Properties

Label 1680.2.dx.a.31.1
Level $1680$
Weight $2$
Character 1680.31
Analytic conductor $13.415$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(31,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.dx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,0,0,0,0,-2,0,-6,0,0,0,0,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1680.31
Dual form 1680.2.dx.a.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(-0.866025 + 0.500000i) q^{5} +(2.59808 + 0.500000i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-4.09808 - 2.36603i) q^{11} -1.00000i q^{13} -1.00000i q^{15} +(5.36603 + 3.09808i) q^{17} +(2.23205 + 3.86603i) q^{19} +(-1.73205 + 2.00000i) q^{21} +(-0.633975 + 0.366025i) q^{23} +(0.500000 - 0.866025i) q^{25} +1.00000 q^{27} -0.732051 q^{29} +(0.232051 - 0.401924i) q^{31} +(4.09808 - 2.36603i) q^{33} +(-2.50000 + 0.866025i) q^{35} +(5.86603 + 10.1603i) q^{37} +(0.866025 + 0.500000i) q^{39} -6.19615i q^{41} +8.46410i q^{43} +(0.866025 + 0.500000i) q^{45} +(-0.464102 - 0.803848i) q^{47} +(6.50000 + 2.59808i) q^{49} +(-5.36603 + 3.09808i) q^{51} +(0.732051 - 1.26795i) q^{53} +4.73205 q^{55} -4.46410 q^{57} +(-7.09808 + 12.2942i) q^{59} +(9.92820 - 5.73205i) q^{61} +(-0.866025 - 2.50000i) q^{63} +(0.500000 + 0.866025i) q^{65} +(-10.7942 - 6.23205i) q^{67} -0.732051i q^{69} +15.6603i q^{71} +(5.13397 + 2.96410i) q^{73} +(0.500000 + 0.866025i) q^{75} +(-9.46410 - 8.19615i) q^{77} +(-6.69615 + 3.86603i) q^{79} +(-0.500000 + 0.866025i) q^{81} -8.73205 q^{83} -6.19615 q^{85} +(0.366025 - 0.633975i) q^{87} +(1.09808 - 0.633975i) q^{89} +(0.500000 - 2.59808i) q^{91} +(0.232051 + 0.401924i) q^{93} +(-3.86603 - 2.23205i) q^{95} +8.92820i q^{97} +4.73205i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{9} - 6 q^{11} + 18 q^{17} + 2 q^{19} - 6 q^{23} + 2 q^{25} + 4 q^{27} + 4 q^{29} - 6 q^{31} + 6 q^{33} - 10 q^{35} + 20 q^{37} + 12 q^{47} + 26 q^{49} - 18 q^{51} - 4 q^{53} + 12 q^{55}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) −0.866025 + 0.500000i −0.387298 + 0.223607i
\(6\) 0 0
\(7\) 2.59808 + 0.500000i 0.981981 + 0.188982i
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −4.09808 2.36603i −1.23562 0.713384i −0.267421 0.963580i \(-0.586172\pi\)
−0.968195 + 0.250196i \(0.919505\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i −0.990338 0.138675i \(-0.955716\pi\)
0.990338 0.138675i \(-0.0442844\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 5.36603 + 3.09808i 1.30145 + 0.751394i 0.980653 0.195753i \(-0.0627152\pi\)
0.320799 + 0.947147i \(0.396049\pi\)
\(18\) 0 0
\(19\) 2.23205 + 3.86603i 0.512068 + 0.886927i 0.999902 + 0.0139909i \(0.00445360\pi\)
−0.487835 + 0.872936i \(0.662213\pi\)
\(20\) 0 0
\(21\) −1.73205 + 2.00000i −0.377964 + 0.436436i
\(22\) 0 0
\(23\) −0.633975 + 0.366025i −0.132193 + 0.0763216i −0.564638 0.825339i \(-0.690984\pi\)
0.432445 + 0.901660i \(0.357651\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −0.732051 −0.135938 −0.0679692 0.997687i \(-0.521652\pi\)
−0.0679692 + 0.997687i \(0.521652\pi\)
\(30\) 0 0
\(31\) 0.232051 0.401924i 0.0416776 0.0721876i −0.844434 0.535659i \(-0.820063\pi\)
0.886112 + 0.463472i \(0.153396\pi\)
\(32\) 0 0
\(33\) 4.09808 2.36603i 0.713384 0.411872i
\(34\) 0 0
\(35\) −2.50000 + 0.866025i −0.422577 + 0.146385i
\(36\) 0 0
\(37\) 5.86603 + 10.1603i 0.964369 + 1.67034i 0.711302 + 0.702887i \(0.248106\pi\)
0.253067 + 0.967449i \(0.418561\pi\)
\(38\) 0 0
\(39\) 0.866025 + 0.500000i 0.138675 + 0.0800641i
\(40\) 0 0
\(41\) 6.19615i 0.967676i −0.875157 0.483838i \(-0.839242\pi\)
0.875157 0.483838i \(-0.160758\pi\)
\(42\) 0 0
\(43\) 8.46410i 1.29076i 0.763860 + 0.645382i \(0.223302\pi\)
−0.763860 + 0.645382i \(0.776698\pi\)
\(44\) 0 0
\(45\) 0.866025 + 0.500000i 0.129099 + 0.0745356i
\(46\) 0 0
\(47\) −0.464102 0.803848i −0.0676962 0.117253i 0.830191 0.557480i \(-0.188232\pi\)
−0.897887 + 0.440226i \(0.854898\pi\)
\(48\) 0 0
\(49\) 6.50000 + 2.59808i 0.928571 + 0.371154i
\(50\) 0 0
\(51\) −5.36603 + 3.09808i −0.751394 + 0.433817i
\(52\) 0 0
\(53\) 0.732051 1.26795i 0.100555 0.174166i −0.811359 0.584549i \(-0.801272\pi\)
0.911913 + 0.410383i \(0.134605\pi\)
\(54\) 0 0
\(55\) 4.73205 0.638070
\(56\) 0 0
\(57\) −4.46410 −0.591285
\(58\) 0 0
\(59\) −7.09808 + 12.2942i −0.924091 + 1.60057i −0.131074 + 0.991373i \(0.541843\pi\)
−0.793017 + 0.609200i \(0.791491\pi\)
\(60\) 0 0
\(61\) 9.92820 5.73205i 1.27118 0.733914i 0.295967 0.955198i \(-0.404358\pi\)
0.975209 + 0.221284i \(0.0710249\pi\)
\(62\) 0 0
\(63\) −0.866025 2.50000i −0.109109 0.314970i
\(64\) 0 0
\(65\) 0.500000 + 0.866025i 0.0620174 + 0.107417i
\(66\) 0 0
\(67\) −10.7942 6.23205i −1.31872 0.761366i −0.335201 0.942146i \(-0.608804\pi\)
−0.983524 + 0.180780i \(0.942138\pi\)
\(68\) 0 0
\(69\) 0.732051i 0.0881286i
\(70\) 0 0
\(71\) 15.6603i 1.85853i 0.369414 + 0.929265i \(0.379559\pi\)
−0.369414 + 0.929265i \(0.620441\pi\)
\(72\) 0 0
\(73\) 5.13397 + 2.96410i 0.600886 + 0.346922i 0.769390 0.638779i \(-0.220560\pi\)
−0.168504 + 0.985701i \(0.553894\pi\)
\(74\) 0 0
\(75\) 0.500000 + 0.866025i 0.0577350 + 0.100000i
\(76\) 0 0
\(77\) −9.46410 8.19615i −1.07853 0.934038i
\(78\) 0 0
\(79\) −6.69615 + 3.86603i −0.753376 + 0.434962i −0.826912 0.562331i \(-0.809905\pi\)
0.0735364 + 0.997293i \(0.476571\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −8.73205 −0.958467 −0.479234 0.877687i \(-0.659085\pi\)
−0.479234 + 0.877687i \(0.659085\pi\)
\(84\) 0 0
\(85\) −6.19615 −0.672067
\(86\) 0 0
\(87\) 0.366025 0.633975i 0.0392420 0.0679692i
\(88\) 0 0
\(89\) 1.09808 0.633975i 0.116396 0.0672012i −0.440672 0.897668i \(-0.645260\pi\)
0.557068 + 0.830467i \(0.311926\pi\)
\(90\) 0 0
\(91\) 0.500000 2.59808i 0.0524142 0.272352i
\(92\) 0 0
\(93\) 0.232051 + 0.401924i 0.0240625 + 0.0416776i
\(94\) 0 0
\(95\) −3.86603 2.23205i −0.396646 0.229004i
\(96\) 0 0
\(97\) 8.92820i 0.906522i 0.891378 + 0.453261i \(0.149739\pi\)
−0.891378 + 0.453261i \(0.850261\pi\)
\(98\) 0 0
\(99\) 4.73205i 0.475589i
\(100\) 0 0
\(101\) −7.56218 4.36603i −0.752465 0.434436i 0.0741190 0.997249i \(-0.476386\pi\)
−0.826584 + 0.562814i \(0.809719\pi\)
\(102\) 0 0
\(103\) 1.13397 + 1.96410i 0.111734 + 0.193529i 0.916469 0.400105i \(-0.131026\pi\)
−0.804736 + 0.593633i \(0.797693\pi\)
\(104\) 0 0
\(105\) 0.500000 2.59808i 0.0487950 0.253546i
\(106\) 0 0
\(107\) 14.4904 8.36603i 1.40084 0.808774i 0.406359 0.913713i \(-0.366798\pi\)
0.994479 + 0.104939i \(0.0334648\pi\)
\(108\) 0 0
\(109\) −8.96410 + 15.5263i −0.858605 + 1.48715i 0.0146544 + 0.999893i \(0.495335\pi\)
−0.873260 + 0.487255i \(0.837998\pi\)
\(110\) 0 0
\(111\) −11.7321 −1.11356
\(112\) 0 0
\(113\) 14.3923 1.35391 0.676957 0.736022i \(-0.263298\pi\)
0.676957 + 0.736022i \(0.263298\pi\)
\(114\) 0 0
\(115\) 0.366025 0.633975i 0.0341320 0.0591184i
\(116\) 0 0
\(117\) −0.866025 + 0.500000i −0.0800641 + 0.0462250i
\(118\) 0 0
\(119\) 12.3923 + 10.7321i 1.13600 + 0.983805i
\(120\) 0 0
\(121\) 5.69615 + 9.86603i 0.517832 + 0.896911i
\(122\) 0 0
\(123\) 5.36603 + 3.09808i 0.483838 + 0.279344i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 3.39230i 0.301018i 0.988609 + 0.150509i \(0.0480913\pi\)
−0.988609 + 0.150509i \(0.951909\pi\)
\(128\) 0 0
\(129\) −7.33013 4.23205i −0.645382 0.372611i
\(130\) 0 0
\(131\) 3.73205 + 6.46410i 0.326071 + 0.564771i 0.981728 0.190287i \(-0.0609419\pi\)
−0.655658 + 0.755058i \(0.727609\pi\)
\(132\) 0 0
\(133\) 3.86603 + 11.1603i 0.335227 + 0.967717i
\(134\) 0 0
\(135\) −0.866025 + 0.500000i −0.0745356 + 0.0430331i
\(136\) 0 0
\(137\) 1.16987 2.02628i 0.0999490 0.173117i −0.811714 0.584055i \(-0.801465\pi\)
0.911663 + 0.410938i \(0.134799\pi\)
\(138\) 0 0
\(139\) 5.92820 0.502824 0.251412 0.967880i \(-0.419105\pi\)
0.251412 + 0.967880i \(0.419105\pi\)
\(140\) 0 0
\(141\) 0.928203 0.0781688
\(142\) 0 0
\(143\) −2.36603 + 4.09808i −0.197857 + 0.342698i
\(144\) 0 0
\(145\) 0.633975 0.366025i 0.0526487 0.0303968i
\(146\) 0 0
\(147\) −5.50000 + 4.33013i −0.453632 + 0.357143i
\(148\) 0 0
\(149\) 11.6603 + 20.1962i 0.955245 + 1.65453i 0.733806 + 0.679359i \(0.237742\pi\)
0.221439 + 0.975174i \(0.428925\pi\)
\(150\) 0 0
\(151\) 15.4641 + 8.92820i 1.25845 + 0.726567i 0.972773 0.231759i \(-0.0744481\pi\)
0.285677 + 0.958326i \(0.407781\pi\)
\(152\) 0 0
\(153\) 6.19615i 0.500929i
\(154\) 0 0
\(155\) 0.464102i 0.0372775i
\(156\) 0 0
\(157\) −17.3205 10.0000i −1.38233 0.798087i −0.389892 0.920860i \(-0.627488\pi\)
−0.992435 + 0.122774i \(0.960821\pi\)
\(158\) 0 0
\(159\) 0.732051 + 1.26795i 0.0580554 + 0.100555i
\(160\) 0 0
\(161\) −1.83013 + 0.633975i −0.144234 + 0.0499642i
\(162\) 0 0
\(163\) 7.73205 4.46410i 0.605621 0.349655i −0.165629 0.986188i \(-0.552965\pi\)
0.771250 + 0.636533i \(0.219632\pi\)
\(164\) 0 0
\(165\) −2.36603 + 4.09808i −0.184195 + 0.319035i
\(166\) 0 0
\(167\) −17.1244 −1.32512 −0.662561 0.749008i \(-0.730531\pi\)
−0.662561 + 0.749008i \(0.730531\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 2.23205 3.86603i 0.170689 0.295642i
\(172\) 0 0
\(173\) −3.80385 + 2.19615i −0.289201 + 0.166970i −0.637582 0.770383i \(-0.720065\pi\)
0.348380 + 0.937353i \(0.386732\pi\)
\(174\) 0 0
\(175\) 1.73205 2.00000i 0.130931 0.151186i
\(176\) 0 0
\(177\) −7.09808 12.2942i −0.533524 0.924091i
\(178\) 0 0
\(179\) 3.00000 + 1.73205i 0.224231 + 0.129460i 0.607908 0.794008i \(-0.292009\pi\)
−0.383677 + 0.923467i \(0.625342\pi\)
\(180\) 0 0
\(181\) 5.58846i 0.415387i 0.978194 + 0.207693i \(0.0665956\pi\)
−0.978194 + 0.207693i \(0.933404\pi\)
\(182\) 0 0
\(183\) 11.4641i 0.847451i
\(184\) 0 0
\(185\) −10.1603 5.86603i −0.746997 0.431279i
\(186\) 0 0
\(187\) −14.6603 25.3923i −1.07206 1.85687i
\(188\) 0 0
\(189\) 2.59808 + 0.500000i 0.188982 + 0.0363696i
\(190\) 0 0
\(191\) 1.73205 1.00000i 0.125327 0.0723575i −0.436026 0.899934i \(-0.643614\pi\)
0.561353 + 0.827577i \(0.310281\pi\)
\(192\) 0 0
\(193\) 4.59808 7.96410i 0.330977 0.573269i −0.651727 0.758454i \(-0.725955\pi\)
0.982704 + 0.185185i \(0.0592885\pi\)
\(194\) 0 0
\(195\) −1.00000 −0.0716115
\(196\) 0 0
\(197\) −13.2679 −0.945302 −0.472651 0.881250i \(-0.656703\pi\)
−0.472651 + 0.881250i \(0.656703\pi\)
\(198\) 0 0
\(199\) −1.92820 + 3.33975i −0.136687 + 0.236748i −0.926241 0.376933i \(-0.876979\pi\)
0.789554 + 0.613681i \(0.210312\pi\)
\(200\) 0 0
\(201\) 10.7942 6.23205i 0.761366 0.439575i
\(202\) 0 0
\(203\) −1.90192 0.366025i −0.133489 0.0256899i
\(204\) 0 0
\(205\) 3.09808 + 5.36603i 0.216379 + 0.374779i
\(206\) 0 0
\(207\) 0.633975 + 0.366025i 0.0440643 + 0.0254405i
\(208\) 0 0
\(209\) 21.1244i 1.46120i
\(210\) 0 0
\(211\) 24.7846i 1.70624i −0.521712 0.853121i \(-0.674707\pi\)
0.521712 0.853121i \(-0.325293\pi\)
\(212\) 0 0
\(213\) −13.5622 7.83013i −0.929265 0.536511i
\(214\) 0 0
\(215\) −4.23205 7.33013i −0.288623 0.499911i
\(216\) 0 0
\(217\) 0.803848 0.928203i 0.0545687 0.0630105i
\(218\) 0 0
\(219\) −5.13397 + 2.96410i −0.346922 + 0.200295i
\(220\) 0 0
\(221\) 3.09808 5.36603i 0.208399 0.360958i
\(222\) 0 0
\(223\) −4.39230 −0.294130 −0.147065 0.989127i \(-0.546983\pi\)
−0.147065 + 0.989127i \(0.546983\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 8.02628 13.9019i 0.532723 0.922703i −0.466547 0.884496i \(-0.654502\pi\)
0.999270 0.0382067i \(-0.0121645\pi\)
\(228\) 0 0
\(229\) 5.89230 3.40192i 0.389374 0.224805i −0.292515 0.956261i \(-0.594492\pi\)
0.681889 + 0.731456i \(0.261159\pi\)
\(230\) 0 0
\(231\) 11.8301 4.09808i 0.778365 0.269634i
\(232\) 0 0
\(233\) −3.00000 5.19615i −0.196537 0.340411i 0.750867 0.660454i \(-0.229636\pi\)
−0.947403 + 0.320043i \(0.896303\pi\)
\(234\) 0 0
\(235\) 0.803848 + 0.464102i 0.0524372 + 0.0302747i
\(236\) 0 0
\(237\) 7.73205i 0.502251i
\(238\) 0 0
\(239\) 5.32051i 0.344155i −0.985083 0.172078i \(-0.944952\pi\)
0.985083 0.172078i \(-0.0550480\pi\)
\(240\) 0 0
\(241\) 10.2679 + 5.92820i 0.661417 + 0.381869i 0.792817 0.609460i \(-0.208614\pi\)
−0.131400 + 0.991329i \(0.541947\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) −6.92820 + 1.00000i −0.442627 + 0.0638877i
\(246\) 0 0
\(247\) 3.86603 2.23205i 0.245989 0.142022i
\(248\) 0 0
\(249\) 4.36603 7.56218i 0.276686 0.479234i
\(250\) 0 0
\(251\) −5.12436 −0.323446 −0.161723 0.986836i \(-0.551705\pi\)
−0.161723 + 0.986836i \(0.551705\pi\)
\(252\) 0 0
\(253\) 3.46410 0.217786
\(254\) 0 0
\(255\) 3.09808 5.36603i 0.194009 0.336034i
\(256\) 0 0
\(257\) 15.2942 8.83013i 0.954028 0.550808i 0.0596980 0.998216i \(-0.480986\pi\)
0.894330 + 0.447408i \(0.147653\pi\)
\(258\) 0 0
\(259\) 10.1603 + 29.3301i 0.631327 + 1.82249i
\(260\) 0 0
\(261\) 0.366025 + 0.633975i 0.0226564 + 0.0392420i
\(262\) 0 0
\(263\) −20.1962 11.6603i −1.24535 0.719002i −0.275170 0.961396i \(-0.588734\pi\)
−0.970178 + 0.242393i \(0.922068\pi\)
\(264\) 0 0
\(265\) 1.46410i 0.0899390i
\(266\) 0 0
\(267\) 1.26795i 0.0775972i
\(268\) 0 0
\(269\) −10.2679 5.92820i −0.626048 0.361449i 0.153172 0.988200i \(-0.451051\pi\)
−0.779220 + 0.626751i \(0.784384\pi\)
\(270\) 0 0
\(271\) −1.00000 1.73205i −0.0607457 0.105215i 0.834053 0.551684i \(-0.186015\pi\)
−0.894799 + 0.446469i \(0.852681\pi\)
\(272\) 0 0
\(273\) 2.00000 + 1.73205i 0.121046 + 0.104828i
\(274\) 0 0
\(275\) −4.09808 + 2.36603i −0.247123 + 0.142677i
\(276\) 0 0
\(277\) −0.401924 + 0.696152i −0.0241493 + 0.0418277i −0.877847 0.478940i \(-0.841021\pi\)
0.853698 + 0.520768i \(0.174354\pi\)
\(278\) 0 0
\(279\) −0.464102 −0.0277850
\(280\) 0 0
\(281\) −13.8564 −0.826604 −0.413302 0.910594i \(-0.635625\pi\)
−0.413302 + 0.910594i \(0.635625\pi\)
\(282\) 0 0
\(283\) 11.4019 19.7487i 0.677774 1.17394i −0.297876 0.954605i \(-0.596278\pi\)
0.975650 0.219334i \(-0.0703886\pi\)
\(284\) 0 0
\(285\) 3.86603 2.23205i 0.229004 0.132215i
\(286\) 0 0
\(287\) 3.09808 16.0981i 0.182874 0.950239i
\(288\) 0 0
\(289\) 10.6962 + 18.5263i 0.629185 + 1.08978i
\(290\) 0 0
\(291\) −7.73205 4.46410i −0.453261 0.261690i
\(292\) 0 0
\(293\) 10.5359i 0.615514i 0.951465 + 0.307757i \(0.0995783\pi\)
−0.951465 + 0.307757i \(0.900422\pi\)
\(294\) 0 0
\(295\) 14.1962i 0.826532i
\(296\) 0 0
\(297\) −4.09808 2.36603i −0.237795 0.137291i
\(298\) 0 0
\(299\) 0.366025 + 0.633975i 0.0211678 + 0.0366637i
\(300\) 0 0
\(301\) −4.23205 + 21.9904i −0.243931 + 1.26750i
\(302\) 0 0
\(303\) 7.56218 4.36603i 0.434436 0.250822i
\(304\) 0 0
\(305\) −5.73205 + 9.92820i −0.328216 + 0.568487i
\(306\) 0 0
\(307\) 20.1244 1.14856 0.574279 0.818660i \(-0.305283\pi\)
0.574279 + 0.818660i \(0.305283\pi\)
\(308\) 0 0
\(309\) −2.26795 −0.129019
\(310\) 0 0
\(311\) 3.90192 6.75833i 0.221258 0.383230i −0.733932 0.679223i \(-0.762317\pi\)
0.955190 + 0.295993i \(0.0956504\pi\)
\(312\) 0 0
\(313\) 16.4545 9.50000i 0.930062 0.536972i 0.0432311 0.999065i \(-0.486235\pi\)
0.886831 + 0.462093i \(0.152902\pi\)
\(314\) 0 0
\(315\) 2.00000 + 1.73205i 0.112687 + 0.0975900i
\(316\) 0 0
\(317\) 5.02628 + 8.70577i 0.282304 + 0.488965i 0.971952 0.235180i \(-0.0755680\pi\)
−0.689648 + 0.724145i \(0.742235\pi\)
\(318\) 0 0
\(319\) 3.00000 + 1.73205i 0.167968 + 0.0969762i
\(320\) 0 0
\(321\) 16.7321i 0.933892i
\(322\) 0 0
\(323\) 27.6603i 1.53906i
\(324\) 0 0
\(325\) −0.866025 0.500000i −0.0480384 0.0277350i
\(326\) 0 0
\(327\) −8.96410 15.5263i −0.495716 0.858605i
\(328\) 0 0
\(329\) −0.803848 2.32051i −0.0443176 0.127934i
\(330\) 0 0
\(331\) 7.50000 4.33013i 0.412237 0.238005i −0.279513 0.960142i \(-0.590173\pi\)
0.691751 + 0.722137i \(0.256840\pi\)
\(332\) 0 0
\(333\) 5.86603 10.1603i 0.321456 0.556778i
\(334\) 0 0
\(335\) 12.4641 0.680987
\(336\) 0 0
\(337\) −25.4449 −1.38607 −0.693035 0.720904i \(-0.743727\pi\)
−0.693035 + 0.720904i \(0.743727\pi\)
\(338\) 0 0
\(339\) −7.19615 + 12.4641i −0.390841 + 0.676957i
\(340\) 0 0
\(341\) −1.90192 + 1.09808i −0.102995 + 0.0594642i
\(342\) 0 0
\(343\) 15.5885 + 10.0000i 0.841698 + 0.539949i
\(344\) 0 0
\(345\) 0.366025 + 0.633975i 0.0197061 + 0.0341320i
\(346\) 0 0
\(347\) −2.19615 1.26795i −0.117896 0.0680671i 0.439893 0.898050i \(-0.355017\pi\)
−0.557788 + 0.829983i \(0.688350\pi\)
\(348\) 0 0
\(349\) 26.9282i 1.44143i −0.693230 0.720717i \(-0.743813\pi\)
0.693230 0.720717i \(-0.256187\pi\)
\(350\) 0 0
\(351\) 1.00000i 0.0533761i
\(352\) 0 0
\(353\) −12.7583 7.36603i −0.679057 0.392054i 0.120442 0.992720i \(-0.461569\pi\)
−0.799500 + 0.600666i \(0.794902\pi\)
\(354\) 0 0
\(355\) −7.83013 13.5622i −0.415580 0.719806i
\(356\) 0 0
\(357\) −15.4904 + 5.36603i −0.819838 + 0.284000i
\(358\) 0 0
\(359\) 4.90192 2.83013i 0.258714 0.149368i −0.365034 0.930994i \(-0.618943\pi\)
0.623748 + 0.781626i \(0.285609\pi\)
\(360\) 0 0
\(361\) −0.464102 + 0.803848i −0.0244264 + 0.0423078i
\(362\) 0 0
\(363\) −11.3923 −0.597941
\(364\) 0 0
\(365\) −5.92820 −0.310296
\(366\) 0 0
\(367\) 11.5981 20.0885i 0.605415 1.04861i −0.386571 0.922260i \(-0.626341\pi\)
0.991986 0.126349i \(-0.0403260\pi\)
\(368\) 0 0
\(369\) −5.36603 + 3.09808i −0.279344 + 0.161279i
\(370\) 0 0
\(371\) 2.53590 2.92820i 0.131657 0.152025i
\(372\) 0 0
\(373\) 14.9904 + 25.9641i 0.776173 + 1.34437i 0.934133 + 0.356925i \(0.116175\pi\)
−0.157961 + 0.987445i \(0.550492\pi\)
\(374\) 0 0
\(375\) −0.866025 0.500000i −0.0447214 0.0258199i
\(376\) 0 0
\(377\) 0.732051i 0.0377025i
\(378\) 0 0
\(379\) 12.5167i 0.642938i −0.946920 0.321469i \(-0.895823\pi\)
0.946920 0.321469i \(-0.104177\pi\)
\(380\) 0 0
\(381\) −2.93782 1.69615i −0.150509 0.0868965i
\(382\) 0 0
\(383\) 2.92820 + 5.07180i 0.149624 + 0.259157i 0.931089 0.364793i \(-0.118860\pi\)
−0.781464 + 0.623950i \(0.785527\pi\)
\(384\) 0 0
\(385\) 12.2942 + 2.36603i 0.626572 + 0.120584i
\(386\) 0 0
\(387\) 7.33013 4.23205i 0.372611 0.215127i
\(388\) 0 0
\(389\) 7.75833 13.4378i 0.393363 0.681325i −0.599528 0.800354i \(-0.704645\pi\)
0.992891 + 0.119029i \(0.0379782\pi\)
\(390\) 0 0
\(391\) −4.53590 −0.229390
\(392\) 0 0
\(393\) −7.46410 −0.376514
\(394\) 0 0
\(395\) 3.86603 6.69615i 0.194521 0.336920i
\(396\) 0 0
\(397\) −10.7942 + 6.23205i −0.541747 + 0.312778i −0.745787 0.666185i \(-0.767926\pi\)
0.204040 + 0.978963i \(0.434593\pi\)
\(398\) 0 0
\(399\) −11.5981 2.23205i −0.580630 0.111742i
\(400\) 0 0
\(401\) −6.00000 10.3923i −0.299626 0.518967i 0.676425 0.736512i \(-0.263528\pi\)
−0.976050 + 0.217545i \(0.930195\pi\)
\(402\) 0 0
\(403\) −0.401924 0.232051i −0.0200212 0.0115593i
\(404\) 0 0
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 55.5167i 2.75186i
\(408\) 0 0
\(409\) 5.42820 + 3.13397i 0.268407 + 0.154965i 0.628164 0.778081i \(-0.283807\pi\)
−0.359756 + 0.933046i \(0.617140\pi\)
\(410\) 0 0
\(411\) 1.16987 + 2.02628i 0.0577056 + 0.0999490i
\(412\) 0 0
\(413\) −24.5885 + 28.3923i −1.20992 + 1.39709i
\(414\) 0 0
\(415\) 7.56218 4.36603i 0.371213 0.214320i
\(416\) 0 0
\(417\) −2.96410 + 5.13397i −0.145153 + 0.251412i
\(418\) 0 0
\(419\) 8.92820 0.436171 0.218086 0.975930i \(-0.430019\pi\)
0.218086 + 0.975930i \(0.430019\pi\)
\(420\) 0 0
\(421\) −12.0718 −0.588343 −0.294172 0.955753i \(-0.595044\pi\)
−0.294172 + 0.955753i \(0.595044\pi\)
\(422\) 0 0
\(423\) −0.464102 + 0.803848i −0.0225654 + 0.0390844i
\(424\) 0 0
\(425\) 5.36603 3.09808i 0.260290 0.150279i
\(426\) 0 0
\(427\) 28.6603 9.92820i 1.38697 0.480459i
\(428\) 0 0
\(429\) −2.36603 4.09808i −0.114233 0.197857i
\(430\) 0 0
\(431\) 2.66025 + 1.53590i 0.128140 + 0.0739816i 0.562700 0.826661i \(-0.309763\pi\)
−0.434560 + 0.900643i \(0.643096\pi\)
\(432\) 0 0
\(433\) 26.4641i 1.27178i −0.771778 0.635892i \(-0.780632\pi\)
0.771778 0.635892i \(-0.219368\pi\)
\(434\) 0 0
\(435\) 0.732051i 0.0350991i
\(436\) 0 0
\(437\) −2.83013 1.63397i −0.135383 0.0781636i
\(438\) 0 0
\(439\) 2.26795 + 3.92820i 0.108243 + 0.187483i 0.915059 0.403321i \(-0.132144\pi\)
−0.806815 + 0.590804i \(0.798811\pi\)
\(440\) 0 0
\(441\) −1.00000 6.92820i −0.0476190 0.329914i
\(442\) 0 0
\(443\) 16.3923 9.46410i 0.778822 0.449653i −0.0571907 0.998363i \(-0.518214\pi\)
0.836013 + 0.548710i \(0.184881\pi\)
\(444\) 0 0
\(445\) −0.633975 + 1.09808i −0.0300533 + 0.0520538i
\(446\) 0 0
\(447\) −23.3205 −1.10302
\(448\) 0 0
\(449\) 21.3205 1.00618 0.503088 0.864235i \(-0.332197\pi\)
0.503088 + 0.864235i \(0.332197\pi\)
\(450\) 0 0
\(451\) −14.6603 + 25.3923i −0.690324 + 1.19568i
\(452\) 0 0
\(453\) −15.4641 + 8.92820i −0.726567 + 0.419484i
\(454\) 0 0
\(455\) 0.866025 + 2.50000i 0.0405999 + 0.117202i
\(456\) 0 0
\(457\) −1.13397 1.96410i −0.0530451 0.0918768i 0.838284 0.545234i \(-0.183559\pi\)
−0.891329 + 0.453358i \(0.850226\pi\)
\(458\) 0 0
\(459\) 5.36603 + 3.09808i 0.250465 + 0.144606i
\(460\) 0 0
\(461\) 32.1962i 1.49952i −0.661707 0.749762i \(-0.730168\pi\)
0.661707 0.749762i \(-0.269832\pi\)
\(462\) 0 0
\(463\) 23.7846i 1.10536i 0.833392 + 0.552682i \(0.186396\pi\)
−0.833392 + 0.552682i \(0.813604\pi\)
\(464\) 0 0
\(465\) −0.401924 0.232051i −0.0186388 0.0107611i
\(466\) 0 0
\(467\) −6.85641 11.8756i −0.317277 0.549539i 0.662642 0.748936i \(-0.269435\pi\)
−0.979919 + 0.199397i \(0.936102\pi\)
\(468\) 0 0
\(469\) −24.9282 21.5885i −1.15108 0.996862i
\(470\) 0 0
\(471\) 17.3205 10.0000i 0.798087 0.460776i
\(472\) 0 0
\(473\) 20.0263 34.6865i 0.920809 1.59489i
\(474\) 0 0
\(475\) 4.46410 0.204827
\(476\) 0 0
\(477\) −1.46410 −0.0670366
\(478\) 0 0
\(479\) −16.9282 + 29.3205i −0.773469 + 1.33969i 0.162181 + 0.986761i \(0.448147\pi\)
−0.935651 + 0.352927i \(0.885186\pi\)
\(480\) 0 0
\(481\) 10.1603 5.86603i 0.463268 0.267468i
\(482\) 0 0
\(483\) 0.366025 1.90192i 0.0166547 0.0865405i
\(484\) 0 0
\(485\) −4.46410 7.73205i −0.202704 0.351094i
\(486\) 0 0
\(487\) −27.6506 15.9641i −1.25297 0.723402i −0.281272 0.959628i \(-0.590756\pi\)
−0.971698 + 0.236226i \(0.924090\pi\)
\(488\) 0 0
\(489\) 8.92820i 0.403747i
\(490\) 0 0
\(491\) 37.4641i 1.69073i 0.534188 + 0.845366i \(0.320617\pi\)
−0.534188 + 0.845366i \(0.679383\pi\)
\(492\) 0 0
\(493\) −3.92820 2.26795i −0.176917 0.102143i
\(494\) 0 0
\(495\) −2.36603 4.09808i −0.106345 0.184195i
\(496\) 0 0
\(497\) −7.83013 + 40.6865i −0.351229 + 1.82504i
\(498\) 0 0
\(499\) 1.83975 1.06218i 0.0823583 0.0475496i −0.458255 0.888821i \(-0.651525\pi\)
0.540614 + 0.841271i \(0.318192\pi\)
\(500\) 0 0
\(501\) 8.56218 14.8301i 0.382530 0.662561i
\(502\) 0 0
\(503\) 23.0718 1.02872 0.514360 0.857574i \(-0.328029\pi\)
0.514360 + 0.857574i \(0.328029\pi\)
\(504\) 0 0
\(505\) 8.73205 0.388571
\(506\) 0 0
\(507\) −6.00000 + 10.3923i −0.266469 + 0.461538i
\(508\) 0 0
\(509\) 31.9808 18.4641i 1.41752 0.818407i 0.421442 0.906856i \(-0.361524\pi\)
0.996081 + 0.0884486i \(0.0281909\pi\)
\(510\) 0 0
\(511\) 11.8564 + 10.2679i 0.524497 + 0.454227i
\(512\) 0 0
\(513\) 2.23205 + 3.86603i 0.0985475 + 0.170689i
\(514\) 0 0
\(515\) −1.96410 1.13397i −0.0865487 0.0499689i
\(516\) 0 0
\(517\) 4.39230i 0.193173i
\(518\) 0 0
\(519\) 4.39230i 0.192801i
\(520\) 0 0
\(521\) −35.9090 20.7321i −1.57320 0.908288i −0.995773 0.0918454i \(-0.970723\pi\)
−0.577427 0.816442i \(-0.695943\pi\)
\(522\) 0 0
\(523\) −13.5981 23.5526i −0.594602 1.02988i −0.993603 0.112931i \(-0.963976\pi\)
0.399001 0.916951i \(-0.369357\pi\)
\(524\) 0 0
\(525\) 0.866025 + 2.50000i 0.0377964 + 0.109109i
\(526\) 0 0
\(527\) 2.49038 1.43782i 0.108483 0.0626325i
\(528\) 0 0
\(529\) −11.2321 + 19.4545i −0.488350 + 0.845847i
\(530\) 0 0
\(531\) 14.1962 0.616061
\(532\) 0 0
\(533\) −6.19615 −0.268385
\(534\) 0 0
\(535\) −8.36603 + 14.4904i −0.361695 + 0.626474i
\(536\) 0 0
\(537\) −3.00000 + 1.73205i −0.129460 + 0.0747435i
\(538\) 0 0
\(539\) −20.4904 26.0263i −0.882583 1.12103i
\(540\) 0 0
\(541\) 2.89230 + 5.00962i 0.124350 + 0.215380i 0.921479 0.388429i \(-0.126982\pi\)
−0.797129 + 0.603809i \(0.793649\pi\)
\(542\) 0 0
\(543\) −4.83975 2.79423i −0.207693 0.119912i
\(544\) 0 0
\(545\) 17.9282i 0.767960i
\(546\) 0 0
\(547\) 26.3923i 1.12845i −0.825620 0.564227i \(-0.809174\pi\)
0.825620 0.564227i \(-0.190826\pi\)
\(548\) 0 0
\(549\) −9.92820 5.73205i −0.423725 0.244638i
\(550\) 0 0
\(551\) −1.63397 2.83013i −0.0696097 0.120567i
\(552\) 0 0
\(553\) −19.3301 + 6.69615i −0.822001 + 0.284749i
\(554\) 0 0
\(555\) 10.1603 5.86603i 0.431279 0.248999i
\(556\) 0 0
\(557\) −9.73205 + 16.8564i −0.412360 + 0.714229i −0.995147 0.0983960i \(-0.968629\pi\)
0.582787 + 0.812625i \(0.301962\pi\)
\(558\) 0 0
\(559\) 8.46410 0.357993
\(560\) 0 0
\(561\) 29.3205 1.23791
\(562\) 0 0
\(563\) −3.19615 + 5.53590i −0.134702 + 0.233310i −0.925483 0.378788i \(-0.876341\pi\)
0.790782 + 0.612098i \(0.209674\pi\)
\(564\) 0 0
\(565\) −12.4641 + 7.19615i −0.524369 + 0.302744i
\(566\) 0 0
\(567\) −1.73205 + 2.00000i −0.0727393 + 0.0839921i
\(568\) 0 0
\(569\) 4.29423 + 7.43782i 0.180023 + 0.311810i 0.941888 0.335926i \(-0.109049\pi\)
−0.761865 + 0.647736i \(0.775716\pi\)
\(570\) 0 0
\(571\) −16.6244 9.59808i −0.695708 0.401667i 0.110039 0.993927i \(-0.464902\pi\)
−0.805747 + 0.592260i \(0.798236\pi\)
\(572\) 0 0
\(573\) 2.00000i 0.0835512i
\(574\) 0 0
\(575\) 0.732051i 0.0305286i
\(576\) 0 0
\(577\) −33.6506 19.4282i −1.40089 0.808807i −0.406410 0.913691i \(-0.633219\pi\)
−0.994484 + 0.104884i \(0.966553\pi\)
\(578\) 0 0
\(579\) 4.59808 + 7.96410i 0.191090 + 0.330977i
\(580\) 0 0
\(581\) −22.6865 4.36603i −0.941196 0.181133i
\(582\) 0 0
\(583\) −6.00000 + 3.46410i −0.248495 + 0.143468i
\(584\) 0 0
\(585\) 0.500000 0.866025i 0.0206725 0.0358057i
\(586\) 0 0
\(587\) 9.66025 0.398721 0.199361 0.979926i \(-0.436113\pi\)
0.199361 + 0.979926i \(0.436113\pi\)
\(588\) 0 0
\(589\) 2.07180 0.0853669
\(590\) 0 0
\(591\) 6.63397 11.4904i 0.272885 0.472651i
\(592\) 0 0
\(593\) 32.2750 18.6340i 1.32538 0.765206i 0.340795 0.940138i \(-0.389304\pi\)
0.984580 + 0.174932i \(0.0559706\pi\)
\(594\) 0 0
\(595\) −16.0981 3.09808i −0.659957 0.127009i
\(596\) 0 0
\(597\) −1.92820 3.33975i −0.0789161 0.136687i
\(598\) 0 0
\(599\) 4.39230 + 2.53590i 0.179465 + 0.103614i 0.587041 0.809557i \(-0.300293\pi\)
−0.407576 + 0.913171i \(0.633626\pi\)
\(600\) 0 0
\(601\) 11.3397i 0.462558i 0.972887 + 0.231279i \(0.0742910\pi\)
−0.972887 + 0.231279i \(0.925709\pi\)
\(602\) 0 0
\(603\) 12.4641i 0.507577i
\(604\) 0 0
\(605\) −9.86603 5.69615i −0.401111 0.231582i
\(606\) 0 0
\(607\) 21.5981 + 37.4090i 0.876639 + 1.51838i 0.855007 + 0.518617i \(0.173553\pi\)
0.0216322 + 0.999766i \(0.493114\pi\)
\(608\) 0 0
\(609\) 1.26795 1.46410i 0.0513799 0.0593284i
\(610\) 0 0
\(611\) −0.803848 + 0.464102i −0.0325202 + 0.0187755i
\(612\) 0 0
\(613\) −19.3205 + 33.4641i −0.780348 + 1.35160i 0.151391 + 0.988474i \(0.451625\pi\)
−0.931739 + 0.363128i \(0.881709\pi\)
\(614\) 0 0
\(615\) −6.19615 −0.249853
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −3.50000 + 6.06218i −0.140677 + 0.243659i −0.927752 0.373198i \(-0.878261\pi\)
0.787075 + 0.616858i \(0.211595\pi\)
\(620\) 0 0
\(621\) −0.633975 + 0.366025i −0.0254405 + 0.0146881i
\(622\) 0 0
\(623\) 3.16987 1.09808i 0.126998 0.0439935i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 18.2942 + 10.5622i 0.730601 + 0.421813i
\(628\) 0 0
\(629\) 72.6936i 2.89848i
\(630\) 0 0
\(631\) 24.5359i 0.976759i −0.872631 0.488379i \(-0.837588\pi\)
0.872631 0.488379i \(-0.162412\pi\)
\(632\) 0 0
\(633\) 21.4641 + 12.3923i 0.853121 + 0.492550i
\(634\) 0 0
\(635\) −1.69615 2.93782i −0.0673098 0.116584i
\(636\) 0 0
\(637\) 2.59808 6.50000i 0.102940 0.257539i
\(638\) 0 0
\(639\) 13.5622 7.83013i 0.536511 0.309755i
\(640\) 0 0
\(641\) −18.2224 + 31.5622i −0.719743 + 1.24663i 0.241359 + 0.970436i \(0.422407\pi\)
−0.961102 + 0.276195i \(0.910926\pi\)
\(642\) 0 0
\(643\) 31.9808 1.26120 0.630599 0.776109i \(-0.282809\pi\)
0.630599 + 0.776109i \(0.282809\pi\)
\(644\) 0 0
\(645\) 8.46410 0.333274
\(646\) 0 0
\(647\) 3.09808 5.36603i 0.121798 0.210960i −0.798679 0.601758i \(-0.794467\pi\)
0.920477 + 0.390797i \(0.127801\pi\)
\(648\) 0 0
\(649\) 58.1769 33.5885i 2.28364 1.31846i
\(650\) 0 0
\(651\) 0.401924 + 1.16025i 0.0157526 + 0.0454739i
\(652\) 0 0
\(653\) −4.70577 8.15064i −0.184151 0.318959i 0.759139 0.650928i \(-0.225620\pi\)
−0.943290 + 0.331969i \(0.892287\pi\)
\(654\) 0 0
\(655\) −6.46410 3.73205i −0.252573 0.145823i
\(656\) 0 0
\(657\) 5.92820i 0.231281i
\(658\) 0 0
\(659\) 32.7846i 1.27711i 0.769577 + 0.638554i \(0.220467\pi\)
−0.769577 + 0.638554i \(0.779533\pi\)
\(660\) 0 0
\(661\) 41.5526 + 23.9904i 1.61621 + 0.933118i 0.987889 + 0.155161i \(0.0495897\pi\)
0.628318 + 0.777957i \(0.283744\pi\)
\(662\) 0 0
\(663\) 3.09808 + 5.36603i 0.120319 + 0.208399i
\(664\) 0 0
\(665\) −8.92820 7.73205i −0.346221 0.299836i
\(666\) 0 0
\(667\) 0.464102 0.267949i 0.0179701 0.0103750i
\(668\) 0 0
\(669\) 2.19615 3.80385i 0.0849082 0.147065i
\(670\) 0 0
\(671\) −54.2487 −2.09425
\(672\) 0 0
\(673\) −29.4449 −1.13502 −0.567508 0.823368i \(-0.692092\pi\)
−0.567508 + 0.823368i \(0.692092\pi\)
\(674\) 0 0
\(675\) 0.500000 0.866025i 0.0192450 0.0333333i
\(676\) 0 0
\(677\) 18.8827 10.9019i 0.725721 0.418995i −0.0911340 0.995839i \(-0.529049\pi\)
0.816855 + 0.576844i \(0.195716\pi\)
\(678\) 0 0
\(679\) −4.46410 + 23.1962i −0.171316 + 0.890187i
\(680\) 0 0
\(681\) 8.02628 + 13.9019i 0.307568 + 0.532723i
\(682\) 0 0
\(683\) 29.9545 + 17.2942i 1.14618 + 0.661745i 0.947953 0.318412i \(-0.103149\pi\)
0.198224 + 0.980157i \(0.436483\pi\)
\(684\) 0 0
\(685\) 2.33975i 0.0893971i
\(686\) 0 0
\(687\) 6.80385i 0.259583i
\(688\) 0 0
\(689\) −1.26795 0.732051i −0.0483050 0.0278889i
\(690\) 0 0
\(691\) −18.2846 31.6699i −0.695579 1.20478i −0.969985 0.243165i \(-0.921814\pi\)
0.274406 0.961614i \(-0.411519\pi\)
\(692\) 0 0
\(693\) −2.36603 + 12.2942i −0.0898779 + 0.467019i
\(694\) 0 0
\(695\) −5.13397 + 2.96410i −0.194743 + 0.112435i
\(696\) 0 0
\(697\) 19.1962 33.2487i 0.727106 1.25938i
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) −45.9090 −1.73396 −0.866979 0.498345i \(-0.833941\pi\)
−0.866979 + 0.498345i \(0.833941\pi\)
\(702\) 0 0
\(703\) −26.1865 + 45.3564i −0.987644 + 1.71065i
\(704\) 0 0
\(705\) −0.803848 + 0.464102i −0.0302747 + 0.0174791i
\(706\) 0 0
\(707\) −17.4641 15.1244i −0.656805 0.568810i
\(708\) 0 0
\(709\) 21.8564 + 37.8564i 0.820835 + 1.42173i 0.905062 + 0.425281i \(0.139825\pi\)
−0.0842270 + 0.996447i \(0.526842\pi\)
\(710\) 0 0
\(711\) 6.69615 + 3.86603i 0.251125 + 0.144987i
\(712\) 0 0
\(713\) 0.339746i 0.0127236i
\(714\) 0 0
\(715\) 4.73205i 0.176969i
\(716\) 0 0
\(717\) 4.60770 + 2.66025i 0.172078 + 0.0993490i
\(718\) 0 0
\(719\) −5.53590 9.58846i −0.206454 0.357589i 0.744141 0.668023i \(-0.232859\pi\)
−0.950595 + 0.310434i \(0.899526\pi\)
\(720\) 0 0
\(721\) 1.96410 + 5.66987i 0.0731470 + 0.211157i
\(722\) 0 0
\(723\) −10.2679 + 5.92820i −0.381869 + 0.220472i
\(724\) 0 0
\(725\) −0.366025 + 0.633975i −0.0135938 + 0.0235452i
\(726\) 0 0
\(727\) −24.2679 −0.900048 −0.450024 0.893016i \(-0.648585\pi\)
−0.450024 + 0.893016i \(0.648585\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −26.2224 + 45.4186i −0.969872 + 1.67987i
\(732\) 0 0
\(733\) −19.4545 + 11.2321i −0.718568 + 0.414865i −0.814225 0.580549i \(-0.802838\pi\)
0.0956576 + 0.995414i \(0.469505\pi\)
\(734\) 0 0
\(735\) 2.59808 6.50000i 0.0958315 0.239756i
\(736\) 0 0
\(737\) 29.4904 + 51.0788i 1.08629 + 1.88151i
\(738\) 0 0
\(739\) 13.9641 + 8.06218i 0.513678 + 0.296572i 0.734344 0.678777i \(-0.237490\pi\)
−0.220666 + 0.975349i \(0.570823\pi\)
\(740\) 0 0
\(741\) 4.46410i 0.163993i
\(742\) 0 0
\(743\) 10.4449i 0.383185i 0.981475 + 0.191592i \(0.0613652\pi\)
−0.981475 + 0.191592i \(0.938635\pi\)
\(744\) 0 0
\(745\) −20.1962 11.6603i −0.739930 0.427199i
\(746\) 0 0
\(747\) 4.36603 + 7.56218i 0.159745 + 0.276686i
\(748\) 0 0
\(749\) 41.8301 14.4904i 1.52844 0.529467i
\(750\) 0 0
\(751\) −13.0359 + 7.52628i −0.475687 + 0.274638i −0.718617 0.695406i \(-0.755225\pi\)
0.242931 + 0.970044i \(0.421891\pi\)
\(752\) 0 0
\(753\) 2.56218 4.43782i 0.0933710 0.161723i
\(754\) 0 0
\(755\) −17.8564 −0.649861
\(756\) 0 0
\(757\) 8.14359 0.295984 0.147992 0.988989i \(-0.452719\pi\)
0.147992 + 0.988989i \(0.452719\pi\)
\(758\) 0 0
\(759\) −1.73205 + 3.00000i −0.0628695 + 0.108893i
\(760\) 0 0
\(761\) 20.7058 11.9545i 0.750584 0.433350i −0.0753211 0.997159i \(-0.523998\pi\)
0.825905 + 0.563810i \(0.190665\pi\)
\(762\) 0 0
\(763\) −31.0526 + 35.8564i −1.12418 + 1.29809i
\(764\) 0 0
\(765\) 3.09808 + 5.36603i 0.112011 + 0.194009i
\(766\) 0 0
\(767\) 12.2942 + 7.09808i 0.443919 + 0.256297i
\(768\) 0 0
\(769\) 21.8756i 0.788856i −0.918927 0.394428i \(-0.870943\pi\)
0.918927 0.394428i \(-0.129057\pi\)
\(770\) 0 0
\(771\) 17.6603i 0.636019i
\(772\) 0 0
\(773\) 38.3660 + 22.1506i 1.37993 + 0.796703i 0.992151 0.125049i \(-0.0399089\pi\)
0.387779 + 0.921752i \(0.373242\pi\)
\(774\) 0 0
\(775\) −0.232051 0.401924i −0.00833551 0.0144375i
\(776\) 0 0
\(777\) −30.4808 5.86603i −1.09349 0.210442i
\(778\) 0 0
\(779\) 23.9545 13.8301i 0.858258 0.495516i
\(780\) 0 0
\(781\) 37.0526 64.1769i 1.32584 2.29643i
\(782\) 0 0
\(783\) −0.732051 −0.0261614
\(784\) 0 0
\(785\) 20.0000 0.713831
\(786\) 0 0
\(787\) −19.1244 + 33.1244i −0.681710 + 1.18076i 0.292749 + 0.956189i \(0.405430\pi\)
−0.974459 + 0.224566i \(0.927903\pi\)
\(788\) 0 0
\(789\) 20.1962 11.6603i 0.719002 0.415116i
\(790\) 0 0
\(791\) 37.3923 + 7.19615i 1.32952 + 0.255866i
\(792\) 0 0
\(793\) −5.73205 9.92820i −0.203551 0.352561i
\(794\) 0 0
\(795\) −1.26795 0.732051i −0.0449695 0.0259632i
\(796\) 0 0
\(797\) 39.3731i 1.39467i −0.716747 0.697333i \(-0.754370\pi\)
0.716747 0.697333i \(-0.245630\pi\)
\(798\) 0 0
\(799\) 5.75129i 0.203466i
\(800\) 0 0
\(801\) −1.09808 0.633975i −0.0387986 0.0224004i
\(802\) 0 0
\(803\) −14.0263 24.2942i −0.494977 0.857325i
\(804\) 0 0
\(805\) 1.26795 1.46410i 0.0446893 0.0516028i
\(806\) 0 0
\(807\) 10.2679 5.92820i 0.361449 0.208683i
\(808\) 0 0
\(809\) −12.8038 + 22.1769i −0.450159 + 0.779699i −0.998396 0.0566247i \(-0.981966\pi\)
0.548236 + 0.836324i \(0.315299\pi\)
\(810\) 0 0
\(811\) 26.1051 0.916675 0.458337 0.888778i \(-0.348445\pi\)
0.458337 + 0.888778i \(0.348445\pi\)
\(812\) 0 0
\(813\) 2.00000 0.0701431
\(814\) 0 0
\(815\) −4.46410 + 7.73205i −0.156371 + 0.270842i
\(816\) 0 0
\(817\) −32.7224 + 18.8923i −1.14481 + 0.660958i
\(818\) 0 0
\(819\) −2.50000 + 0.866025i −0.0873571 + 0.0302614i
\(820\) 0 0
\(821\) −11.9545 20.7058i −0.417214 0.722636i 0.578444 0.815722i \(-0.303660\pi\)
−0.995658 + 0.0930859i \(0.970327\pi\)
\(822\) 0 0
\(823\) −5.07180 2.92820i −0.176792 0.102071i 0.408993 0.912538i \(-0.365880\pi\)
−0.585784 + 0.810467i \(0.699213\pi\)
\(824\) 0 0
\(825\) 4.73205i 0.164749i
\(826\) 0 0
\(827\) 27.8564i 0.968662i 0.874885 + 0.484331i \(0.160937\pi\)
−0.874885 + 0.484331i \(0.839063\pi\)
\(828\) 0 0
\(829\) −42.6962 24.6506i −1.48290 0.856152i −0.483087 0.875572i \(-0.660485\pi\)
−0.999811 + 0.0194203i \(0.993818\pi\)
\(830\) 0 0
\(831\) −0.401924 0.696152i −0.0139426 0.0241493i
\(832\) 0 0
\(833\) 26.8301 + 34.0788i 0.929609 + 1.18076i
\(834\) 0 0
\(835\) 14.8301 8.56218i 0.513218 0.296306i
\(836\) 0 0
\(837\) 0.232051 0.401924i 0.00802085 0.0138925i
\(838\) 0 0
\(839\) −18.9808 −0.655289 −0.327644 0.944801i \(-0.606255\pi\)
−0.327644 + 0.944801i \(0.606255\pi\)
\(840\) 0 0
\(841\) −28.4641 −0.981521
\(842\) 0 0
\(843\) 6.92820 12.0000i 0.238620 0.413302i
\(844\) 0 0
\(845\) −10.3923 + 6.00000i −0.357506 + 0.206406i
\(846\) 0 0
\(847\) 9.86603 + 28.4808i 0.339001 + 0.978611i
\(848\) 0 0
\(849\) 11.4019 + 19.7487i 0.391313 + 0.677774i
\(850\) 0 0
\(851\) −7.43782 4.29423i −0.254965 0.147204i
\(852\) 0 0
\(853\) 29.3923i 1.00637i −0.864178 0.503187i \(-0.832161\pi\)
0.864178 0.503187i \(-0.167839\pi\)
\(854\) 0 0
\(855\) 4.46410i 0.152669i
\(856\) 0 0
\(857\) 24.8827 + 14.3660i 0.849976 + 0.490734i 0.860643 0.509209i \(-0.170062\pi\)
−0.0106665 + 0.999943i \(0.503395\pi\)
\(858\) 0 0
\(859\) −11.7321 20.3205i −0.400292 0.693327i 0.593469 0.804857i \(-0.297758\pi\)
−0.993761 + 0.111530i \(0.964425\pi\)
\(860\) 0 0
\(861\) 12.3923 + 10.7321i 0.422329 + 0.365747i
\(862\) 0 0
\(863\) 9.92820 5.73205i 0.337960 0.195121i −0.321410 0.946940i \(-0.604157\pi\)
0.659370 + 0.751819i \(0.270823\pi\)
\(864\) 0 0
\(865\) 2.19615 3.80385i 0.0746714 0.129335i
\(866\) 0 0
\(867\) −21.3923 −0.726521
\(868\) 0 0
\(869\) 36.5885 1.24118
\(870\) 0 0
\(871\) −6.23205 + 10.7942i −0.211165 + 0.365748i
\(872\) 0 0
\(873\) 7.73205 4.46410i 0.261690 0.151087i
\(874\) 0 0
\(875\) −0.500000 + 2.59808i −0.0169031 + 0.0878310i
\(876\) 0 0
\(877\) 1.39230 + 2.41154i 0.0470148 + 0.0814320i 0.888575 0.458731i \(-0.151696\pi\)
−0.841560 + 0.540163i \(0.818363\pi\)
\(878\) 0 0
\(879\) −9.12436 5.26795i −0.307757 0.177684i
\(880\) 0 0
\(881\) 48.4974i 1.63392i 0.576695 + 0.816960i \(0.304342\pi\)
−0.576695 + 0.816960i \(0.695658\pi\)
\(882\) 0 0
\(883\) 27.5359i 0.926657i −0.886187 0.463328i \(-0.846655\pi\)
0.886187 0.463328i \(-0.153345\pi\)
\(884\) 0 0
\(885\) 12.2942 + 7.09808i 0.413266 + 0.238599i
\(886\) 0 0
\(887\) −8.56218 14.8301i −0.287490 0.497947i 0.685720 0.727865i \(-0.259487\pi\)
−0.973210 + 0.229918i \(0.926154\pi\)
\(888\) 0 0
\(889\) −1.69615 + 8.81347i −0.0568871 + 0.295594i
\(890\) 0 0
\(891\) 4.09808 2.36603i 0.137291 0.0792648i
\(892\) 0 0
\(893\) 2.07180 3.58846i 0.0693300 0.120083i
\(894\) 0 0
\(895\) −3.46410 −0.115792
\(896\) 0 0
\(897\) −0.732051 −0.0244425
\(898\) 0 0
\(899\) −0.169873 + 0.294229i −0.00566558 + 0.00981307i
\(900\) 0 0
\(901\) 7.85641 4.53590i 0.261735 0.151113i
\(902\) 0 0
\(903\) −16.9282 14.6603i −0.563335 0.487863i
\(904\) 0 0
\(905\) −2.79423 4.83975i −0.0928833 0.160879i
\(906\) 0 0
\(907\) −24.4019 14.0885i −0.810253 0.467800i 0.0367910 0.999323i \(-0.488286\pi\)
−0.847044 + 0.531523i \(0.821620\pi\)
\(908\) 0 0
\(909\) 8.73205i 0.289624i
\(910\) 0 0
\(911\) 29.3731i 0.973173i −0.873632 0.486587i \(-0.838242\pi\)
0.873632 0.486587i \(-0.161758\pi\)
\(912\) 0 0
\(913\) 35.7846 + 20.6603i 1.18430 + 0.683755i
\(914\) 0 0
\(915\) −5.73205 9.92820i −0.189496 0.328216i
\(916\) 0 0
\(917\) 6.46410 + 18.6603i 0.213463 + 0.616216i
\(918\) 0 0
\(919\) −41.4282 + 23.9186i −1.36659 + 0.789001i −0.990491 0.137578i \(-0.956068\pi\)
−0.376099 + 0.926579i \(0.622735\pi\)
\(920\) 0 0
\(921\) −10.0622 + 17.4282i −0.331560 + 0.574279i
\(922\) 0 0
\(923\) 15.6603 0.515464
\(924\) 0 0
\(925\) 11.7321 0.385747
\(926\) 0 0
\(927\) 1.13397 1.96410i 0.0372446 0.0645096i
\(928\) 0 0
\(929\) 10.0981 5.83013i 0.331307 0.191280i −0.325114 0.945675i \(-0.605403\pi\)
0.656421 + 0.754395i \(0.272069\pi\)
\(930\) 0 0
\(931\) 4.46410 + 30.9282i 0.146305 + 1.01363i
\(932\) 0 0
\(933\) 3.90192 + 6.75833i 0.127743 + 0.221258i
\(934\) 0 0
\(935\) 25.3923 + 14.6603i 0.830417 + 0.479442i
\(936\) 0 0
\(937\) 30.4641i 0.995219i −0.867401 0.497609i \(-0.834211\pi\)
0.867401 0.497609i \(-0.165789\pi\)
\(938\) 0 0
\(939\) 19.0000i 0.620042i
\(940\) 0 0
\(941\) 16.3135 + 9.41858i 0.531804 + 0.307037i 0.741751 0.670676i \(-0.233996\pi\)
−0.209947 + 0.977713i \(0.567329\pi\)
\(942\) 0 0
\(943\) 2.26795 + 3.92820i 0.0738546 + 0.127920i
\(944\) 0 0
\(945\) −2.50000 + 0.866025i −0.0813250 + 0.0281718i
\(946\) 0 0
\(947\) −6.84936 + 3.95448i −0.222574 + 0.128503i −0.607142 0.794594i \(-0.707684\pi\)
0.384567 + 0.923097i \(0.374351\pi\)
\(948\) 0 0
\(949\) 2.96410 5.13397i 0.0962188 0.166656i
\(950\) 0 0
\(951\) −10.0526 −0.325977
\(952\) 0 0
\(953\) −19.6077 −0.635156 −0.317578 0.948232i \(-0.602869\pi\)
−0.317578 + 0.948232i \(0.602869\pi\)
\(954\) 0 0
\(955\) −1.00000 + 1.73205i −0.0323592 + 0.0560478i
\(956\) 0 0
\(957\) −3.00000 + 1.73205i −0.0969762 + 0.0559893i
\(958\) 0 0
\(959\) 4.05256 4.67949i 0.130864 0.151109i
\(960\) 0 0
\(961\) 15.3923 + 26.6603i 0.496526 + 0.860008i
\(962\) 0 0
\(963\) −14.4904 8.36603i −0.466946 0.269591i
\(964\) 0 0
\(965\) 9.19615i 0.296035i
\(966\) 0 0
\(967\) 9.53590i 0.306654i −0.988176 0.153327i \(-0.951001\pi\)
0.988176 0.153327i \(-0.0489988\pi\)
\(968\) 0 0
\(969\) −23.9545 13.8301i −0.769529 0.444288i
\(970\) 0 0
\(971\) 21.4641 + 37.1769i 0.688816 + 1.19306i 0.972221 + 0.234064i \(0.0752025\pi\)
−0.283405 + 0.959000i \(0.591464\pi\)
\(972\) 0 0
\(973\) 15.4019 + 2.96410i 0.493763 + 0.0950247i
\(974\) 0 0
\(975\) 0.866025 0.500000i 0.0277350 0.0160128i
\(976\) 0 0
\(977\) 5.83013 10.0981i 0.186522 0.323066i −0.757566 0.652758i \(-0.773612\pi\)
0.944088 + 0.329692i \(0.106945\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) 0 0
\(981\) 17.9282 0.572403
\(982\) 0 0
\(983\) 20.0981 34.8109i 0.641029 1.11029i −0.344174 0.938906i \(-0.611841\pi\)
0.985203 0.171389i \(-0.0548255\pi\)
\(984\) 0 0
\(985\) 11.4904 6.63397i 0.366114 0.211376i
\(986\) 0 0
\(987\) 2.41154 + 0.464102i 0.0767603 + 0.0147725i
\(988\) 0 0
\(989\) −3.09808 5.36603i −0.0985131 0.170630i
\(990\) 0 0
\(991\) 20.7679 + 11.9904i 0.659716 + 0.380887i 0.792169 0.610302i \(-0.208952\pi\)
−0.132453 + 0.991189i \(0.542285\pi\)
\(992\) 0 0
\(993\) 8.66025i 0.274825i
\(994\) 0 0
\(995\) 3.85641i 0.122256i
\(996\) 0 0
\(997\) −39.3109 22.6962i −1.24499 0.718794i −0.274883 0.961478i \(-0.588639\pi\)
−0.970106 + 0.242683i \(0.921972\pi\)
\(998\) 0 0
\(999\) 5.86603 + 10.1603i 0.185593 + 0.321456i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.dx.a.31.1 4
4.3 odd 2 1680.2.dx.d.31.1 yes 4
7.5 odd 6 1680.2.dx.d.271.1 yes 4
28.19 even 6 inner 1680.2.dx.a.271.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.dx.a.31.1 4 1.1 even 1 trivial
1680.2.dx.a.271.1 yes 4 28.19 even 6 inner
1680.2.dx.d.31.1 yes 4 4.3 odd 2
1680.2.dx.d.271.1 yes 4 7.5 odd 6