Properties

Label 1680.2.ba.d.911.4
Level $1680$
Weight $2$
Character 1680.911
Analytic conductor $13.415$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(911,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.911"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.ba (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-10,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 640 x^{12} - 1656 x^{11} + 3522 x^{10} - 6148 x^{9} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 911.4
Root \(0.500000 + 2.12118i\) of defining polynomial
Character \(\chi\) \(=\) 1680.911
Dual form 1680.2.ba.d.911.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.18129 + 1.26671i) q^{3} +1.00000i q^{5} -1.00000i q^{7} +(-0.209100 - 2.99270i) q^{9} +5.47573 q^{11} -3.61183 q^{13} +(-1.26671 - 1.18129i) q^{15} +4.22648i q^{17} -7.43110i q^{19} +(1.26671 + 1.18129i) q^{21} -0.817252 q^{23} -1.00000 q^{25} +(4.03789 + 3.27039i) q^{27} -6.76900i q^{29} -7.87478i q^{31} +(-6.46843 + 6.93615i) q^{33} +1.00000 q^{35} +1.59343 q^{37} +(4.26663 - 4.57514i) q^{39} +7.57715i q^{41} -10.1778i q^{43} +(2.99270 - 0.209100i) q^{45} -0.833284 q^{47} -1.00000 q^{49} +(-5.35372 - 4.99270i) q^{51} -4.92079i q^{53} +5.47573i q^{55} +(9.41304 + 8.77830i) q^{57} +5.74788 q^{59} -2.84267 q^{61} +(-2.99270 + 0.209100i) q^{63} -3.61183i q^{65} +0.159787i q^{67} +(0.965413 - 1.03522i) q^{69} +9.22757 q^{71} +15.8610 q^{73} +(1.18129 - 1.26671i) q^{75} -5.47573i q^{77} +11.3527i q^{79} +(-8.91255 + 1.25155i) q^{81} +11.3286 q^{83} -4.22648 q^{85} +(8.57434 + 7.99616i) q^{87} -9.93325i q^{89} +3.61183i q^{91} +(9.97505 + 9.30241i) q^{93} +7.43110 q^{95} -8.44229 q^{97} +(-1.14497 - 16.3872i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{9} + 12 q^{11} - 2 q^{15} + 2 q^{21} + 8 q^{23} - 16 q^{25} - 12 q^{27} + 12 q^{33} + 16 q^{35} - 8 q^{37} - 14 q^{39} + 8 q^{45} + 16 q^{47} - 16 q^{49} - 34 q^{51} + 12 q^{57} + 32 q^{59}+ \cdots - 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.18129 + 1.26671i −0.682019 + 0.731334i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −0.209100 2.99270i −0.0696999 0.997568i
\(10\) 0 0
\(11\) 5.47573 1.65099 0.825497 0.564407i \(-0.190895\pi\)
0.825497 + 0.564407i \(0.190895\pi\)
\(12\) 0 0
\(13\) −3.61183 −1.00174 −0.500871 0.865522i \(-0.666987\pi\)
−0.500871 + 0.865522i \(0.666987\pi\)
\(14\) 0 0
\(15\) −1.26671 1.18129i −0.327063 0.305008i
\(16\) 0 0
\(17\) 4.22648i 1.02507i 0.858666 + 0.512536i \(0.171294\pi\)
−0.858666 + 0.512536i \(0.828706\pi\)
\(18\) 0 0
\(19\) 7.43110i 1.70481i −0.522880 0.852406i \(-0.675143\pi\)
0.522880 0.852406i \(-0.324857\pi\)
\(20\) 0 0
\(21\) 1.26671 + 1.18129i 0.276418 + 0.257779i
\(22\) 0 0
\(23\) −0.817252 −0.170409 −0.0852044 0.996363i \(-0.527154\pi\)
−0.0852044 + 0.996363i \(0.527154\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 4.03789 + 3.27039i 0.777092 + 0.629386i
\(28\) 0 0
\(29\) 6.76900i 1.25697i −0.777821 0.628485i \(-0.783675\pi\)
0.777821 0.628485i \(-0.216325\pi\)
\(30\) 0 0
\(31\) 7.87478i 1.41435i −0.707037 0.707176i \(-0.749969\pi\)
0.707037 0.707176i \(-0.250031\pi\)
\(32\) 0 0
\(33\) −6.46843 + 6.93615i −1.12601 + 1.20743i
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 1.59343 0.261958 0.130979 0.991385i \(-0.458188\pi\)
0.130979 + 0.991385i \(0.458188\pi\)
\(38\) 0 0
\(39\) 4.26663 4.57514i 0.683207 0.732608i
\(40\) 0 0
\(41\) 7.57715i 1.18335i 0.806176 + 0.591676i \(0.201533\pi\)
−0.806176 + 0.591676i \(0.798467\pi\)
\(42\) 0 0
\(43\) 10.1778i 1.55210i −0.630672 0.776049i \(-0.717221\pi\)
0.630672 0.776049i \(-0.282779\pi\)
\(44\) 0 0
\(45\) 2.99270 0.209100i 0.446126 0.0311707i
\(46\) 0 0
\(47\) −0.833284 −0.121547 −0.0607735 0.998152i \(-0.519357\pi\)
−0.0607735 + 0.998152i \(0.519357\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −5.35372 4.99270i −0.749670 0.699118i
\(52\) 0 0
\(53\) 4.92079i 0.675922i −0.941160 0.337961i \(-0.890263\pi\)
0.941160 0.337961i \(-0.109737\pi\)
\(54\) 0 0
\(55\) 5.47573i 0.738347i
\(56\) 0 0
\(57\) 9.41304 + 8.77830i 1.24679 + 1.16271i
\(58\) 0 0
\(59\) 5.74788 0.748311 0.374155 0.927366i \(-0.377933\pi\)
0.374155 + 0.927366i \(0.377933\pi\)
\(60\) 0 0
\(61\) −2.84267 −0.363967 −0.181984 0.983302i \(-0.558252\pi\)
−0.181984 + 0.983302i \(0.558252\pi\)
\(62\) 0 0
\(63\) −2.99270 + 0.209100i −0.377045 + 0.0263441i
\(64\) 0 0
\(65\) 3.61183i 0.447993i
\(66\) 0 0
\(67\) 0.159787i 0.0195210i 0.999952 + 0.00976052i \(0.00310692\pi\)
−0.999952 + 0.00976052i \(0.996893\pi\)
\(68\) 0 0
\(69\) 0.965413 1.03522i 0.116222 0.124626i
\(70\) 0 0
\(71\) 9.22757 1.09511 0.547555 0.836769i \(-0.315559\pi\)
0.547555 + 0.836769i \(0.315559\pi\)
\(72\) 0 0
\(73\) 15.8610 1.85639 0.928196 0.372093i \(-0.121360\pi\)
0.928196 + 0.372093i \(0.121360\pi\)
\(74\) 0 0
\(75\) 1.18129 1.26671i 0.136404 0.146267i
\(76\) 0 0
\(77\) 5.47573i 0.624017i
\(78\) 0 0
\(79\) 11.3527i 1.27728i 0.769504 + 0.638642i \(0.220503\pi\)
−0.769504 + 0.638642i \(0.779497\pi\)
\(80\) 0 0
\(81\) −8.91255 + 1.25155i −0.990284 + 0.139061i
\(82\) 0 0
\(83\) 11.3286 1.24348 0.621739 0.783224i \(-0.286426\pi\)
0.621739 + 0.783224i \(0.286426\pi\)
\(84\) 0 0
\(85\) −4.22648 −0.458426
\(86\) 0 0
\(87\) 8.57434 + 7.99616i 0.919266 + 0.857278i
\(88\) 0 0
\(89\) 9.93325i 1.05292i −0.850199 0.526461i \(-0.823519\pi\)
0.850199 0.526461i \(-0.176481\pi\)
\(90\) 0 0
\(91\) 3.61183i 0.378623i
\(92\) 0 0
\(93\) 9.97505 + 9.30241i 1.03436 + 0.964615i
\(94\) 0 0
\(95\) 7.43110 0.762415
\(96\) 0 0
\(97\) −8.44229 −0.857185 −0.428592 0.903498i \(-0.640990\pi\)
−0.428592 + 0.903498i \(0.640990\pi\)
\(98\) 0 0
\(99\) −1.14497 16.3872i −0.115074 1.64698i
\(100\) 0 0
\(101\) 7.07147i 0.703638i 0.936068 + 0.351819i \(0.114437\pi\)
−0.936068 + 0.351819i \(0.885563\pi\)
\(102\) 0 0
\(103\) 13.3172i 1.31218i 0.754681 + 0.656092i \(0.227792\pi\)
−0.754681 + 0.656092i \(0.772208\pi\)
\(104\) 0 0
\(105\) −1.18129 + 1.26671i −0.115282 + 0.123618i
\(106\) 0 0
\(107\) 18.5906 1.79723 0.898613 0.438743i \(-0.144576\pi\)
0.898613 + 0.438743i \(0.144576\pi\)
\(108\) 0 0
\(109\) 15.6589 1.49985 0.749925 0.661523i \(-0.230090\pi\)
0.749925 + 0.661523i \(0.230090\pi\)
\(110\) 0 0
\(111\) −1.88230 + 2.01841i −0.178660 + 0.191579i
\(112\) 0 0
\(113\) 3.93263i 0.369951i 0.982743 + 0.184975i \(0.0592205\pi\)
−0.982743 + 0.184975i \(0.940779\pi\)
\(114\) 0 0
\(115\) 0.817252i 0.0762092i
\(116\) 0 0
\(117\) 0.755233 + 10.8091i 0.0698213 + 0.999306i
\(118\) 0 0
\(119\) 4.22648 0.387441
\(120\) 0 0
\(121\) 18.9836 1.72578
\(122\) 0 0
\(123\) −9.59804 8.95082i −0.865426 0.807068i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 14.1243i 1.25333i −0.779290 0.626663i \(-0.784420\pi\)
0.779290 0.626663i \(-0.215580\pi\)
\(128\) 0 0
\(129\) 12.8923 + 12.0229i 1.13510 + 1.05856i
\(130\) 0 0
\(131\) −15.0358 −1.31368 −0.656840 0.754030i \(-0.728107\pi\)
−0.656840 + 0.754030i \(0.728107\pi\)
\(132\) 0 0
\(133\) −7.43110 −0.644358
\(134\) 0 0
\(135\) −3.27039 + 4.03789i −0.281470 + 0.347526i
\(136\) 0 0
\(137\) 5.41909i 0.462984i 0.972837 + 0.231492i \(0.0743607\pi\)
−0.972837 + 0.231492i \(0.925639\pi\)
\(138\) 0 0
\(139\) 4.50851i 0.382407i −0.981550 0.191203i \(-0.938761\pi\)
0.981550 0.191203i \(-0.0612390\pi\)
\(140\) 0 0
\(141\) 0.984351 1.05553i 0.0828973 0.0888915i
\(142\) 0 0
\(143\) −19.7774 −1.65387
\(144\) 0 0
\(145\) 6.76900 0.562134
\(146\) 0 0
\(147\) 1.18129 1.26671i 0.0974313 0.104476i
\(148\) 0 0
\(149\) 5.25864i 0.430804i −0.976525 0.215402i \(-0.930894\pi\)
0.976525 0.215402i \(-0.0691062\pi\)
\(150\) 0 0
\(151\) 1.58998i 0.129391i −0.997905 0.0646955i \(-0.979392\pi\)
0.997905 0.0646955i \(-0.0206076\pi\)
\(152\) 0 0
\(153\) 12.6486 0.883756i 1.02258 0.0714474i
\(154\) 0 0
\(155\) 7.87478 0.632518
\(156\) 0 0
\(157\) −17.1358 −1.36759 −0.683794 0.729675i \(-0.739671\pi\)
−0.683794 + 0.729675i \(0.739671\pi\)
\(158\) 0 0
\(159\) 6.23320 + 5.81289i 0.494325 + 0.460992i
\(160\) 0 0
\(161\) 0.817252i 0.0644085i
\(162\) 0 0
\(163\) 11.9313i 0.934534i −0.884116 0.467267i \(-0.845239\pi\)
0.884116 0.467267i \(-0.154761\pi\)
\(164\) 0 0
\(165\) −6.93615 6.46843i −0.539978 0.503567i
\(166\) 0 0
\(167\) −1.99274 −0.154203 −0.0771014 0.997023i \(-0.524567\pi\)
−0.0771014 + 0.997023i \(0.524567\pi\)
\(168\) 0 0
\(169\) 0.0453320 0.00348707
\(170\) 0 0
\(171\) −22.2391 + 1.55384i −1.70067 + 0.118825i
\(172\) 0 0
\(173\) 4.01054i 0.304915i 0.988310 + 0.152458i \(0.0487188\pi\)
−0.988310 + 0.152458i \(0.951281\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) 0 0
\(177\) −6.78993 + 7.28089i −0.510362 + 0.547265i
\(178\) 0 0
\(179\) −7.24176 −0.541274 −0.270637 0.962681i \(-0.587234\pi\)
−0.270637 + 0.962681i \(0.587234\pi\)
\(180\) 0 0
\(181\) −0.749663 −0.0557220 −0.0278610 0.999612i \(-0.508870\pi\)
−0.0278610 + 0.999612i \(0.508870\pi\)
\(182\) 0 0
\(183\) 3.35803 3.60084i 0.248233 0.266182i
\(184\) 0 0
\(185\) 1.59343i 0.117151i
\(186\) 0 0
\(187\) 23.1430i 1.69239i
\(188\) 0 0
\(189\) 3.27039 4.03789i 0.237886 0.293713i
\(190\) 0 0
\(191\) 18.7456 1.35639 0.678194 0.734883i \(-0.262763\pi\)
0.678194 + 0.734883i \(0.262763\pi\)
\(192\) 0 0
\(193\) 7.33556 0.528025 0.264013 0.964519i \(-0.414954\pi\)
0.264013 + 0.964519i \(0.414954\pi\)
\(194\) 0 0
\(195\) 4.57514 + 4.26663i 0.327632 + 0.305540i
\(196\) 0 0
\(197\) 27.0541i 1.92753i −0.266758 0.963764i \(-0.585952\pi\)
0.266758 0.963764i \(-0.414048\pi\)
\(198\) 0 0
\(199\) 20.1432i 1.42791i −0.700190 0.713956i \(-0.746902\pi\)
0.700190 0.713956i \(-0.253098\pi\)
\(200\) 0 0
\(201\) −0.202403 0.188755i −0.0142764 0.0133137i
\(202\) 0 0
\(203\) −6.76900 −0.475090
\(204\) 0 0
\(205\) −7.57715 −0.529211
\(206\) 0 0
\(207\) 0.170887 + 2.44579i 0.0118775 + 0.169994i
\(208\) 0 0
\(209\) 40.6907i 2.81463i
\(210\) 0 0
\(211\) 1.94424i 0.133847i −0.997758 0.0669236i \(-0.978682\pi\)
0.997758 0.0669236i \(-0.0213184\pi\)
\(212\) 0 0
\(213\) −10.9004 + 11.6886i −0.746886 + 0.800892i
\(214\) 0 0
\(215\) 10.1778 0.694120
\(216\) 0 0
\(217\) −7.87478 −0.534575
\(218\) 0 0
\(219\) −18.7365 + 20.0913i −1.26609 + 1.35764i
\(220\) 0 0
\(221\) 15.2653i 1.02686i
\(222\) 0 0
\(223\) 17.8213i 1.19341i −0.802462 0.596703i \(-0.796477\pi\)
0.802462 0.596703i \(-0.203523\pi\)
\(224\) 0 0
\(225\) 0.209100 + 2.99270i 0.0139400 + 0.199514i
\(226\) 0 0
\(227\) 6.61057 0.438759 0.219380 0.975640i \(-0.429597\pi\)
0.219380 + 0.975640i \(0.429597\pi\)
\(228\) 0 0
\(229\) 6.37119 0.421020 0.210510 0.977592i \(-0.432487\pi\)
0.210510 + 0.977592i \(0.432487\pi\)
\(230\) 0 0
\(231\) 6.93615 + 6.46843i 0.456365 + 0.425592i
\(232\) 0 0
\(233\) 16.7228i 1.09555i 0.836627 + 0.547773i \(0.184524\pi\)
−0.836627 + 0.547773i \(0.815476\pi\)
\(234\) 0 0
\(235\) 0.833284i 0.0543574i
\(236\) 0 0
\(237\) −14.3806 13.4109i −0.934121 0.871132i
\(238\) 0 0
\(239\) −14.0396 −0.908149 −0.454075 0.890964i \(-0.650030\pi\)
−0.454075 + 0.890964i \(0.650030\pi\)
\(240\) 0 0
\(241\) 27.5217 1.77283 0.886414 0.462894i \(-0.153189\pi\)
0.886414 + 0.462894i \(0.153189\pi\)
\(242\) 0 0
\(243\) 8.94298 12.7680i 0.573693 0.819071i
\(244\) 0 0
\(245\) 1.00000i 0.0638877i
\(246\) 0 0
\(247\) 26.8399i 1.70778i
\(248\) 0 0
\(249\) −13.3824 + 14.3501i −0.848076 + 0.909399i
\(250\) 0 0
\(251\) −7.29441 −0.460419 −0.230209 0.973141i \(-0.573941\pi\)
−0.230209 + 0.973141i \(0.573941\pi\)
\(252\) 0 0
\(253\) −4.47505 −0.281344
\(254\) 0 0
\(255\) 4.99270 5.35372i 0.312655 0.335263i
\(256\) 0 0
\(257\) 10.1930i 0.635825i 0.948120 + 0.317912i \(0.102982\pi\)
−0.948120 + 0.317912i \(0.897018\pi\)
\(258\) 0 0
\(259\) 1.59343i 0.0990107i
\(260\) 0 0
\(261\) −20.2576 + 1.41540i −1.25391 + 0.0876108i
\(262\) 0 0
\(263\) −12.6745 −0.781545 −0.390773 0.920487i \(-0.627792\pi\)
−0.390773 + 0.920487i \(0.627792\pi\)
\(264\) 0 0
\(265\) 4.92079 0.302282
\(266\) 0 0
\(267\) 12.5825 + 11.7341i 0.770038 + 0.718113i
\(268\) 0 0
\(269\) 8.89603i 0.542401i 0.962523 + 0.271200i \(0.0874206\pi\)
−0.962523 + 0.271200i \(0.912579\pi\)
\(270\) 0 0
\(271\) 12.7128i 0.772249i 0.922447 + 0.386125i \(0.126187\pi\)
−0.922447 + 0.386125i \(0.873813\pi\)
\(272\) 0 0
\(273\) −4.57514 4.26663i −0.276900 0.258228i
\(274\) 0 0
\(275\) −5.47573 −0.330199
\(276\) 0 0
\(277\) −11.7469 −0.705805 −0.352903 0.935660i \(-0.614805\pi\)
−0.352903 + 0.935660i \(0.614805\pi\)
\(278\) 0 0
\(279\) −23.5669 + 1.64661i −1.41091 + 0.0985802i
\(280\) 0 0
\(281\) 16.4003i 0.978358i −0.872183 0.489179i \(-0.837296\pi\)
0.872183 0.489179i \(-0.162704\pi\)
\(282\) 0 0
\(283\) 18.3066i 1.08821i 0.839016 + 0.544107i \(0.183132\pi\)
−0.839016 + 0.544107i \(0.816868\pi\)
\(284\) 0 0
\(285\) −8.77830 + 9.41304i −0.519982 + 0.557580i
\(286\) 0 0
\(287\) 7.57715 0.447265
\(288\) 0 0
\(289\) −0.863120 −0.0507718
\(290\) 0 0
\(291\) 9.97281 10.6939i 0.584616 0.626889i
\(292\) 0 0
\(293\) 11.1436i 0.651019i −0.945539 0.325509i \(-0.894464\pi\)
0.945539 0.325509i \(-0.105536\pi\)
\(294\) 0 0
\(295\) 5.74788i 0.334655i
\(296\) 0 0
\(297\) 22.1104 + 17.9078i 1.28297 + 1.03911i
\(298\) 0 0
\(299\) 2.95178 0.170706
\(300\) 0 0
\(301\) −10.1778 −0.586638
\(302\) 0 0
\(303\) −8.95749 8.35347i −0.514595 0.479894i
\(304\) 0 0
\(305\) 2.84267i 0.162771i
\(306\) 0 0
\(307\) 1.22655i 0.0700026i −0.999387 0.0350013i \(-0.988856\pi\)
0.999387 0.0350013i \(-0.0111435\pi\)
\(308\) 0 0
\(309\) −16.8690 15.7315i −0.959646 0.894935i
\(310\) 0 0
\(311\) −10.0883 −0.572056 −0.286028 0.958221i \(-0.592335\pi\)
−0.286028 + 0.958221i \(0.592335\pi\)
\(312\) 0 0
\(313\) −11.9069 −0.673017 −0.336509 0.941680i \(-0.609246\pi\)
−0.336509 + 0.941680i \(0.609246\pi\)
\(314\) 0 0
\(315\) −0.209100 2.99270i −0.0117814 0.168620i
\(316\) 0 0
\(317\) 13.8364i 0.777131i 0.921421 + 0.388565i \(0.127029\pi\)
−0.921421 + 0.388565i \(0.872971\pi\)
\(318\) 0 0
\(319\) 37.0652i 2.07525i
\(320\) 0 0
\(321\) −21.9610 + 23.5489i −1.22574 + 1.31437i
\(322\) 0 0
\(323\) 31.4074 1.74755
\(324\) 0 0
\(325\) 3.61183 0.200348
\(326\) 0 0
\(327\) −18.4977 + 19.8352i −1.02293 + 1.09689i
\(328\) 0 0
\(329\) 0.833284i 0.0459404i
\(330\) 0 0
\(331\) 18.2569i 1.00349i 0.865016 + 0.501744i \(0.167308\pi\)
−0.865016 + 0.501744i \(0.832692\pi\)
\(332\) 0 0
\(333\) −0.333185 4.76865i −0.0182584 0.261321i
\(334\) 0 0
\(335\) −0.159787 −0.00873008
\(336\) 0 0
\(337\) −26.9506 −1.46809 −0.734047 0.679098i \(-0.762371\pi\)
−0.734047 + 0.679098i \(0.762371\pi\)
\(338\) 0 0
\(339\) −4.98150 4.64558i −0.270558 0.252313i
\(340\) 0 0
\(341\) 43.1201i 2.33509i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 1.03522 + 0.965413i 0.0557344 + 0.0519761i
\(346\) 0 0
\(347\) 13.9989 0.751498 0.375749 0.926721i \(-0.377385\pi\)
0.375749 + 0.926721i \(0.377385\pi\)
\(348\) 0 0
\(349\) −23.5755 −1.26197 −0.630983 0.775797i \(-0.717348\pi\)
−0.630983 + 0.775797i \(0.717348\pi\)
\(350\) 0 0
\(351\) −14.5842 11.8121i −0.778446 0.630483i
\(352\) 0 0
\(353\) 25.4111i 1.35249i −0.736675 0.676247i \(-0.763605\pi\)
0.736675 0.676247i \(-0.236395\pi\)
\(354\) 0 0
\(355\) 9.22757i 0.489748i
\(356\) 0 0
\(357\) −4.99270 + 5.35372i −0.264242 + 0.283349i
\(358\) 0 0
\(359\) −35.4716 −1.87212 −0.936059 0.351844i \(-0.885555\pi\)
−0.936059 + 0.351844i \(0.885555\pi\)
\(360\) 0 0
\(361\) −36.2213 −1.90638
\(362\) 0 0
\(363\) −22.4252 + 24.0467i −1.17702 + 1.26212i
\(364\) 0 0
\(365\) 15.8610i 0.830203i
\(366\) 0 0
\(367\) 21.9232i 1.14438i 0.820120 + 0.572191i \(0.193906\pi\)
−0.820120 + 0.572191i \(0.806094\pi\)
\(368\) 0 0
\(369\) 22.6762 1.58438i 1.18047 0.0824795i
\(370\) 0 0
\(371\) −4.92079 −0.255475
\(372\) 0 0
\(373\) −25.4056 −1.31545 −0.657725 0.753258i \(-0.728481\pi\)
−0.657725 + 0.753258i \(0.728481\pi\)
\(374\) 0 0
\(375\) 1.26671 + 1.18129i 0.0654125 + 0.0610016i
\(376\) 0 0
\(377\) 24.4485i 1.25916i
\(378\) 0 0
\(379\) 18.8097i 0.966190i −0.875568 0.483095i \(-0.839513\pi\)
0.875568 0.483095i \(-0.160487\pi\)
\(380\) 0 0
\(381\) 17.8913 + 16.6849i 0.916601 + 0.854793i
\(382\) 0 0
\(383\) −16.3421 −0.835044 −0.417522 0.908667i \(-0.637101\pi\)
−0.417522 + 0.908667i \(0.637101\pi\)
\(384\) 0 0
\(385\) 5.47573 0.279069
\(386\) 0 0
\(387\) −30.4591 + 2.12817i −1.54832 + 0.108181i
\(388\) 0 0
\(389\) 29.0878i 1.47481i −0.675452 0.737404i \(-0.736052\pi\)
0.675452 0.737404i \(-0.263948\pi\)
\(390\) 0 0
\(391\) 3.45410i 0.174681i
\(392\) 0 0
\(393\) 17.7616 19.0459i 0.895955 0.960740i
\(394\) 0 0
\(395\) −11.3527 −0.571218
\(396\) 0 0
\(397\) 7.31540 0.367149 0.183575 0.983006i \(-0.441233\pi\)
0.183575 + 0.983006i \(0.441233\pi\)
\(398\) 0 0
\(399\) 8.77830 9.41304i 0.439465 0.471241i
\(400\) 0 0
\(401\) 22.1972i 1.10848i 0.832358 + 0.554238i \(0.186990\pi\)
−0.832358 + 0.554238i \(0.813010\pi\)
\(402\) 0 0
\(403\) 28.4424i 1.41682i
\(404\) 0 0
\(405\) −1.25155 8.91255i −0.0621899 0.442868i
\(406\) 0 0
\(407\) 8.72517 0.432490
\(408\) 0 0
\(409\) 15.1172 0.747497 0.373749 0.927530i \(-0.378072\pi\)
0.373749 + 0.927530i \(0.378072\pi\)
\(410\) 0 0
\(411\) −6.86441 6.40153i −0.338596 0.315764i
\(412\) 0 0
\(413\) 5.74788i 0.282835i
\(414\) 0 0
\(415\) 11.3286i 0.556101i
\(416\) 0 0
\(417\) 5.71097 + 5.32587i 0.279667 + 0.260809i
\(418\) 0 0
\(419\) 20.7130 1.01190 0.505948 0.862564i \(-0.331143\pi\)
0.505948 + 0.862564i \(0.331143\pi\)
\(420\) 0 0
\(421\) 35.7381 1.74177 0.870884 0.491488i \(-0.163547\pi\)
0.870884 + 0.491488i \(0.163547\pi\)
\(422\) 0 0
\(423\) 0.174239 + 2.49377i 0.00847181 + 0.121251i
\(424\) 0 0
\(425\) 4.22648i 0.205014i
\(426\) 0 0
\(427\) 2.84267i 0.137567i
\(428\) 0 0
\(429\) 23.3629 25.0522i 1.12797 1.20953i
\(430\) 0 0
\(431\) 19.1560 0.922710 0.461355 0.887216i \(-0.347363\pi\)
0.461355 + 0.887216i \(0.347363\pi\)
\(432\) 0 0
\(433\) −2.53254 −0.121706 −0.0608531 0.998147i \(-0.519382\pi\)
−0.0608531 + 0.998147i \(0.519382\pi\)
\(434\) 0 0
\(435\) −7.99616 + 8.57434i −0.383386 + 0.411108i
\(436\) 0 0
\(437\) 6.07309i 0.290515i
\(438\) 0 0
\(439\) 5.39558i 0.257517i −0.991676 0.128759i \(-0.958901\pi\)
0.991676 0.128759i \(-0.0410992\pi\)
\(440\) 0 0
\(441\) 0.209100 + 2.99270i 0.00995713 + 0.142510i
\(442\) 0 0
\(443\) −16.1061 −0.765223 −0.382612 0.923909i \(-0.624975\pi\)
−0.382612 + 0.923909i \(0.624975\pi\)
\(444\) 0 0
\(445\) 9.93325 0.470881
\(446\) 0 0
\(447\) 6.66116 + 6.21198i 0.315062 + 0.293817i
\(448\) 0 0
\(449\) 12.6902i 0.598889i 0.954114 + 0.299444i \(0.0968013\pi\)
−0.954114 + 0.299444i \(0.903199\pi\)
\(450\) 0 0
\(451\) 41.4904i 1.95371i
\(452\) 0 0
\(453\) 2.01405 + 1.87824i 0.0946281 + 0.0882472i
\(454\) 0 0
\(455\) −3.61183 −0.169325
\(456\) 0 0
\(457\) 0.748135 0.0349963 0.0174982 0.999847i \(-0.494430\pi\)
0.0174982 + 0.999847i \(0.494430\pi\)
\(458\) 0 0
\(459\) −13.8222 + 17.0661i −0.645166 + 0.796575i
\(460\) 0 0
\(461\) 29.5987i 1.37855i −0.724500 0.689275i \(-0.757929\pi\)
0.724500 0.689275i \(-0.242071\pi\)
\(462\) 0 0
\(463\) 1.17658i 0.0546805i 0.999626 + 0.0273402i \(0.00870375\pi\)
−0.999626 + 0.0273402i \(0.991296\pi\)
\(464\) 0 0
\(465\) −9.30241 + 9.97505i −0.431389 + 0.462582i
\(466\) 0 0
\(467\) 12.2127 0.565136 0.282568 0.959247i \(-0.408814\pi\)
0.282568 + 0.959247i \(0.408814\pi\)
\(468\) 0 0
\(469\) 0.159787 0.00737826
\(470\) 0 0
\(471\) 20.2424 21.7061i 0.932722 1.00016i
\(472\) 0 0
\(473\) 55.7308i 2.56251i
\(474\) 0 0
\(475\) 7.43110i 0.340962i
\(476\) 0 0
\(477\) −14.7265 + 1.02894i −0.674279 + 0.0471117i
\(478\) 0 0
\(479\) −35.0924 −1.60341 −0.801707 0.597717i \(-0.796075\pi\)
−0.801707 + 0.597717i \(0.796075\pi\)
\(480\) 0 0
\(481\) −5.75519 −0.262414
\(482\) 0 0
\(483\) −1.03522 0.965413i −0.0471041 0.0439278i
\(484\) 0 0
\(485\) 8.44229i 0.383345i
\(486\) 0 0
\(487\) 1.77034i 0.0802217i −0.999195 0.0401108i \(-0.987229\pi\)
0.999195 0.0401108i \(-0.0127711\pi\)
\(488\) 0 0
\(489\) 15.1135 + 14.0944i 0.683457 + 0.637370i
\(490\) 0 0
\(491\) −12.9841 −0.585964 −0.292982 0.956118i \(-0.594648\pi\)
−0.292982 + 0.956118i \(0.594648\pi\)
\(492\) 0 0
\(493\) 28.6090 1.28849
\(494\) 0 0
\(495\) 16.3872 1.14497i 0.736551 0.0514627i
\(496\) 0 0
\(497\) 9.22757i 0.413913i
\(498\) 0 0
\(499\) 19.7417i 0.883759i −0.897074 0.441880i \(-0.854312\pi\)
0.897074 0.441880i \(-0.145688\pi\)
\(500\) 0 0
\(501\) 2.35401 2.52422i 0.105169 0.112774i
\(502\) 0 0
\(503\) 34.7008 1.54723 0.773616 0.633655i \(-0.218446\pi\)
0.773616 + 0.633655i \(0.218446\pi\)
\(504\) 0 0
\(505\) −7.07147 −0.314676
\(506\) 0 0
\(507\) −0.0535503 + 0.0574224i −0.00237825 + 0.00255022i
\(508\) 0 0
\(509\) 23.0266i 1.02064i 0.859985 + 0.510319i \(0.170473\pi\)
−0.859985 + 0.510319i \(0.829527\pi\)
\(510\) 0 0
\(511\) 15.8610i 0.701650i
\(512\) 0 0
\(513\) 24.3026 30.0060i 1.07299 1.32480i
\(514\) 0 0
\(515\) −13.3172 −0.586827
\(516\) 0 0
\(517\) −4.56284 −0.200673
\(518\) 0 0
\(519\) −5.08018 4.73761i −0.222995 0.207958i
\(520\) 0 0
\(521\) 33.7984i 1.48074i 0.672202 + 0.740368i \(0.265349\pi\)
−0.672202 + 0.740368i \(0.734651\pi\)
\(522\) 0 0
\(523\) 15.8227i 0.691877i −0.938257 0.345939i \(-0.887561\pi\)
0.938257 0.345939i \(-0.112439\pi\)
\(524\) 0 0
\(525\) −1.26671 1.18129i −0.0552837 0.0515558i
\(526\) 0 0
\(527\) 33.2826 1.44981
\(528\) 0 0
\(529\) −22.3321 −0.970961
\(530\) 0 0
\(531\) −1.20188 17.2017i −0.0521572 0.746491i
\(532\) 0 0
\(533\) 27.3674i 1.18541i
\(534\) 0 0
\(535\) 18.5906i 0.803744i
\(536\) 0 0
\(537\) 8.55463 9.17319i 0.369159 0.395853i
\(538\) 0 0
\(539\) −5.47573 −0.235856
\(540\) 0 0
\(541\) 22.7126 0.976492 0.488246 0.872706i \(-0.337637\pi\)
0.488246 + 0.872706i \(0.337637\pi\)
\(542\) 0 0
\(543\) 0.885570 0.949604i 0.0380035 0.0407514i
\(544\) 0 0
\(545\) 15.6589i 0.670753i
\(546\) 0 0
\(547\) 11.6802i 0.499408i 0.968322 + 0.249704i \(0.0803334\pi\)
−0.968322 + 0.249704i \(0.919667\pi\)
\(548\) 0 0
\(549\) 0.594403 + 8.50728i 0.0253685 + 0.363082i
\(550\) 0 0
\(551\) −50.3011 −2.14290
\(552\) 0 0
\(553\) 11.3527 0.482768
\(554\) 0 0
\(555\) −2.01841 1.88230i −0.0856766 0.0798992i
\(556\) 0 0
\(557\) 19.6461i 0.832430i 0.909266 + 0.416215i \(0.136644\pi\)
−0.909266 + 0.416215i \(0.863356\pi\)
\(558\) 0 0
\(559\) 36.7605i 1.55480i
\(560\) 0 0
\(561\) −29.3155 27.3387i −1.23770 1.15424i
\(562\) 0 0
\(563\) −39.4517 −1.66269 −0.831346 0.555756i \(-0.812429\pi\)
−0.831346 + 0.555756i \(0.812429\pi\)
\(564\) 0 0
\(565\) −3.93263 −0.165447
\(566\) 0 0
\(567\) 1.25155 + 8.91255i 0.0525600 + 0.374292i
\(568\) 0 0
\(569\) 42.8676i 1.79710i 0.438867 + 0.898552i \(0.355380\pi\)
−0.438867 + 0.898552i \(0.644620\pi\)
\(570\) 0 0
\(571\) 9.10927i 0.381211i −0.981667 0.190605i \(-0.938955\pi\)
0.981667 0.190605i \(-0.0610451\pi\)
\(572\) 0 0
\(573\) −22.1441 + 23.7453i −0.925082 + 0.991973i
\(574\) 0 0
\(575\) 0.817252 0.0340818
\(576\) 0 0
\(577\) 11.9698 0.498310 0.249155 0.968464i \(-0.419847\pi\)
0.249155 + 0.968464i \(0.419847\pi\)
\(578\) 0 0
\(579\) −8.66544 + 9.29202i −0.360123 + 0.386163i
\(580\) 0 0
\(581\) 11.3286i 0.469991i
\(582\) 0 0
\(583\) 26.9449i 1.11594i
\(584\) 0 0
\(585\) −10.8091 + 0.755233i −0.446903 + 0.0312250i
\(586\) 0 0
\(587\) 34.8252 1.43739 0.718695 0.695325i \(-0.244740\pi\)
0.718695 + 0.695325i \(0.244740\pi\)
\(588\) 0 0
\(589\) −58.5183 −2.41120
\(590\) 0 0
\(591\) 34.2697 + 31.9588i 1.40967 + 1.31461i
\(592\) 0 0
\(593\) 43.0067i 1.76607i 0.469304 + 0.883036i \(0.344505\pi\)
−0.469304 + 0.883036i \(0.655495\pi\)
\(594\) 0 0
\(595\) 4.22648i 0.173269i
\(596\) 0 0
\(597\) 25.5155 + 23.7950i 1.04428 + 0.973864i
\(598\) 0 0
\(599\) 12.4879 0.510240 0.255120 0.966909i \(-0.417885\pi\)
0.255120 + 0.966909i \(0.417885\pi\)
\(600\) 0 0
\(601\) 34.1728 1.39394 0.696968 0.717102i \(-0.254532\pi\)
0.696968 + 0.717102i \(0.254532\pi\)
\(602\) 0 0
\(603\) 0.478194 0.0334114i 0.0194736 0.00136062i
\(604\) 0 0
\(605\) 18.9836i 0.771793i
\(606\) 0 0
\(607\) 19.0849i 0.774634i −0.921947 0.387317i \(-0.873402\pi\)
0.921947 0.387317i \(-0.126598\pi\)
\(608\) 0 0
\(609\) 7.99616 8.57434i 0.324021 0.347450i
\(610\) 0 0
\(611\) 3.00968 0.121759
\(612\) 0 0
\(613\) −23.3572 −0.943389 −0.471694 0.881762i \(-0.656357\pi\)
−0.471694 + 0.881762i \(0.656357\pi\)
\(614\) 0 0
\(615\) 8.95082 9.59804i 0.360932 0.387030i
\(616\) 0 0
\(617\) 13.1699i 0.530202i −0.964221 0.265101i \(-0.914595\pi\)
0.964221 0.265101i \(-0.0854053\pi\)
\(618\) 0 0
\(619\) 17.6170i 0.708086i 0.935229 + 0.354043i \(0.115193\pi\)
−0.935229 + 0.354043i \(0.884807\pi\)
\(620\) 0 0
\(621\) −3.29997 2.67273i −0.132423 0.107253i
\(622\) 0 0
\(623\) −9.93325 −0.397967
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 51.5432 + 48.0676i 2.05844 + 1.91963i
\(628\) 0 0
\(629\) 6.73458i 0.268525i
\(630\) 0 0
\(631\) 15.9879i 0.636470i 0.948012 + 0.318235i \(0.103090\pi\)
−0.948012 + 0.318235i \(0.896910\pi\)
\(632\) 0 0
\(633\) 2.46279 + 2.29672i 0.0978870 + 0.0912863i
\(634\) 0 0
\(635\) 14.1243 0.560505
\(636\) 0 0
\(637\) 3.61183 0.143106
\(638\) 0 0
\(639\) −1.92948 27.6154i −0.0763291 1.09245i
\(640\) 0 0
\(641\) 26.7669i 1.05723i −0.848862 0.528615i \(-0.822712\pi\)
0.848862 0.528615i \(-0.177288\pi\)
\(642\) 0 0
\(643\) 36.4167i 1.43613i −0.695974 0.718067i \(-0.745027\pi\)
0.695974 0.718067i \(-0.254973\pi\)
\(644\) 0 0
\(645\) −12.0229 + 12.8923i −0.473403 + 0.507634i
\(646\) 0 0
\(647\) −28.3136 −1.11312 −0.556561 0.830807i \(-0.687879\pi\)
−0.556561 + 0.830807i \(0.687879\pi\)
\(648\) 0 0
\(649\) 31.4738 1.23546
\(650\) 0 0
\(651\) 9.30241 9.97505i 0.364590 0.390953i
\(652\) 0 0
\(653\) 7.20424i 0.281924i 0.990015 + 0.140962i \(0.0450195\pi\)
−0.990015 + 0.140962i \(0.954981\pi\)
\(654\) 0 0
\(655\) 15.0358i 0.587496i
\(656\) 0 0
\(657\) −3.31653 47.4673i −0.129390 1.85188i
\(658\) 0 0
\(659\) −17.0537 −0.664318 −0.332159 0.943223i \(-0.607777\pi\)
−0.332159 + 0.943223i \(0.607777\pi\)
\(660\) 0 0
\(661\) 4.65316 0.180987 0.0904935 0.995897i \(-0.471156\pi\)
0.0904935 + 0.995897i \(0.471156\pi\)
\(662\) 0 0
\(663\) 19.3367 + 18.0328i 0.750976 + 0.700336i
\(664\) 0 0
\(665\) 7.43110i 0.288166i
\(666\) 0 0
\(667\) 5.53198i 0.214199i
\(668\) 0 0
\(669\) 22.5744 + 21.0522i 0.872778 + 0.813925i
\(670\) 0 0
\(671\) −15.5657 −0.600908
\(672\) 0 0
\(673\) 26.0720 1.00500 0.502500 0.864577i \(-0.332414\pi\)
0.502500 + 0.864577i \(0.332414\pi\)
\(674\) 0 0
\(675\) −4.03789 3.27039i −0.155418 0.125877i
\(676\) 0 0
\(677\) 30.7182i 1.18060i −0.807186 0.590298i \(-0.799010\pi\)
0.807186 0.590298i \(-0.200990\pi\)
\(678\) 0 0
\(679\) 8.44229i 0.323985i
\(680\) 0 0
\(681\) −7.80902 + 8.37367i −0.299242 + 0.320880i
\(682\) 0 0
\(683\) −9.84648 −0.376765 −0.188382 0.982096i \(-0.560324\pi\)
−0.188382 + 0.982096i \(0.560324\pi\)
\(684\) 0 0
\(685\) −5.41909 −0.207053
\(686\) 0 0
\(687\) −7.52624 + 8.07044i −0.287144 + 0.307907i
\(688\) 0 0
\(689\) 17.7731i 0.677100i
\(690\) 0 0
\(691\) 35.0457i 1.33320i −0.745416 0.666600i \(-0.767749\pi\)
0.745416 0.666600i \(-0.232251\pi\)
\(692\) 0 0
\(693\) −16.3872 + 1.14497i −0.622499 + 0.0434939i
\(694\) 0 0
\(695\) 4.50851 0.171018
\(696\) 0 0
\(697\) −32.0246 −1.21302
\(698\) 0 0
\(699\) −21.1829 19.7545i −0.801210 0.747183i
\(700\) 0 0
\(701\) 8.08916i 0.305523i 0.988263 + 0.152762i \(0.0488167\pi\)
−0.988263 + 0.152762i \(0.951183\pi\)
\(702\) 0 0
\(703\) 11.8409i 0.446589i
\(704\) 0 0
\(705\) 1.05553 + 0.984351i 0.0397535 + 0.0370728i
\(706\) 0 0
\(707\) 7.07147 0.265950
\(708\) 0 0
\(709\) 35.8946 1.34805 0.674026 0.738708i \(-0.264564\pi\)
0.674026 + 0.738708i \(0.264564\pi\)
\(710\) 0 0
\(711\) 33.9754 2.37386i 1.27418 0.0890265i
\(712\) 0 0
\(713\) 6.43568i 0.241018i
\(714\) 0 0
\(715\) 19.7774i 0.739633i
\(716\) 0 0
\(717\) 16.5849 17.7841i 0.619375 0.664161i
\(718\) 0 0
\(719\) −41.4403 −1.54546 −0.772732 0.634732i \(-0.781110\pi\)
−0.772732 + 0.634732i \(0.781110\pi\)
\(720\) 0 0
\(721\) 13.3172 0.495959
\(722\) 0 0
\(723\) −32.5111 + 34.8619i −1.20910 + 1.29653i
\(724\) 0 0
\(725\) 6.76900i 0.251394i
\(726\) 0 0
\(727\) 15.8794i 0.588933i −0.955662 0.294467i \(-0.904858\pi\)
0.955662 0.294467i \(-0.0951420\pi\)
\(728\) 0 0
\(729\) 5.60912 + 26.4109i 0.207745 + 0.978183i
\(730\) 0 0
\(731\) 43.0162 1.59101
\(732\) 0 0
\(733\) 22.2284 0.821023 0.410512 0.911855i \(-0.365350\pi\)
0.410512 + 0.911855i \(0.365350\pi\)
\(734\) 0 0
\(735\) 1.26671 + 1.18129i 0.0467232 + 0.0435726i
\(736\) 0 0
\(737\) 0.874948i 0.0322291i
\(738\) 0 0
\(739\) 10.9792i 0.403877i −0.979398 0.201939i \(-0.935276\pi\)
0.979398 0.201939i \(-0.0647242\pi\)
\(740\) 0 0
\(741\) −33.9983 31.7058i −1.24896 1.16474i
\(742\) 0 0
\(743\) 23.8119 0.873573 0.436786 0.899565i \(-0.356117\pi\)
0.436786 + 0.899565i \(0.356117\pi\)
\(744\) 0 0
\(745\) 5.25864 0.192662
\(746\) 0 0
\(747\) −2.36881 33.9032i −0.0866704 1.24045i
\(748\) 0 0
\(749\) 18.5906i 0.679287i
\(750\) 0 0
\(751\) 7.92816i 0.289303i 0.989483 + 0.144651i \(0.0462060\pi\)
−0.989483 + 0.144651i \(0.953794\pi\)
\(752\) 0 0
\(753\) 8.61682 9.23989i 0.314014 0.336720i
\(754\) 0 0
\(755\) 1.58998 0.0578655
\(756\) 0 0
\(757\) −39.6358 −1.44059 −0.720293 0.693670i \(-0.755993\pi\)
−0.720293 + 0.693670i \(0.755993\pi\)
\(758\) 0 0
\(759\) 5.28634 5.66858i 0.191882 0.205757i
\(760\) 0 0
\(761\) 42.6209i 1.54500i 0.635012 + 0.772502i \(0.280995\pi\)
−0.635012 + 0.772502i \(0.719005\pi\)
\(762\) 0 0
\(763\) 15.6589i 0.566890i
\(764\) 0 0
\(765\) 0.883756 + 12.6486i 0.0319522 + 0.457311i
\(766\) 0 0
\(767\) −20.7604 −0.749614
\(768\) 0 0
\(769\) 37.7181 1.36015 0.680074 0.733144i \(-0.261948\pi\)
0.680074 + 0.733144i \(0.261948\pi\)
\(770\) 0 0
\(771\) −12.9116 12.0410i −0.465000 0.433645i
\(772\) 0 0
\(773\) 3.47876i 0.125122i −0.998041 0.0625611i \(-0.980073\pi\)
0.998041 0.0625611i \(-0.0199268\pi\)
\(774\) 0 0
\(775\) 7.87478i 0.282870i
\(776\) 0 0
\(777\) 2.01841 + 1.88230i 0.0724099 + 0.0675272i
\(778\) 0 0
\(779\) 56.3066 2.01739
\(780\) 0 0
\(781\) 50.5276 1.80802
\(782\) 0 0
\(783\) 22.1372 27.3325i 0.791121 0.976783i
\(784\) 0 0
\(785\) 17.1358i 0.611604i
\(786\) 0 0
\(787\) 7.84882i 0.279780i −0.990167 0.139890i \(-0.955325\pi\)
0.990167 0.139890i \(-0.0446749\pi\)
\(788\) 0 0
\(789\) 14.9723 16.0549i 0.533029 0.571571i
\(790\) 0 0
\(791\) 3.93263 0.139828
\(792\) 0 0
\(793\) 10.2673 0.364601
\(794\) 0 0
\(795\) −5.81289 + 6.23320i −0.206162 + 0.221069i
\(796\) 0 0
\(797\) 30.3207i 1.07401i 0.843578 + 0.537007i \(0.180445\pi\)
−0.843578 + 0.537007i \(0.819555\pi\)
\(798\) 0 0
\(799\) 3.52186i 0.124594i
\(800\) 0 0
\(801\) −29.7273 + 2.07704i −1.05036 + 0.0733886i
\(802\) 0 0
\(803\) 86.8506 3.06489
\(804\) 0 0
\(805\) −0.817252 −0.0288044
\(806\) 0 0
\(807\) −11.2687 10.5088i −0.396676 0.369928i
\(808\) 0 0
\(809\) 14.9144i 0.524364i 0.965018 + 0.262182i \(0.0844421\pi\)
−0.965018 + 0.262182i \(0.915558\pi\)
\(810\) 0 0
\(811\) 10.2714i 0.360676i −0.983605 0.180338i \(-0.942281\pi\)
0.983605 0.180338i \(-0.0577192\pi\)
\(812\) 0 0
\(813\) −16.1034 15.0176i −0.564772 0.526689i
\(814\) 0 0
\(815\) 11.9313 0.417936
\(816\) 0 0
\(817\) −75.6322 −2.64604
\(818\) 0 0
\(819\) 10.8091 0.755233i 0.377702 0.0263900i
\(820\) 0 0
\(821\) 22.1123i 0.771725i 0.922556 + 0.385863i \(0.126096\pi\)
−0.922556 + 0.385863i \(0.873904\pi\)
\(822\) 0 0
\(823\) 32.9990i 1.15027i −0.818057 0.575137i \(-0.804949\pi\)
0.818057 0.575137i \(-0.195051\pi\)
\(824\) 0 0
\(825\) 6.46843 6.93615i 0.225202 0.241486i
\(826\) 0 0
\(827\) 52.3962 1.82199 0.910997 0.412413i \(-0.135314\pi\)
0.910997 + 0.412413i \(0.135314\pi\)
\(828\) 0 0
\(829\) −1.95264 −0.0678179 −0.0339090 0.999425i \(-0.510796\pi\)
−0.0339090 + 0.999425i \(0.510796\pi\)
\(830\) 0 0
\(831\) 13.8766 14.8799i 0.481373 0.516180i
\(832\) 0 0
\(833\) 4.22648i 0.146439i
\(834\) 0 0
\(835\) 1.99274i 0.0689616i
\(836\) 0 0
\(837\) 25.7536 31.7975i 0.890174 1.09908i
\(838\) 0 0
\(839\) 26.3162 0.908537 0.454269 0.890865i \(-0.349901\pi\)
0.454269 + 0.890865i \(0.349901\pi\)
\(840\) 0 0
\(841\) −16.8193 −0.579976
\(842\) 0 0
\(843\) 20.7744 + 19.3735i 0.715507 + 0.667259i
\(844\) 0 0
\(845\) 0.0453320i 0.00155947i
\(846\) 0 0
\(847\) 18.9836i 0.652284i
\(848\) 0 0
\(849\) −23.1891 21.6254i −0.795849 0.742183i
\(850\) 0 0
\(851\) −1.30223 −0.0446399
\(852\) 0 0
\(853\) −47.5515 −1.62813 −0.814066 0.580773i \(-0.802750\pi\)
−0.814066 + 0.580773i \(0.802750\pi\)
\(854\) 0 0
\(855\) −1.55384 22.2391i −0.0531403 0.760561i
\(856\) 0 0
\(857\) 31.7562i 1.08477i 0.840130 + 0.542386i \(0.182479\pi\)
−0.840130 + 0.542386i \(0.817521\pi\)
\(858\) 0 0
\(859\) 12.0161i 0.409984i −0.978764 0.204992i \(-0.934283\pi\)
0.978764 0.204992i \(-0.0657168\pi\)
\(860\) 0 0
\(861\) −8.95082 + 9.59804i −0.305043 + 0.327100i
\(862\) 0 0
\(863\) −3.85760 −0.131314 −0.0656572 0.997842i \(-0.520914\pi\)
−0.0656572 + 0.997842i \(0.520914\pi\)
\(864\) 0 0
\(865\) −4.01054 −0.136362
\(866\) 0 0
\(867\) 1.01960 1.09332i 0.0346273 0.0371311i
\(868\) 0 0
\(869\) 62.1645i 2.10879i
\(870\) 0 0
\(871\) 0.577123i 0.0195551i
\(872\) 0 0
\(873\) 1.76528 + 25.2653i 0.0597457 + 0.855100i
\(874\) 0 0
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) −9.44601 −0.318969 −0.159485 0.987200i \(-0.550983\pi\)
−0.159485 + 0.987200i \(0.550983\pi\)
\(878\) 0 0
\(879\) 14.1158 + 13.1639i 0.476113 + 0.444007i
\(880\) 0 0
\(881\) 7.98637i 0.269068i 0.990909 + 0.134534i \(0.0429537\pi\)
−0.990909 + 0.134534i \(0.957046\pi\)
\(882\) 0 0
\(883\) 36.5457i 1.22986i 0.788582 + 0.614930i \(0.210816\pi\)
−0.788582 + 0.614930i \(0.789184\pi\)
\(884\) 0 0
\(885\) −7.28089 6.78993i −0.244744 0.228241i
\(886\) 0 0
\(887\) −41.2225 −1.38412 −0.692058 0.721842i \(-0.743296\pi\)
−0.692058 + 0.721842i \(0.743296\pi\)
\(888\) 0 0
\(889\) −14.1243 −0.473713
\(890\) 0 0
\(891\) −48.8027 + 6.85313i −1.63495 + 0.229589i
\(892\) 0 0
\(893\) 6.19222i 0.207215i
\(894\) 0 0
\(895\) 7.24176i 0.242065i
\(896\) 0 0
\(897\) −3.48691 + 3.73904i −0.116425 + 0.124843i
\(898\) 0 0
\(899\) −53.3044 −1.77780
\(900\) 0 0
\(901\) 20.7976 0.692869
\(902\) 0 0
\(903\) 12.0229 12.8923i 0.400098 0.429029i
\(904\) 0 0
\(905\) 0.749663i 0.0249196i
\(906\) 0 0
\(907\) 9.40601i 0.312322i −0.987732 0.156161i \(-0.950088\pi\)
0.987732 0.156161i \(-0.0499118\pi\)
\(908\) 0 0
\(909\) 21.1628 1.47864i 0.701927 0.0490435i
\(910\) 0 0
\(911\) 11.4174 0.378276 0.189138 0.981951i \(-0.439431\pi\)
0.189138 + 0.981951i \(0.439431\pi\)
\(912\) 0 0
\(913\) 62.0325 2.05298
\(914\) 0 0
\(915\) 3.60084 + 3.35803i 0.119040 + 0.111013i
\(916\) 0 0
\(917\) 15.0358i 0.496524i
\(918\) 0 0
\(919\) 7.24065i 0.238847i −0.992843 0.119423i \(-0.961895\pi\)
0.992843 0.119423i \(-0.0381046\pi\)
\(920\) 0 0
\(921\) 1.55367 + 1.44891i 0.0511953 + 0.0477431i
\(922\) 0 0
\(923\) −33.3284 −1.09702
\(924\) 0 0
\(925\) −1.59343 −0.0523915
\(926\) 0 0
\(927\) 39.8545 2.78463i 1.30899 0.0914592i
\(928\) 0 0
\(929\) 33.4931i 1.09887i −0.835536 0.549436i \(-0.814842\pi\)
0.835536 0.549436i \(-0.185158\pi\)
\(930\) 0 0
\(931\) 7.43110i 0.243545i
\(932\) 0 0
\(933\) 11.9173 12.7790i 0.390153 0.418364i
\(934\) 0 0
\(935\) −23.1430 −0.756858
\(936\) 0 0
\(937\) −16.1097 −0.526280 −0.263140 0.964758i \(-0.584758\pi\)
−0.263140 + 0.964758i \(0.584758\pi\)
\(938\) 0 0
\(939\) 14.0655 15.0826i 0.459011 0.492201i
\(940\) 0 0
\(941\) 14.5124i 0.473092i −0.971620 0.236546i \(-0.923985\pi\)
0.971620 0.236546i \(-0.0760154\pi\)
\(942\) 0 0
\(943\) 6.19244i 0.201654i
\(944\) 0 0
\(945\) 4.03789 + 3.27039i 0.131353 + 0.106386i
\(946\) 0 0
\(947\) 9.36786 0.304415 0.152207 0.988349i \(-0.451362\pi\)
0.152207 + 0.988349i \(0.451362\pi\)
\(948\) 0 0
\(949\) −57.2873 −1.85962
\(950\) 0 0
\(951\) −17.5267 16.3448i −0.568342 0.530018i
\(952\) 0 0
\(953\) 17.0284i 0.551604i −0.961214 0.275802i \(-0.911057\pi\)
0.961214 0.275802i \(-0.0889434\pi\)
\(954\) 0 0
\(955\) 18.7456i 0.606595i
\(956\) 0 0
\(957\) 46.9508 + 43.7848i 1.51770 + 1.41536i
\(958\) 0 0
\(959\) 5.41909 0.174992
\(960\) 0 0
\(961\) −31.0122 −1.00039
\(962\) 0 0
\(963\) −3.88730 55.6363i −0.125266 1.79285i
\(964\) 0 0
\(965\) 7.33556i 0.236140i
\(966\) 0 0
\(967\) 29.9365i 0.962692i 0.876531 + 0.481346i \(0.159852\pi\)
−0.876531 + 0.481346i \(0.840148\pi\)
\(968\) 0 0
\(969\) −37.1013 + 39.7840i −1.19187 + 1.27805i
\(970\) 0 0
\(971\) −23.7701 −0.762819 −0.381410 0.924406i \(-0.624561\pi\)
−0.381410 + 0.924406i \(0.624561\pi\)
\(972\) 0 0
\(973\) −4.50851 −0.144536
\(974\) 0 0
\(975\) −4.26663 + 4.57514i −0.136641 + 0.146522i
\(976\) 0 0
\(977\) 13.9813i 0.447302i 0.974669 + 0.223651i \(0.0717975\pi\)
−0.974669 + 0.223651i \(0.928202\pi\)
\(978\) 0 0
\(979\) 54.3918i 1.73837i
\(980\) 0 0
\(981\) −3.27427 46.8624i −0.104539 1.49620i
\(982\) 0 0
\(983\) 23.1193 0.737392 0.368696 0.929550i \(-0.379804\pi\)
0.368696 + 0.929550i \(0.379804\pi\)
\(984\) 0 0
\(985\) 27.0541 0.862016
\(986\) 0 0
\(987\) −1.05553 0.984351i −0.0335978 0.0313322i
\(988\) 0 0
\(989\) 8.31782i 0.264491i
\(990\) 0 0
\(991\) 34.1504i 1.08482i 0.840113 + 0.542411i \(0.182489\pi\)
−0.840113 + 0.542411i \(0.817511\pi\)
\(992\) 0 0
\(993\) −23.1261 21.5667i −0.733885 0.684398i
\(994\) 0 0
\(995\) 20.1432 0.638582
\(996\) 0 0
\(997\) 12.3151 0.390023 0.195012 0.980801i \(-0.437526\pi\)
0.195012 + 0.980801i \(0.437526\pi\)
\(998\) 0 0
\(999\) 6.43408 + 5.21112i 0.203565 + 0.164873i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.ba.d.911.4 yes 16
3.2 odd 2 1680.2.ba.c.911.14 yes 16
4.3 odd 2 1680.2.ba.c.911.13 16
12.11 even 2 inner 1680.2.ba.d.911.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.ba.c.911.13 16 4.3 odd 2
1680.2.ba.c.911.14 yes 16 3.2 odd 2
1680.2.ba.d.911.3 yes 16 12.11 even 2 inner
1680.2.ba.d.911.4 yes 16 1.1 even 1 trivial