Properties

Label 1680.2.cz.f.433.10
Level $1680$
Weight $2$
Character 1680.433
Analytic conductor $13.415$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(97,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.cz (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.10
Character \(\chi\) \(=\) 1680.433
Dual form 1680.2.cz.f.97.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{3} +(2.17640 + 0.513127i) q^{5} +(2.56234 + 0.659108i) q^{7} -1.00000i q^{9} +1.57564 q^{11} +(3.14577 - 3.14577i) q^{13} +(1.90178 - 1.17611i) q^{15} +(4.47060 + 4.47060i) q^{17} -6.38872 q^{19} +(2.27791 - 1.34579i) q^{21} +(-1.38299 - 1.38299i) q^{23} +(4.47340 + 2.23353i) q^{25} +(-0.707107 - 0.707107i) q^{27} -2.19669i q^{29} -1.53872i q^{31} +(1.11414 - 1.11414i) q^{33} +(5.23846 + 2.74929i) q^{35} +(-8.06335 + 8.06335i) q^{37} -4.44879i q^{39} -4.79665i q^{41} +(-0.0831671 - 0.0831671i) q^{43} +(0.513127 - 2.17640i) q^{45} +(-3.14581 - 3.14581i) q^{47} +(6.13115 + 3.37772i) q^{49} +6.32238 q^{51} +(6.30175 + 6.30175i) q^{53} +(3.42921 + 0.808502i) q^{55} +(-4.51751 + 4.51751i) q^{57} -7.59628 q^{59} -3.73588i q^{61} +(0.659108 - 2.56234i) q^{63} +(8.46062 - 5.23226i) q^{65} +(1.84357 - 1.84357i) q^{67} -1.95585 q^{69} -9.63918 q^{71} +(-2.46445 + 2.46445i) q^{73} +(4.74252 - 1.58383i) q^{75} +(4.03732 + 1.03852i) q^{77} +15.8822i q^{79} -1.00000 q^{81} +(2.70588 - 2.70588i) q^{83} +(7.43580 + 12.0238i) q^{85} +(-1.55329 - 1.55329i) q^{87} +12.3852 q^{89} +(10.1339 - 5.98712i) q^{91} +(-1.08804 - 1.08804i) q^{93} +(-13.9044 - 3.27822i) q^{95} +(-8.82823 - 8.82823i) q^{97} -1.57564i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{7} + 8 q^{11} + 16 q^{13} - 4 q^{15} + 20 q^{17} - 8 q^{19} - 24 q^{23} - 4 q^{25} + 4 q^{37} + 16 q^{43} - 4 q^{45} + 24 q^{47} + 36 q^{49} + 16 q^{53} - 28 q^{55} + 4 q^{57} - 8 q^{59} + 24 q^{65}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 0 0
\(5\) 2.17640 + 0.513127i 0.973314 + 0.229477i
\(6\) 0 0
\(7\) 2.56234 + 0.659108i 0.968473 + 0.249119i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 1.57564 0.475072 0.237536 0.971379i \(-0.423660\pi\)
0.237536 + 0.971379i \(0.423660\pi\)
\(12\) 0 0
\(13\) 3.14577 3.14577i 0.872479 0.872479i −0.120263 0.992742i \(-0.538374\pi\)
0.992742 + 0.120263i \(0.0383737\pi\)
\(14\) 0 0
\(15\) 1.90178 1.17611i 0.491037 0.303670i
\(16\) 0 0
\(17\) 4.47060 + 4.47060i 1.08428 + 1.08428i 0.996105 + 0.0881736i \(0.0281030\pi\)
0.0881736 + 0.996105i \(0.471897\pi\)
\(18\) 0 0
\(19\) −6.38872 −1.46567 −0.732836 0.680405i \(-0.761804\pi\)
−0.732836 + 0.680405i \(0.761804\pi\)
\(20\) 0 0
\(21\) 2.27791 1.34579i 0.497080 0.293675i
\(22\) 0 0
\(23\) −1.38299 1.38299i −0.288374 0.288374i 0.548063 0.836437i \(-0.315365\pi\)
−0.836437 + 0.548063i \(0.815365\pi\)
\(24\) 0 0
\(25\) 4.47340 + 2.23353i 0.894680 + 0.446707i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 2.19669i 0.407915i −0.978980 0.203958i \(-0.934620\pi\)
0.978980 0.203958i \(-0.0653805\pi\)
\(30\) 0 0
\(31\) 1.53872i 0.276362i −0.990407 0.138181i \(-0.955874\pi\)
0.990407 0.138181i \(-0.0441256\pi\)
\(32\) 0 0
\(33\) 1.11414 1.11414i 0.193948 0.193948i
\(34\) 0 0
\(35\) 5.23846 + 2.74929i 0.885461 + 0.464714i
\(36\) 0 0
\(37\) −8.06335 + 8.06335i −1.32561 + 1.32561i −0.416446 + 0.909161i \(0.636724\pi\)
−0.909161 + 0.416446i \(0.863276\pi\)
\(38\) 0 0
\(39\) 4.44879i 0.712376i
\(40\) 0 0
\(41\) 4.79665i 0.749111i −0.927204 0.374556i \(-0.877795\pi\)
0.927204 0.374556i \(-0.122205\pi\)
\(42\) 0 0
\(43\) −0.0831671 0.0831671i −0.0126829 0.0126829i 0.700737 0.713420i \(-0.252855\pi\)
−0.713420 + 0.700737i \(0.752855\pi\)
\(44\) 0 0
\(45\) 0.513127 2.17640i 0.0764924 0.324438i
\(46\) 0 0
\(47\) −3.14581 3.14581i −0.458863 0.458863i 0.439419 0.898282i \(-0.355184\pi\)
−0.898282 + 0.439419i \(0.855184\pi\)
\(48\) 0 0
\(49\) 6.13115 + 3.37772i 0.875879 + 0.482531i
\(50\) 0 0
\(51\) 6.32238 0.885310
\(52\) 0 0
\(53\) 6.30175 + 6.30175i 0.865612 + 0.865612i 0.991983 0.126371i \(-0.0403330\pi\)
−0.126371 + 0.991983i \(0.540333\pi\)
\(54\) 0 0
\(55\) 3.42921 + 0.808502i 0.462395 + 0.109018i
\(56\) 0 0
\(57\) −4.51751 + 4.51751i −0.598358 + 0.598358i
\(58\) 0 0
\(59\) −7.59628 −0.988952 −0.494476 0.869191i \(-0.664640\pi\)
−0.494476 + 0.869191i \(0.664640\pi\)
\(60\) 0 0
\(61\) 3.73588i 0.478331i −0.970979 0.239165i \(-0.923126\pi\)
0.970979 0.239165i \(-0.0768738\pi\)
\(62\) 0 0
\(63\) 0.659108 2.56234i 0.0830398 0.322824i
\(64\) 0 0
\(65\) 8.46062 5.23226i 1.04941 0.648982i
\(66\) 0 0
\(67\) 1.84357 1.84357i 0.225228 0.225228i −0.585468 0.810696i \(-0.699089\pi\)
0.810696 + 0.585468i \(0.199089\pi\)
\(68\) 0 0
\(69\) −1.95585 −0.235457
\(70\) 0 0
\(71\) −9.63918 −1.14396 −0.571980 0.820268i \(-0.693824\pi\)
−0.571980 + 0.820268i \(0.693824\pi\)
\(72\) 0 0
\(73\) −2.46445 + 2.46445i −0.288442 + 0.288442i −0.836464 0.548022i \(-0.815381\pi\)
0.548022 + 0.836464i \(0.315381\pi\)
\(74\) 0 0
\(75\) 4.74252 1.58383i 0.547619 0.182884i
\(76\) 0 0
\(77\) 4.03732 + 1.03852i 0.460095 + 0.118350i
\(78\) 0 0
\(79\) 15.8822i 1.78689i 0.449176 + 0.893443i \(0.351718\pi\)
−0.449176 + 0.893443i \(0.648282\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 2.70588 2.70588i 0.297009 0.297009i −0.542832 0.839841i \(-0.682648\pi\)
0.839841 + 0.542832i \(0.182648\pi\)
\(84\) 0 0
\(85\) 7.43580 + 12.0238i 0.806526 + 1.30416i
\(86\) 0 0
\(87\) −1.55329 1.55329i −0.166531 0.166531i
\(88\) 0 0
\(89\) 12.3852 1.31283 0.656415 0.754400i \(-0.272072\pi\)
0.656415 + 0.754400i \(0.272072\pi\)
\(90\) 0 0
\(91\) 10.1339 5.98712i 1.06232 0.627621i
\(92\) 0 0
\(93\) −1.08804 1.08804i −0.112824 0.112824i
\(94\) 0 0
\(95\) −13.9044 3.27822i −1.42656 0.336339i
\(96\) 0 0
\(97\) −8.82823 8.82823i −0.896371 0.896371i 0.0987420 0.995113i \(-0.468518\pi\)
−0.995113 + 0.0987420i \(0.968518\pi\)
\(98\) 0 0
\(99\) 1.57564i 0.158357i
\(100\) 0 0
\(101\) 6.46785i 0.643575i −0.946812 0.321788i \(-0.895716\pi\)
0.946812 0.321788i \(-0.104284\pi\)
\(102\) 0 0
\(103\) 10.3620 10.3620i 1.02099 1.02099i 0.0212195 0.999775i \(-0.493245\pi\)
0.999775 0.0212195i \(-0.00675487\pi\)
\(104\) 0 0
\(105\) 5.64819 1.76011i 0.551207 0.171769i
\(106\) 0 0
\(107\) 0.548614 0.548614i 0.0530365 0.0530365i −0.680091 0.733128i \(-0.738060\pi\)
0.733128 + 0.680091i \(0.238060\pi\)
\(108\) 0 0
\(109\) 7.46934i 0.715433i 0.933830 + 0.357717i \(0.116445\pi\)
−0.933830 + 0.357717i \(0.883555\pi\)
\(110\) 0 0
\(111\) 11.4033i 1.08235i
\(112\) 0 0
\(113\) −7.07940 7.07940i −0.665974 0.665974i 0.290808 0.956782i \(-0.406076\pi\)
−0.956782 + 0.290808i \(0.906076\pi\)
\(114\) 0 0
\(115\) −2.30029 3.71959i −0.214503 0.346854i
\(116\) 0 0
\(117\) −3.14577 3.14577i −0.290826 0.290826i
\(118\) 0 0
\(119\) 8.50857 + 14.4018i 0.779979 + 1.32021i
\(120\) 0 0
\(121\) −8.51737 −0.774306
\(122\) 0 0
\(123\) −3.39175 3.39175i −0.305823 0.305823i
\(124\) 0 0
\(125\) 8.58981 + 7.15648i 0.768296 + 0.640095i
\(126\) 0 0
\(127\) −5.55644 + 5.55644i −0.493055 + 0.493055i −0.909267 0.416213i \(-0.863357\pi\)
0.416213 + 0.909267i \(0.363357\pi\)
\(128\) 0 0
\(129\) −0.117616 −0.0103555
\(130\) 0 0
\(131\) 7.86455i 0.687129i −0.939129 0.343564i \(-0.888366\pi\)
0.939129 0.343564i \(-0.111634\pi\)
\(132\) 0 0
\(133\) −16.3701 4.21086i −1.41946 0.365128i
\(134\) 0 0
\(135\) −1.17611 1.90178i −0.101223 0.163679i
\(136\) 0 0
\(137\) 7.47666 7.47666i 0.638774 0.638774i −0.311479 0.950253i \(-0.600824\pi\)
0.950253 + 0.311479i \(0.100824\pi\)
\(138\) 0 0
\(139\) −3.84867 −0.326440 −0.163220 0.986590i \(-0.552188\pi\)
−0.163220 + 0.986590i \(0.552188\pi\)
\(140\) 0 0
\(141\) −4.44885 −0.374660
\(142\) 0 0
\(143\) 4.95659 4.95659i 0.414491 0.414491i
\(144\) 0 0
\(145\) 1.12718 4.78087i 0.0936073 0.397029i
\(146\) 0 0
\(147\) 6.72379 1.94697i 0.554568 0.160584i
\(148\) 0 0
\(149\) 18.6967i 1.53169i −0.643023 0.765846i \(-0.722320\pi\)
0.643023 0.765846i \(-0.277680\pi\)
\(150\) 0 0
\(151\) 18.8106 1.53079 0.765393 0.643563i \(-0.222545\pi\)
0.765393 + 0.643563i \(0.222545\pi\)
\(152\) 0 0
\(153\) 4.47060 4.47060i 0.361426 0.361426i
\(154\) 0 0
\(155\) 0.789558 3.34886i 0.0634188 0.268987i
\(156\) 0 0
\(157\) −13.5188 13.5188i −1.07892 1.07892i −0.996607 0.0823132i \(-0.973769\pi\)
−0.0823132 0.996607i \(-0.526231\pi\)
\(158\) 0 0
\(159\) 8.91202 0.706769
\(160\) 0 0
\(161\) −2.63216 4.45524i −0.207443 0.351122i
\(162\) 0 0
\(163\) −1.44506 1.44506i −0.113186 0.113186i 0.648246 0.761431i \(-0.275503\pi\)
−0.761431 + 0.648246i \(0.775503\pi\)
\(164\) 0 0
\(165\) 2.99652 1.85312i 0.233278 0.144265i
\(166\) 0 0
\(167\) 14.7034 + 14.7034i 1.13778 + 1.13778i 0.988847 + 0.148936i \(0.0475849\pi\)
0.148936 + 0.988847i \(0.452415\pi\)
\(168\) 0 0
\(169\) 6.79173i 0.522441i
\(170\) 0 0
\(171\) 6.38872i 0.488558i
\(172\) 0 0
\(173\) 8.38457 8.38457i 0.637467 0.637467i −0.312463 0.949930i \(-0.601154\pi\)
0.949930 + 0.312463i \(0.101154\pi\)
\(174\) 0 0
\(175\) 9.99023 + 8.67153i 0.755190 + 0.655506i
\(176\) 0 0
\(177\) −5.37138 + 5.37138i −0.403738 + 0.403738i
\(178\) 0 0
\(179\) 5.99327i 0.447958i 0.974594 + 0.223979i \(0.0719048\pi\)
−0.974594 + 0.223979i \(0.928095\pi\)
\(180\) 0 0
\(181\) 12.8079i 0.952002i 0.879445 + 0.476001i \(0.157914\pi\)
−0.879445 + 0.476001i \(0.842086\pi\)
\(182\) 0 0
\(183\) −2.64167 2.64167i −0.195278 0.195278i
\(184\) 0 0
\(185\) −21.6866 + 13.4115i −1.59443 + 0.986035i
\(186\) 0 0
\(187\) 7.04404 + 7.04404i 0.515111 + 0.515111i
\(188\) 0 0
\(189\) −1.34579 2.27791i −0.0978916 0.165693i
\(190\) 0 0
\(191\) 20.9191 1.51365 0.756825 0.653617i \(-0.226749\pi\)
0.756825 + 0.653617i \(0.226749\pi\)
\(192\) 0 0
\(193\) 17.2851 + 17.2851i 1.24421 + 1.24421i 0.958238 + 0.285970i \(0.0923159\pi\)
0.285970 + 0.958238i \(0.407684\pi\)
\(194\) 0 0
\(195\) 2.28279 9.68233i 0.163474 0.693366i
\(196\) 0 0
\(197\) −9.86588 + 9.86588i −0.702915 + 0.702915i −0.965035 0.262120i \(-0.915578\pi\)
0.262120 + 0.965035i \(0.415578\pi\)
\(198\) 0 0
\(199\) −0.738250 −0.0523332 −0.0261666 0.999658i \(-0.508330\pi\)
−0.0261666 + 0.999658i \(0.508330\pi\)
\(200\) 0 0
\(201\) 2.60720i 0.183898i
\(202\) 0 0
\(203\) 1.44786 5.62866i 0.101620 0.395055i
\(204\) 0 0
\(205\) 2.46129 10.4394i 0.171904 0.729121i
\(206\) 0 0
\(207\) −1.38299 + 1.38299i −0.0961247 + 0.0961247i
\(208\) 0 0
\(209\) −10.0663 −0.696301
\(210\) 0 0
\(211\) −15.0771 −1.03795 −0.518974 0.854790i \(-0.673686\pi\)
−0.518974 + 0.854790i \(0.673686\pi\)
\(212\) 0 0
\(213\) −6.81593 + 6.81593i −0.467020 + 0.467020i
\(214\) 0 0
\(215\) −0.138329 0.223680i −0.00943398 0.0152548i
\(216\) 0 0
\(217\) 1.01418 3.94272i 0.0688472 0.267649i
\(218\) 0 0
\(219\) 3.48526i 0.235512i
\(220\) 0 0
\(221\) 28.1269 1.89202
\(222\) 0 0
\(223\) −12.9828 + 12.9828i −0.869395 + 0.869395i −0.992405 0.123010i \(-0.960745\pi\)
0.123010 + 0.992405i \(0.460745\pi\)
\(224\) 0 0
\(225\) 2.23353 4.47340i 0.148902 0.298227i
\(226\) 0 0
\(227\) −13.7182 13.7182i −0.910509 0.910509i 0.0858031 0.996312i \(-0.472654\pi\)
−0.996312 + 0.0858031i \(0.972654\pi\)
\(228\) 0 0
\(229\) −28.3626 −1.87425 −0.937126 0.348991i \(-0.886524\pi\)
−0.937126 + 0.348991i \(0.886524\pi\)
\(230\) 0 0
\(231\) 3.58915 2.12047i 0.236149 0.139517i
\(232\) 0 0
\(233\) −14.4962 14.4962i −0.949678 0.949678i 0.0491151 0.998793i \(-0.484360\pi\)
−0.998793 + 0.0491151i \(0.984360\pi\)
\(234\) 0 0
\(235\) −5.23233 8.46073i −0.341319 0.551917i
\(236\) 0 0
\(237\) 11.2304 + 11.2304i 0.729493 + 0.729493i
\(238\) 0 0
\(239\) 16.5223i 1.06874i 0.845251 + 0.534369i \(0.179451\pi\)
−0.845251 + 0.534369i \(0.820549\pi\)
\(240\) 0 0
\(241\) 3.66220i 0.235903i 0.993019 + 0.117951i \(0.0376327\pi\)
−0.993019 + 0.117951i \(0.962367\pi\)
\(242\) 0 0
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 11.6106 + 10.4973i 0.741775 + 0.670648i
\(246\) 0 0
\(247\) −20.0974 + 20.0974i −1.27877 + 1.27877i
\(248\) 0 0
\(249\) 3.82670i 0.242507i
\(250\) 0 0
\(251\) 18.0200i 1.13741i −0.822540 0.568707i \(-0.807444\pi\)
0.822540 0.568707i \(-0.192556\pi\)
\(252\) 0 0
\(253\) −2.17910 2.17910i −0.136999 0.136999i
\(254\) 0 0
\(255\) 13.7600 + 3.24418i 0.861684 + 0.203159i
\(256\) 0 0
\(257\) −8.98905 8.98905i −0.560722 0.560722i 0.368791 0.929512i \(-0.379772\pi\)
−0.929512 + 0.368791i \(0.879772\pi\)
\(258\) 0 0
\(259\) −25.9756 + 15.3464i −1.61405 + 0.953579i
\(260\) 0 0
\(261\) −2.19669 −0.135972
\(262\) 0 0
\(263\) −17.1828 17.1828i −1.05953 1.05953i −0.998112 0.0614227i \(-0.980436\pi\)
−0.0614227 0.998112i \(-0.519564\pi\)
\(264\) 0 0
\(265\) 10.4815 + 16.9487i 0.643874 + 1.04115i
\(266\) 0 0
\(267\) 8.75767 8.75767i 0.535960 0.535960i
\(268\) 0 0
\(269\) 9.41877 0.574273 0.287136 0.957890i \(-0.407297\pi\)
0.287136 + 0.957890i \(0.407297\pi\)
\(270\) 0 0
\(271\) 24.0250i 1.45942i 0.683758 + 0.729709i \(0.260344\pi\)
−0.683758 + 0.729709i \(0.739656\pi\)
\(272\) 0 0
\(273\) 2.93223 11.3993i 0.177467 0.689917i
\(274\) 0 0
\(275\) 7.04846 + 3.51924i 0.425038 + 0.212218i
\(276\) 0 0
\(277\) −16.7055 + 16.7055i −1.00374 + 1.00374i −0.00374534 + 0.999993i \(0.501192\pi\)
−0.999993 + 0.00374534i \(0.998808\pi\)
\(278\) 0 0
\(279\) −1.53872 −0.0921207
\(280\) 0 0
\(281\) −7.42668 −0.443039 −0.221519 0.975156i \(-0.571102\pi\)
−0.221519 + 0.975156i \(0.571102\pi\)
\(282\) 0 0
\(283\) 7.78227 7.78227i 0.462608 0.462608i −0.436902 0.899509i \(-0.643924\pi\)
0.899509 + 0.436902i \(0.143924\pi\)
\(284\) 0 0
\(285\) −12.1499 + 7.51383i −0.719700 + 0.445081i
\(286\) 0 0
\(287\) 3.16151 12.2906i 0.186618 0.725494i
\(288\) 0 0
\(289\) 22.9724i 1.35132i
\(290\) 0 0
\(291\) −12.4850 −0.731884
\(292\) 0 0
\(293\) −6.34563 + 6.34563i −0.370716 + 0.370716i −0.867738 0.497022i \(-0.834427\pi\)
0.497022 + 0.867738i \(0.334427\pi\)
\(294\) 0 0
\(295\) −16.5325 3.89786i −0.962561 0.226942i
\(296\) 0 0
\(297\) −1.11414 1.11414i −0.0646492 0.0646492i
\(298\) 0 0
\(299\) −8.70116 −0.503201
\(300\) 0 0
\(301\) −0.158286 0.267918i −0.00912346 0.0154426i
\(302\) 0 0
\(303\) −4.57346 4.57346i −0.262739 0.262739i
\(304\) 0 0
\(305\) 1.91698 8.13076i 0.109766 0.465566i
\(306\) 0 0
\(307\) 0.402617 + 0.402617i 0.0229785 + 0.0229785i 0.718503 0.695524i \(-0.244828\pi\)
−0.695524 + 0.718503i \(0.744828\pi\)
\(308\) 0 0
\(309\) 14.6540i 0.833638i
\(310\) 0 0
\(311\) 22.7708i 1.29121i 0.763671 + 0.645606i \(0.223395\pi\)
−0.763671 + 0.645606i \(0.776605\pi\)
\(312\) 0 0
\(313\) −18.6413 + 18.6413i −1.05367 + 1.05367i −0.0551906 + 0.998476i \(0.517577\pi\)
−0.998476 + 0.0551906i \(0.982423\pi\)
\(314\) 0 0
\(315\) 2.74929 5.23846i 0.154905 0.295154i
\(316\) 0 0
\(317\) −2.01133 + 2.01133i −0.112968 + 0.112968i −0.761331 0.648363i \(-0.775454\pi\)
0.648363 + 0.761331i \(0.275454\pi\)
\(318\) 0 0
\(319\) 3.46119i 0.193789i
\(320\) 0 0
\(321\) 0.775857i 0.0433041i
\(322\) 0 0
\(323\) −28.5614 28.5614i −1.58920 1.58920i
\(324\) 0 0
\(325\) 21.0985 7.04610i 1.17033 0.390848i
\(326\) 0 0
\(327\) 5.28162 + 5.28162i 0.292074 + 0.292074i
\(328\) 0 0
\(329\) −5.98720 10.1341i −0.330085 0.558709i
\(330\) 0 0
\(331\) 20.2906 1.11527 0.557637 0.830085i \(-0.311708\pi\)
0.557637 + 0.830085i \(0.311708\pi\)
\(332\) 0 0
\(333\) 8.06335 + 8.06335i 0.441869 + 0.441869i
\(334\) 0 0
\(335\) 4.95832 3.06635i 0.270902 0.167533i
\(336\) 0 0
\(337\) −12.3817 + 12.3817i −0.674473 + 0.674473i −0.958744 0.284271i \(-0.908249\pi\)
0.284271 + 0.958744i \(0.408249\pi\)
\(338\) 0 0
\(339\) −10.0118 −0.543765
\(340\) 0 0
\(341\) 2.42446i 0.131292i
\(342\) 0 0
\(343\) 13.4838 + 12.6959i 0.728057 + 0.685517i
\(344\) 0 0
\(345\) −4.25670 1.00360i −0.229173 0.0540319i
\(346\) 0 0
\(347\) 22.0988 22.0988i 1.18633 1.18633i 0.208252 0.978075i \(-0.433223\pi\)
0.978075 0.208252i \(-0.0667774\pi\)
\(348\) 0 0
\(349\) 2.92378 0.156506 0.0782530 0.996934i \(-0.475066\pi\)
0.0782530 + 0.996934i \(0.475066\pi\)
\(350\) 0 0
\(351\) −4.44879 −0.237459
\(352\) 0 0
\(353\) 12.4408 12.4408i 0.662159 0.662159i −0.293730 0.955888i \(-0.594897\pi\)
0.955888 + 0.293730i \(0.0948966\pi\)
\(354\) 0 0
\(355\) −20.9787 4.94612i −1.11343 0.262513i
\(356\) 0 0
\(357\) 16.2001 + 4.16713i 0.857398 + 0.220548i
\(358\) 0 0
\(359\) 3.05847i 0.161420i −0.996738 0.0807098i \(-0.974281\pi\)
0.996738 0.0807098i \(-0.0257187\pi\)
\(360\) 0 0
\(361\) 21.8157 1.14820
\(362\) 0 0
\(363\) −6.02269 + 6.02269i −0.316109 + 0.316109i
\(364\) 0 0
\(365\) −6.62819 + 4.09904i −0.346935 + 0.214554i
\(366\) 0 0
\(367\) 7.33035 + 7.33035i 0.382641 + 0.382641i 0.872053 0.489412i \(-0.162788\pi\)
−0.489412 + 0.872053i \(0.662788\pi\)
\(368\) 0 0
\(369\) −4.79665 −0.249704
\(370\) 0 0
\(371\) 11.9937 + 20.3007i 0.622681 + 1.05396i
\(372\) 0 0
\(373\) −14.1652 14.1652i −0.733448 0.733448i 0.237853 0.971301i \(-0.423556\pi\)
−0.971301 + 0.237853i \(0.923556\pi\)
\(374\) 0 0
\(375\) 11.1343 1.01352i 0.574973 0.0523378i
\(376\) 0 0
\(377\) −6.91028 6.91028i −0.355898 0.355898i
\(378\) 0 0
\(379\) 14.5199i 0.745837i 0.927864 + 0.372918i \(0.121643\pi\)
−0.927864 + 0.372918i \(0.878357\pi\)
\(380\) 0 0
\(381\) 7.85800i 0.402577i
\(382\) 0 0
\(383\) −21.3732 + 21.3732i −1.09212 + 1.09212i −0.0968177 + 0.995302i \(0.530866\pi\)
−0.995302 + 0.0968177i \(0.969134\pi\)
\(384\) 0 0
\(385\) 8.25391 + 4.33188i 0.420658 + 0.220773i
\(386\) 0 0
\(387\) −0.0831671 + 0.0831671i −0.00422762 + 0.00422762i
\(388\) 0 0
\(389\) 19.3181i 0.979467i 0.871872 + 0.489733i \(0.162906\pi\)
−0.871872 + 0.489733i \(0.837094\pi\)
\(390\) 0 0
\(391\) 12.3656i 0.625356i
\(392\) 0 0
\(393\) −5.56107 5.56107i −0.280519 0.280519i
\(394\) 0 0
\(395\) −8.14958 + 34.5660i −0.410050 + 1.73920i
\(396\) 0 0
\(397\) −10.1855 10.1855i −0.511194 0.511194i 0.403698 0.914892i \(-0.367725\pi\)
−0.914892 + 0.403698i \(0.867725\pi\)
\(398\) 0 0
\(399\) −14.5529 + 8.59785i −0.728557 + 0.430431i
\(400\) 0 0
\(401\) −15.8944 −0.793729 −0.396865 0.917877i \(-0.629902\pi\)
−0.396865 + 0.917877i \(0.629902\pi\)
\(402\) 0 0
\(403\) −4.84045 4.84045i −0.241120 0.241120i
\(404\) 0 0
\(405\) −2.17640 0.513127i −0.108146 0.0254975i
\(406\) 0 0
\(407\) −12.7049 + 12.7049i −0.629759 + 0.629759i
\(408\) 0 0
\(409\) 7.40100 0.365956 0.182978 0.983117i \(-0.441426\pi\)
0.182978 + 0.983117i \(0.441426\pi\)
\(410\) 0 0
\(411\) 10.5736i 0.521557i
\(412\) 0 0
\(413\) −19.4642 5.00677i −0.957773 0.246367i
\(414\) 0 0
\(415\) 7.27754 4.50061i 0.357240 0.220926i
\(416\) 0 0
\(417\) −2.72142 + 2.72142i −0.133269 + 0.133269i
\(418\) 0 0
\(419\) 10.7730 0.526297 0.263148 0.964755i \(-0.415239\pi\)
0.263148 + 0.964755i \(0.415239\pi\)
\(420\) 0 0
\(421\) −35.0048 −1.70603 −0.853015 0.521887i \(-0.825228\pi\)
−0.853015 + 0.521887i \(0.825228\pi\)
\(422\) 0 0
\(423\) −3.14581 + 3.14581i −0.152954 + 0.152954i
\(424\) 0 0
\(425\) 10.0135 + 29.9840i 0.485728 + 1.45444i
\(426\) 0 0
\(427\) 2.46235 9.57259i 0.119161 0.463250i
\(428\) 0 0
\(429\) 7.00968i 0.338430i
\(430\) 0 0
\(431\) 12.4338 0.598916 0.299458 0.954109i \(-0.403194\pi\)
0.299458 + 0.954109i \(0.403194\pi\)
\(432\) 0 0
\(433\) 13.4030 13.4030i 0.644109 0.644109i −0.307454 0.951563i \(-0.599477\pi\)
0.951563 + 0.307454i \(0.0994769\pi\)
\(434\) 0 0
\(435\) −2.58355 4.17762i −0.123872 0.200302i
\(436\) 0 0
\(437\) 8.83556 + 8.83556i 0.422662 + 0.422662i
\(438\) 0 0
\(439\) −26.8299 −1.28052 −0.640261 0.768158i \(-0.721174\pi\)
−0.640261 + 0.768158i \(0.721174\pi\)
\(440\) 0 0
\(441\) 3.37772 6.13115i 0.160844 0.291960i
\(442\) 0 0
\(443\) −14.6362 14.6362i −0.695386 0.695386i 0.268025 0.963412i \(-0.413629\pi\)
−0.963412 + 0.268025i \(0.913629\pi\)
\(444\) 0 0
\(445\) 26.9551 + 6.35518i 1.27780 + 0.301265i
\(446\) 0 0
\(447\) −13.2206 13.2206i −0.625311 0.625311i
\(448\) 0 0
\(449\) 36.6213i 1.72827i 0.503263 + 0.864134i \(0.332133\pi\)
−0.503263 + 0.864134i \(0.667867\pi\)
\(450\) 0 0
\(451\) 7.55779i 0.355882i
\(452\) 0 0
\(453\) 13.3011 13.3011i 0.624941 0.624941i
\(454\) 0 0
\(455\) 25.1276 7.83036i 1.17800 0.367093i
\(456\) 0 0
\(457\) 19.6901 19.6901i 0.921062 0.921062i −0.0760426 0.997105i \(-0.524229\pi\)
0.997105 + 0.0760426i \(0.0242285\pi\)
\(458\) 0 0
\(459\) 6.32238i 0.295103i
\(460\) 0 0
\(461\) 1.66338i 0.0774715i 0.999249 + 0.0387358i \(0.0123331\pi\)
−0.999249 + 0.0387358i \(0.987667\pi\)
\(462\) 0 0
\(463\) −20.2415 20.2415i −0.940701 0.940701i 0.0576369 0.998338i \(-0.481643\pi\)
−0.998338 + 0.0576369i \(0.981643\pi\)
\(464\) 0 0
\(465\) −1.80970 2.92630i −0.0839229 0.135704i
\(466\) 0 0
\(467\) −30.2737 30.2737i −1.40090 1.40090i −0.797256 0.603642i \(-0.793716\pi\)
−0.603642 0.797256i \(-0.706284\pi\)
\(468\) 0 0
\(469\) 5.93895 3.50873i 0.274235 0.162018i
\(470\) 0 0
\(471\) −19.1185 −0.880934
\(472\) 0 0
\(473\) −0.131041 0.131041i −0.00602528 0.00602528i
\(474\) 0 0
\(475\) −28.5793 14.2694i −1.31131 0.654726i
\(476\) 0 0
\(477\) 6.30175 6.30175i 0.288537 0.288537i
\(478\) 0 0
\(479\) 12.7446 0.582315 0.291158 0.956675i \(-0.405960\pi\)
0.291158 + 0.956675i \(0.405960\pi\)
\(480\) 0 0
\(481\) 50.7309i 2.31313i
\(482\) 0 0
\(483\) −5.01155 1.28912i −0.228033 0.0586568i
\(484\) 0 0
\(485\) −14.6837 23.7437i −0.666754 1.07815i
\(486\) 0 0
\(487\) −30.3740 + 30.3740i −1.37638 + 1.37638i −0.525723 + 0.850656i \(0.676205\pi\)
−0.850656 + 0.525723i \(0.823795\pi\)
\(488\) 0 0
\(489\) −2.04362 −0.0924157
\(490\) 0 0
\(491\) −8.63580 −0.389728 −0.194864 0.980830i \(-0.562427\pi\)
−0.194864 + 0.980830i \(0.562427\pi\)
\(492\) 0 0
\(493\) 9.82051 9.82051i 0.442294 0.442294i
\(494\) 0 0
\(495\) 0.808502 3.42921i 0.0363395 0.154132i
\(496\) 0 0
\(497\) −24.6988 6.35326i −1.10789 0.284983i
\(498\) 0 0
\(499\) 19.7882i 0.885844i −0.896560 0.442922i \(-0.853942\pi\)
0.896560 0.442922i \(-0.146058\pi\)
\(500\) 0 0
\(501\) 20.7937 0.928996
\(502\) 0 0
\(503\) −13.9595 + 13.9595i −0.622425 + 0.622425i −0.946151 0.323726i \(-0.895065\pi\)
0.323726 + 0.946151i \(0.395065\pi\)
\(504\) 0 0
\(505\) 3.31883 14.0766i 0.147686 0.626401i
\(506\) 0 0
\(507\) −4.80248 4.80248i −0.213286 0.213286i
\(508\) 0 0
\(509\) 34.1604 1.51413 0.757067 0.653337i \(-0.226632\pi\)
0.757067 + 0.653337i \(0.226632\pi\)
\(510\) 0 0
\(511\) −7.93909 + 4.69041i −0.351205 + 0.207492i
\(512\) 0 0
\(513\) 4.51751 + 4.51751i 0.199453 + 0.199453i
\(514\) 0 0
\(515\) 27.8687 17.2347i 1.22804 0.759453i
\(516\) 0 0
\(517\) −4.95665 4.95665i −0.217993 0.217993i
\(518\) 0 0
\(519\) 11.8576i 0.520490i
\(520\) 0 0
\(521\) 1.42192i 0.0622956i −0.999515 0.0311478i \(-0.990084\pi\)
0.999515 0.0311478i \(-0.00991626\pi\)
\(522\) 0 0
\(523\) 12.7406 12.7406i 0.557108 0.557108i −0.371375 0.928483i \(-0.621114\pi\)
0.928483 + 0.371375i \(0.121114\pi\)
\(524\) 0 0
\(525\) 13.1959 0.932461i 0.575914 0.0406959i
\(526\) 0 0
\(527\) 6.87899 6.87899i 0.299653 0.299653i
\(528\) 0 0
\(529\) 19.1747i 0.833681i
\(530\) 0 0
\(531\) 7.59628i 0.329651i
\(532\) 0 0
\(533\) −15.0892 15.0892i −0.653584 0.653584i
\(534\) 0 0
\(535\) 1.47551 0.912492i 0.0637918 0.0394505i
\(536\) 0 0
\(537\) 4.23788 + 4.23788i 0.182878 + 0.182878i
\(538\) 0 0
\(539\) 9.66047 + 5.32206i 0.416106 + 0.229237i
\(540\) 0 0
\(541\) −25.3194 −1.08857 −0.544283 0.838902i \(-0.683198\pi\)
−0.544283 + 0.838902i \(0.683198\pi\)
\(542\) 0 0
\(543\) 9.05654 + 9.05654i 0.388653 + 0.388653i
\(544\) 0 0
\(545\) −3.83272 + 16.2562i −0.164176 + 0.696341i
\(546\) 0 0
\(547\) −5.29763 + 5.29763i −0.226510 + 0.226510i −0.811233 0.584723i \(-0.801203\pi\)
0.584723 + 0.811233i \(0.301203\pi\)
\(548\) 0 0
\(549\) −3.73588 −0.159444
\(550\) 0 0
\(551\) 14.0340i 0.597870i
\(552\) 0 0
\(553\) −10.4681 + 40.6956i −0.445148 + 1.73055i
\(554\) 0 0
\(555\) −5.85134 + 24.8181i −0.248375 + 1.05347i
\(556\) 0 0
\(557\) −12.7776 + 12.7776i −0.541405 + 0.541405i −0.923941 0.382536i \(-0.875051\pi\)
0.382536 + 0.923941i \(0.375051\pi\)
\(558\) 0 0
\(559\) −0.523249 −0.0221311
\(560\) 0 0
\(561\) 9.96177 0.420586
\(562\) 0 0
\(563\) 11.5060 11.5060i 0.484920 0.484920i −0.421779 0.906699i \(-0.638594\pi\)
0.906699 + 0.421779i \(0.138594\pi\)
\(564\) 0 0
\(565\) −11.7749 19.0402i −0.495376 0.801028i
\(566\) 0 0
\(567\) −2.56234 0.659108i −0.107608 0.0276799i
\(568\) 0 0
\(569\) 38.1182i 1.59800i 0.601331 + 0.799000i \(0.294637\pi\)
−0.601331 + 0.799000i \(0.705363\pi\)
\(570\) 0 0
\(571\) −7.46420 −0.312367 −0.156184 0.987728i \(-0.549919\pi\)
−0.156184 + 0.987728i \(0.549919\pi\)
\(572\) 0 0
\(573\) 14.7920 14.7920i 0.617945 0.617945i
\(574\) 0 0
\(575\) −3.09772 9.27565i −0.129184 0.386821i
\(576\) 0 0
\(577\) 2.77309 + 2.77309i 0.115445 + 0.115445i 0.762469 0.647024i \(-0.223987\pi\)
−0.647024 + 0.762469i \(0.723987\pi\)
\(578\) 0 0
\(579\) 24.4448 1.01589
\(580\) 0 0
\(581\) 8.71686 5.14992i 0.361636 0.213655i
\(582\) 0 0
\(583\) 9.92927 + 9.92927i 0.411228 + 0.411228i
\(584\) 0 0
\(585\) −5.23226 8.46062i −0.216327 0.349804i
\(586\) 0 0
\(587\) 14.9272 + 14.9272i 0.616113 + 0.616113i 0.944532 0.328419i \(-0.106516\pi\)
−0.328419 + 0.944532i \(0.606516\pi\)
\(588\) 0 0
\(589\) 9.83044i 0.405056i
\(590\) 0 0
\(591\) 13.9525i 0.573927i
\(592\) 0 0
\(593\) 29.6826 29.6826i 1.21892 1.21892i 0.250909 0.968011i \(-0.419271\pi\)
0.968011 0.250909i \(-0.0807294\pi\)
\(594\) 0 0
\(595\) 11.1281 + 35.7100i 0.456207 + 1.46397i
\(596\) 0 0
\(597\) −0.522022 + 0.522022i −0.0213649 + 0.0213649i
\(598\) 0 0
\(599\) 25.5447i 1.04373i −0.853029 0.521863i \(-0.825237\pi\)
0.853029 0.521863i \(-0.174763\pi\)
\(600\) 0 0
\(601\) 4.95154i 0.201978i 0.994888 + 0.100989i \(0.0322006\pi\)
−0.994888 + 0.100989i \(0.967799\pi\)
\(602\) 0 0
\(603\) −1.84357 1.84357i −0.0750759 0.0750759i
\(604\) 0 0
\(605\) −18.5372 4.37049i −0.753643 0.177686i
\(606\) 0 0
\(607\) 10.9597 + 10.9597i 0.444841 + 0.444841i 0.893635 0.448794i \(-0.148146\pi\)
−0.448794 + 0.893635i \(0.648146\pi\)
\(608\) 0 0
\(609\) −2.95628 5.00385i −0.119794 0.202766i
\(610\) 0 0
\(611\) −19.7920 −0.800698
\(612\) 0 0
\(613\) −11.2154 11.2154i −0.452985 0.452985i 0.443359 0.896344i \(-0.353787\pi\)
−0.896344 + 0.443359i \(0.853787\pi\)
\(614\) 0 0
\(615\) −5.64139 9.12218i −0.227483 0.367842i
\(616\) 0 0
\(617\) −19.2309 + 19.2309i −0.774209 + 0.774209i −0.978839 0.204630i \(-0.934401\pi\)
0.204630 + 0.978839i \(0.434401\pi\)
\(618\) 0 0
\(619\) −9.96280 −0.400439 −0.200219 0.979751i \(-0.564165\pi\)
−0.200219 + 0.979751i \(0.564165\pi\)
\(620\) 0 0
\(621\) 1.95585i 0.0784855i
\(622\) 0 0
\(623\) 31.7351 + 8.16319i 1.27144 + 0.327051i
\(624\) 0 0
\(625\) 15.0226 + 19.9830i 0.600906 + 0.799320i
\(626\) 0 0
\(627\) −7.11795 + 7.11795i −0.284264 + 0.284264i
\(628\) 0 0
\(629\) −72.0959 −2.87465
\(630\) 0 0
\(631\) 4.16519 0.165814 0.0829068 0.996557i \(-0.473580\pi\)
0.0829068 + 0.996557i \(0.473580\pi\)
\(632\) 0 0
\(633\) −10.6611 + 10.6611i −0.423741 + 0.423741i
\(634\) 0 0
\(635\) −14.9442 + 9.24186i −0.593042 + 0.366752i
\(636\) 0 0
\(637\) 29.9127 8.66168i 1.18518 0.343188i
\(638\) 0 0
\(639\) 9.63918i 0.381320i
\(640\) 0 0
\(641\) 2.48428 0.0981232 0.0490616 0.998796i \(-0.484377\pi\)
0.0490616 + 0.998796i \(0.484377\pi\)
\(642\) 0 0
\(643\) 21.8995 21.8995i 0.863634 0.863634i −0.128124 0.991758i \(-0.540896\pi\)
0.991758 + 0.128124i \(0.0408957\pi\)
\(644\) 0 0
\(645\) −0.255979 0.0603520i −0.0100792 0.00237636i
\(646\) 0 0
\(647\) −11.7234 11.7234i −0.460893 0.460893i 0.438055 0.898948i \(-0.355668\pi\)
−0.898948 + 0.438055i \(0.855668\pi\)
\(648\) 0 0
\(649\) −11.9690 −0.469824
\(650\) 0 0
\(651\) −2.07079 3.50506i −0.0811605 0.137374i
\(652\) 0 0
\(653\) 12.6601 + 12.6601i 0.495427 + 0.495427i 0.910011 0.414584i \(-0.136073\pi\)
−0.414584 + 0.910011i \(0.636073\pi\)
\(654\) 0 0
\(655\) 4.03551 17.1164i 0.157680 0.668792i
\(656\) 0 0
\(657\) 2.46445 + 2.46445i 0.0961473 + 0.0961473i
\(658\) 0 0
\(659\) 9.80154i 0.381814i 0.981608 + 0.190907i \(0.0611429\pi\)
−0.981608 + 0.190907i \(0.938857\pi\)
\(660\) 0 0
\(661\) 1.78672i 0.0694952i 0.999396 + 0.0347476i \(0.0110627\pi\)
−0.999396 + 0.0347476i \(0.988937\pi\)
\(662\) 0 0
\(663\) 19.8887 19.8887i 0.772415 0.772415i
\(664\) 0 0
\(665\) −33.4670 17.5644i −1.29780 0.681119i
\(666\) 0 0
\(667\) −3.03801 + 3.03801i −0.117632 + 0.117632i
\(668\) 0 0
\(669\) 18.3605i 0.709858i
\(670\) 0 0
\(671\) 5.88639i 0.227242i
\(672\) 0 0
\(673\) −21.8778 21.8778i −0.843327 0.843327i 0.145963 0.989290i \(-0.453372\pi\)
−0.989290 + 0.145963i \(0.953372\pi\)
\(674\) 0 0
\(675\) −1.58383 4.74252i −0.0609615 0.182540i
\(676\) 0 0
\(677\) 5.68498 + 5.68498i 0.218492 + 0.218492i 0.807863 0.589371i \(-0.200624\pi\)
−0.589371 + 0.807863i \(0.700624\pi\)
\(678\) 0 0
\(679\) −16.8022 28.4397i −0.644807 1.09141i
\(680\) 0 0
\(681\) −19.4005 −0.743427
\(682\) 0 0
\(683\) 24.8622 + 24.8622i 0.951326 + 0.951326i 0.998869 0.0475435i \(-0.0151393\pi\)
−0.0475435 + 0.998869i \(0.515139\pi\)
\(684\) 0 0
\(685\) 20.1086 12.4357i 0.768312 0.475144i
\(686\) 0 0
\(687\) −20.0554 + 20.0554i −0.765160 + 0.765160i
\(688\) 0 0
\(689\) 39.6477 1.51046
\(690\) 0 0
\(691\) 9.17144i 0.348898i 0.984666 + 0.174449i \(0.0558144\pi\)
−0.984666 + 0.174449i \(0.944186\pi\)
\(692\) 0 0
\(693\) 1.03852 4.03732i 0.0394499 0.153365i
\(694\) 0 0
\(695\) −8.37623 1.97486i −0.317729 0.0749106i
\(696\) 0 0
\(697\) 21.4439 21.4439i 0.812246 0.812246i
\(698\) 0 0
\(699\) −20.5007 −0.775409
\(700\) 0 0
\(701\) 15.0578 0.568725 0.284362 0.958717i \(-0.408218\pi\)
0.284362 + 0.958717i \(0.408218\pi\)
\(702\) 0 0
\(703\) 51.5145 51.5145i 1.94291 1.94291i
\(704\) 0 0
\(705\) −9.68245 2.28282i −0.364662 0.0859761i
\(706\) 0 0
\(707\) 4.26302 16.5728i 0.160327 0.623285i
\(708\) 0 0
\(709\) 1.68713i 0.0633616i 0.999498 + 0.0316808i \(0.0100860\pi\)
−0.999498 + 0.0316808i \(0.989914\pi\)
\(710\) 0 0
\(711\) 15.8822 0.595629
\(712\) 0 0
\(713\) −2.12804 + 2.12804i −0.0796957 + 0.0796957i
\(714\) 0 0
\(715\) 13.3309 8.24415i 0.498546 0.308314i
\(716\) 0 0
\(717\) 11.6830 + 11.6830i 0.436310 + 0.436310i
\(718\) 0 0
\(719\) 39.5132 1.47359 0.736797 0.676114i \(-0.236337\pi\)
0.736797 + 0.676114i \(0.236337\pi\)
\(720\) 0 0
\(721\) 33.3805 19.7212i 1.24315 0.734456i
\(722\) 0 0
\(723\) 2.58956 + 2.58956i 0.0963069 + 0.0963069i
\(724\) 0 0
\(725\) 4.90638 9.82668i 0.182219 0.364954i
\(726\) 0 0
\(727\) 21.9077 + 21.9077i 0.812510 + 0.812510i 0.985010 0.172499i \(-0.0551842\pi\)
−0.172499 + 0.985010i \(0.555184\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 0.743613i 0.0275035i
\(732\) 0 0
\(733\) 25.9013 25.9013i 0.956686 0.956686i −0.0424140 0.999100i \(-0.513505\pi\)
0.999100 + 0.0424140i \(0.0135048\pi\)
\(734\) 0 0
\(735\) 15.6327 0.787231i 0.576620 0.0290375i
\(736\) 0 0
\(737\) 2.90479 2.90479i 0.106999 0.106999i
\(738\) 0 0
\(739\) 12.1682i 0.447614i 0.974633 + 0.223807i \(0.0718485\pi\)
−0.974633 + 0.223807i \(0.928151\pi\)
\(740\) 0 0
\(741\) 28.4221i 1.04411i
\(742\) 0 0
\(743\) 23.6178 + 23.6178i 0.866454 + 0.866454i 0.992078 0.125624i \(-0.0400932\pi\)
−0.125624 + 0.992078i \(0.540093\pi\)
\(744\) 0 0
\(745\) 9.59378 40.6914i 0.351489 1.49082i
\(746\) 0 0
\(747\) −2.70588 2.70588i −0.0990031 0.0990031i
\(748\) 0 0
\(749\) 1.76733 1.04414i 0.0645768 0.0381520i
\(750\) 0 0
\(751\) −22.7684 −0.830831 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(752\) 0 0
\(753\) −12.7421 12.7421i −0.464347 0.464347i
\(754\) 0 0
\(755\) 40.9393 + 9.65223i 1.48994 + 0.351281i
\(756\) 0 0
\(757\) 4.52538 4.52538i 0.164478 0.164478i −0.620069 0.784547i \(-0.712896\pi\)
0.784547 + 0.620069i \(0.212896\pi\)
\(758\) 0 0
\(759\) −3.08171 −0.111859
\(760\) 0 0
\(761\) 8.58211i 0.311101i 0.987828 + 0.155551i \(0.0497152\pi\)
−0.987828 + 0.155551i \(0.950285\pi\)
\(762\) 0 0
\(763\) −4.92310 + 19.1390i −0.178228 + 0.692878i
\(764\) 0 0
\(765\) 12.0238 7.43580i 0.434720 0.268842i
\(766\) 0 0
\(767\) −23.8962 + 23.8962i −0.862840 + 0.862840i
\(768\) 0 0
\(769\) −3.31019 −0.119368 −0.0596842 0.998217i \(-0.519009\pi\)
−0.0596842 + 0.998217i \(0.519009\pi\)
\(770\) 0 0
\(771\) −12.7124 −0.457827
\(772\) 0 0
\(773\) −29.8638 + 29.8638i −1.07413 + 1.07413i −0.0771032 + 0.997023i \(0.524567\pi\)
−0.997023 + 0.0771032i \(0.975433\pi\)
\(774\) 0 0
\(775\) 3.43678 6.88331i 0.123453 0.247256i
\(776\) 0 0
\(777\) −7.51601 + 29.2191i −0.269635 + 1.04823i
\(778\) 0 0
\(779\) 30.6445i 1.09795i
\(780\) 0 0
\(781\) −15.1878 −0.543464
\(782\) 0 0
\(783\) −1.55329 + 1.55329i −0.0555102 + 0.0555102i
\(784\) 0 0
\(785\) −22.4854 36.3592i −0.802540 1.29772i
\(786\) 0 0
\(787\) 14.0546 + 14.0546i 0.500993 + 0.500993i 0.911746 0.410754i \(-0.134734\pi\)
−0.410754 + 0.911746i \(0.634734\pi\)
\(788\) 0 0
\(789\) −24.3001 −0.865106
\(790\) 0 0
\(791\) −13.4737 22.8059i −0.479070 0.810885i
\(792\) 0 0
\(793\) −11.7522 11.7522i −0.417334 0.417334i
\(794\) 0 0
\(795\) 19.3961 + 4.57300i 0.687908 + 0.162187i
\(796\) 0 0
\(797\) −17.5571 17.5571i −0.621903 0.621903i 0.324115 0.946018i \(-0.394934\pi\)
−0.946018 + 0.324115i \(0.894934\pi\)
\(798\) 0 0
\(799\) 28.1273i 0.995072i
\(800\) 0 0
\(801\) 12.3852i 0.437610i
\(802\) 0 0
\(803\) −3.88308 + 3.88308i −0.137031 + 0.137031i
\(804\) 0 0
\(805\) −3.44251 11.0470i −0.121333 0.389356i
\(806\) 0 0
\(807\) 6.66008 6.66008i 0.234446 0.234446i
\(808\) 0 0
\(809\) 9.58716i 0.337067i −0.985696 0.168533i \(-0.946097\pi\)
0.985696 0.168533i \(-0.0539031\pi\)
\(810\) 0 0
\(811\) 37.8740i 1.32994i −0.746872 0.664968i \(-0.768445\pi\)
0.746872 0.664968i \(-0.231555\pi\)
\(812\) 0 0
\(813\) 16.9883 + 16.9883i 0.595805 + 0.595805i
\(814\) 0 0
\(815\) −2.40352 3.88652i −0.0841917 0.136139i
\(816\) 0 0
\(817\) 0.531332 + 0.531332i 0.0185889 + 0.0185889i
\(818\) 0 0
\(819\) −5.98712 10.1339i −0.209207 0.354108i
\(820\) 0 0
\(821\) 19.5838 0.683480 0.341740 0.939795i \(-0.388984\pi\)
0.341740 + 0.939795i \(0.388984\pi\)
\(822\) 0 0
\(823\) 5.74170 + 5.74170i 0.200143 + 0.200143i 0.800061 0.599918i \(-0.204800\pi\)
−0.599918 + 0.800061i \(0.704800\pi\)
\(824\) 0 0
\(825\) 7.47249 2.49553i 0.260159 0.0868833i
\(826\) 0 0
\(827\) −17.2222 + 17.2222i −0.598876 + 0.598876i −0.940013 0.341138i \(-0.889188\pi\)
0.341138 + 0.940013i \(0.389188\pi\)
\(828\) 0 0
\(829\) 16.8042 0.583632 0.291816 0.956474i \(-0.405740\pi\)
0.291816 + 0.956474i \(0.405740\pi\)
\(830\) 0 0
\(831\) 23.6252i 0.819549i
\(832\) 0 0
\(833\) 12.3095 + 42.5103i 0.426499 + 1.47289i
\(834\) 0 0
\(835\) 24.4557 + 39.5451i 0.846325 + 1.36852i
\(836\) 0 0
\(837\) −1.08804 + 1.08804i −0.0376081 + 0.0376081i
\(838\) 0 0
\(839\) 48.1783 1.66330 0.831650 0.555300i \(-0.187397\pi\)
0.831650 + 0.555300i \(0.187397\pi\)
\(840\) 0 0
\(841\) 24.1746 0.833605
\(842\) 0 0
\(843\) −5.25146 + 5.25146i −0.180870 + 0.180870i
\(844\) 0 0
\(845\) 3.48502 14.7815i 0.119888 0.508499i
\(846\) 0 0
\(847\) −21.8244 5.61387i −0.749894 0.192895i
\(848\) 0 0
\(849\) 11.0058i 0.377718i
\(850\) 0 0
\(851\) 22.3031 0.764541
\(852\) 0 0
\(853\) 26.8575 26.8575i 0.919584 0.919584i −0.0774147 0.996999i \(-0.524667\pi\)
0.996999 + 0.0774147i \(0.0246665\pi\)
\(854\) 0 0
\(855\) −3.27822 + 13.9044i −0.112113 + 0.475520i
\(856\) 0 0
\(857\) −4.95401 4.95401i −0.169226 0.169226i 0.617413 0.786639i \(-0.288181\pi\)
−0.786639 + 0.617413i \(0.788181\pi\)
\(858\) 0 0
\(859\) 44.9211 1.53269 0.766343 0.642431i \(-0.222074\pi\)
0.766343 + 0.642431i \(0.222074\pi\)
\(860\) 0 0
\(861\) −6.45527 10.9263i −0.219995 0.372368i
\(862\) 0 0
\(863\) −9.77825 9.77825i −0.332856 0.332856i 0.520814 0.853670i \(-0.325628\pi\)
−0.853670 + 0.520814i \(0.825628\pi\)
\(864\) 0 0
\(865\) 22.5505 13.9458i 0.766740 0.474172i
\(866\) 0 0
\(867\) 16.2440 + 16.2440i 0.551674 + 0.551674i
\(868\) 0 0
\(869\) 25.0246i 0.848901i
\(870\) 0 0
\(871\) 11.5989i 0.393013i
\(872\) 0 0
\(873\) −8.82823 + 8.82823i −0.298790 + 0.298790i
\(874\) 0 0
\(875\) 17.2931 + 23.9989i 0.584613 + 0.811312i
\(876\) 0 0
\(877\) 11.5983 11.5983i 0.391646 0.391646i −0.483628 0.875274i \(-0.660681\pi\)
0.875274 + 0.483628i \(0.160681\pi\)
\(878\) 0 0
\(879\) 8.97408i 0.302688i
\(880\) 0 0
\(881\) 49.8810i 1.68053i −0.542173 0.840267i \(-0.682398\pi\)
0.542173 0.840267i \(-0.317602\pi\)
\(882\) 0 0
\(883\) 27.4128 + 27.4128i 0.922514 + 0.922514i 0.997207 0.0746926i \(-0.0237975\pi\)
−0.0746926 + 0.997207i \(0.523798\pi\)
\(884\) 0 0
\(885\) −14.4465 + 8.93406i −0.485613 + 0.300315i
\(886\) 0 0
\(887\) −31.8818 31.8818i −1.07049 1.07049i −0.997320 0.0731658i \(-0.976690\pi\)
−0.0731658 0.997320i \(-0.523310\pi\)
\(888\) 0 0
\(889\) −17.8998 + 10.5752i −0.600340 + 0.354680i
\(890\) 0 0
\(891\) −1.57564 −0.0527858
\(892\) 0 0
\(893\) 20.0977 + 20.0977i 0.672544 + 0.672544i
\(894\) 0 0
\(895\) −3.07531 + 13.0437i −0.102796 + 0.436004i
\(896\) 0 0
\(897\) −6.15265 + 6.15265i −0.205431 + 0.205431i
\(898\) 0 0
\(899\) −3.38009 −0.112732
\(900\) 0 0
\(901\) 56.3452i 1.87713i
\(902\) 0 0
\(903\) −0.301372 0.0775217i −0.0100290 0.00257976i
\(904\) 0 0
\(905\) −6.57207 + 27.8750i −0.218463 + 0.926597i
\(906\) 0 0
\(907\) 18.9575 18.9575i 0.629474 0.629474i −0.318461 0.947936i \(-0.603166\pi\)
0.947936 + 0.318461i \(0.103166\pi\)
\(908\) 0 0
\(909\) −6.46785 −0.214525
\(910\) 0 0
\(911\) 6.42192 0.212768 0.106384 0.994325i \(-0.466073\pi\)
0.106384 + 0.994325i \(0.466073\pi\)
\(912\) 0 0
\(913\) 4.26349 4.26349i 0.141101 0.141101i
\(914\) 0 0
\(915\) −4.39380 7.10482i −0.145255 0.234878i
\(916\) 0 0
\(917\) 5.18359 20.1516i 0.171177 0.665465i
\(918\) 0 0
\(919\) 21.6980i 0.715750i −0.933769 0.357875i \(-0.883501\pi\)
0.933769 0.357875i \(-0.116499\pi\)
\(920\) 0 0
\(921\) 0.569386 0.0187619
\(922\) 0 0
\(923\) −30.3226 + 30.3226i −0.998082 + 0.998082i
\(924\) 0 0
\(925\) −54.0804 + 18.0608i −1.77815 + 0.593836i
\(926\) 0 0
\(927\) −10.3620 10.3620i −0.340331 0.340331i
\(928\) 0 0
\(929\) 36.5821 1.20022 0.600110 0.799917i \(-0.295123\pi\)
0.600110 + 0.799917i \(0.295123\pi\)
\(930\) 0 0
\(931\) −39.1702 21.5793i −1.28375 0.707232i
\(932\) 0 0
\(933\) 16.1014 + 16.1014i 0.527135 + 0.527135i
\(934\) 0 0
\(935\) 11.7161 + 18.9451i 0.383158 + 0.619571i
\(936\) 0 0
\(937\) −11.8683 11.8683i −0.387722 0.387722i 0.486152 0.873874i \(-0.338400\pi\)
−0.873874 + 0.486152i \(0.838400\pi\)
\(938\) 0 0
\(939\) 26.3627i 0.860315i
\(940\) 0 0
\(941\) 11.1295i 0.362810i −0.983408 0.181405i \(-0.941936\pi\)
0.983408 0.181405i \(-0.0580644\pi\)
\(942\) 0 0
\(943\) −6.63374 + 6.63374i −0.216024 + 0.216024i
\(944\) 0 0
\(945\) −1.76011 5.64819i −0.0572564 0.183736i
\(946\) 0 0
\(947\) 36.4604 36.4604i 1.18480 1.18480i 0.206318 0.978485i \(-0.433852\pi\)
0.978485 0.206318i \(-0.0661480\pi\)
\(948\) 0 0
\(949\) 15.5052i 0.503319i
\(950\) 0 0
\(951\) 2.84446i 0.0922378i
\(952\) 0 0
\(953\) −27.7997 27.7997i −0.900521 0.900521i 0.0949600 0.995481i \(-0.469728\pi\)
−0.995481 + 0.0949600i \(0.969728\pi\)
\(954\) 0 0
\(955\) 45.5282 + 10.7341i 1.47326 + 0.347349i
\(956\) 0 0
\(957\) −2.44743 2.44743i −0.0791141 0.0791141i
\(958\) 0 0
\(959\) 24.0857 14.2298i 0.777766 0.459504i
\(960\) 0 0
\(961\) 28.6323 0.923624
\(962\) 0 0
\(963\) −0.548614 0.548614i −0.0176788 0.0176788i
\(964\) 0 0
\(965\) 28.7498 + 46.4887i 0.925488 + 1.49652i
\(966\) 0 0
\(967\) −5.99769 + 5.99769i −0.192873 + 0.192873i −0.796936 0.604064i \(-0.793547\pi\)
0.604064 + 0.796936i \(0.293547\pi\)
\(968\) 0 0
\(969\) −40.3919 −1.29757
\(970\) 0 0
\(971\) 16.2214i 0.520568i 0.965532 + 0.260284i \(0.0838162\pi\)
−0.965532 + 0.260284i \(0.916184\pi\)
\(972\) 0 0
\(973\) −9.86160 2.53669i −0.316148 0.0813226i
\(974\) 0 0
\(975\) 9.93653 19.9012i 0.318224 0.637349i
\(976\) 0 0
\(977\) 21.4886 21.4886i 0.687481 0.687481i −0.274193 0.961675i \(-0.588411\pi\)
0.961675 + 0.274193i \(0.0884109\pi\)
\(978\) 0 0
\(979\) 19.5146 0.623689
\(980\) 0 0
\(981\) 7.46934 0.238478
\(982\) 0 0
\(983\) −21.9507 + 21.9507i −0.700118 + 0.700118i −0.964436 0.264318i \(-0.914853\pi\)
0.264318 + 0.964436i \(0.414853\pi\)
\(984\) 0 0
\(985\) −26.5345 + 16.4096i −0.845460 + 0.522854i
\(986\) 0 0
\(987\) −11.3994 2.93227i −0.362848 0.0933352i
\(988\) 0 0
\(989\) 0.230039i 0.00731483i
\(990\) 0 0
\(991\) 60.2806 1.91488 0.957439 0.288636i \(-0.0932018\pi\)
0.957439 + 0.288636i \(0.0932018\pi\)
\(992\) 0 0
\(993\) 14.3476 14.3476i 0.455309 0.455309i
\(994\) 0 0
\(995\) −1.60673 0.378816i −0.0509366 0.0120093i
\(996\) 0 0
\(997\) 17.4365 + 17.4365i 0.552221 + 0.552221i 0.927081 0.374861i \(-0.122309\pi\)
−0.374861 + 0.927081i \(0.622309\pi\)
\(998\) 0 0
\(999\) 11.4033 0.360784
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.cz.f.433.10 24
4.3 odd 2 840.2.bt.a.433.6 yes 24
5.2 odd 4 1680.2.cz.e.97.3 24
7.6 odd 2 1680.2.cz.e.433.3 24
20.7 even 4 840.2.bt.b.97.7 yes 24
28.27 even 2 840.2.bt.b.433.7 yes 24
35.27 even 4 inner 1680.2.cz.f.97.10 24
140.27 odd 4 840.2.bt.a.97.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.bt.a.97.6 24 140.27 odd 4
840.2.bt.a.433.6 yes 24 4.3 odd 2
840.2.bt.b.97.7 yes 24 20.7 even 4
840.2.bt.b.433.7 yes 24 28.27 even 2
1680.2.cz.e.97.3 24 5.2 odd 4
1680.2.cz.e.433.3 24 7.6 odd 2
1680.2.cz.f.97.10 24 35.27 even 4 inner
1680.2.cz.f.433.10 24 1.1 even 1 trivial