Properties

Label 1680.2.cz.f.433.8
Level $1680$
Weight $2$
Character 1680.433
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(97,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.cz (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.8
Character \(\chi\) \(=\) 1680.433
Dual form 1680.2.cz.f.97.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{3} +(-0.793022 + 2.09072i) q^{5} +(-2.38904 - 1.13687i) q^{7} -1.00000i q^{9} -1.83199 q^{11} +(1.48628 - 1.48628i) q^{13} +(0.917612 + 2.03911i) q^{15} +(4.65516 + 4.65516i) q^{17} +3.78446 q^{19} +(-2.49320 + 0.885417i) q^{21} +(-0.980552 - 0.980552i) q^{23} +(-3.74223 - 3.31598i) q^{25} +(-0.707107 - 0.707107i) q^{27} +3.98517i q^{29} -0.418991i q^{31} +(-1.29541 + 1.29541i) q^{33} +(4.27145 - 4.09326i) q^{35} +(-3.70069 + 3.70069i) q^{37} -2.10191i q^{39} +10.3583i q^{41} +(6.57302 + 6.57302i) q^{43} +(2.09072 + 0.793022i) q^{45} +(5.32205 + 5.32205i) q^{47} +(4.41504 + 5.43207i) q^{49} +6.58339 q^{51} +(3.94238 + 3.94238i) q^{53} +(1.45281 - 3.83017i) q^{55} +(2.67602 - 2.67602i) q^{57} +7.45184 q^{59} +9.97493i q^{61} +(-1.13687 + 2.38904i) q^{63} +(1.92874 + 4.28604i) q^{65} +(-5.40365 + 5.40365i) q^{67} -1.38671 q^{69} -12.5907 q^{71} +(5.08337 - 5.08337i) q^{73} +(-4.99091 + 0.301408i) q^{75} +(4.37669 + 2.08274i) q^{77} -6.33742i q^{79} -1.00000 q^{81} +(5.50407 - 5.50407i) q^{83} +(-13.4243 + 6.04100i) q^{85} +(2.81794 + 2.81794i) q^{87} -6.27930 q^{89} +(-5.24049 + 1.86107i) q^{91} +(-0.296271 - 0.296271i) q^{93} +(-3.00116 + 7.91226i) q^{95} +(2.50605 + 2.50605i) q^{97} +1.83199i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{7} + 8 q^{11} + 16 q^{13} - 4 q^{15} + 20 q^{17} - 8 q^{19} - 24 q^{23} - 4 q^{25} + 4 q^{37} + 16 q^{43} - 4 q^{45} + 24 q^{47} + 36 q^{49} + 16 q^{53} - 28 q^{55} + 4 q^{57} - 8 q^{59} + 24 q^{65}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 0 0
\(5\) −0.793022 + 2.09072i −0.354650 + 0.934999i
\(6\) 0 0
\(7\) −2.38904 1.13687i −0.902973 0.429697i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.83199 −0.552365 −0.276182 0.961105i \(-0.589069\pi\)
−0.276182 + 0.961105i \(0.589069\pi\)
\(12\) 0 0
\(13\) 1.48628 1.48628i 0.412219 0.412219i −0.470292 0.882511i \(-0.655851\pi\)
0.882511 + 0.470292i \(0.155851\pi\)
\(14\) 0 0
\(15\) 0.917612 + 2.03911i 0.236926 + 0.526497i
\(16\) 0 0
\(17\) 4.65516 + 4.65516i 1.12904 + 1.12904i 0.990333 + 0.138709i \(0.0442953\pi\)
0.138709 + 0.990333i \(0.455705\pi\)
\(18\) 0 0
\(19\) 3.78446 0.868215 0.434108 0.900861i \(-0.357064\pi\)
0.434108 + 0.900861i \(0.357064\pi\)
\(20\) 0 0
\(21\) −2.49320 + 0.885417i −0.544060 + 0.193214i
\(22\) 0 0
\(23\) −0.980552 0.980552i −0.204459 0.204459i 0.597448 0.801908i \(-0.296181\pi\)
−0.801908 + 0.597448i \(0.796181\pi\)
\(24\) 0 0
\(25\) −3.74223 3.31598i −0.748446 0.663195i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 3.98517i 0.740028i 0.929026 + 0.370014i \(0.120647\pi\)
−0.929026 + 0.370014i \(0.879353\pi\)
\(30\) 0 0
\(31\) 0.418991i 0.0752529i −0.999292 0.0376265i \(-0.988020\pi\)
0.999292 0.0376265i \(-0.0119797\pi\)
\(32\) 0 0
\(33\) −1.29541 + 1.29541i −0.225502 + 0.225502i
\(34\) 0 0
\(35\) 4.27145 4.09326i 0.722006 0.691887i
\(36\) 0 0
\(37\) −3.70069 + 3.70069i −0.608390 + 0.608390i −0.942525 0.334135i \(-0.891556\pi\)
0.334135 + 0.942525i \(0.391556\pi\)
\(38\) 0 0
\(39\) 2.10191i 0.336576i
\(40\) 0 0
\(41\) 10.3583i 1.61769i 0.588021 + 0.808846i \(0.299907\pi\)
−0.588021 + 0.808846i \(0.700093\pi\)
\(42\) 0 0
\(43\) 6.57302 + 6.57302i 1.00238 + 1.00238i 0.999997 + 0.00237930i \(0.000757355\pi\)
0.00237930 + 0.999997i \(0.499243\pi\)
\(44\) 0 0
\(45\) 2.09072 + 0.793022i 0.311666 + 0.118217i
\(46\) 0 0
\(47\) 5.32205 + 5.32205i 0.776301 + 0.776301i 0.979200 0.202899i \(-0.0650363\pi\)
−0.202899 + 0.979200i \(0.565036\pi\)
\(48\) 0 0
\(49\) 4.41504 + 5.43207i 0.630720 + 0.776010i
\(50\) 0 0
\(51\) 6.58339 0.921859
\(52\) 0 0
\(53\) 3.94238 + 3.94238i 0.541528 + 0.541528i 0.923977 0.382449i \(-0.124919\pi\)
−0.382449 + 0.923977i \(0.624919\pi\)
\(54\) 0 0
\(55\) 1.45281 3.83017i 0.195896 0.516461i
\(56\) 0 0
\(57\) 2.67602 2.67602i 0.354447 0.354447i
\(58\) 0 0
\(59\) 7.45184 0.970147 0.485073 0.874473i \(-0.338793\pi\)
0.485073 + 0.874473i \(0.338793\pi\)
\(60\) 0 0
\(61\) 9.97493i 1.27716i 0.769556 + 0.638579i \(0.220478\pi\)
−0.769556 + 0.638579i \(0.779522\pi\)
\(62\) 0 0
\(63\) −1.13687 + 2.38904i −0.143232 + 0.300991i
\(64\) 0 0
\(65\) 1.92874 + 4.28604i 0.239231 + 0.531618i
\(66\) 0 0
\(67\) −5.40365 + 5.40365i −0.660160 + 0.660160i −0.955418 0.295257i \(-0.904595\pi\)
0.295257 + 0.955418i \(0.404595\pi\)
\(68\) 0 0
\(69\) −1.38671 −0.166940
\(70\) 0 0
\(71\) −12.5907 −1.49424 −0.747121 0.664689i \(-0.768564\pi\)
−0.747121 + 0.664689i \(0.768564\pi\)
\(72\) 0 0
\(73\) 5.08337 5.08337i 0.594963 0.594963i −0.344005 0.938968i \(-0.611784\pi\)
0.938968 + 0.344005i \(0.111784\pi\)
\(74\) 0 0
\(75\) −4.99091 + 0.301408i −0.576300 + 0.0348036i
\(76\) 0 0
\(77\) 4.37669 + 2.08274i 0.498771 + 0.237350i
\(78\) 0 0
\(79\) 6.33742i 0.713016i −0.934292 0.356508i \(-0.883967\pi\)
0.934292 0.356508i \(-0.116033\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 5.50407 5.50407i 0.604151 0.604151i −0.337261 0.941411i \(-0.609500\pi\)
0.941411 + 0.337261i \(0.109500\pi\)
\(84\) 0 0
\(85\) −13.4243 + 6.04100i −1.45607 + 0.655238i
\(86\) 0 0
\(87\) 2.81794 + 2.81794i 0.302115 + 0.302115i
\(88\) 0 0
\(89\) −6.27930 −0.665604 −0.332802 0.942997i \(-0.607994\pi\)
−0.332802 + 0.942997i \(0.607994\pi\)
\(90\) 0 0
\(91\) −5.24049 + 1.86107i −0.549352 + 0.195093i
\(92\) 0 0
\(93\) −0.296271 0.296271i −0.0307219 0.0307219i
\(94\) 0 0
\(95\) −3.00116 + 7.91226i −0.307913 + 0.811781i
\(96\) 0 0
\(97\) 2.50605 + 2.50605i 0.254450 + 0.254450i 0.822792 0.568342i \(-0.192415\pi\)
−0.568342 + 0.822792i \(0.692415\pi\)
\(98\) 0 0
\(99\) 1.83199i 0.184122i
\(100\) 0 0
\(101\) 2.35631i 0.234462i −0.993105 0.117231i \(-0.962598\pi\)
0.993105 0.117231i \(-0.0374017\pi\)
\(102\) 0 0
\(103\) −5.78700 + 5.78700i −0.570210 + 0.570210i −0.932187 0.361977i \(-0.882102\pi\)
0.361977 + 0.932187i \(0.382102\pi\)
\(104\) 0 0
\(105\) 0.126000 5.91474i 0.0122963 0.577219i
\(106\) 0 0
\(107\) −1.37319 + 1.37319i −0.132751 + 0.132751i −0.770360 0.637609i \(-0.779924\pi\)
0.637609 + 0.770360i \(0.279924\pi\)
\(108\) 0 0
\(109\) 19.0097i 1.82080i −0.413730 0.910400i \(-0.635774\pi\)
0.413730 0.910400i \(-0.364226\pi\)
\(110\) 0 0
\(111\) 5.23357i 0.496748i
\(112\) 0 0
\(113\) 4.32972 + 4.32972i 0.407305 + 0.407305i 0.880798 0.473492i \(-0.157007\pi\)
−0.473492 + 0.880798i \(0.657007\pi\)
\(114\) 0 0
\(115\) 2.82766 1.27246i 0.263681 0.118658i
\(116\) 0 0
\(117\) −1.48628 1.48628i −0.137406 0.137406i
\(118\) 0 0
\(119\) −5.82905 16.4137i −0.534348 1.50464i
\(120\) 0 0
\(121\) −7.64382 −0.694893
\(122\) 0 0
\(123\) 7.32441 + 7.32441i 0.660420 + 0.660420i
\(124\) 0 0
\(125\) 9.90046 5.19432i 0.885524 0.464594i
\(126\) 0 0
\(127\) −2.53070 + 2.53070i −0.224563 + 0.224563i −0.810417 0.585853i \(-0.800759\pi\)
0.585853 + 0.810417i \(0.300759\pi\)
\(128\) 0 0
\(129\) 9.29566 0.818437
\(130\) 0 0
\(131\) 7.81417i 0.682727i 0.939931 + 0.341364i \(0.110889\pi\)
−0.939931 + 0.341364i \(0.889111\pi\)
\(132\) 0 0
\(133\) −9.04124 4.30245i −0.783975 0.373070i
\(134\) 0 0
\(135\) 2.03911 0.917612i 0.175499 0.0789755i
\(136\) 0 0
\(137\) 15.5825 15.5825i 1.33130 1.33130i 0.427098 0.904205i \(-0.359536\pi\)
0.904205 0.427098i \(-0.140464\pi\)
\(138\) 0 0
\(139\) 17.0665 1.44756 0.723780 0.690031i \(-0.242403\pi\)
0.723780 + 0.690031i \(0.242403\pi\)
\(140\) 0 0
\(141\) 7.52652 0.633847
\(142\) 0 0
\(143\) −2.72284 + 2.72284i −0.227696 + 0.227696i
\(144\) 0 0
\(145\) −8.33189 3.16033i −0.691925 0.262451i
\(146\) 0 0
\(147\) 6.96296 + 0.719149i 0.574295 + 0.0593144i
\(148\) 0 0
\(149\) 18.8606i 1.54512i 0.634939 + 0.772562i \(0.281025\pi\)
−0.634939 + 0.772562i \(0.718975\pi\)
\(150\) 0 0
\(151\) −20.6451 −1.68008 −0.840038 0.542527i \(-0.817468\pi\)
−0.840038 + 0.542527i \(0.817468\pi\)
\(152\) 0 0
\(153\) 4.65516 4.65516i 0.376347 0.376347i
\(154\) 0 0
\(155\) 0.875993 + 0.332269i 0.0703614 + 0.0266885i
\(156\) 0 0
\(157\) 0.595458 + 0.595458i 0.0475227 + 0.0475227i 0.730469 0.682946i \(-0.239302\pi\)
−0.682946 + 0.730469i \(0.739302\pi\)
\(158\) 0 0
\(159\) 5.57537 0.442156
\(160\) 0 0
\(161\) 1.22782 + 3.45734i 0.0967656 + 0.272477i
\(162\) 0 0
\(163\) 2.87052 + 2.87052i 0.224836 + 0.224836i 0.810531 0.585695i \(-0.199178\pi\)
−0.585695 + 0.810531i \(0.699178\pi\)
\(164\) 0 0
\(165\) −1.68105 3.73563i −0.130870 0.290819i
\(166\) 0 0
\(167\) 12.7912 + 12.7912i 0.989811 + 0.989811i 0.999949 0.0101379i \(-0.00322704\pi\)
−0.0101379 + 0.999949i \(0.503227\pi\)
\(168\) 0 0
\(169\) 8.58196i 0.660150i
\(170\) 0 0
\(171\) 3.78446i 0.289405i
\(172\) 0 0
\(173\) 3.91765 3.91765i 0.297853 0.297853i −0.542319 0.840173i \(-0.682454\pi\)
0.840173 + 0.542319i \(0.182454\pi\)
\(174\) 0 0
\(175\) 5.17051 + 12.1764i 0.390854 + 0.920453i
\(176\) 0 0
\(177\) 5.26925 5.26925i 0.396061 0.396061i
\(178\) 0 0
\(179\) 21.1175i 1.57840i −0.614137 0.789200i \(-0.710496\pi\)
0.614137 0.789200i \(-0.289504\pi\)
\(180\) 0 0
\(181\) 24.1970i 1.79855i −0.437382 0.899276i \(-0.644094\pi\)
0.437382 0.899276i \(-0.355906\pi\)
\(182\) 0 0
\(183\) 7.05334 + 7.05334i 0.521398 + 0.521398i
\(184\) 0 0
\(185\) −4.80238 10.6718i −0.353078 0.784609i
\(186\) 0 0
\(187\) −8.52819 8.52819i −0.623643 0.623643i
\(188\) 0 0
\(189\) 0.885417 + 2.49320i 0.0644046 + 0.181353i
\(190\) 0 0
\(191\) 1.56938 0.113556 0.0567780 0.998387i \(-0.481917\pi\)
0.0567780 + 0.998387i \(0.481917\pi\)
\(192\) 0 0
\(193\) 2.32792 + 2.32792i 0.167567 + 0.167567i 0.785909 0.618342i \(-0.212195\pi\)
−0.618342 + 0.785909i \(0.712195\pi\)
\(194\) 0 0
\(195\) 4.39452 + 1.66686i 0.314698 + 0.119367i
\(196\) 0 0
\(197\) 14.6194 14.6194i 1.04159 1.04159i 0.0424939 0.999097i \(-0.486470\pi\)
0.999097 0.0424939i \(-0.0135303\pi\)
\(198\) 0 0
\(199\) −5.93362 −0.420623 −0.210312 0.977634i \(-0.567448\pi\)
−0.210312 + 0.977634i \(0.567448\pi\)
\(200\) 0 0
\(201\) 7.64191i 0.539019i
\(202\) 0 0
\(203\) 4.53063 9.52074i 0.317988 0.668225i
\(204\) 0 0
\(205\) −21.6563 8.21434i −1.51254 0.573715i
\(206\) 0 0
\(207\) −0.980552 + 0.980552i −0.0681531 + 0.0681531i
\(208\) 0 0
\(209\) −6.93309 −0.479572
\(210\) 0 0
\(211\) −6.16052 −0.424108 −0.212054 0.977258i \(-0.568015\pi\)
−0.212054 + 0.977258i \(0.568015\pi\)
\(212\) 0 0
\(213\) −8.90297 + 8.90297i −0.610021 + 0.610021i
\(214\) 0 0
\(215\) −18.9549 + 8.52981i −1.29271 + 0.581728i
\(216\) 0 0
\(217\) −0.476339 + 1.00099i −0.0323360 + 0.0679514i
\(218\) 0 0
\(219\) 7.18897i 0.485785i
\(220\) 0 0
\(221\) 13.8377 0.930826
\(222\) 0 0
\(223\) −17.0970 + 17.0970i −1.14490 + 1.14490i −0.157361 + 0.987541i \(0.550299\pi\)
−0.987541 + 0.157361i \(0.949701\pi\)
\(224\) 0 0
\(225\) −3.31598 + 3.74223i −0.221065 + 0.249482i
\(226\) 0 0
\(227\) −4.16552 4.16552i −0.276475 0.276475i 0.555225 0.831700i \(-0.312632\pi\)
−0.831700 + 0.555225i \(0.812632\pi\)
\(228\) 0 0
\(229\) 6.76436 0.447001 0.223501 0.974704i \(-0.428252\pi\)
0.223501 + 0.974704i \(0.428252\pi\)
\(230\) 0 0
\(231\) 4.56751 1.62207i 0.300520 0.106725i
\(232\) 0 0
\(233\) 8.50439 + 8.50439i 0.557141 + 0.557141i 0.928492 0.371351i \(-0.121105\pi\)
−0.371351 + 0.928492i \(0.621105\pi\)
\(234\) 0 0
\(235\) −15.3474 + 6.90642i −1.00116 + 0.450525i
\(236\) 0 0
\(237\) −4.48123 4.48123i −0.291087 0.291087i
\(238\) 0 0
\(239\) 10.0210i 0.648202i 0.946022 + 0.324101i \(0.105062\pi\)
−0.946022 + 0.324101i \(0.894938\pi\)
\(240\) 0 0
\(241\) 8.24673i 0.531219i −0.964081 0.265609i \(-0.914427\pi\)
0.964081 0.265609i \(-0.0855732\pi\)
\(242\) 0 0
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −14.8582 + 4.92287i −0.949254 + 0.314511i
\(246\) 0 0
\(247\) 5.62476 5.62476i 0.357895 0.357895i
\(248\) 0 0
\(249\) 7.78394i 0.493287i
\(250\) 0 0
\(251\) 27.2141i 1.71774i −0.512194 0.858870i \(-0.671167\pi\)
0.512194 0.858870i \(-0.328833\pi\)
\(252\) 0 0
\(253\) 1.79636 + 1.79636i 0.112936 + 0.112936i
\(254\) 0 0
\(255\) −5.22077 + 13.7640i −0.326938 + 0.861937i
\(256\) 0 0
\(257\) −11.2946 11.2946i −0.704538 0.704538i 0.260843 0.965381i \(-0.415999\pi\)
−0.965381 + 0.260843i \(0.915999\pi\)
\(258\) 0 0
\(259\) 13.0483 4.63389i 0.810783 0.287936i
\(260\) 0 0
\(261\) 3.98517 0.246676
\(262\) 0 0
\(263\) 13.4333 + 13.4333i 0.828334 + 0.828334i 0.987286 0.158952i \(-0.0508116\pi\)
−0.158952 + 0.987286i \(0.550812\pi\)
\(264\) 0 0
\(265\) −11.3688 + 5.11603i −0.698381 + 0.314275i
\(266\) 0 0
\(267\) −4.44013 + 4.44013i −0.271732 + 0.271732i
\(268\) 0 0
\(269\) 9.83354 0.599561 0.299781 0.954008i \(-0.403087\pi\)
0.299781 + 0.954008i \(0.403087\pi\)
\(270\) 0 0
\(271\) 11.3225i 0.687790i 0.939008 + 0.343895i \(0.111747\pi\)
−0.939008 + 0.343895i \(0.888253\pi\)
\(272\) 0 0
\(273\) −2.38961 + 5.02156i −0.144626 + 0.303919i
\(274\) 0 0
\(275\) 6.85572 + 6.07483i 0.413416 + 0.366326i
\(276\) 0 0
\(277\) 18.5572 18.5572i 1.11500 1.11500i 0.122532 0.992465i \(-0.460899\pi\)
0.992465 0.122532i \(-0.0391014\pi\)
\(278\) 0 0
\(279\) −0.418991 −0.0250843
\(280\) 0 0
\(281\) 7.80892 0.465841 0.232921 0.972496i \(-0.425172\pi\)
0.232921 + 0.972496i \(0.425172\pi\)
\(282\) 0 0
\(283\) 1.14863 1.14863i 0.0682792 0.0682792i −0.672143 0.740422i \(-0.734626\pi\)
0.740422 + 0.672143i \(0.234626\pi\)
\(284\) 0 0
\(285\) 3.47267 + 7.71695i 0.205703 + 0.457113i
\(286\) 0 0
\(287\) 11.7760 24.7464i 0.695118 1.46073i
\(288\) 0 0
\(289\) 26.3410i 1.54947i
\(290\) 0 0
\(291\) 3.54408 0.207758
\(292\) 0 0
\(293\) −3.97738 + 3.97738i −0.232361 + 0.232361i −0.813677 0.581317i \(-0.802538\pi\)
0.581317 + 0.813677i \(0.302538\pi\)
\(294\) 0 0
\(295\) −5.90947 + 15.5797i −0.344063 + 0.907086i
\(296\) 0 0
\(297\) 1.29541 + 1.29541i 0.0751673 + 0.0751673i
\(298\) 0 0
\(299\) −2.91475 −0.168564
\(300\) 0 0
\(301\) −8.23054 23.1759i −0.474400 1.33584i
\(302\) 0 0
\(303\) −1.66616 1.66616i −0.0957185 0.0957185i
\(304\) 0 0
\(305\) −20.8548 7.91034i −1.19414 0.452945i
\(306\) 0 0
\(307\) −13.8073 13.8073i −0.788026 0.788026i 0.193144 0.981170i \(-0.438132\pi\)
−0.981170 + 0.193144i \(0.938132\pi\)
\(308\) 0 0
\(309\) 8.18405i 0.465574i
\(310\) 0 0
\(311\) 15.4188i 0.874320i 0.899384 + 0.437160i \(0.144016\pi\)
−0.899384 + 0.437160i \(0.855984\pi\)
\(312\) 0 0
\(313\) 3.89720 3.89720i 0.220283 0.220283i −0.588335 0.808618i \(-0.700216\pi\)
0.808618 + 0.588335i \(0.200216\pi\)
\(314\) 0 0
\(315\) −4.09326 4.27145i −0.230629 0.240669i
\(316\) 0 0
\(317\) −9.98823 + 9.98823i −0.560995 + 0.560995i −0.929590 0.368595i \(-0.879839\pi\)
0.368595 + 0.929590i \(0.379839\pi\)
\(318\) 0 0
\(319\) 7.30079i 0.408766i
\(320\) 0 0
\(321\) 1.94198i 0.108391i
\(322\) 0 0
\(323\) 17.6173 + 17.6173i 0.980252 + 0.980252i
\(324\) 0 0
\(325\) −10.4905 + 0.633534i −0.581906 + 0.0351422i
\(326\) 0 0
\(327\) −13.4419 13.4419i −0.743338 0.743338i
\(328\) 0 0
\(329\) −6.66411 18.7651i −0.367404 1.03455i
\(330\) 0 0
\(331\) −7.76207 −0.426642 −0.213321 0.976982i \(-0.568428\pi\)
−0.213321 + 0.976982i \(0.568428\pi\)
\(332\) 0 0
\(333\) 3.70069 + 3.70069i 0.202797 + 0.202797i
\(334\) 0 0
\(335\) −7.01231 15.5827i −0.383123 0.851375i
\(336\) 0 0
\(337\) −20.7009 + 20.7009i −1.12765 + 1.12765i −0.137094 + 0.990558i \(0.543776\pi\)
−0.990558 + 0.137094i \(0.956224\pi\)
\(338\) 0 0
\(339\) 6.12314 0.332563
\(340\) 0 0
\(341\) 0.767585i 0.0415671i
\(342\) 0 0
\(343\) −4.37215 17.9968i −0.236074 0.971735i
\(344\) 0 0
\(345\) 1.09969 2.89923i 0.0592054 0.156089i
\(346\) 0 0
\(347\) −16.8422 + 16.8422i −0.904138 + 0.904138i −0.995791 0.0916528i \(-0.970785\pi\)
0.0916528 + 0.995791i \(0.470785\pi\)
\(348\) 0 0
\(349\) −14.5075 −0.776567 −0.388284 0.921540i \(-0.626932\pi\)
−0.388284 + 0.921540i \(0.626932\pi\)
\(350\) 0 0
\(351\) −2.10191 −0.112192
\(352\) 0 0
\(353\) −13.1207 + 13.1207i −0.698344 + 0.698344i −0.964053 0.265709i \(-0.914394\pi\)
0.265709 + 0.964053i \(0.414394\pi\)
\(354\) 0 0
\(355\) 9.98470 26.3236i 0.529933 1.39711i
\(356\) 0 0
\(357\) −15.7280 7.48448i −0.832414 0.396120i
\(358\) 0 0
\(359\) 15.8826i 0.838251i −0.907928 0.419126i \(-0.862337\pi\)
0.907928 0.419126i \(-0.137663\pi\)
\(360\) 0 0
\(361\) −4.67784 −0.246202
\(362\) 0 0
\(363\) −5.40500 + 5.40500i −0.283689 + 0.283689i
\(364\) 0 0
\(365\) 6.59668 + 14.6591i 0.345286 + 0.767294i
\(366\) 0 0
\(367\) −26.1316 26.1316i −1.36406 1.36406i −0.868672 0.495388i \(-0.835026\pi\)
−0.495388 0.868672i \(-0.664974\pi\)
\(368\) 0 0
\(369\) 10.3583 0.539230
\(370\) 0 0
\(371\) −4.93653 13.9005i −0.256292 0.721678i
\(372\) 0 0
\(373\) 11.6475 + 11.6475i 0.603086 + 0.603086i 0.941130 0.338044i \(-0.109765\pi\)
−0.338044 + 0.941130i \(0.609765\pi\)
\(374\) 0 0
\(375\) 3.32774 10.6736i 0.171844 0.551183i
\(376\) 0 0
\(377\) 5.92307 + 5.92307i 0.305054 + 0.305054i
\(378\) 0 0
\(379\) 11.1749i 0.574018i 0.957928 + 0.287009i \(0.0926610\pi\)
−0.957928 + 0.287009i \(0.907339\pi\)
\(380\) 0 0
\(381\) 3.57895i 0.183355i
\(382\) 0 0
\(383\) −3.94634 + 3.94634i −0.201649 + 0.201649i −0.800706 0.599057i \(-0.795542\pi\)
0.599057 + 0.800706i \(0.295542\pi\)
\(384\) 0 0
\(385\) −7.82524 + 7.49879i −0.398811 + 0.382174i
\(386\) 0 0
\(387\) 6.57302 6.57302i 0.334125 0.334125i
\(388\) 0 0
\(389\) 23.9327i 1.21344i −0.794917 0.606719i \(-0.792485\pi\)
0.794917 0.606719i \(-0.207515\pi\)
\(390\) 0 0
\(391\) 9.12926i 0.461686i
\(392\) 0 0
\(393\) 5.52545 + 5.52545i 0.278722 + 0.278722i
\(394\) 0 0
\(395\) 13.2498 + 5.02572i 0.666669 + 0.252871i
\(396\) 0 0
\(397\) 26.4416 + 26.4416i 1.32707 + 1.32707i 0.907917 + 0.419150i \(0.137672\pi\)
0.419150 + 0.907917i \(0.362328\pi\)
\(398\) 0 0
\(399\) −9.43542 + 3.35083i −0.472362 + 0.167751i
\(400\) 0 0
\(401\) −22.6400 −1.13059 −0.565293 0.824890i \(-0.691237\pi\)
−0.565293 + 0.824890i \(0.691237\pi\)
\(402\) 0 0
\(403\) −0.622737 0.622737i −0.0310207 0.0310207i
\(404\) 0 0
\(405\) 0.793022 2.09072i 0.0394056 0.103889i
\(406\) 0 0
\(407\) 6.77962 6.77962i 0.336053 0.336053i
\(408\) 0 0
\(409\) −31.0267 −1.53417 −0.767086 0.641544i \(-0.778294\pi\)
−0.767086 + 0.641544i \(0.778294\pi\)
\(410\) 0 0
\(411\) 22.0370i 1.08700i
\(412\) 0 0
\(413\) −17.8028 8.47179i −0.876016 0.416870i
\(414\) 0 0
\(415\) 7.14263 + 15.8723i 0.350618 + 0.779143i
\(416\) 0 0
\(417\) 12.0678 12.0678i 0.590964 0.590964i
\(418\) 0 0
\(419\) −27.9504 −1.36547 −0.682733 0.730668i \(-0.739209\pi\)
−0.682733 + 0.730668i \(0.739209\pi\)
\(420\) 0 0
\(421\) 7.38882 0.360109 0.180054 0.983657i \(-0.442373\pi\)
0.180054 + 0.983657i \(0.442373\pi\)
\(422\) 0 0
\(423\) 5.32205 5.32205i 0.258767 0.258767i
\(424\) 0 0
\(425\) −1.98429 32.8571i −0.0962521 1.59380i
\(426\) 0 0
\(427\) 11.3402 23.8305i 0.548792 1.15324i
\(428\) 0 0
\(429\) 3.85068i 0.185913i
\(430\) 0 0
\(431\) −12.4443 −0.599420 −0.299710 0.954030i \(-0.596890\pi\)
−0.299710 + 0.954030i \(0.596890\pi\)
\(432\) 0 0
\(433\) 12.6923 12.6923i 0.609951 0.609951i −0.332982 0.942933i \(-0.608055\pi\)
0.942933 + 0.332982i \(0.108055\pi\)
\(434\) 0 0
\(435\) −8.12622 + 3.65684i −0.389623 + 0.175332i
\(436\) 0 0
\(437\) −3.71086 3.71086i −0.177515 0.177515i
\(438\) 0 0
\(439\) 2.02052 0.0964342 0.0482171 0.998837i \(-0.484646\pi\)
0.0482171 + 0.998837i \(0.484646\pi\)
\(440\) 0 0
\(441\) 5.43207 4.41504i 0.258670 0.210240i
\(442\) 0 0
\(443\) 20.9380 + 20.9380i 0.994796 + 0.994796i 0.999987 0.00519085i \(-0.00165231\pi\)
−0.00519085 + 0.999987i \(0.501652\pi\)
\(444\) 0 0
\(445\) 4.97962 13.1283i 0.236057 0.622339i
\(446\) 0 0
\(447\) 13.3365 + 13.3365i 0.630794 + 0.630794i
\(448\) 0 0
\(449\) 16.4487i 0.776264i −0.921604 0.388132i \(-0.873121\pi\)
0.921604 0.388132i \(-0.126879\pi\)
\(450\) 0 0
\(451\) 18.9762i 0.893556i
\(452\) 0 0
\(453\) −14.5983 + 14.5983i −0.685888 + 0.685888i
\(454\) 0 0
\(455\) 0.264841 12.4323i 0.0124159 0.582834i
\(456\) 0 0
\(457\) 21.1469 21.1469i 0.989208 0.989208i −0.0107342 0.999942i \(-0.503417\pi\)
0.999942 + 0.0107342i \(0.00341688\pi\)
\(458\) 0 0
\(459\) 6.58339i 0.307286i
\(460\) 0 0
\(461\) 21.3492i 0.994333i 0.867655 + 0.497167i \(0.165626\pi\)
−0.867655 + 0.497167i \(0.834374\pi\)
\(462\) 0 0
\(463\) 4.82602 + 4.82602i 0.224284 + 0.224284i 0.810300 0.586016i \(-0.199304\pi\)
−0.586016 + 0.810300i \(0.699304\pi\)
\(464\) 0 0
\(465\) 0.854370 0.384471i 0.0396205 0.0178294i
\(466\) 0 0
\(467\) 18.7364 + 18.7364i 0.867016 + 0.867016i 0.992141 0.125125i \(-0.0399333\pi\)
−0.125125 + 0.992141i \(0.539933\pi\)
\(468\) 0 0
\(469\) 19.0528 6.76628i 0.879776 0.312438i
\(470\) 0 0
\(471\) 0.842105 0.0388022
\(472\) 0 0
\(473\) −12.0417 12.0417i −0.553678 0.553678i
\(474\) 0 0
\(475\) −14.1623 12.5492i −0.649813 0.575796i
\(476\) 0 0
\(477\) 3.94238 3.94238i 0.180509 0.180509i
\(478\) 0 0
\(479\) −26.7428 −1.22191 −0.610954 0.791666i \(-0.709214\pi\)
−0.610954 + 0.791666i \(0.709214\pi\)
\(480\) 0 0
\(481\) 11.0005i 0.501580i
\(482\) 0 0
\(483\) 3.31291 + 1.57651i 0.150743 + 0.0717338i
\(484\) 0 0
\(485\) −7.22679 + 3.25209i −0.328152 + 0.147670i
\(486\) 0 0
\(487\) 13.0281 13.0281i 0.590359 0.590359i −0.347370 0.937728i \(-0.612925\pi\)
0.937728 + 0.347370i \(0.112925\pi\)
\(488\) 0 0
\(489\) 4.05953 0.183578
\(490\) 0 0
\(491\) 34.2448 1.54544 0.772722 0.634745i \(-0.218895\pi\)
0.772722 + 0.634745i \(0.218895\pi\)
\(492\) 0 0
\(493\) −18.5516 + 18.5516i −0.835523 + 0.835523i
\(494\) 0 0
\(495\) −3.83017 1.45281i −0.172154 0.0652988i
\(496\) 0 0
\(497\) 30.0797 + 14.3140i 1.34926 + 0.642072i
\(498\) 0 0
\(499\) 38.0422i 1.70300i −0.524352 0.851502i \(-0.675692\pi\)
0.524352 0.851502i \(-0.324308\pi\)
\(500\) 0 0
\(501\) 18.0895 0.808177
\(502\) 0 0
\(503\) −17.0324 + 17.0324i −0.759439 + 0.759439i −0.976220 0.216781i \(-0.930444\pi\)
0.216781 + 0.976220i \(0.430444\pi\)
\(504\) 0 0
\(505\) 4.92639 + 1.86861i 0.219221 + 0.0831519i
\(506\) 0 0
\(507\) 6.06836 + 6.06836i 0.269505 + 0.269505i
\(508\) 0 0
\(509\) −0.424186 −0.0188017 −0.00940085 0.999956i \(-0.502992\pi\)
−0.00940085 + 0.999956i \(0.502992\pi\)
\(510\) 0 0
\(511\) −17.9235 + 6.36524i −0.792890 + 0.281581i
\(512\) 0 0
\(513\) −2.67602 2.67602i −0.118149 0.118149i
\(514\) 0 0
\(515\) −7.50978 16.6882i −0.330921 0.735371i
\(516\) 0 0
\(517\) −9.74993 9.74993i −0.428801 0.428801i
\(518\) 0 0
\(519\) 5.54039i 0.243196i
\(520\) 0 0
\(521\) 10.0586i 0.440674i 0.975424 + 0.220337i \(0.0707157\pi\)
−0.975424 + 0.220337i \(0.929284\pi\)
\(522\) 0 0
\(523\) 20.4023 20.4023i 0.892132 0.892132i −0.102591 0.994724i \(-0.532713\pi\)
0.994724 + 0.102591i \(0.0327134\pi\)
\(524\) 0 0
\(525\) 12.2661 + 4.95395i 0.535339 + 0.216208i
\(526\) 0 0
\(527\) 1.95047 1.95047i 0.0849637 0.0849637i
\(528\) 0 0
\(529\) 21.0770i 0.916393i
\(530\) 0 0
\(531\) 7.45184i 0.323382i
\(532\) 0 0
\(533\) 15.3953 + 15.3953i 0.666844 + 0.666844i
\(534\) 0 0
\(535\) −1.78199 3.95992i −0.0770420 0.171202i
\(536\) 0 0
\(537\) −14.9324 14.9324i −0.644379 0.644379i
\(538\) 0 0
\(539\) −8.08830 9.95149i −0.348388 0.428641i
\(540\) 0 0
\(541\) −10.8989 −0.468582 −0.234291 0.972167i \(-0.575277\pi\)
−0.234291 + 0.972167i \(0.575277\pi\)
\(542\) 0 0
\(543\) −17.1099 17.1099i −0.734256 0.734256i
\(544\) 0 0
\(545\) 39.7440 + 15.0751i 1.70245 + 0.645747i
\(546\) 0 0
\(547\) −20.6904 + 20.6904i −0.884658 + 0.884658i −0.994004 0.109345i \(-0.965125\pi\)
0.109345 + 0.994004i \(0.465125\pi\)
\(548\) 0 0
\(549\) 9.97493 0.425720
\(550\) 0 0
\(551\) 15.0817i 0.642504i
\(552\) 0 0
\(553\) −7.20484 + 15.1404i −0.306381 + 0.643834i
\(554\) 0 0
\(555\) −10.9419 4.15033i −0.464459 0.176172i
\(556\) 0 0
\(557\) 0.997840 0.997840i 0.0422799 0.0422799i −0.685651 0.727931i \(-0.740482\pi\)
0.727931 + 0.685651i \(0.240482\pi\)
\(558\) 0 0
\(559\) 19.5387 0.826398
\(560\) 0 0
\(561\) −12.0607 −0.509203
\(562\) 0 0
\(563\) 14.4588 14.4588i 0.609368 0.609368i −0.333413 0.942781i \(-0.608200\pi\)
0.942781 + 0.333413i \(0.108200\pi\)
\(564\) 0 0
\(565\) −12.4858 + 5.61867i −0.525281 + 0.236379i
\(566\) 0 0
\(567\) 2.38904 + 1.13687i 0.100330 + 0.0477442i
\(568\) 0 0
\(569\) 18.6912i 0.783574i −0.920056 0.391787i \(-0.871857\pi\)
0.920056 0.391787i \(-0.128143\pi\)
\(570\) 0 0
\(571\) 31.7294 1.32783 0.663917 0.747806i \(-0.268893\pi\)
0.663917 + 0.747806i \(0.268893\pi\)
\(572\) 0 0
\(573\) 1.10972 1.10972i 0.0463590 0.0463590i
\(574\) 0 0
\(575\) 0.417966 + 6.92094i 0.0174304 + 0.288623i
\(576\) 0 0
\(577\) 4.01321 + 4.01321i 0.167072 + 0.167072i 0.785691 0.618619i \(-0.212307\pi\)
−0.618619 + 0.785691i \(0.712307\pi\)
\(578\) 0 0
\(579\) 3.29217 0.136818
\(580\) 0 0
\(581\) −19.4069 + 6.89203i −0.805134 + 0.285930i
\(582\) 0 0
\(583\) −7.22240 7.22240i −0.299121 0.299121i
\(584\) 0 0
\(585\) 4.28604 1.92874i 0.177206 0.0797437i
\(586\) 0 0
\(587\) 9.30224 + 9.30224i 0.383945 + 0.383945i 0.872521 0.488576i \(-0.162484\pi\)
−0.488576 + 0.872521i \(0.662484\pi\)
\(588\) 0 0
\(589\) 1.58565i 0.0653358i
\(590\) 0 0
\(591\) 20.6750i 0.850455i
\(592\) 0 0
\(593\) 21.9584 21.9584i 0.901725 0.901725i −0.0938604 0.995585i \(-0.529921\pi\)
0.995585 + 0.0938604i \(0.0299207\pi\)
\(594\) 0 0
\(595\) 38.9390 + 0.829506i 1.59634 + 0.0340064i
\(596\) 0 0
\(597\) −4.19570 + 4.19570i −0.171719 + 0.171719i
\(598\) 0 0
\(599\) 3.67685i 0.150232i 0.997175 + 0.0751160i \(0.0239327\pi\)
−0.997175 + 0.0751160i \(0.976067\pi\)
\(600\) 0 0
\(601\) 7.54954i 0.307952i −0.988075 0.153976i \(-0.950792\pi\)
0.988075 0.153976i \(-0.0492079\pi\)
\(602\) 0 0
\(603\) 5.40365 + 5.40365i 0.220053 + 0.220053i
\(604\) 0 0
\(605\) 6.06172 15.9811i 0.246444 0.649724i
\(606\) 0 0
\(607\) 6.40919 + 6.40919i 0.260141 + 0.260141i 0.825111 0.564970i \(-0.191112\pi\)
−0.564970 + 0.825111i \(0.691112\pi\)
\(608\) 0 0
\(609\) −3.52854 9.93582i −0.142984 0.402620i
\(610\) 0 0
\(611\) 15.8201 0.640012
\(612\) 0 0
\(613\) −1.26803 1.26803i −0.0512153 0.0512153i 0.681035 0.732251i \(-0.261530\pi\)
−0.732251 + 0.681035i \(0.761530\pi\)
\(614\) 0 0
\(615\) −21.1217 + 9.50488i −0.851710 + 0.383274i
\(616\) 0 0
\(617\) −29.8460 + 29.8460i −1.20155 + 1.20155i −0.227861 + 0.973694i \(0.573173\pi\)
−0.973694 + 0.227861i \(0.926827\pi\)
\(618\) 0 0
\(619\) −15.0957 −0.606747 −0.303374 0.952872i \(-0.598113\pi\)
−0.303374 + 0.952872i \(0.598113\pi\)
\(620\) 0 0
\(621\) 1.38671i 0.0556468i
\(622\) 0 0
\(623\) 15.0015 + 7.13876i 0.601023 + 0.286008i
\(624\) 0 0
\(625\) 3.00860 + 24.8183i 0.120344 + 0.992732i
\(626\) 0 0
\(627\) −4.90243 + 4.90243i −0.195784 + 0.195784i
\(628\) 0 0
\(629\) −34.4546 −1.37380
\(630\) 0 0
\(631\) −18.9855 −0.755801 −0.377900 0.925846i \(-0.623354\pi\)
−0.377900 + 0.925846i \(0.623354\pi\)
\(632\) 0 0
\(633\) −4.35615 + 4.35615i −0.173141 + 0.173141i
\(634\) 0 0
\(635\) −3.28409 7.29790i −0.130325 0.289608i
\(636\) 0 0
\(637\) 14.6355 + 1.51159i 0.579882 + 0.0598913i
\(638\) 0 0
\(639\) 12.5907i 0.498080i
\(640\) 0 0
\(641\) −19.8604 −0.784438 −0.392219 0.919872i \(-0.628292\pi\)
−0.392219 + 0.919872i \(0.628292\pi\)
\(642\) 0 0
\(643\) −34.3590 + 34.3590i −1.35499 + 1.35499i −0.475002 + 0.879985i \(0.657553\pi\)
−0.879985 + 0.475002i \(0.842447\pi\)
\(644\) 0 0
\(645\) −7.37166 + 19.4346i −0.290259 + 0.765238i
\(646\) 0 0
\(647\) 27.0162 + 27.0162i 1.06212 + 1.06212i 0.997938 + 0.0641784i \(0.0204427\pi\)
0.0641784 + 0.997938i \(0.479557\pi\)
\(648\) 0 0
\(649\) −13.6517 −0.535875
\(650\) 0 0
\(651\) 0.370982 + 1.04463i 0.0145399 + 0.0409421i
\(652\) 0 0
\(653\) 11.1822 + 11.1822i 0.437593 + 0.437593i 0.891201 0.453608i \(-0.149864\pi\)
−0.453608 + 0.891201i \(0.649864\pi\)
\(654\) 0 0
\(655\) −16.3372 6.19681i −0.638349 0.242129i
\(656\) 0 0
\(657\) −5.08337 5.08337i −0.198321 0.198321i
\(658\) 0 0
\(659\) 6.74496i 0.262746i 0.991333 + 0.131373i \(0.0419386\pi\)
−0.991333 + 0.131373i \(0.958061\pi\)
\(660\) 0 0
\(661\) 43.4695i 1.69077i −0.534159 0.845384i \(-0.679372\pi\)
0.534159 0.845384i \(-0.320628\pi\)
\(662\) 0 0
\(663\) 9.78475 9.78475i 0.380008 0.380008i
\(664\) 0 0
\(665\) 16.1651 15.4908i 0.626857 0.600707i
\(666\) 0 0
\(667\) 3.90767 3.90767i 0.151306 0.151306i
\(668\) 0 0
\(669\) 24.1789i 0.934809i
\(670\) 0 0
\(671\) 18.2739i 0.705458i
\(672\) 0 0
\(673\) 33.9579 + 33.9579i 1.30898 + 1.30898i 0.922151 + 0.386831i \(0.126430\pi\)
0.386831 + 0.922151i \(0.373570\pi\)
\(674\) 0 0
\(675\) 0.301408 + 4.99091i 0.0116012 + 0.192100i
\(676\) 0 0
\(677\) −25.7087 25.7087i −0.988065 0.988065i 0.0118642 0.999930i \(-0.496223\pi\)
−0.999930 + 0.0118642i \(0.996223\pi\)
\(678\) 0 0
\(679\) −3.13799 8.83610i −0.120425 0.339098i
\(680\) 0 0
\(681\) −5.89093 −0.225741
\(682\) 0 0
\(683\) −3.23539 3.23539i −0.123799 0.123799i 0.642493 0.766292i \(-0.277900\pi\)
−0.766292 + 0.642493i \(0.777900\pi\)
\(684\) 0 0
\(685\) 20.2214 + 44.9360i 0.772620 + 1.71691i
\(686\) 0 0
\(687\) 4.78312 4.78312i 0.182488 0.182488i
\(688\) 0 0
\(689\) 11.7190 0.446457
\(690\) 0 0
\(691\) 20.4287i 0.777146i 0.921418 + 0.388573i \(0.127032\pi\)
−0.921418 + 0.388573i \(0.872968\pi\)
\(692\) 0 0
\(693\) 2.08274 4.37669i 0.0791166 0.166257i
\(694\) 0 0
\(695\) −13.5341 + 35.6812i −0.513377 + 1.35347i
\(696\) 0 0
\(697\) −48.2195 + 48.2195i −1.82644 + 1.82644i
\(698\) 0 0
\(699\) 12.0270 0.454904
\(700\) 0 0
\(701\) −19.0180 −0.718299 −0.359149 0.933280i \(-0.616933\pi\)
−0.359149 + 0.933280i \(0.616933\pi\)
\(702\) 0 0
\(703\) −14.0051 + 14.0051i −0.528213 + 0.528213i
\(704\) 0 0
\(705\) −5.96869 + 15.7358i −0.224794 + 0.592646i
\(706\) 0 0
\(707\) −2.67882 + 5.62932i −0.100748 + 0.211712i
\(708\) 0 0
\(709\) 43.1544i 1.62070i −0.585948 0.810349i \(-0.699278\pi\)
0.585948 0.810349i \(-0.300722\pi\)
\(710\) 0 0
\(711\) −6.33742 −0.237672
\(712\) 0 0
\(713\) −0.410842 + 0.410842i −0.0153862 + 0.0153862i
\(714\) 0 0
\(715\) −3.53343 7.85198i −0.132143 0.293647i
\(716\) 0 0
\(717\) 7.08589 + 7.08589i 0.264627 + 0.264627i
\(718\) 0 0
\(719\) 22.2054 0.828120 0.414060 0.910250i \(-0.364110\pi\)
0.414060 + 0.910250i \(0.364110\pi\)
\(720\) 0 0
\(721\) 20.4045 7.24630i 0.759902 0.269866i
\(722\) 0 0
\(723\) −5.83132 5.83132i −0.216869 0.216869i
\(724\) 0 0
\(725\) 13.2147 14.9134i 0.490783 0.553871i
\(726\) 0 0
\(727\) 22.2068 + 22.2068i 0.823605 + 0.823605i 0.986623 0.163018i \(-0.0521230\pi\)
−0.163018 + 0.986623i \(0.552123\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 61.1969i 2.26345i
\(732\) 0 0
\(733\) 23.8751 23.8751i 0.881848 0.881848i −0.111874 0.993722i \(-0.535685\pi\)
0.993722 + 0.111874i \(0.0356854\pi\)
\(734\) 0 0
\(735\) −7.02532 + 13.9873i −0.259133 + 0.515930i
\(736\) 0 0
\(737\) 9.89941 9.89941i 0.364649 0.364649i
\(738\) 0 0
\(739\) 15.7638i 0.579882i 0.957045 + 0.289941i \(0.0936357\pi\)
−0.957045 + 0.289941i \(0.906364\pi\)
\(740\) 0 0
\(741\) 7.95462i 0.292220i
\(742\) 0 0
\(743\) 12.8208 + 12.8208i 0.470350 + 0.470350i 0.902028 0.431678i \(-0.142078\pi\)
−0.431678 + 0.902028i \(0.642078\pi\)
\(744\) 0 0
\(745\) −39.4324 14.9569i −1.44469 0.547979i
\(746\) 0 0
\(747\) −5.50407 5.50407i −0.201384 0.201384i
\(748\) 0 0
\(749\) 4.84174 1.71946i 0.176913 0.0628279i
\(750\) 0 0
\(751\) 2.25311 0.0822172 0.0411086 0.999155i \(-0.486911\pi\)
0.0411086 + 0.999155i \(0.486911\pi\)
\(752\) 0 0
\(753\) −19.2433 19.2433i −0.701264 0.701264i
\(754\) 0 0
\(755\) 16.3720 43.1632i 0.595840 1.57087i
\(756\) 0 0
\(757\) 11.4332 11.4332i 0.415546 0.415546i −0.468120 0.883665i \(-0.655068\pi\)
0.883665 + 0.468120i \(0.155068\pi\)
\(758\) 0 0
\(759\) 2.54044 0.0922120
\(760\) 0 0
\(761\) 46.4983i 1.68556i −0.538256 0.842781i \(-0.680917\pi\)
0.538256 0.842781i \(-0.319083\pi\)
\(762\) 0 0
\(763\) −21.6116 + 45.4150i −0.782393 + 1.64413i
\(764\) 0 0
\(765\) 6.04100 + 13.4243i 0.218413 + 0.485356i
\(766\) 0 0
\(767\) 11.0755 11.0755i 0.399913 0.399913i
\(768\) 0 0
\(769\) 1.59057 0.0573576 0.0286788 0.999589i \(-0.490870\pi\)
0.0286788 + 0.999589i \(0.490870\pi\)
\(770\) 0 0
\(771\) −15.9730 −0.575253
\(772\) 0 0
\(773\) 4.44860 4.44860i 0.160005 0.160005i −0.622564 0.782569i \(-0.713909\pi\)
0.782569 + 0.622564i \(0.213909\pi\)
\(774\) 0 0
\(775\) −1.38936 + 1.56796i −0.0499074 + 0.0563228i
\(776\) 0 0
\(777\) 5.94990 12.5032i 0.213451 0.448550i
\(778\) 0 0
\(779\) 39.2005i 1.40450i
\(780\) 0 0
\(781\) 23.0660 0.825366
\(782\) 0 0
\(783\) 2.81794 2.81794i 0.100705 0.100705i
\(784\) 0 0
\(785\) −1.71715 + 0.772726i −0.0612877 + 0.0275798i
\(786\) 0 0
\(787\) −7.11882 7.11882i −0.253759 0.253759i 0.568751 0.822510i \(-0.307427\pi\)
−0.822510 + 0.568751i \(0.807427\pi\)
\(788\) 0 0
\(789\) 18.9976 0.676332
\(790\) 0 0
\(791\) −5.42154 15.2662i −0.192768 0.542804i
\(792\) 0 0
\(793\) 14.8255 + 14.8255i 0.526470 + 0.526470i
\(794\) 0 0
\(795\) −4.42139 + 11.6565i −0.156811 + 0.413415i
\(796\) 0 0
\(797\) 10.4565 + 10.4565i 0.370390 + 0.370390i 0.867619 0.497229i \(-0.165649\pi\)
−0.497229 + 0.867619i \(0.665649\pi\)
\(798\) 0 0
\(799\) 49.5500i 1.75295i
\(800\) 0 0
\(801\) 6.27930i 0.221868i
\(802\) 0 0
\(803\) −9.31266 + 9.31266i −0.328637 + 0.328637i
\(804\) 0 0
\(805\) −8.20203 0.174725i −0.289084 0.00615825i
\(806\) 0 0
\(807\) 6.95336 6.95336i 0.244770 0.244770i
\(808\) 0 0
\(809\) 17.8967i 0.629214i −0.949222 0.314607i \(-0.898127\pi\)
0.949222 0.314607i \(-0.101873\pi\)
\(810\) 0 0
\(811\) 12.3372i 0.433216i 0.976259 + 0.216608i \(0.0694994\pi\)
−0.976259 + 0.216608i \(0.930501\pi\)
\(812\) 0 0
\(813\) 8.00619 + 8.00619i 0.280789 + 0.280789i
\(814\) 0 0
\(815\) −8.27784 + 3.72507i −0.289960 + 0.130483i
\(816\) 0 0
\(817\) 24.8754 + 24.8754i 0.870279 + 0.870279i
\(818\) 0 0
\(819\) 1.86107 + 5.24049i 0.0650311 + 0.183117i
\(820\) 0 0
\(821\) −39.9421 −1.39399 −0.696995 0.717076i \(-0.745480\pi\)
−0.696995 + 0.717076i \(0.745480\pi\)
\(822\) 0 0
\(823\) −30.8158 30.8158i −1.07417 1.07417i −0.997019 0.0771513i \(-0.975418\pi\)
−0.0771513 0.997019i \(-0.524582\pi\)
\(824\) 0 0
\(825\) 9.14328 0.552176i 0.318328 0.0192243i
\(826\) 0 0
\(827\) −29.7898 + 29.7898i −1.03589 + 1.03589i −0.0365603 + 0.999331i \(0.511640\pi\)
−0.999331 + 0.0365603i \(0.988360\pi\)
\(828\) 0 0
\(829\) 38.2648 1.32899 0.664496 0.747292i \(-0.268646\pi\)
0.664496 + 0.747292i \(0.268646\pi\)
\(830\) 0 0
\(831\) 26.2439i 0.910391i
\(832\) 0 0
\(833\) −4.73444 + 45.8399i −0.164039 + 1.58826i
\(834\) 0 0
\(835\) −36.8865 + 16.5991i −1.27651 + 0.574435i
\(836\) 0 0
\(837\) −0.296271 + 0.296271i −0.0102406 + 0.0102406i
\(838\) 0 0
\(839\) 0.632232 0.0218271 0.0109135 0.999940i \(-0.496526\pi\)
0.0109135 + 0.999940i \(0.496526\pi\)
\(840\) 0 0
\(841\) 13.1184 0.452359
\(842\) 0 0
\(843\) 5.52174 5.52174i 0.190179 0.190179i
\(844\) 0 0
\(845\) −17.9425 6.80568i −0.617240 0.234123i
\(846\) 0 0
\(847\) 18.2614 + 8.69005i 0.627470 + 0.298594i
\(848\) 0 0
\(849\) 1.62441i 0.0557498i
\(850\) 0 0
\(851\) 7.25744 0.248782
\(852\) 0 0
\(853\) 22.4320 22.4320i 0.768056 0.768056i −0.209708 0.977764i \(-0.567251\pi\)
0.977764 + 0.209708i \(0.0672514\pi\)
\(854\) 0 0
\(855\) 7.91226 + 3.00116i 0.270594 + 0.102638i
\(856\) 0 0
\(857\) 7.26136 + 7.26136i 0.248043 + 0.248043i 0.820167 0.572124i \(-0.193880\pi\)
−0.572124 + 0.820167i \(0.693880\pi\)
\(858\) 0 0
\(859\) 46.5049 1.58673 0.793364 0.608748i \(-0.208328\pi\)
0.793364 + 0.608748i \(0.208328\pi\)
\(860\) 0 0
\(861\) −9.17140 25.8252i −0.312561 0.880122i
\(862\) 0 0
\(863\) −35.2803 35.2803i −1.20095 1.20095i −0.973877 0.227077i \(-0.927083\pi\)
−0.227077 0.973877i \(-0.572917\pi\)
\(864\) 0 0
\(865\) 5.08393 + 11.2975i 0.172859 + 0.384126i
\(866\) 0 0
\(867\) 18.6259 + 18.6259i 0.632570 + 0.632570i
\(868\) 0 0
\(869\) 11.6101i 0.393845i
\(870\) 0 0
\(871\) 16.0626i 0.544262i
\(872\) 0 0
\(873\) 2.50605 2.50605i 0.0848168 0.0848168i
\(874\) 0 0
\(875\) −29.5579 + 1.15390i −0.999239 + 0.0390089i
\(876\) 0 0
\(877\) −2.65411 + 2.65411i −0.0896229 + 0.0896229i −0.750497 0.660874i \(-0.770186\pi\)
0.660874 + 0.750497i \(0.270186\pi\)
\(878\) 0 0
\(879\) 5.62486i 0.189722i
\(880\) 0 0
\(881\) 13.4692i 0.453790i 0.973919 + 0.226895i \(0.0728574\pi\)
−0.973919 + 0.226895i \(0.927143\pi\)
\(882\) 0 0
\(883\) 7.95368 + 7.95368i 0.267662 + 0.267662i 0.828158 0.560495i \(-0.189389\pi\)
−0.560495 + 0.828158i \(0.689389\pi\)
\(884\) 0 0
\(885\) 6.83790 + 15.1952i 0.229853 + 0.510780i
\(886\) 0 0
\(887\) 13.1591 + 13.1591i 0.441838 + 0.441838i 0.892629 0.450791i \(-0.148858\pi\)
−0.450791 + 0.892629i \(0.648858\pi\)
\(888\) 0 0
\(889\) 8.92304 3.16887i 0.299269 0.106280i
\(890\) 0 0
\(891\) 1.83199 0.0613739
\(892\) 0 0
\(893\) 20.1411 + 20.1411i 0.673996 + 0.673996i
\(894\) 0 0
\(895\) 44.1509 + 16.7467i 1.47580 + 0.559780i
\(896\) 0 0
\(897\) −2.06104 + 2.06104i −0.0688160 + 0.0688160i
\(898\) 0 0
\(899\) 1.66975 0.0556893
\(900\) 0 0
\(901\) 36.7049i 1.22282i
\(902\) 0 0
\(903\) −22.2077 10.5680i −0.739026 0.351680i
\(904\) 0 0
\(905\) 50.5893 + 19.1888i 1.68164 + 0.637857i
\(906\) 0 0
\(907\) 27.3862 27.3862i 0.909344 0.909344i −0.0868752 0.996219i \(-0.527688\pi\)
0.996219 + 0.0868752i \(0.0276881\pi\)
\(908\) 0 0
\(909\) −2.35631 −0.0781539
\(910\) 0 0
\(911\) −28.2418 −0.935691 −0.467846 0.883810i \(-0.654970\pi\)
−0.467846 + 0.883810i \(0.654970\pi\)
\(912\) 0 0
\(913\) −10.0834 + 10.0834i −0.333712 + 0.333712i
\(914\) 0 0
\(915\) −20.3400 + 9.15311i −0.672420 + 0.302593i
\(916\) 0 0
\(917\) 8.88371 18.6684i 0.293366 0.616484i
\(918\) 0 0
\(919\) 44.4983i 1.46786i 0.679224 + 0.733931i \(0.262317\pi\)
−0.679224 + 0.733931i \(0.737683\pi\)
\(920\) 0 0
\(921\) −19.5265 −0.643421
\(922\) 0 0
\(923\) −18.7133 + 18.7133i −0.615955 + 0.615955i
\(924\) 0 0
\(925\) 26.1202 1.57744i 0.858828 0.0518659i
\(926\) 0 0
\(927\) 5.78700 + 5.78700i 0.190070 + 0.190070i
\(928\) 0 0
\(929\) 10.5215 0.345200 0.172600 0.984992i \(-0.444783\pi\)
0.172600 + 0.984992i \(0.444783\pi\)
\(930\) 0 0
\(931\) 16.7086 + 20.5575i 0.547601 + 0.673744i
\(932\) 0 0
\(933\) 10.9027 + 10.9027i 0.356940 + 0.356940i
\(934\) 0 0
\(935\) 24.5931 11.0670i 0.804281 0.361931i
\(936\) 0 0
\(937\) −32.2864 32.2864i −1.05475 1.05475i −0.998412 0.0563380i \(-0.982058\pi\)
−0.0563380 0.998412i \(-0.517942\pi\)
\(938\) 0 0
\(939\) 5.51147i 0.179860i
\(940\) 0 0
\(941\) 44.5075i 1.45090i 0.688273 + 0.725452i \(0.258369\pi\)
−0.688273 + 0.725452i \(0.741631\pi\)
\(942\) 0 0
\(943\) 10.1568 10.1568i 0.330752 0.330752i
\(944\) 0 0
\(945\) −5.91474 0.126000i −0.192406 0.00409877i
\(946\) 0 0
\(947\) −3.96469 + 3.96469i −0.128835 + 0.128835i −0.768584 0.639749i \(-0.779038\pi\)
0.639749 + 0.768584i \(0.279038\pi\)
\(948\) 0 0
\(949\) 15.1106i 0.490511i
\(950\) 0 0
\(951\) 14.1255i 0.458050i
\(952\) 0 0
\(953\) −32.3886 32.3886i −1.04917 1.04917i −0.998727 0.0504422i \(-0.983937\pi\)
−0.0504422 0.998727i \(-0.516063\pi\)
\(954\) 0 0
\(955\) −1.24455 + 3.28113i −0.0402727 + 0.106175i
\(956\) 0 0
\(957\) −5.16243 5.16243i −0.166878 0.166878i
\(958\) 0 0
\(959\) −54.9426 + 19.5119i −1.77419 + 0.630073i
\(960\) 0 0
\(961\) 30.8244 0.994337
\(962\) 0 0
\(963\) 1.37319 + 1.37319i 0.0442504 + 0.0442504i
\(964\) 0 0
\(965\) −6.71312 + 3.02094i −0.216103 + 0.0972474i
\(966\) 0 0
\(967\) 40.0486 40.0486i 1.28788 1.28788i 0.351800 0.936075i \(-0.385570\pi\)
0.936075 0.351800i \(-0.114430\pi\)
\(968\) 0 0
\(969\) 24.9146 0.800372
\(970\) 0 0
\(971\) 47.0594i 1.51021i 0.655604 + 0.755105i \(0.272414\pi\)
−0.655604 + 0.755105i \(0.727586\pi\)
\(972\) 0 0
\(973\) −40.7725 19.4024i −1.30711 0.622012i
\(974\) 0 0
\(975\) −6.96990 + 7.86585i −0.223215 + 0.251909i
\(976\) 0 0
\(977\) −30.2303 + 30.2303i −0.967153 + 0.967153i −0.999477 0.0323246i \(-0.989709\pi\)
0.0323246 + 0.999477i \(0.489709\pi\)
\(978\) 0 0
\(979\) 11.5036 0.367656
\(980\) 0 0
\(981\) −19.0097 −0.606933
\(982\) 0 0
\(983\) 41.1744 41.1744i 1.31326 1.31326i 0.394261 0.918999i \(-0.371001\pi\)
0.918999 0.394261i \(-0.128999\pi\)
\(984\) 0 0
\(985\) 18.9716 + 42.1587i 0.604486 + 1.34329i
\(986\) 0 0
\(987\) −17.9812 8.55669i −0.572347 0.272362i
\(988\) 0 0
\(989\) 12.8904i 0.409890i
\(990\) 0 0
\(991\) 57.0948 1.81368 0.906839 0.421478i \(-0.138488\pi\)
0.906839 + 0.421478i \(0.138488\pi\)
\(992\) 0 0
\(993\) −5.48861 + 5.48861i −0.174176 + 0.174176i
\(994\) 0 0
\(995\) 4.70549 12.4055i 0.149174 0.393282i
\(996\) 0 0
\(997\) 2.86425 + 2.86425i 0.0907118 + 0.0907118i 0.751007 0.660295i \(-0.229569\pi\)
−0.660295 + 0.751007i \(0.729569\pi\)
\(998\) 0 0
\(999\) 5.23357 0.165583
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.cz.f.433.8 24
4.3 odd 2 840.2.bt.a.433.3 yes 24
5.2 odd 4 1680.2.cz.e.97.5 24
7.6 odd 2 1680.2.cz.e.433.5 24
20.7 even 4 840.2.bt.b.97.10 yes 24
28.27 even 2 840.2.bt.b.433.10 yes 24
35.27 even 4 inner 1680.2.cz.f.97.8 24
140.27 odd 4 840.2.bt.a.97.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.3 24 140.27 odd 4
840.2.bt.a.433.3 yes 24 4.3 odd 2
840.2.bt.b.97.10 yes 24 20.7 even 4
840.2.bt.b.433.10 yes 24 28.27 even 2
1680.2.cz.e.97.5 24 5.2 odd 4
1680.2.cz.e.433.5 24 7.6 odd 2
1680.2.cz.f.97.8 24 35.27 even 4 inner
1680.2.cz.f.433.8 24 1.1 even 1 trivial