 + 0.782125i
\(988\) 0 0
\(989\) −0.251311 + 0.435284i −0.00799123 + 0.0138412i
\(990\) 0 0
\(991\) 51.6371 29.8127i 1.64031 0.947031i 0.659583 0.751632i \(-0.270733\pi\)
0.980724 0.195400i \(-0.0626004\pi\)
\(992\) 0 0
\(993\) 32.1028i 1.01875i
\(994\) 0 0
\(995\) 8.45579i 0.268067i
\(996\) 0 0
\(997\) −35.1476 + 20.2925i −1.11314 + 0.642670i −0.939640 0.342165i \(-0.888840\pi\)
−0.173497 + 0.984834i \(0.555507\pi\)
\(998\) 0 0
\(999\) −4.66988 + 8.08846i −0.147748 + 0.255908i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.dx.f.271.5 yes 12
4.3 odd 2 1680.2.dx.h.271.5 yes 12
7.3 odd 6 1680.2.dx.h.31.5 yes 12
28.3 even 6 inner 1680.2.dx.f.31.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.dx.f.31.5 12 28.3 even 6 inner
1680.2.dx.f.271.5 yes 12 1.1 even 1 trivial
1680.2.dx.h.31.5 yes 12 7.3 odd 6
1680.2.dx.h.271.5 yes 12 4.3 odd 2