Properties

Label 1680.2.dx.a.31.2
Level $1680$
Weight $2$
Character 1680.31
Analytic conductor $13.415$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(31,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.dx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,0,0,0,0,-2,0,-6,0,0,0,0,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1680.31
Dual form 1680.2.dx.a.271.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(0.866025 - 0.500000i) q^{5} +(-2.59808 - 0.500000i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(1.09808 + 0.633975i) q^{11} +1.00000i q^{13} +1.00000i q^{15} +(3.63397 + 2.09808i) q^{17} +(-1.23205 - 2.13397i) q^{19} +(1.73205 - 2.00000i) q^{21} +(-2.36603 + 1.36603i) q^{23} +(0.500000 - 0.866025i) q^{25} +1.00000 q^{27} +2.73205 q^{29} +(-3.23205 + 5.59808i) q^{31} +(-1.09808 + 0.633975i) q^{33} +(-2.50000 + 0.866025i) q^{35} +(4.13397 + 7.16025i) q^{37} +(-0.866025 - 0.500000i) q^{39} -4.19615i q^{41} -1.53590i q^{43} +(-0.866025 - 0.500000i) q^{45} +(6.46410 + 11.1962i) q^{47} +(6.50000 + 2.59808i) q^{49} +(-3.63397 + 2.09808i) q^{51} +(-2.73205 + 4.73205i) q^{53} +1.26795 q^{55} +2.46410 q^{57} +(-1.90192 + 3.29423i) q^{59} +(-3.92820 + 2.26795i) q^{61} +(0.866025 + 2.50000i) q^{63} +(0.500000 + 0.866025i) q^{65} +(4.79423 + 2.76795i) q^{67} -2.73205i q^{69} +1.66025i q^{71} +(6.86603 + 3.96410i) q^{73} +(0.500000 + 0.866025i) q^{75} +(-2.53590 - 2.19615i) q^{77} +(3.69615 - 2.13397i) q^{79} +(-0.500000 + 0.866025i) q^{81} -5.26795 q^{83} +4.19615 q^{85} +(-1.36603 + 2.36603i) q^{87} +(-4.09808 + 2.36603i) q^{89} +(0.500000 - 2.59808i) q^{91} +(-3.23205 - 5.59808i) q^{93} +(-2.13397 - 1.23205i) q^{95} +4.92820i q^{97} -1.26795i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{9} - 6 q^{11} + 18 q^{17} + 2 q^{19} - 6 q^{23} + 2 q^{25} + 4 q^{27} + 4 q^{29} - 6 q^{31} + 6 q^{33} - 10 q^{35} + 20 q^{37} + 12 q^{47} + 26 q^{49} - 18 q^{51} - 4 q^{53} + 12 q^{55}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0.866025 0.500000i 0.387298 0.223607i
\(6\) 0 0
\(7\) −2.59808 0.500000i −0.981981 0.188982i
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 1.09808 + 0.633975i 0.331082 + 0.191151i 0.656322 0.754481i \(-0.272111\pi\)
−0.325239 + 0.945632i \(0.605445\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i 0.990338 + 0.138675i \(0.0442844\pi\)
−0.990338 + 0.138675i \(0.955716\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 3.63397 + 2.09808i 0.881368 + 0.508858i 0.871109 0.491089i \(-0.163401\pi\)
0.0102590 + 0.999947i \(0.496734\pi\)
\(18\) 0 0
\(19\) −1.23205 2.13397i −0.282652 0.489567i 0.689385 0.724395i \(-0.257881\pi\)
−0.972037 + 0.234828i \(0.924547\pi\)
\(20\) 0 0
\(21\) 1.73205 2.00000i 0.377964 0.436436i
\(22\) 0 0
\(23\) −2.36603 + 1.36603i −0.493350 + 0.284836i −0.725963 0.687733i \(-0.758606\pi\)
0.232613 + 0.972569i \(0.425272\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.73205 0.507329 0.253665 0.967292i \(-0.418364\pi\)
0.253665 + 0.967292i \(0.418364\pi\)
\(30\) 0 0
\(31\) −3.23205 + 5.59808i −0.580493 + 1.00544i 0.414927 + 0.909855i \(0.363807\pi\)
−0.995421 + 0.0955896i \(0.969526\pi\)
\(32\) 0 0
\(33\) −1.09808 + 0.633975i −0.191151 + 0.110361i
\(34\) 0 0
\(35\) −2.50000 + 0.866025i −0.422577 + 0.146385i
\(36\) 0 0
\(37\) 4.13397 + 7.16025i 0.679621 + 1.17714i 0.975095 + 0.221788i \(0.0711892\pi\)
−0.295474 + 0.955351i \(0.595477\pi\)
\(38\) 0 0
\(39\) −0.866025 0.500000i −0.138675 0.0800641i
\(40\) 0 0
\(41\) 4.19615i 0.655329i −0.944794 0.327664i \(-0.893738\pi\)
0.944794 0.327664i \(-0.106262\pi\)
\(42\) 0 0
\(43\) 1.53590i 0.234222i −0.993119 0.117111i \(-0.962637\pi\)
0.993119 0.117111i \(-0.0373634\pi\)
\(44\) 0 0
\(45\) −0.866025 0.500000i −0.129099 0.0745356i
\(46\) 0 0
\(47\) 6.46410 + 11.1962i 0.942886 + 1.63313i 0.759929 + 0.650006i \(0.225234\pi\)
0.182957 + 0.983121i \(0.441433\pi\)
\(48\) 0 0
\(49\) 6.50000 + 2.59808i 0.928571 + 0.371154i
\(50\) 0 0
\(51\) −3.63397 + 2.09808i −0.508858 + 0.293789i
\(52\) 0 0
\(53\) −2.73205 + 4.73205i −0.375276 + 0.649997i −0.990368 0.138458i \(-0.955785\pi\)
0.615092 + 0.788455i \(0.289119\pi\)
\(54\) 0 0
\(55\) 1.26795 0.170970
\(56\) 0 0
\(57\) 2.46410 0.326378
\(58\) 0 0
\(59\) −1.90192 + 3.29423i −0.247609 + 0.428872i −0.962862 0.269994i \(-0.912978\pi\)
0.715253 + 0.698866i \(0.246312\pi\)
\(60\) 0 0
\(61\) −3.92820 + 2.26795i −0.502955 + 0.290381i −0.729933 0.683519i \(-0.760449\pi\)
0.226978 + 0.973900i \(0.427115\pi\)
\(62\) 0 0
\(63\) 0.866025 + 2.50000i 0.109109 + 0.314970i
\(64\) 0 0
\(65\) 0.500000 + 0.866025i 0.0620174 + 0.107417i
\(66\) 0 0
\(67\) 4.79423 + 2.76795i 0.585708 + 0.338159i 0.763399 0.645928i \(-0.223529\pi\)
−0.177690 + 0.984086i \(0.556863\pi\)
\(68\) 0 0
\(69\) 2.73205i 0.328900i
\(70\) 0 0
\(71\) 1.66025i 0.197036i 0.995135 + 0.0985180i \(0.0314102\pi\)
−0.995135 + 0.0985180i \(0.968590\pi\)
\(72\) 0 0
\(73\) 6.86603 + 3.96410i 0.803607 + 0.463963i 0.844731 0.535191i \(-0.179760\pi\)
−0.0411235 + 0.999154i \(0.513094\pi\)
\(74\) 0 0
\(75\) 0.500000 + 0.866025i 0.0577350 + 0.100000i
\(76\) 0 0
\(77\) −2.53590 2.19615i −0.288992 0.250275i
\(78\) 0 0
\(79\) 3.69615 2.13397i 0.415850 0.240091i −0.277450 0.960740i \(-0.589489\pi\)
0.693300 + 0.720649i \(0.256156\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −5.26795 −0.578233 −0.289116 0.957294i \(-0.593361\pi\)
−0.289116 + 0.957294i \(0.593361\pi\)
\(84\) 0 0
\(85\) 4.19615 0.455137
\(86\) 0 0
\(87\) −1.36603 + 2.36603i −0.146453 + 0.253665i
\(88\) 0 0
\(89\) −4.09808 + 2.36603i −0.434395 + 0.250798i −0.701217 0.712948i \(-0.747360\pi\)
0.266822 + 0.963746i \(0.414026\pi\)
\(90\) 0 0
\(91\) 0.500000 2.59808i 0.0524142 0.272352i
\(92\) 0 0
\(93\) −3.23205 5.59808i −0.335148 0.580493i
\(94\) 0 0
\(95\) −2.13397 1.23205i −0.218941 0.126406i
\(96\) 0 0
\(97\) 4.92820i 0.500383i 0.968196 + 0.250192i \(0.0804936\pi\)
−0.968196 + 0.250192i \(0.919506\pi\)
\(98\) 0 0
\(99\) 1.26795i 0.127434i
\(100\) 0 0
\(101\) 4.56218 + 2.63397i 0.453954 + 0.262090i 0.709499 0.704707i \(-0.248922\pi\)
−0.255545 + 0.966797i \(0.582255\pi\)
\(102\) 0 0
\(103\) 2.86603 + 4.96410i 0.282398 + 0.489127i 0.971975 0.235085i \(-0.0755368\pi\)
−0.689577 + 0.724212i \(0.742204\pi\)
\(104\) 0 0
\(105\) 0.500000 2.59808i 0.0487950 0.253546i
\(106\) 0 0
\(107\) −11.4904 + 6.63397i −1.11082 + 0.641331i −0.939041 0.343805i \(-0.888284\pi\)
−0.171776 + 0.985136i \(0.554951\pi\)
\(108\) 0 0
\(109\) −2.03590 + 3.52628i −0.195004 + 0.337756i −0.946902 0.321523i \(-0.895805\pi\)
0.751898 + 0.659279i \(0.229139\pi\)
\(110\) 0 0
\(111\) −8.26795 −0.784759
\(112\) 0 0
\(113\) −6.39230 −0.601337 −0.300669 0.953729i \(-0.597210\pi\)
−0.300669 + 0.953729i \(0.597210\pi\)
\(114\) 0 0
\(115\) −1.36603 + 2.36603i −0.127383 + 0.220633i
\(116\) 0 0
\(117\) 0.866025 0.500000i 0.0800641 0.0462250i
\(118\) 0 0
\(119\) −8.39230 7.26795i −0.769321 0.666252i
\(120\) 0 0
\(121\) −4.69615 8.13397i −0.426923 0.739452i
\(122\) 0 0
\(123\) 3.63397 + 2.09808i 0.327664 + 0.189177i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 17.3923i 1.54332i 0.636037 + 0.771659i \(0.280573\pi\)
−0.636037 + 0.771659i \(0.719427\pi\)
\(128\) 0 0
\(129\) 1.33013 + 0.767949i 0.117111 + 0.0676142i
\(130\) 0 0
\(131\) 0.267949 + 0.464102i 0.0234108 + 0.0405487i 0.877493 0.479589i \(-0.159214\pi\)
−0.854083 + 0.520137i \(0.825881\pi\)
\(132\) 0 0
\(133\) 2.13397 + 6.16025i 0.185039 + 0.534162i
\(134\) 0 0
\(135\) 0.866025 0.500000i 0.0745356 0.0430331i
\(136\) 0 0
\(137\) 9.83013 17.0263i 0.839844 1.45465i −0.0501799 0.998740i \(-0.515979\pi\)
0.890024 0.455913i \(-0.150687\pi\)
\(138\) 0 0
\(139\) −7.92820 −0.672461 −0.336231 0.941780i \(-0.609152\pi\)
−0.336231 + 0.941780i \(0.609152\pi\)
\(140\) 0 0
\(141\) −12.9282 −1.08875
\(142\) 0 0
\(143\) −0.633975 + 1.09808i −0.0530156 + 0.0918257i
\(144\) 0 0
\(145\) 2.36603 1.36603i 0.196488 0.113442i
\(146\) 0 0
\(147\) −5.50000 + 4.33013i −0.453632 + 0.357143i
\(148\) 0 0
\(149\) −5.66025 9.80385i −0.463706 0.803162i 0.535436 0.844576i \(-0.320147\pi\)
−0.999142 + 0.0414133i \(0.986814\pi\)
\(150\) 0 0
\(151\) 8.53590 + 4.92820i 0.694642 + 0.401051i 0.805349 0.592802i \(-0.201978\pi\)
−0.110707 + 0.993853i \(0.535312\pi\)
\(152\) 0 0
\(153\) 4.19615i 0.339239i
\(154\) 0 0
\(155\) 6.46410i 0.519209i
\(156\) 0 0
\(157\) 17.3205 + 10.0000i 1.38233 + 0.798087i 0.992435 0.122774i \(-0.0391789\pi\)
0.389892 + 0.920860i \(0.372512\pi\)
\(158\) 0 0
\(159\) −2.73205 4.73205i −0.216666 0.375276i
\(160\) 0 0
\(161\) 6.83013 2.36603i 0.538289 0.186469i
\(162\) 0 0
\(163\) 4.26795 2.46410i 0.334292 0.193003i −0.323453 0.946244i \(-0.604844\pi\)
0.657745 + 0.753241i \(0.271511\pi\)
\(164\) 0 0
\(165\) −0.633975 + 1.09808i −0.0493549 + 0.0854851i
\(166\) 0 0
\(167\) 7.12436 0.551299 0.275650 0.961258i \(-0.411107\pi\)
0.275650 + 0.961258i \(0.411107\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −1.23205 + 2.13397i −0.0942173 + 0.163189i
\(172\) 0 0
\(173\) −14.1962 + 8.19615i −1.07931 + 0.623142i −0.930711 0.365755i \(-0.880811\pi\)
−0.148602 + 0.988897i \(0.547477\pi\)
\(174\) 0 0
\(175\) −1.73205 + 2.00000i −0.130931 + 0.151186i
\(176\) 0 0
\(177\) −1.90192 3.29423i −0.142957 0.247609i
\(178\) 0 0
\(179\) 3.00000 + 1.73205i 0.224231 + 0.129460i 0.607908 0.794008i \(-0.292009\pi\)
−0.383677 + 0.923467i \(0.625342\pi\)
\(180\) 0 0
\(181\) 25.5885i 1.90198i 0.309229 + 0.950988i \(0.399929\pi\)
−0.309229 + 0.950988i \(0.600071\pi\)
\(182\) 0 0
\(183\) 4.53590i 0.335303i
\(184\) 0 0
\(185\) 7.16025 + 4.13397i 0.526432 + 0.303936i
\(186\) 0 0
\(187\) 2.66025 + 4.60770i 0.194537 + 0.336948i
\(188\) 0 0
\(189\) −2.59808 0.500000i −0.188982 0.0363696i
\(190\) 0 0
\(191\) −1.73205 + 1.00000i −0.125327 + 0.0723575i −0.561353 0.827577i \(-0.689719\pi\)
0.436026 + 0.899934i \(0.356386\pi\)
\(192\) 0 0
\(193\) −0.598076 + 1.03590i −0.0430505 + 0.0745656i −0.886748 0.462254i \(-0.847041\pi\)
0.843697 + 0.536819i \(0.180374\pi\)
\(194\) 0 0
\(195\) −1.00000 −0.0716115
\(196\) 0 0
\(197\) −16.7321 −1.19211 −0.596055 0.802944i \(-0.703266\pi\)
−0.596055 + 0.802944i \(0.703266\pi\)
\(198\) 0 0
\(199\) 11.9282 20.6603i 0.845568 1.46457i −0.0395592 0.999217i \(-0.512595\pi\)
0.885127 0.465349i \(-0.154071\pi\)
\(200\) 0 0
\(201\) −4.79423 + 2.76795i −0.338159 + 0.195236i
\(202\) 0 0
\(203\) −7.09808 1.36603i −0.498187 0.0958762i
\(204\) 0 0
\(205\) −2.09808 3.63397i −0.146536 0.253808i
\(206\) 0 0
\(207\) 2.36603 + 1.36603i 0.164450 + 0.0949453i
\(208\) 0 0
\(209\) 3.12436i 0.216116i
\(210\) 0 0
\(211\) 16.7846i 1.15550i −0.816214 0.577750i \(-0.803931\pi\)
0.816214 0.577750i \(-0.196069\pi\)
\(212\) 0 0
\(213\) −1.43782 0.830127i −0.0985180 0.0568794i
\(214\) 0 0
\(215\) −0.767949 1.33013i −0.0523737 0.0907139i
\(216\) 0 0
\(217\) 11.1962 12.9282i 0.760044 0.877624i
\(218\) 0 0
\(219\) −6.86603 + 3.96410i −0.463963 + 0.267869i
\(220\) 0 0
\(221\) −2.09808 + 3.63397i −0.141132 + 0.244448i
\(222\) 0 0
\(223\) 16.3923 1.09771 0.548855 0.835918i \(-0.315064\pi\)
0.548855 + 0.835918i \(0.315064\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −11.0263 + 19.0981i −0.731840 + 1.26758i 0.224256 + 0.974530i \(0.428005\pi\)
−0.956096 + 0.293054i \(0.905329\pi\)
\(228\) 0 0
\(229\) −14.8923 + 8.59808i −0.984111 + 0.568177i −0.903509 0.428569i \(-0.859018\pi\)
−0.0806024 + 0.996746i \(0.525684\pi\)
\(230\) 0 0
\(231\) 3.16987 1.09808i 0.208562 0.0722481i
\(232\) 0 0
\(233\) −3.00000 5.19615i −0.196537 0.340411i 0.750867 0.660454i \(-0.229636\pi\)
−0.947403 + 0.320043i \(0.896303\pi\)
\(234\) 0 0
\(235\) 11.1962 + 6.46410i 0.730356 + 0.421671i
\(236\) 0 0
\(237\) 4.26795i 0.277233i
\(238\) 0 0
\(239\) 29.3205i 1.89659i −0.317396 0.948293i \(-0.602809\pi\)
0.317396 0.948293i \(-0.397191\pi\)
\(240\) 0 0
\(241\) 13.7321 + 7.92820i 0.884559 + 0.510700i 0.872159 0.489223i \(-0.162719\pi\)
0.0124002 + 0.999923i \(0.496053\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 6.92820 1.00000i 0.442627 0.0638877i
\(246\) 0 0
\(247\) 2.13397 1.23205i 0.135782 0.0783935i
\(248\) 0 0
\(249\) 2.63397 4.56218i 0.166921 0.289116i
\(250\) 0 0
\(251\) 19.1244 1.20712 0.603559 0.797318i \(-0.293749\pi\)
0.603559 + 0.797318i \(0.293749\pi\)
\(252\) 0 0
\(253\) −3.46410 −0.217786
\(254\) 0 0
\(255\) −2.09808 + 3.63397i −0.131387 + 0.227568i
\(256\) 0 0
\(257\) −0.294229 + 0.169873i −0.0183535 + 0.0105964i −0.509149 0.860679i \(-0.670040\pi\)
0.490795 + 0.871275i \(0.336706\pi\)
\(258\) 0 0
\(259\) −7.16025 20.6699i −0.444917 1.28436i
\(260\) 0 0
\(261\) −1.36603 2.36603i −0.0845548 0.146453i
\(262\) 0 0
\(263\) −9.80385 5.66025i −0.604531 0.349026i 0.166291 0.986077i \(-0.446821\pi\)
−0.770822 + 0.637051i \(0.780154\pi\)
\(264\) 0 0
\(265\) 5.46410i 0.335657i
\(266\) 0 0
\(267\) 4.73205i 0.289597i
\(268\) 0 0
\(269\) −13.7321 7.92820i −0.837258 0.483391i 0.0190733 0.999818i \(-0.493928\pi\)
−0.856331 + 0.516427i \(0.827262\pi\)
\(270\) 0 0
\(271\) −1.00000 1.73205i −0.0607457 0.105215i 0.834053 0.551684i \(-0.186015\pi\)
−0.894799 + 0.446469i \(0.852681\pi\)
\(272\) 0 0
\(273\) 2.00000 + 1.73205i 0.121046 + 0.104828i
\(274\) 0 0
\(275\) 1.09808 0.633975i 0.0662165 0.0382301i
\(276\) 0 0
\(277\) −5.59808 + 9.69615i −0.336356 + 0.582585i −0.983744 0.179575i \(-0.942528\pi\)
0.647389 + 0.762160i \(0.275861\pi\)
\(278\) 0 0
\(279\) 6.46410 0.386996
\(280\) 0 0
\(281\) 13.8564 0.826604 0.413302 0.910594i \(-0.364375\pi\)
0.413302 + 0.910594i \(0.364375\pi\)
\(282\) 0 0
\(283\) 16.5981 28.7487i 0.986653 1.70893i 0.352307 0.935885i \(-0.385397\pi\)
0.634346 0.773049i \(-0.281269\pi\)
\(284\) 0 0
\(285\) 2.13397 1.23205i 0.126406 0.0729804i
\(286\) 0 0
\(287\) −2.09808 + 10.9019i −0.123846 + 0.643520i
\(288\) 0 0
\(289\) 0.303848 + 0.526279i 0.0178734 + 0.0309576i
\(290\) 0 0
\(291\) −4.26795 2.46410i −0.250192 0.144448i
\(292\) 0 0
\(293\) 17.4641i 1.02026i −0.860096 0.510132i \(-0.829597\pi\)
0.860096 0.510132i \(-0.170403\pi\)
\(294\) 0 0
\(295\) 3.80385i 0.221469i
\(296\) 0 0
\(297\) 1.09808 + 0.633975i 0.0637168 + 0.0367869i
\(298\) 0 0
\(299\) −1.36603 2.36603i −0.0789993 0.136831i
\(300\) 0 0
\(301\) −0.767949 + 3.99038i −0.0442639 + 0.230002i
\(302\) 0 0
\(303\) −4.56218 + 2.63397i −0.262090 + 0.151318i
\(304\) 0 0
\(305\) −2.26795 + 3.92820i −0.129862 + 0.224928i
\(306\) 0 0
\(307\) −4.12436 −0.235389 −0.117695 0.993050i \(-0.537550\pi\)
−0.117695 + 0.993050i \(0.537550\pi\)
\(308\) 0 0
\(309\) −5.73205 −0.326085
\(310\) 0 0
\(311\) 9.09808 15.7583i 0.515905 0.893573i −0.483925 0.875109i \(-0.660789\pi\)
0.999830 0.0184634i \(-0.00587743\pi\)
\(312\) 0 0
\(313\) −16.4545 + 9.50000i −0.930062 + 0.536972i −0.886831 0.462093i \(-0.847098\pi\)
−0.0432311 + 0.999065i \(0.513765\pi\)
\(314\) 0 0
\(315\) 2.00000 + 1.73205i 0.112687 + 0.0975900i
\(316\) 0 0
\(317\) −14.0263 24.2942i −0.787794 1.36450i −0.927315 0.374281i \(-0.877890\pi\)
0.139521 0.990219i \(-0.455444\pi\)
\(318\) 0 0
\(319\) 3.00000 + 1.73205i 0.167968 + 0.0969762i
\(320\) 0 0
\(321\) 13.2679i 0.740545i
\(322\) 0 0
\(323\) 10.3397i 0.575319i
\(324\) 0 0
\(325\) 0.866025 + 0.500000i 0.0480384 + 0.0277350i
\(326\) 0 0
\(327\) −2.03590 3.52628i −0.112585 0.195004i
\(328\) 0 0
\(329\) −11.1962 32.3205i −0.617264 1.78189i
\(330\) 0 0
\(331\) 7.50000 4.33013i 0.412237 0.238005i −0.279513 0.960142i \(-0.590173\pi\)
0.691751 + 0.722137i \(0.256840\pi\)
\(332\) 0 0
\(333\) 4.13397 7.16025i 0.226540 0.392380i
\(334\) 0 0
\(335\) 5.53590 0.302458
\(336\) 0 0
\(337\) 33.4449 1.82186 0.910929 0.412563i \(-0.135366\pi\)
0.910929 + 0.412563i \(0.135366\pi\)
\(338\) 0 0
\(339\) 3.19615 5.53590i 0.173591 0.300669i
\(340\) 0 0
\(341\) −7.09808 + 4.09808i −0.384382 + 0.221923i
\(342\) 0 0
\(343\) −15.5885 10.0000i −0.841698 0.539949i
\(344\) 0 0
\(345\) −1.36603 2.36603i −0.0735443 0.127383i
\(346\) 0 0
\(347\) 8.19615 + 4.73205i 0.439993 + 0.254030i 0.703594 0.710602i \(-0.251577\pi\)
−0.263602 + 0.964632i \(0.584911\pi\)
\(348\) 0 0
\(349\) 13.0718i 0.699717i 0.936803 + 0.349859i \(0.113770\pi\)
−0.936803 + 0.349859i \(0.886230\pi\)
\(350\) 0 0
\(351\) 1.00000i 0.0533761i
\(352\) 0 0
\(353\) 9.75833 + 5.63397i 0.519384 + 0.299866i 0.736682 0.676239i \(-0.236391\pi\)
−0.217299 + 0.976105i \(0.569725\pi\)
\(354\) 0 0
\(355\) 0.830127 + 1.43782i 0.0440586 + 0.0763117i
\(356\) 0 0
\(357\) 10.4904 3.63397i 0.555210 0.192330i
\(358\) 0 0
\(359\) 10.0981 5.83013i 0.532956 0.307702i −0.209263 0.977859i \(-0.567107\pi\)
0.742219 + 0.670157i \(0.233773\pi\)
\(360\) 0 0
\(361\) 6.46410 11.1962i 0.340216 0.589271i
\(362\) 0 0
\(363\) 9.39230 0.492968
\(364\) 0 0
\(365\) 7.92820 0.414981
\(366\) 0 0
\(367\) 6.40192 11.0885i 0.334178 0.578813i −0.649149 0.760661i \(-0.724875\pi\)
0.983327 + 0.181849i \(0.0582081\pi\)
\(368\) 0 0
\(369\) −3.63397 + 2.09808i −0.189177 + 0.109221i
\(370\) 0 0
\(371\) 9.46410 10.9282i 0.491352 0.567364i
\(372\) 0 0
\(373\) −10.9904 19.0359i −0.569060 0.985641i −0.996659 0.0816729i \(-0.973974\pi\)
0.427599 0.903969i \(-0.359360\pi\)
\(374\) 0 0
\(375\) 0.866025 + 0.500000i 0.0447214 + 0.0258199i
\(376\) 0 0
\(377\) 2.73205i 0.140708i
\(378\) 0 0
\(379\) 32.5167i 1.67027i −0.550046 0.835134i \(-0.685390\pi\)
0.550046 0.835134i \(-0.314610\pi\)
\(380\) 0 0
\(381\) −15.0622 8.69615i −0.771659 0.445517i
\(382\) 0 0
\(383\) −10.9282 18.9282i −0.558405 0.967186i −0.997630 0.0688088i \(-0.978080\pi\)
0.439225 0.898377i \(-0.355253\pi\)
\(384\) 0 0
\(385\) −3.29423 0.633975i −0.167889 0.0323103i
\(386\) 0 0
\(387\) −1.33013 + 0.767949i −0.0676142 + 0.0390371i
\(388\) 0 0
\(389\) −14.7583 + 25.5622i −0.748277 + 1.29605i 0.200371 + 0.979720i \(0.435785\pi\)
−0.948648 + 0.316334i \(0.897548\pi\)
\(390\) 0 0
\(391\) −11.4641 −0.579765
\(392\) 0 0
\(393\) −0.535898 −0.0270325
\(394\) 0 0
\(395\) 2.13397 3.69615i 0.107372 0.185974i
\(396\) 0 0
\(397\) 4.79423 2.76795i 0.240615 0.138919i −0.374844 0.927088i \(-0.622304\pi\)
0.615460 + 0.788168i \(0.288970\pi\)
\(398\) 0 0
\(399\) −6.40192 1.23205i −0.320497 0.0616797i
\(400\) 0 0
\(401\) −6.00000 10.3923i −0.299626 0.518967i 0.676425 0.736512i \(-0.263528\pi\)
−0.976050 + 0.217545i \(0.930195\pi\)
\(402\) 0 0
\(403\) −5.59808 3.23205i −0.278860 0.161000i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 10.4833i 0.519640i
\(408\) 0 0
\(409\) −8.42820 4.86603i −0.416748 0.240609i 0.276937 0.960888i \(-0.410681\pi\)
−0.693685 + 0.720279i \(0.744014\pi\)
\(410\) 0 0
\(411\) 9.83013 + 17.0263i 0.484884 + 0.839844i
\(412\) 0 0
\(413\) 6.58846 7.60770i 0.324197 0.374350i
\(414\) 0 0
\(415\) −4.56218 + 2.63397i −0.223949 + 0.129297i
\(416\) 0 0
\(417\) 3.96410 6.86603i 0.194123 0.336231i
\(418\) 0 0
\(419\) −4.92820 −0.240758 −0.120379 0.992728i \(-0.538411\pi\)
−0.120379 + 0.992728i \(0.538411\pi\)
\(420\) 0 0
\(421\) −25.9282 −1.26366 −0.631832 0.775106i \(-0.717697\pi\)
−0.631832 + 0.775106i \(0.717697\pi\)
\(422\) 0 0
\(423\) 6.46410 11.1962i 0.314295 0.544376i
\(424\) 0 0
\(425\) 3.63397 2.09808i 0.176274 0.101772i
\(426\) 0 0
\(427\) 11.3397 3.92820i 0.548769 0.190099i
\(428\) 0 0
\(429\) −0.633975 1.09808i −0.0306086 0.0530156i
\(430\) 0 0
\(431\) −14.6603 8.46410i −0.706160 0.407701i 0.103478 0.994632i \(-0.467003\pi\)
−0.809637 + 0.586930i \(0.800336\pi\)
\(432\) 0 0
\(433\) 19.5359i 0.938835i 0.882976 + 0.469418i \(0.155536\pi\)
−0.882976 + 0.469418i \(0.844464\pi\)
\(434\) 0 0
\(435\) 2.73205i 0.130992i
\(436\) 0 0
\(437\) 5.83013 + 3.36603i 0.278893 + 0.161019i
\(438\) 0 0
\(439\) 5.73205 + 9.92820i 0.273576 + 0.473847i 0.969775 0.244002i \(-0.0784602\pi\)
−0.696199 + 0.717849i \(0.745127\pi\)
\(440\) 0 0
\(441\) −1.00000 6.92820i −0.0476190 0.329914i
\(442\) 0 0
\(443\) −4.39230 + 2.53590i −0.208685 + 0.120484i −0.600700 0.799475i \(-0.705111\pi\)
0.392015 + 0.919959i \(0.371778\pi\)
\(444\) 0 0
\(445\) −2.36603 + 4.09808i −0.112160 + 0.194267i
\(446\) 0 0
\(447\) 11.3205 0.535442
\(448\) 0 0
\(449\) −13.3205 −0.628634 −0.314317 0.949318i \(-0.601775\pi\)
−0.314317 + 0.949318i \(0.601775\pi\)
\(450\) 0 0
\(451\) 2.66025 4.60770i 0.125266 0.216968i
\(452\) 0 0
\(453\) −8.53590 + 4.92820i −0.401051 + 0.231547i
\(454\) 0 0
\(455\) −0.866025 2.50000i −0.0405999 0.117202i
\(456\) 0 0
\(457\) −2.86603 4.96410i −0.134067 0.232211i 0.791174 0.611592i \(-0.209470\pi\)
−0.925241 + 0.379381i \(0.876137\pi\)
\(458\) 0 0
\(459\) 3.63397 + 2.09808i 0.169619 + 0.0979298i
\(460\) 0 0
\(461\) 21.8038i 1.01551i 0.861503 + 0.507753i \(0.169524\pi\)
−0.861503 + 0.507753i \(0.830476\pi\)
\(462\) 0 0
\(463\) 17.7846i 0.826521i 0.910613 + 0.413260i \(0.135610\pi\)
−0.910613 + 0.413260i \(0.864390\pi\)
\(464\) 0 0
\(465\) −5.59808 3.23205i −0.259605 0.149883i
\(466\) 0 0
\(467\) 20.8564 + 36.1244i 0.965119 + 1.67164i 0.709294 + 0.704913i \(0.249014\pi\)
0.255825 + 0.966723i \(0.417653\pi\)
\(468\) 0 0
\(469\) −11.0718 9.58846i −0.511248 0.442754i
\(470\) 0 0
\(471\) −17.3205 + 10.0000i −0.798087 + 0.460776i
\(472\) 0 0
\(473\) 0.973721 1.68653i 0.0447717 0.0775469i
\(474\) 0 0
\(475\) −2.46410 −0.113061
\(476\) 0 0
\(477\) 5.46410 0.250184
\(478\) 0 0
\(479\) −3.07180 + 5.32051i −0.140354 + 0.243100i −0.927630 0.373501i \(-0.878157\pi\)
0.787276 + 0.616601i \(0.211491\pi\)
\(480\) 0 0
\(481\) −7.16025 + 4.13397i −0.326479 + 0.188493i
\(482\) 0 0
\(483\) −1.36603 + 7.09808i −0.0621563 + 0.322974i
\(484\) 0 0
\(485\) 2.46410 + 4.26795i 0.111889 + 0.193798i
\(486\) 0 0
\(487\) 15.6506 + 9.03590i 0.709198 + 0.409456i 0.810764 0.585373i \(-0.199052\pi\)
−0.101566 + 0.994829i \(0.532385\pi\)
\(488\) 0 0
\(489\) 4.92820i 0.222861i
\(490\) 0 0
\(491\) 30.5359i 1.37807i −0.724730 0.689033i \(-0.758036\pi\)
0.724730 0.689033i \(-0.241964\pi\)
\(492\) 0 0
\(493\) 9.92820 + 5.73205i 0.447144 + 0.258159i
\(494\) 0 0
\(495\) −0.633975 1.09808i −0.0284950 0.0493549i
\(496\) 0 0
\(497\) 0.830127 4.31347i 0.0372363 0.193485i
\(498\) 0 0
\(499\) 19.1603 11.0622i 0.857731 0.495211i −0.00552096 0.999985i \(-0.501757\pi\)
0.863252 + 0.504774i \(0.168424\pi\)
\(500\) 0 0
\(501\) −3.56218 + 6.16987i −0.159146 + 0.275650i
\(502\) 0 0
\(503\) 36.9282 1.64655 0.823274 0.567645i \(-0.192145\pi\)
0.823274 + 0.567645i \(0.192145\pi\)
\(504\) 0 0
\(505\) 5.26795 0.234421
\(506\) 0 0
\(507\) −6.00000 + 10.3923i −0.266469 + 0.461538i
\(508\) 0 0
\(509\) −19.9808 + 11.5359i −0.885632 + 0.511320i −0.872511 0.488594i \(-0.837510\pi\)
−0.0131206 + 0.999914i \(0.504177\pi\)
\(510\) 0 0
\(511\) −15.8564 13.7321i −0.701446 0.607470i
\(512\) 0 0
\(513\) −1.23205 2.13397i −0.0543964 0.0942173i
\(514\) 0 0
\(515\) 4.96410 + 2.86603i 0.218744 + 0.126292i
\(516\) 0 0
\(517\) 16.3923i 0.720933i
\(518\) 0 0
\(519\) 16.3923i 0.719542i
\(520\) 0 0
\(521\) 29.9090 + 17.2679i 1.31034 + 0.756523i 0.982152 0.188091i \(-0.0602301\pi\)
0.328184 + 0.944614i \(0.393563\pi\)
\(522\) 0 0
\(523\) −8.40192 14.5526i −0.367390 0.636339i 0.621766 0.783203i \(-0.286415\pi\)
−0.989157 + 0.146864i \(0.953082\pi\)
\(524\) 0 0
\(525\) −0.866025 2.50000i −0.0377964 0.109109i
\(526\) 0 0
\(527\) −23.4904 + 13.5622i −1.02326 + 0.590778i
\(528\) 0 0
\(529\) −7.76795 + 13.4545i −0.337737 + 0.584978i
\(530\) 0 0
\(531\) 3.80385 0.165073
\(532\) 0 0
\(533\) 4.19615 0.181756
\(534\) 0 0
\(535\) −6.63397 + 11.4904i −0.286812 + 0.496772i
\(536\) 0 0
\(537\) −3.00000 + 1.73205i −0.129460 + 0.0747435i
\(538\) 0 0
\(539\) 5.49038 + 6.97372i 0.236487 + 0.300379i
\(540\) 0 0
\(541\) −17.8923 30.9904i −0.769250 1.33238i −0.937970 0.346716i \(-0.887297\pi\)
0.168720 0.985664i \(-0.446037\pi\)
\(542\) 0 0
\(543\) −22.1603 12.7942i −0.950988 0.549053i
\(544\) 0 0
\(545\) 4.07180i 0.174417i
\(546\) 0 0
\(547\) 5.60770i 0.239768i 0.992788 + 0.119884i \(0.0382522\pi\)
−0.992788 + 0.119884i \(0.961748\pi\)
\(548\) 0 0
\(549\) 3.92820 + 2.26795i 0.167652 + 0.0967937i
\(550\) 0 0
\(551\) −3.36603 5.83013i −0.143398 0.248372i
\(552\) 0 0
\(553\) −10.6699 + 3.69615i −0.453729 + 0.157176i
\(554\) 0 0
\(555\) −7.16025 + 4.13397i −0.303936 + 0.175477i
\(556\) 0 0
\(557\) −6.26795 + 10.8564i −0.265582 + 0.460001i −0.967716 0.252044i \(-0.918897\pi\)
0.702134 + 0.712045i \(0.252231\pi\)
\(558\) 0 0
\(559\) 1.53590 0.0649616
\(560\) 0 0
\(561\) −5.32051 −0.224632
\(562\) 0 0
\(563\) 7.19615 12.4641i 0.303282 0.525299i −0.673596 0.739100i \(-0.735251\pi\)
0.976877 + 0.213801i \(0.0685844\pi\)
\(564\) 0 0
\(565\) −5.53590 + 3.19615i −0.232897 + 0.134463i
\(566\) 0 0
\(567\) 1.73205 2.00000i 0.0727393 0.0839921i
\(568\) 0 0
\(569\) −11.2942 19.5622i −0.473479 0.820089i 0.526060 0.850447i \(-0.323669\pi\)
−0.999539 + 0.0303581i \(0.990335\pi\)
\(570\) 0 0
\(571\) 7.62436 + 4.40192i 0.319069 + 0.184215i 0.650978 0.759097i \(-0.274359\pi\)
−0.331908 + 0.943312i \(0.607692\pi\)
\(572\) 0 0
\(573\) 2.00000i 0.0835512i
\(574\) 0 0
\(575\) 2.73205i 0.113934i
\(576\) 0 0
\(577\) 9.65064 + 5.57180i 0.401761 + 0.231957i 0.687244 0.726427i \(-0.258820\pi\)
−0.285482 + 0.958384i \(0.592154\pi\)
\(578\) 0 0
\(579\) −0.598076 1.03590i −0.0248552 0.0430505i
\(580\) 0 0
\(581\) 13.6865 + 2.63397i 0.567813 + 0.109276i
\(582\) 0 0
\(583\) −6.00000 + 3.46410i −0.248495 + 0.143468i
\(584\) 0 0
\(585\) 0.500000 0.866025i 0.0206725 0.0358057i
\(586\) 0 0
\(587\) −7.66025 −0.316173 −0.158086 0.987425i \(-0.550532\pi\)
−0.158086 + 0.987425i \(0.550532\pi\)
\(588\) 0 0
\(589\) 15.9282 0.656310
\(590\) 0 0
\(591\) 8.36603 14.4904i 0.344132 0.596055i
\(592\) 0 0
\(593\) −35.2750 + 20.3660i −1.44857 + 0.836332i −0.998396 0.0566085i \(-0.981971\pi\)
−0.450174 + 0.892941i \(0.648638\pi\)
\(594\) 0 0
\(595\) −10.9019 2.09808i −0.446935 0.0860127i
\(596\) 0 0
\(597\) 11.9282 + 20.6603i 0.488189 + 0.845568i
\(598\) 0 0
\(599\) −16.3923 9.46410i −0.669771 0.386693i 0.126219 0.992002i \(-0.459716\pi\)
−0.795990 + 0.605310i \(0.793049\pi\)
\(600\) 0 0
\(601\) 28.6603i 1.16908i −0.811366 0.584538i \(-0.801276\pi\)
0.811366 0.584538i \(-0.198724\pi\)
\(602\) 0 0
\(603\) 5.53590i 0.225439i
\(604\) 0 0
\(605\) −8.13397 4.69615i −0.330693 0.190926i
\(606\) 0 0
\(607\) 16.4019 + 28.4090i 0.665734 + 1.15308i 0.979086 + 0.203447i \(0.0652146\pi\)
−0.313352 + 0.949637i \(0.601452\pi\)
\(608\) 0 0
\(609\) 4.73205 5.46410i 0.191752 0.221417i
\(610\) 0 0
\(611\) −11.1962 + 6.46410i −0.452948 + 0.261510i
\(612\) 0 0
\(613\) 15.3205 26.5359i 0.618789 1.07177i −0.370917 0.928666i \(-0.620957\pi\)
0.989707 0.143109i \(-0.0457099\pi\)
\(614\) 0 0
\(615\) 4.19615 0.169205
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −3.50000 + 6.06218i −0.140677 + 0.243659i −0.927752 0.373198i \(-0.878261\pi\)
0.787075 + 0.616858i \(0.211595\pi\)
\(620\) 0 0
\(621\) −2.36603 + 1.36603i −0.0949453 + 0.0548167i
\(622\) 0 0
\(623\) 11.8301 4.09808i 0.473964 0.164186i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 2.70577 + 1.56218i 0.108058 + 0.0623874i
\(628\) 0 0
\(629\) 34.6936i 1.38332i
\(630\) 0 0
\(631\) 31.4641i 1.25257i 0.779596 + 0.626283i \(0.215425\pi\)
−0.779596 + 0.626283i \(0.784575\pi\)
\(632\) 0 0
\(633\) 14.5359 + 8.39230i 0.577750 + 0.333564i
\(634\) 0 0
\(635\) 8.69615 + 15.0622i 0.345096 + 0.597724i
\(636\) 0 0
\(637\) −2.59808 + 6.50000i −0.102940 + 0.257539i
\(638\) 0 0
\(639\) 1.43782 0.830127i 0.0568794 0.0328393i
\(640\) 0 0
\(641\) 11.2224 19.4378i 0.443259 0.767748i −0.554670 0.832071i \(-0.687155\pi\)
0.997929 + 0.0643228i \(0.0204887\pi\)
\(642\) 0 0
\(643\) −19.9808 −0.787964 −0.393982 0.919118i \(-0.628903\pi\)
−0.393982 + 0.919118i \(0.628903\pi\)
\(644\) 0 0
\(645\) 1.53590 0.0604759
\(646\) 0 0
\(647\) −2.09808 + 3.63397i −0.0824839 + 0.142866i −0.904316 0.426863i \(-0.859619\pi\)
0.821832 + 0.569729i \(0.192952\pi\)
\(648\) 0 0
\(649\) −4.17691 + 2.41154i −0.163958 + 0.0946613i
\(650\) 0 0
\(651\) 5.59808 + 16.1603i 0.219406 + 0.633370i
\(652\) 0 0
\(653\) −20.2942 35.1506i −0.794175 1.37555i −0.923362 0.383930i \(-0.874570\pi\)
0.129187 0.991620i \(-0.458763\pi\)
\(654\) 0 0
\(655\) 0.464102 + 0.267949i 0.0181340 + 0.0104696i
\(656\) 0 0
\(657\) 7.92820i 0.309309i
\(658\) 0 0
\(659\) 8.78461i 0.342200i 0.985254 + 0.171100i \(0.0547321\pi\)
−0.985254 + 0.171100i \(0.945268\pi\)
\(660\) 0 0
\(661\) 3.44744 + 1.99038i 0.134090 + 0.0774169i 0.565544 0.824718i \(-0.308666\pi\)
−0.431454 + 0.902135i \(0.641999\pi\)
\(662\) 0 0
\(663\) −2.09808 3.63397i −0.0814825 0.141132i
\(664\) 0 0
\(665\) 4.92820 + 4.26795i 0.191108 + 0.165504i
\(666\) 0 0
\(667\) −6.46410 + 3.73205i −0.250291 + 0.144506i
\(668\) 0 0
\(669\) −8.19615 + 14.1962i −0.316882 + 0.548855i
\(670\) 0 0
\(671\) −5.75129 −0.222026
\(672\) 0 0
\(673\) 29.4449 1.13502 0.567508 0.823368i \(-0.307908\pi\)
0.567508 + 0.823368i \(0.307908\pi\)
\(674\) 0 0
\(675\) 0.500000 0.866025i 0.0192450 0.0333333i
\(676\) 0 0
\(677\) −27.8827 + 16.0981i −1.07162 + 0.618699i −0.928623 0.371024i \(-0.879007\pi\)
−0.142995 + 0.989723i \(0.545673\pi\)
\(678\) 0 0
\(679\) 2.46410 12.8038i 0.0945635 0.491367i
\(680\) 0 0
\(681\) −11.0263 19.0981i −0.422528 0.731840i
\(682\) 0 0
\(683\) −2.95448 1.70577i −0.113050 0.0652695i 0.442409 0.896814i \(-0.354124\pi\)
−0.555459 + 0.831544i \(0.687457\pi\)
\(684\) 0 0
\(685\) 19.6603i 0.751180i
\(686\) 0 0
\(687\) 17.1962i 0.656074i
\(688\) 0 0
\(689\) −4.73205 2.73205i −0.180277 0.104083i
\(690\) 0 0
\(691\) 23.2846 + 40.3301i 0.885788 + 1.53423i 0.844807 + 0.535070i \(0.179715\pi\)
0.0409808 + 0.999160i \(0.486952\pi\)
\(692\) 0 0
\(693\) −0.633975 + 3.29423i −0.0240827 + 0.125137i
\(694\) 0 0
\(695\) −6.86603 + 3.96410i −0.260443 + 0.150367i
\(696\) 0 0
\(697\) 8.80385 15.2487i 0.333470 0.577586i
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) 19.9090 0.751951 0.375976 0.926630i \(-0.377308\pi\)
0.375976 + 0.926630i \(0.377308\pi\)
\(702\) 0 0
\(703\) 10.1865 17.6436i 0.384192 0.665441i
\(704\) 0 0
\(705\) −11.1962 + 6.46410i −0.421671 + 0.243452i
\(706\) 0 0
\(707\) −10.5359 9.12436i −0.396243 0.343157i
\(708\) 0 0
\(709\) −5.85641 10.1436i −0.219942 0.380951i 0.734848 0.678232i \(-0.237253\pi\)
−0.954790 + 0.297281i \(0.903920\pi\)
\(710\) 0 0
\(711\) −3.69615 2.13397i −0.138617 0.0800303i
\(712\) 0 0
\(713\) 17.6603i 0.661382i
\(714\) 0 0
\(715\) 1.26795i 0.0474186i
\(716\) 0 0
\(717\) 25.3923 + 14.6603i 0.948293 + 0.547497i
\(718\) 0 0
\(719\) −12.4641 21.5885i −0.464833 0.805114i 0.534361 0.845256i \(-0.320552\pi\)
−0.999194 + 0.0401425i \(0.987219\pi\)
\(720\) 0 0
\(721\) −4.96410 14.3301i −0.184873 0.533682i
\(722\) 0 0
\(723\) −13.7321 + 7.92820i −0.510700 + 0.294853i
\(724\) 0 0
\(725\) 1.36603 2.36603i 0.0507329 0.0878720i
\(726\) 0 0
\(727\) −27.7321 −1.02852 −0.514262 0.857633i \(-0.671934\pi\)
−0.514262 + 0.857633i \(0.671934\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 3.22243 5.58142i 0.119186 0.206436i
\(732\) 0 0
\(733\) 13.4545 7.76795i 0.496953 0.286916i −0.230502 0.973072i \(-0.574037\pi\)
0.727454 + 0.686156i \(0.240703\pi\)
\(734\) 0 0
\(735\) −2.59808 + 6.50000i −0.0958315 + 0.239756i
\(736\) 0 0
\(737\) 3.50962 + 6.07884i 0.129278 + 0.223917i
\(738\) 0 0
\(739\) 7.03590 + 4.06218i 0.258820 + 0.149430i 0.623796 0.781587i \(-0.285590\pi\)
−0.364976 + 0.931017i \(0.618923\pi\)
\(740\) 0 0
\(741\) 2.46410i 0.0905210i
\(742\) 0 0
\(743\) 48.4449i 1.77727i 0.458615 + 0.888635i \(0.348346\pi\)
−0.458615 + 0.888635i \(0.651654\pi\)
\(744\) 0 0
\(745\) −9.80385 5.66025i −0.359185 0.207376i
\(746\) 0 0
\(747\) 2.63397 + 4.56218i 0.0963721 + 0.166921i
\(748\) 0 0
\(749\) 33.1699 11.4904i 1.21200 0.419849i
\(750\) 0 0
\(751\) −19.9641 + 11.5263i −0.728500 + 0.420600i −0.817873 0.575398i \(-0.804847\pi\)
0.0893729 + 0.995998i \(0.471514\pi\)
\(752\) 0 0
\(753\) −9.56218 + 16.5622i −0.348465 + 0.603559i
\(754\) 0 0
\(755\) 9.85641 0.358711
\(756\) 0 0
\(757\) 35.8564 1.30322 0.651612 0.758553i \(-0.274093\pi\)
0.651612 + 0.758553i \(0.274093\pi\)
\(758\) 0 0
\(759\) 1.73205 3.00000i 0.0628695 0.108893i
\(760\) 0 0
\(761\) 36.2942 20.9545i 1.31566 0.759599i 0.332637 0.943055i \(-0.392062\pi\)
0.983028 + 0.183456i \(0.0587284\pi\)
\(762\) 0 0
\(763\) 7.05256 8.14359i 0.255320 0.294818i
\(764\) 0 0
\(765\) −2.09808 3.63397i −0.0758561 0.131387i
\(766\) 0 0
\(767\) −3.29423 1.90192i −0.118948 0.0686745i
\(768\) 0 0
\(769\) 46.1244i 1.66329i 0.555310 + 0.831643i \(0.312600\pi\)
−0.555310 + 0.831643i \(0.687400\pi\)
\(770\) 0 0
\(771\) 0.339746i 0.0122357i
\(772\) 0 0
\(773\) 36.6340 + 21.1506i 1.31763 + 0.760735i 0.983347 0.181736i \(-0.0581718\pi\)
0.334285 + 0.942472i \(0.391505\pi\)
\(774\) 0 0
\(775\) 3.23205 + 5.59808i 0.116099 + 0.201089i
\(776\) 0 0
\(777\) 21.4808 + 4.13397i 0.770618 + 0.148306i
\(778\) 0 0
\(779\) −8.95448 + 5.16987i −0.320828 + 0.185230i
\(780\) 0 0
\(781\) −1.05256 + 1.82309i −0.0376635 + 0.0652351i
\(782\) 0 0
\(783\) 2.73205 0.0976355
\(784\) 0 0
\(785\) 20.0000 0.713831
\(786\) 0 0
\(787\) 5.12436 8.87564i 0.182664 0.316383i −0.760123 0.649779i \(-0.774861\pi\)
0.942787 + 0.333396i \(0.108195\pi\)
\(788\) 0 0
\(789\) 9.80385 5.66025i 0.349026 0.201510i
\(790\) 0 0
\(791\) 16.6077 + 3.19615i 0.590502 + 0.113642i
\(792\) 0 0
\(793\) −2.26795 3.92820i −0.0805372 0.139495i
\(794\) 0 0
\(795\) −4.73205 2.73205i −0.167829 0.0968959i
\(796\) 0 0
\(797\) 33.3731i 1.18213i −0.806622 0.591067i \(-0.798707\pi\)
0.806622 0.591067i \(-0.201293\pi\)
\(798\) 0 0
\(799\) 54.2487i 1.91918i
\(800\) 0 0
\(801\) 4.09808 + 2.36603i 0.144798 + 0.0835994i
\(802\) 0 0
\(803\) 5.02628 + 8.70577i 0.177374 + 0.307220i
\(804\) 0 0
\(805\) 4.73205 5.46410i 0.166783 0.192584i
\(806\) 0 0
\(807\) 13.7321 7.92820i 0.483391 0.279086i
\(808\) 0 0
\(809\) −23.1962 + 40.1769i −0.815533 + 1.41255i 0.0934111 + 0.995628i \(0.470223\pi\)
−0.908944 + 0.416917i \(0.863110\pi\)
\(810\) 0 0
\(811\) −50.1051 −1.75943 −0.879714 0.475503i \(-0.842266\pi\)
−0.879714 + 0.475503i \(0.842266\pi\)
\(812\) 0 0
\(813\) 2.00000 0.0701431
\(814\) 0 0
\(815\) 2.46410 4.26795i 0.0863137 0.149500i
\(816\) 0 0
\(817\) −3.27757 + 1.89230i −0.114668 + 0.0662034i
\(818\) 0 0
\(819\) −2.50000 + 0.866025i −0.0873571 + 0.0302614i
\(820\) 0 0
\(821\) 20.9545 + 36.2942i 0.731316 + 1.26668i 0.956321 + 0.292320i \(0.0944271\pi\)
−0.225004 + 0.974358i \(0.572240\pi\)
\(822\) 0 0
\(823\) −18.9282 10.9282i −0.659796 0.380933i 0.132403 0.991196i \(-0.457731\pi\)
−0.792199 + 0.610263i \(0.791064\pi\)
\(824\) 0 0
\(825\) 1.26795i 0.0441443i
\(826\) 0 0
\(827\) 0.143594i 0.00499324i −0.999997 0.00249662i \(-0.999205\pi\)
0.999997 0.00249662i \(-0.000794699\pi\)
\(828\) 0 0
\(829\) −32.3038 18.6506i −1.12196 0.647763i −0.180059 0.983656i \(-0.557629\pi\)
−0.941900 + 0.335893i \(0.890962\pi\)
\(830\) 0 0
\(831\) −5.59808 9.69615i −0.194195 0.336356i
\(832\) 0 0
\(833\) 18.1699 + 23.0788i 0.629549 + 0.799634i
\(834\) 0 0
\(835\) 6.16987 3.56218i 0.213517 0.123274i
\(836\) 0 0
\(837\) −3.23205 + 5.59808i −0.111716 + 0.193498i
\(838\) 0 0
\(839\) 32.9808 1.13862 0.569311 0.822122i \(-0.307210\pi\)
0.569311 + 0.822122i \(0.307210\pi\)
\(840\) 0 0
\(841\) −21.5359 −0.742617
\(842\) 0 0
\(843\) −6.92820 + 12.0000i −0.238620 + 0.413302i
\(844\) 0 0
\(845\) 10.3923 6.00000i 0.357506 0.206406i
\(846\) 0 0
\(847\) 8.13397 + 23.4808i 0.279487 + 0.806809i
\(848\) 0 0
\(849\) 16.5981 + 28.7487i 0.569645 + 0.986653i
\(850\) 0 0
\(851\) −19.5622 11.2942i −0.670583 0.387161i
\(852\) 0 0
\(853\) 8.60770i 0.294722i 0.989083 + 0.147361i \(0.0470779\pi\)
−0.989083 + 0.147361i \(0.952922\pi\)
\(854\) 0 0
\(855\) 2.46410i 0.0842705i
\(856\) 0 0
\(857\) −21.8827 12.6340i −0.747498 0.431568i 0.0772910 0.997009i \(-0.475373\pi\)
−0.824789 + 0.565440i \(0.808706\pi\)
\(858\) 0 0
\(859\) −8.26795 14.3205i −0.282099 0.488609i 0.689803 0.723997i \(-0.257697\pi\)
−0.971901 + 0.235388i \(0.924364\pi\)
\(860\) 0 0
\(861\) −8.39230 7.26795i −0.286009 0.247691i
\(862\) 0 0
\(863\) −3.92820 + 2.26795i −0.133718 + 0.0772019i −0.565367 0.824840i \(-0.691265\pi\)
0.431649 + 0.902042i \(0.357932\pi\)
\(864\) 0 0
\(865\) −8.19615 + 14.1962i −0.278678 + 0.482684i
\(866\) 0 0
\(867\) −0.607695 −0.0206384
\(868\) 0 0
\(869\) 5.41154 0.183574
\(870\) 0 0
\(871\) −2.76795 + 4.79423i −0.0937884 + 0.162446i
\(872\) 0 0
\(873\) 4.26795 2.46410i 0.144448 0.0833972i
\(874\) 0 0
\(875\) −0.500000 + 2.59808i −0.0169031 + 0.0878310i
\(876\) 0 0
\(877\) −19.3923 33.5885i −0.654832 1.13420i −0.981936 0.189213i \(-0.939406\pi\)
0.327104 0.944988i \(-0.393927\pi\)
\(878\) 0 0
\(879\) 15.1244 + 8.73205i 0.510132 + 0.294525i
\(880\) 0 0
\(881\) 48.4974i 1.63392i 0.576695 + 0.816960i \(0.304342\pi\)
−0.576695 + 0.816960i \(0.695658\pi\)
\(882\) 0 0
\(883\) 34.4641i 1.15981i 0.814684 + 0.579905i \(0.196910\pi\)
−0.814684 + 0.579905i \(0.803090\pi\)
\(884\) 0 0
\(885\) −3.29423 1.90192i −0.110734 0.0639325i
\(886\) 0 0
\(887\) 3.56218 + 6.16987i 0.119606 + 0.207164i 0.919612 0.392829i \(-0.128503\pi\)
−0.800005 + 0.599993i \(0.795170\pi\)
\(888\) 0 0
\(889\) 8.69615 45.1865i 0.291660 1.51551i
\(890\) 0 0
\(891\) −1.09808 + 0.633975i −0.0367869 + 0.0212389i
\(892\) 0 0
\(893\) 15.9282 27.5885i 0.533017 0.923213i
\(894\) 0 0
\(895\) 3.46410 0.115792
\(896\) 0 0
\(897\) 2.73205 0.0912205
\(898\) 0 0
\(899\) −8.83013 + 15.2942i −0.294501 + 0.510091i
\(900\) 0 0
\(901\) −19.8564 + 11.4641i −0.661513 + 0.381925i
\(902\) 0 0
\(903\) −3.07180 2.66025i −0.102223 0.0885277i
\(904\) 0 0
\(905\) 12.7942 + 22.1603i 0.425295 + 0.736632i
\(906\) 0 0
\(907\) −29.5981 17.0885i −0.982788 0.567413i −0.0796773 0.996821i \(-0.525389\pi\)
−0.903111 + 0.429408i \(0.858722\pi\)
\(908\) 0 0
\(909\) 5.26795i 0.174727i
\(910\) 0 0
\(911\) 43.3731i 1.43701i −0.695520 0.718507i \(-0.744826\pi\)
0.695520 0.718507i \(-0.255174\pi\)
\(912\) 0 0
\(913\) −5.78461 3.33975i −0.191443 0.110529i
\(914\) 0 0
\(915\) −2.26795 3.92820i −0.0749761 0.129862i
\(916\) 0 0
\(917\) −0.464102 1.33975i −0.0153260 0.0442423i
\(918\) 0 0
\(919\) −27.5718 + 15.9186i −0.909510 + 0.525106i −0.880273 0.474467i \(-0.842641\pi\)
−0.0292363 + 0.999573i \(0.509308\pi\)
\(920\) 0 0
\(921\) 2.06218 3.57180i 0.0679511 0.117695i
\(922\) 0 0
\(923\) −1.66025 −0.0546479
\(924\) 0 0
\(925\) 8.26795 0.271848
\(926\) 0 0
\(927\) 2.86603 4.96410i 0.0941326 0.163042i
\(928\) 0 0
\(929\) 4.90192 2.83013i 0.160827 0.0928535i −0.417426 0.908711i \(-0.637068\pi\)
0.578253 + 0.815857i \(0.303735\pi\)
\(930\) 0 0
\(931\) −2.46410 17.0718i −0.0807577 0.559506i
\(932\) 0 0
\(933\) 9.09808 + 15.7583i 0.297858 + 0.515905i
\(934\) 0 0
\(935\) 4.60770 + 2.66025i 0.150688 + 0.0869996i
\(936\) 0 0
\(937\) 23.5359i 0.768884i 0.923149 + 0.384442i \(0.125606\pi\)
−0.923149 + 0.384442i \(0.874394\pi\)
\(938\) 0 0
\(939\) 19.0000i 0.620042i
\(940\) 0 0
\(941\) 52.6865 + 30.4186i 1.71753 + 0.991618i 0.923370 + 0.383911i \(0.125423\pi\)
0.794162 + 0.607706i \(0.207910\pi\)
\(942\) 0 0
\(943\) 5.73205 + 9.92820i 0.186661 + 0.323307i
\(944\) 0 0
\(945\) −2.50000 + 0.866025i −0.0813250 + 0.0281718i
\(946\) 0 0
\(947\) −50.1506 + 28.9545i −1.62968 + 0.940894i −0.645488 + 0.763770i \(0.723346\pi\)
−0.984189 + 0.177124i \(0.943321\pi\)
\(948\) 0 0
\(949\) −3.96410 + 6.86603i −0.128680 + 0.222881i
\(950\) 0 0
\(951\) 28.0526 0.909667
\(952\) 0 0
\(953\) −40.3923 −1.30844 −0.654218 0.756306i \(-0.727002\pi\)
−0.654218 + 0.756306i \(0.727002\pi\)
\(954\) 0 0
\(955\) −1.00000 + 1.73205i −0.0323592 + 0.0560478i
\(956\) 0 0
\(957\) −3.00000 + 1.73205i −0.0969762 + 0.0559893i
\(958\) 0 0
\(959\) −34.0526 + 39.3205i −1.09961 + 1.26973i
\(960\) 0 0
\(961\) −5.39230 9.33975i −0.173945 0.301282i
\(962\) 0 0
\(963\) 11.4904 + 6.63397i 0.370272 + 0.213777i
\(964\) 0 0
\(965\) 1.19615i 0.0385055i
\(966\) 0 0
\(967\) 16.4641i 0.529450i 0.964324 + 0.264725i \(0.0852812\pi\)
−0.964324 + 0.264725i \(0.914719\pi\)
\(968\) 0 0
\(969\) 8.95448 + 5.16987i 0.287659 + 0.166080i
\(970\) 0 0
\(971\) 14.5359 + 25.1769i 0.466479 + 0.807966i 0.999267 0.0382833i \(-0.0121889\pi\)
−0.532788 + 0.846249i \(0.678856\pi\)
\(972\) 0 0
\(973\) 20.5981 + 3.96410i 0.660344 + 0.127083i
\(974\) 0 0
\(975\) −0.866025 + 0.500000i −0.0277350 + 0.0160128i
\(976\) 0 0
\(977\) −2.83013 + 4.90192i −0.0905438 + 0.156826i −0.907740 0.419533i \(-0.862194\pi\)
0.817196 + 0.576359i \(0.195527\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) 0 0
\(981\) 4.07180 0.130002
\(982\) 0 0
\(983\) 14.9019 25.8109i 0.475298 0.823240i −0.524302 0.851532i \(-0.675674\pi\)
0.999600 + 0.0282928i \(0.00900708\pi\)
\(984\) 0 0
\(985\) −14.4904 + 8.36603i −0.461702 + 0.266564i
\(986\) 0 0
\(987\) 33.5885 + 6.46410i 1.06913 + 0.205755i
\(988\) 0 0
\(989\) 2.09808 + 3.63397i 0.0667149 + 0.115554i
\(990\) 0 0
\(991\) 24.2321 + 13.9904i 0.769756 + 0.444419i 0.832788 0.553592i \(-0.186743\pi\)
−0.0630313 + 0.998012i \(0.520077\pi\)
\(992\) 0 0
\(993\) 8.66025i 0.274825i
\(994\) 0 0
\(995\) 23.8564i 0.756299i
\(996\) 0 0
\(997\) 21.3109 + 12.3038i 0.674923 + 0.389667i 0.797939 0.602738i \(-0.205924\pi\)
−0.123017 + 0.992405i \(0.539257\pi\)
\(998\) 0 0
\(999\) 4.13397 + 7.16025i 0.130793 + 0.226540i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.dx.a.31.2 4
4.3 odd 2 1680.2.dx.d.31.2 yes 4
7.5 odd 6 1680.2.dx.d.271.2 yes 4
28.19 even 6 inner 1680.2.dx.a.271.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.dx.a.31.2 4 1.1 even 1 trivial
1680.2.dx.a.271.2 yes 4 28.19 even 6 inner
1680.2.dx.d.31.2 yes 4 4.3 odd 2
1680.2.dx.d.271.2 yes 4 7.5 odd 6