Properties

Label 1680.2.ba.d.911.15
Level $1680$
Weight $2$
Character 1680.911
Analytic conductor $13.415$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(911,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.911"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.ba (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-10,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 640 x^{12} - 1656 x^{11} + 3522 x^{10} - 6148 x^{9} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 911.15
Root \(0.500000 - 0.492896i\) of defining polynomial
Character \(\chi\) \(=\) 1680.911
Dual form 1680.2.ba.d.911.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.43348 - 0.972180i) q^{3} +1.00000i q^{5} -1.00000i q^{7} +(1.10973 - 2.78720i) q^{9} -0.323488 q^{11} -0.149117 q^{13} +(0.972180 + 1.43348i) q^{15} -3.33957i q^{17} -7.32126i q^{19} +(-0.972180 - 1.43348i) q^{21} -2.14146 q^{23} -1.00000 q^{25} +(-1.11888 - 5.07426i) q^{27} +6.71019i q^{29} -6.03744i q^{31} +(-0.463714 + 0.314489i) q^{33} +1.00000 q^{35} +5.36008 q^{37} +(-0.213756 + 0.144969i) q^{39} -3.14246i q^{41} +3.36679i q^{43} +(2.78720 + 1.10973i) q^{45} +8.69575 q^{47} -1.00000 q^{49} +(-3.24666 - 4.78720i) q^{51} -6.57500i q^{53} -0.323488i q^{55} +(-7.11759 - 10.4949i) q^{57} +7.92077 q^{59} -8.37615 q^{61} +(-2.78720 - 1.10973i) q^{63} -0.149117i q^{65} -4.07060i q^{67} +(-3.06975 + 2.08189i) q^{69} +9.48706 q^{71} +0.0336980 q^{73} +(-1.43348 + 0.972180i) q^{75} +0.323488i q^{77} -10.2173i q^{79} +(-6.53699 - 6.18609i) q^{81} -5.08834 q^{83} +3.33957 q^{85} +(6.52351 + 9.61893i) q^{87} +12.4661i q^{89} +0.149117i q^{91} +(-5.86948 - 8.65455i) q^{93} +7.32126 q^{95} -7.69471 q^{97} +(-0.358985 + 0.901627i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{9} + 12 q^{11} - 2 q^{15} + 2 q^{21} + 8 q^{23} - 16 q^{25} - 12 q^{27} + 12 q^{33} + 16 q^{35} - 8 q^{37} - 14 q^{39} + 8 q^{45} + 16 q^{47} - 16 q^{49} - 34 q^{51} + 12 q^{57} + 32 q^{59}+ \cdots - 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.43348 0.972180i 0.827620 0.561288i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 1.10973 2.78720i 0.369911 0.929067i
\(10\) 0 0
\(11\) −0.323488 −0.0975353 −0.0487677 0.998810i \(-0.515529\pi\)
−0.0487677 + 0.998810i \(0.515529\pi\)
\(12\) 0 0
\(13\) −0.149117 −0.0413576 −0.0206788 0.999786i \(-0.506583\pi\)
−0.0206788 + 0.999786i \(0.506583\pi\)
\(14\) 0 0
\(15\) 0.972180 + 1.43348i 0.251016 + 0.370123i
\(16\) 0 0
\(17\) 3.33957i 0.809964i −0.914325 0.404982i \(-0.867278\pi\)
0.914325 0.404982i \(-0.132722\pi\)
\(18\) 0 0
\(19\) 7.32126i 1.67961i −0.542886 0.839806i \(-0.682668\pi\)
0.542886 0.839806i \(-0.317332\pi\)
\(20\) 0 0
\(21\) −0.972180 1.43348i −0.212147 0.312811i
\(22\) 0 0
\(23\) −2.14146 −0.446526 −0.223263 0.974758i \(-0.571671\pi\)
−0.223263 + 0.974758i \(0.571671\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −1.11888 5.07426i −0.215329 0.976542i
\(28\) 0 0
\(29\) 6.71019i 1.24605i 0.782201 + 0.623026i \(0.214097\pi\)
−0.782201 + 0.623026i \(0.785903\pi\)
\(30\) 0 0
\(31\) 6.03744i 1.08436i −0.840264 0.542178i \(-0.817600\pi\)
0.840264 0.542178i \(-0.182400\pi\)
\(32\) 0 0
\(33\) −0.463714 + 0.314489i −0.0807222 + 0.0547455i
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 5.36008 0.881191 0.440596 0.897706i \(-0.354767\pi\)
0.440596 + 0.897706i \(0.354767\pi\)
\(38\) 0 0
\(39\) −0.213756 + 0.144969i −0.0342284 + 0.0232136i
\(40\) 0 0
\(41\) 3.14246i 0.490770i −0.969426 0.245385i \(-0.921086\pi\)
0.969426 0.245385i \(-0.0789144\pi\)
\(42\) 0 0
\(43\) 3.36679i 0.513431i 0.966487 + 0.256715i \(0.0826403\pi\)
−0.966487 + 0.256715i \(0.917360\pi\)
\(44\) 0 0
\(45\) 2.78720 + 1.10973i 0.415492 + 0.165429i
\(46\) 0 0
\(47\) 8.69575 1.26841 0.634203 0.773166i \(-0.281328\pi\)
0.634203 + 0.773166i \(0.281328\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −3.24666 4.78720i −0.454623 0.670342i
\(52\) 0 0
\(53\) 6.57500i 0.903146i −0.892234 0.451573i \(-0.850863\pi\)
0.892234 0.451573i \(-0.149137\pi\)
\(54\) 0 0
\(55\) 0.323488i 0.0436191i
\(56\) 0 0
\(57\) −7.11759 10.4949i −0.942747 1.39008i
\(58\) 0 0
\(59\) 7.92077 1.03120 0.515598 0.856830i \(-0.327570\pi\)
0.515598 + 0.856830i \(0.327570\pi\)
\(60\) 0 0
\(61\) −8.37615 −1.07246 −0.536228 0.844073i \(-0.680151\pi\)
−0.536228 + 0.844073i \(0.680151\pi\)
\(62\) 0 0
\(63\) −2.78720 1.10973i −0.351154 0.139813i
\(64\) 0 0
\(65\) 0.149117i 0.0184957i
\(66\) 0 0
\(67\) 4.07060i 0.497302i −0.968593 0.248651i \(-0.920013\pi\)
0.968593 0.248651i \(-0.0799873\pi\)
\(68\) 0 0
\(69\) −3.06975 + 2.08189i −0.369554 + 0.250630i
\(70\) 0 0
\(71\) 9.48706 1.12591 0.562953 0.826489i \(-0.309665\pi\)
0.562953 + 0.826489i \(0.309665\pi\)
\(72\) 0 0
\(73\) 0.0336980 0.00394405 0.00197203 0.999998i \(-0.499372\pi\)
0.00197203 + 0.999998i \(0.499372\pi\)
\(74\) 0 0
\(75\) −1.43348 + 0.972180i −0.165524 + 0.112258i
\(76\) 0 0
\(77\) 0.323488i 0.0368649i
\(78\) 0 0
\(79\) 10.2173i 1.14954i −0.818315 0.574771i \(-0.805091\pi\)
0.818315 0.574771i \(-0.194909\pi\)
\(80\) 0 0
\(81\) −6.53699 6.18609i −0.726332 0.687344i
\(82\) 0 0
\(83\) −5.08834 −0.558518 −0.279259 0.960216i \(-0.590089\pi\)
−0.279259 + 0.960216i \(0.590089\pi\)
\(84\) 0 0
\(85\) 3.33957 0.362227
\(86\) 0 0
\(87\) 6.52351 + 9.61893i 0.699394 + 1.03126i
\(88\) 0 0
\(89\) 12.4661i 1.32140i 0.750650 + 0.660701i \(0.229741\pi\)
−0.750650 + 0.660701i \(0.770259\pi\)
\(90\) 0 0
\(91\) 0.149117i 0.0156317i
\(92\) 0 0
\(93\) −5.86948 8.65455i −0.608637 0.897435i
\(94\) 0 0
\(95\) 7.32126 0.751146
\(96\) 0 0
\(97\) −7.69471 −0.781279 −0.390640 0.920544i \(-0.627746\pi\)
−0.390640 + 0.920544i \(0.627746\pi\)
\(98\) 0 0
\(99\) −0.358985 + 0.901627i −0.0360794 + 0.0906169i
\(100\) 0 0
\(101\) 11.9619i 1.19025i 0.803632 + 0.595127i \(0.202898\pi\)
−0.803632 + 0.595127i \(0.797102\pi\)
\(102\) 0 0
\(103\) 3.99886i 0.394019i −0.980402 0.197010i \(-0.936877\pi\)
0.980402 0.197010i \(-0.0631230\pi\)
\(104\) 0 0
\(105\) 1.43348 0.972180i 0.139893 0.0948751i
\(106\) 0 0
\(107\) 12.0882 1.16861 0.584306 0.811534i \(-0.301367\pi\)
0.584306 + 0.811534i \(0.301367\pi\)
\(108\) 0 0
\(109\) −0.153658 −0.0147177 −0.00735886 0.999973i \(-0.502342\pi\)
−0.00735886 + 0.999973i \(0.502342\pi\)
\(110\) 0 0
\(111\) 7.68357 5.21096i 0.729292 0.494602i
\(112\) 0 0
\(113\) 9.24636i 0.869824i −0.900473 0.434912i \(-0.856779\pi\)
0.900473 0.434912i \(-0.143221\pi\)
\(114\) 0 0
\(115\) 2.14146i 0.199693i
\(116\) 0 0
\(117\) −0.165480 + 0.415619i −0.0152986 + 0.0384240i
\(118\) 0 0
\(119\) −3.33957 −0.306138
\(120\) 0 0
\(121\) −10.8954 −0.990487
\(122\) 0 0
\(123\) −3.05504 4.50466i −0.275464 0.406171i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 12.8181i 1.13742i 0.822537 + 0.568712i \(0.192558\pi\)
−0.822537 + 0.568712i \(0.807442\pi\)
\(128\) 0 0
\(129\) 3.27313 + 4.82623i 0.288183 + 0.424926i
\(130\) 0 0
\(131\) 4.45842 0.389534 0.194767 0.980850i \(-0.437605\pi\)
0.194767 + 0.980850i \(0.437605\pi\)
\(132\) 0 0
\(133\) −7.32126 −0.634834
\(134\) 0 0
\(135\) 5.07426 1.11888i 0.436723 0.0962982i
\(136\) 0 0
\(137\) 4.16349i 0.355711i 0.984057 + 0.177856i \(0.0569160\pi\)
−0.984057 + 0.177856i \(0.943084\pi\)
\(138\) 0 0
\(139\) 7.85313i 0.666093i −0.942910 0.333047i \(-0.891923\pi\)
0.942910 0.333047i \(-0.108077\pi\)
\(140\) 0 0
\(141\) 12.4652 8.45384i 1.04976 0.711942i
\(142\) 0 0
\(143\) 0.0482376 0.00403383
\(144\) 0 0
\(145\) −6.71019 −0.557251
\(146\) 0 0
\(147\) −1.43348 + 0.972180i −0.118231 + 0.0801841i
\(148\) 0 0
\(149\) 12.9773i 1.06314i 0.847013 + 0.531572i \(0.178399\pi\)
−0.847013 + 0.531572i \(0.821601\pi\)
\(150\) 0 0
\(151\) 21.5628i 1.75476i 0.479797 + 0.877379i \(0.340710\pi\)
−0.479797 + 0.877379i \(0.659290\pi\)
\(152\) 0 0
\(153\) −9.30804 3.70602i −0.752511 0.299614i
\(154\) 0 0
\(155\) 6.03744 0.484939
\(156\) 0 0
\(157\) 15.9701 1.27455 0.637275 0.770637i \(-0.280062\pi\)
0.637275 + 0.770637i \(0.280062\pi\)
\(158\) 0 0
\(159\) −6.39209 9.42514i −0.506926 0.747462i
\(160\) 0 0
\(161\) 2.14146i 0.168771i
\(162\) 0 0
\(163\) 20.5888i 1.61264i −0.591481 0.806319i \(-0.701457\pi\)
0.591481 0.806319i \(-0.298543\pi\)
\(164\) 0 0
\(165\) −0.314489 0.463714i −0.0244829 0.0361001i
\(166\) 0 0
\(167\) −0.279911 −0.0216601 −0.0108301 0.999941i \(-0.503447\pi\)
−0.0108301 + 0.999941i \(0.503447\pi\)
\(168\) 0 0
\(169\) −12.9778 −0.998290
\(170\) 0 0
\(171\) −20.4058 8.12464i −1.56047 0.621307i
\(172\) 0 0
\(173\) 13.5061i 1.02685i 0.858135 + 0.513424i \(0.171623\pi\)
−0.858135 + 0.513424i \(0.828377\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) 0 0
\(177\) 11.3543 7.70042i 0.853439 0.578799i
\(178\) 0 0
\(179\) −5.82742 −0.435562 −0.217781 0.975998i \(-0.569882\pi\)
−0.217781 + 0.975998i \(0.569882\pi\)
\(180\) 0 0
\(181\) −7.34937 −0.546275 −0.273137 0.961975i \(-0.588061\pi\)
−0.273137 + 0.961975i \(0.588061\pi\)
\(182\) 0 0
\(183\) −12.0071 + 8.14313i −0.887587 + 0.601958i
\(184\) 0 0
\(185\) 5.36008i 0.394081i
\(186\) 0 0
\(187\) 1.08031i 0.0790001i
\(188\) 0 0
\(189\) −5.07426 + 1.11888i −0.369098 + 0.0813868i
\(190\) 0 0
\(191\) −17.3593 −1.25608 −0.628039 0.778182i \(-0.716142\pi\)
−0.628039 + 0.778182i \(0.716142\pi\)
\(192\) 0 0
\(193\) −18.4993 −1.33161 −0.665804 0.746127i \(-0.731911\pi\)
−0.665804 + 0.746127i \(0.731911\pi\)
\(194\) 0 0
\(195\) −0.144969 0.213756i −0.0103814 0.0153074i
\(196\) 0 0
\(197\) 1.83126i 0.130472i −0.997870 0.0652359i \(-0.979220\pi\)
0.997870 0.0652359i \(-0.0207800\pi\)
\(198\) 0 0
\(199\) 7.53944i 0.534457i 0.963633 + 0.267228i \(0.0861078\pi\)
−0.963633 + 0.267228i \(0.913892\pi\)
\(200\) 0 0
\(201\) −3.95735 5.83512i −0.279130 0.411578i
\(202\) 0 0
\(203\) 6.71019 0.470963
\(204\) 0 0
\(205\) 3.14246 0.219479
\(206\) 0 0
\(207\) −2.37645 + 5.96869i −0.165175 + 0.414853i
\(208\) 0 0
\(209\) 2.36834i 0.163822i
\(210\) 0 0
\(211\) 12.1738i 0.838081i 0.907968 + 0.419040i \(0.137633\pi\)
−0.907968 + 0.419040i \(0.862367\pi\)
\(212\) 0 0
\(213\) 13.5995 9.22313i 0.931823 0.631958i
\(214\) 0 0
\(215\) −3.36679 −0.229613
\(216\) 0 0
\(217\) −6.03744 −0.409848
\(218\) 0 0
\(219\) 0.0483054 0.0327605i 0.00326418 0.00221375i
\(220\) 0 0
\(221\) 0.497986i 0.0334982i
\(222\) 0 0
\(223\) 2.75770i 0.184669i −0.995728 0.0923345i \(-0.970567\pi\)
0.995728 0.0923345i \(-0.0294329\pi\)
\(224\) 0 0
\(225\) −1.10973 + 2.78720i −0.0739821 + 0.185813i
\(226\) 0 0
\(227\) 28.0440 1.86134 0.930672 0.365854i \(-0.119223\pi\)
0.930672 + 0.365854i \(0.119223\pi\)
\(228\) 0 0
\(229\) 20.9415 1.38385 0.691927 0.721967i \(-0.256762\pi\)
0.691927 + 0.721967i \(0.256762\pi\)
\(230\) 0 0
\(231\) 0.314489 + 0.463714i 0.0206918 + 0.0305101i
\(232\) 0 0
\(233\) 17.7823i 1.16496i 0.812846 + 0.582479i \(0.197917\pi\)
−0.812846 + 0.582479i \(0.802083\pi\)
\(234\) 0 0
\(235\) 8.69575i 0.567248i
\(236\) 0 0
\(237\) −9.93310 14.6464i −0.645224 0.951384i
\(238\) 0 0
\(239\) −5.66539 −0.366464 −0.183232 0.983070i \(-0.558656\pi\)
−0.183232 + 0.983070i \(0.558656\pi\)
\(240\) 0 0
\(241\) 30.3249 1.95340 0.976699 0.214613i \(-0.0688490\pi\)
0.976699 + 0.214613i \(0.0688490\pi\)
\(242\) 0 0
\(243\) −15.3846 2.51251i −0.986925 0.161178i
\(244\) 0 0
\(245\) 1.00000i 0.0638877i
\(246\) 0 0
\(247\) 1.09172i 0.0694648i
\(248\) 0 0
\(249\) −7.29404 + 4.94678i −0.462241 + 0.313490i
\(250\) 0 0
\(251\) −9.18993 −0.580063 −0.290032 0.957017i \(-0.593666\pi\)
−0.290032 + 0.957017i \(0.593666\pi\)
\(252\) 0 0
\(253\) 0.692738 0.0435521
\(254\) 0 0
\(255\) 4.78720 3.24666i 0.299786 0.203314i
\(256\) 0 0
\(257\) 21.0025i 1.31010i −0.755586 0.655050i \(-0.772648\pi\)
0.755586 0.655050i \(-0.227352\pi\)
\(258\) 0 0
\(259\) 5.36008i 0.333059i
\(260\) 0 0
\(261\) 18.7027 + 7.44651i 1.15767 + 0.460928i
\(262\) 0 0
\(263\) 10.1806 0.627763 0.313882 0.949462i \(-0.398370\pi\)
0.313882 + 0.949462i \(0.398370\pi\)
\(264\) 0 0
\(265\) 6.57500 0.403899
\(266\) 0 0
\(267\) 12.1193 + 17.8699i 0.741687 + 1.09362i
\(268\) 0 0
\(269\) 23.3443i 1.42333i 0.702519 + 0.711665i \(0.252058\pi\)
−0.702519 + 0.711665i \(0.747942\pi\)
\(270\) 0 0
\(271\) 21.5578i 1.30954i −0.755827 0.654771i \(-0.772765\pi\)
0.755827 0.654771i \(-0.227235\pi\)
\(272\) 0 0
\(273\) 0.144969 + 0.213756i 0.00877390 + 0.0129371i
\(274\) 0 0
\(275\) 0.323488 0.0195071
\(276\) 0 0
\(277\) 32.4262 1.94830 0.974150 0.225901i \(-0.0725326\pi\)
0.974150 + 0.225901i \(0.0725326\pi\)
\(278\) 0 0
\(279\) −16.8276 6.69994i −1.00744 0.401115i
\(280\) 0 0
\(281\) 20.4997i 1.22291i −0.791279 0.611455i \(-0.790584\pi\)
0.791279 0.611455i \(-0.209416\pi\)
\(282\) 0 0
\(283\) 0.441277i 0.0262312i −0.999914 0.0131156i \(-0.995825\pi\)
0.999914 0.0131156i \(-0.00417494\pi\)
\(284\) 0 0
\(285\) 10.4949 7.11759i 0.621663 0.421609i
\(286\) 0 0
\(287\) −3.14246 −0.185494
\(288\) 0 0
\(289\) 5.84730 0.343959
\(290\) 0 0
\(291\) −11.0302 + 7.48064i −0.646603 + 0.438523i
\(292\) 0 0
\(293\) 13.1929i 0.770737i 0.922763 + 0.385368i \(0.125926\pi\)
−0.922763 + 0.385368i \(0.874074\pi\)
\(294\) 0 0
\(295\) 7.92077i 0.461165i
\(296\) 0 0
\(297\) 0.361946 + 1.64146i 0.0210022 + 0.0952473i
\(298\) 0 0
\(299\) 0.319329 0.0184673
\(300\) 0 0
\(301\) 3.36679 0.194059
\(302\) 0 0
\(303\) 11.6291 + 17.1471i 0.668075 + 0.985078i
\(304\) 0 0
\(305\) 8.37615i 0.479617i
\(306\) 0 0
\(307\) 27.2734i 1.55657i 0.627908 + 0.778287i \(0.283911\pi\)
−0.627908 + 0.778287i \(0.716089\pi\)
\(308\) 0 0
\(309\) −3.88761 5.73229i −0.221158 0.326098i
\(310\) 0 0
\(311\) 20.0451 1.13665 0.568326 0.822804i \(-0.307591\pi\)
0.568326 + 0.822804i \(0.307591\pi\)
\(312\) 0 0
\(313\) −5.47548 −0.309493 −0.154746 0.987954i \(-0.549456\pi\)
−0.154746 + 0.987954i \(0.549456\pi\)
\(314\) 0 0
\(315\) 1.10973 2.78720i 0.0625263 0.157041i
\(316\) 0 0
\(317\) 15.2862i 0.858557i 0.903172 + 0.429279i \(0.141232\pi\)
−0.903172 + 0.429279i \(0.858768\pi\)
\(318\) 0 0
\(319\) 2.17067i 0.121534i
\(320\) 0 0
\(321\) 17.3282 11.7519i 0.967167 0.655928i
\(322\) 0 0
\(323\) −24.4498 −1.36043
\(324\) 0 0
\(325\) 0.149117 0.00827152
\(326\) 0 0
\(327\) −0.220265 + 0.149383i −0.0121807 + 0.00826089i
\(328\) 0 0
\(329\) 8.69575i 0.479412i
\(330\) 0 0
\(331\) 14.2784i 0.784814i 0.919792 + 0.392407i \(0.128357\pi\)
−0.919792 + 0.392407i \(0.871643\pi\)
\(332\) 0 0
\(333\) 5.94825 14.9396i 0.325962 0.818686i
\(334\) 0 0
\(335\) 4.07060 0.222400
\(336\) 0 0
\(337\) 10.0006 0.544769 0.272385 0.962188i \(-0.412188\pi\)
0.272385 + 0.962188i \(0.412188\pi\)
\(338\) 0 0
\(339\) −8.98913 13.2545i −0.488222 0.719884i
\(340\) 0 0
\(341\) 1.95304i 0.105763i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −2.08189 3.06975i −0.112085 0.165270i
\(346\) 0 0
\(347\) 11.2842 0.605767 0.302884 0.953028i \(-0.402051\pi\)
0.302884 + 0.953028i \(0.402051\pi\)
\(348\) 0 0
\(349\) −3.36912 −0.180345 −0.0901725 0.995926i \(-0.528742\pi\)
−0.0901725 + 0.995926i \(0.528742\pi\)
\(350\) 0 0
\(351\) 0.166845 + 0.756658i 0.00890550 + 0.0403874i
\(352\) 0 0
\(353\) 15.3206i 0.815431i 0.913109 + 0.407716i \(0.133675\pi\)
−0.913109 + 0.407716i \(0.866325\pi\)
\(354\) 0 0
\(355\) 9.48706i 0.503521i
\(356\) 0 0
\(357\) −4.78720 + 3.24666i −0.253366 + 0.171831i
\(358\) 0 0
\(359\) −25.4322 −1.34226 −0.671131 0.741339i \(-0.734191\pi\)
−0.671131 + 0.741339i \(0.734191\pi\)
\(360\) 0 0
\(361\) −34.6009 −1.82110
\(362\) 0 0
\(363\) −15.6183 + 10.5922i −0.819747 + 0.555949i
\(364\) 0 0
\(365\) 0.0336980i 0.00176383i
\(366\) 0 0
\(367\) 4.72097i 0.246432i −0.992380 0.123216i \(-0.960679\pi\)
0.992380 0.123216i \(-0.0393209\pi\)
\(368\) 0 0
\(369\) −8.75868 3.48729i −0.455959 0.181541i
\(370\) 0 0
\(371\) −6.57500 −0.341357
\(372\) 0 0
\(373\) 31.5109 1.63157 0.815786 0.578354i \(-0.196305\pi\)
0.815786 + 0.578354i \(0.196305\pi\)
\(374\) 0 0
\(375\) −0.972180 1.43348i −0.0502032 0.0740246i
\(376\) 0 0
\(377\) 1.00060i 0.0515337i
\(378\) 0 0
\(379\) 16.9528i 0.870806i 0.900236 + 0.435403i \(0.143394\pi\)
−0.900236 + 0.435403i \(0.856606\pi\)
\(380\) 0 0
\(381\) 12.4615 + 18.3745i 0.638423 + 0.941356i
\(382\) 0 0
\(383\) −33.5173 −1.71266 −0.856328 0.516432i \(-0.827260\pi\)
−0.856328 + 0.516432i \(0.827260\pi\)
\(384\) 0 0
\(385\) −0.323488 −0.0164865
\(386\) 0 0
\(387\) 9.38393 + 3.73624i 0.477012 + 0.189924i
\(388\) 0 0
\(389\) 18.2050i 0.923032i 0.887132 + 0.461516i \(0.152694\pi\)
−0.887132 + 0.461516i \(0.847306\pi\)
\(390\) 0 0
\(391\) 7.15156i 0.361670i
\(392\) 0 0
\(393\) 6.39106 4.33439i 0.322387 0.218641i
\(394\) 0 0
\(395\) 10.2173 0.514090
\(396\) 0 0
\(397\) 21.1696 1.06247 0.531237 0.847223i \(-0.321727\pi\)
0.531237 + 0.847223i \(0.321727\pi\)
\(398\) 0 0
\(399\) −10.4949 + 7.11759i −0.525401 + 0.356325i
\(400\) 0 0
\(401\) 29.6940i 1.48285i 0.671037 + 0.741424i \(0.265849\pi\)
−0.671037 + 0.741424i \(0.734151\pi\)
\(402\) 0 0
\(403\) 0.900285i 0.0448464i
\(404\) 0 0
\(405\) 6.18609 6.53699i 0.307389 0.324826i
\(406\) 0 0
\(407\) −1.73392 −0.0859473
\(408\) 0 0
\(409\) 19.3765 0.958106 0.479053 0.877786i \(-0.340980\pi\)
0.479053 + 0.877786i \(0.340980\pi\)
\(410\) 0 0
\(411\) 4.04767 + 5.96829i 0.199657 + 0.294394i
\(412\) 0 0
\(413\) 7.92077i 0.389756i
\(414\) 0 0
\(415\) 5.08834i 0.249777i
\(416\) 0 0
\(417\) −7.63465 11.2573i −0.373871 0.551272i
\(418\) 0 0
\(419\) −23.1125 −1.12912 −0.564560 0.825392i \(-0.690954\pi\)
−0.564560 + 0.825392i \(0.690954\pi\)
\(420\) 0 0
\(421\) −30.4789 −1.48545 −0.742725 0.669596i \(-0.766467\pi\)
−0.742725 + 0.669596i \(0.766467\pi\)
\(422\) 0 0
\(423\) 9.64996 24.2368i 0.469197 1.17843i
\(424\) 0 0
\(425\) 3.33957i 0.161993i
\(426\) 0 0
\(427\) 8.37615i 0.405351i
\(428\) 0 0
\(429\) 0.0691476 0.0468956i 0.00333848 0.00226414i
\(430\) 0 0
\(431\) −22.7846 −1.09750 −0.548748 0.835988i \(-0.684895\pi\)
−0.548748 + 0.835988i \(0.684895\pi\)
\(432\) 0 0
\(433\) −3.39779 −0.163287 −0.0816437 0.996662i \(-0.526017\pi\)
−0.0816437 + 0.996662i \(0.526017\pi\)
\(434\) 0 0
\(435\) −9.61893 + 6.52351i −0.461192 + 0.312779i
\(436\) 0 0
\(437\) 15.6782i 0.749991i
\(438\) 0 0
\(439\) 11.2669i 0.537741i −0.963176 0.268870i \(-0.913350\pi\)
0.963176 0.268870i \(-0.0866503\pi\)
\(440\) 0 0
\(441\) −1.10973 + 2.78720i −0.0528444 + 0.132724i
\(442\) 0 0
\(443\) 18.3866 0.873572 0.436786 0.899565i \(-0.356117\pi\)
0.436786 + 0.899565i \(0.356117\pi\)
\(444\) 0 0
\(445\) −12.4661 −0.590949
\(446\) 0 0
\(447\) 12.6163 + 18.6028i 0.596731 + 0.879880i
\(448\) 0 0
\(449\) 27.5244i 1.29896i 0.760380 + 0.649478i \(0.225013\pi\)
−0.760380 + 0.649478i \(0.774987\pi\)
\(450\) 0 0
\(451\) 1.01655i 0.0478674i
\(452\) 0 0
\(453\) 20.9630 + 30.9099i 0.984926 + 1.45227i
\(454\) 0 0
\(455\) −0.149117 −0.00699071
\(456\) 0 0
\(457\) 3.78681 0.177139 0.0885697 0.996070i \(-0.471770\pi\)
0.0885697 + 0.996070i \(0.471770\pi\)
\(458\) 0 0
\(459\) −16.9458 + 3.73658i −0.790963 + 0.174409i
\(460\) 0 0
\(461\) 33.6536i 1.56740i 0.621137 + 0.783702i \(0.286671\pi\)
−0.621137 + 0.783702i \(0.713329\pi\)
\(462\) 0 0
\(463\) 3.85486i 0.179151i −0.995980 0.0895754i \(-0.971449\pi\)
0.995980 0.0895754i \(-0.0285510\pi\)
\(464\) 0 0
\(465\) 8.65455 5.86948i 0.401345 0.272191i
\(466\) 0 0
\(467\) 36.9726 1.71089 0.855444 0.517896i \(-0.173285\pi\)
0.855444 + 0.517896i \(0.173285\pi\)
\(468\) 0 0
\(469\) −4.07060 −0.187963
\(470\) 0 0
\(471\) 22.8928 15.5258i 1.05484 0.715390i
\(472\) 0 0
\(473\) 1.08912i 0.0500777i
\(474\) 0 0
\(475\) 7.32126i 0.335923i
\(476\) 0 0
\(477\) −18.3259 7.29649i −0.839084 0.334083i
\(478\) 0 0
\(479\) −15.6283 −0.714076 −0.357038 0.934090i \(-0.616213\pi\)
−0.357038 + 0.934090i \(0.616213\pi\)
\(480\) 0 0
\(481\) −0.799279 −0.0364440
\(482\) 0 0
\(483\) 2.08189 + 3.06975i 0.0947292 + 0.139678i
\(484\) 0 0
\(485\) 7.69471i 0.349399i
\(486\) 0 0
\(487\) 25.2408i 1.14377i 0.820333 + 0.571886i \(0.193788\pi\)
−0.820333 + 0.571886i \(0.806212\pi\)
\(488\) 0 0
\(489\) −20.0160 29.5136i −0.905155 1.33465i
\(490\) 0 0
\(491\) −19.0619 −0.860250 −0.430125 0.902769i \(-0.641531\pi\)
−0.430125 + 0.902769i \(0.641531\pi\)
\(492\) 0 0
\(493\) 22.4091 1.00926
\(494\) 0 0
\(495\) −0.901627 0.358985i −0.0405251 0.0161352i
\(496\) 0 0
\(497\) 9.48706i 0.425553i
\(498\) 0 0
\(499\) 4.22462i 0.189120i −0.995519 0.0945600i \(-0.969856\pi\)
0.995519 0.0945600i \(-0.0301444\pi\)
\(500\) 0 0
\(501\) −0.401246 + 0.272123i −0.0179264 + 0.0121576i
\(502\) 0 0
\(503\) −7.35455 −0.327923 −0.163962 0.986467i \(-0.552427\pi\)
−0.163962 + 0.986467i \(0.552427\pi\)
\(504\) 0 0
\(505\) −11.9619 −0.532297
\(506\) 0 0
\(507\) −18.6034 + 12.6167i −0.826205 + 0.560328i
\(508\) 0 0
\(509\) 43.0336i 1.90743i −0.300712 0.953715i \(-0.597224\pi\)
0.300712 0.953715i \(-0.402776\pi\)
\(510\) 0 0
\(511\) 0.0336980i 0.00149071i
\(512\) 0 0
\(513\) −37.1500 + 8.19164i −1.64021 + 0.361670i
\(514\) 0 0
\(515\) 3.99886 0.176211
\(516\) 0 0
\(517\) −2.81297 −0.123714
\(518\) 0 0
\(519\) 13.1303 + 19.3607i 0.576357 + 0.849839i
\(520\) 0 0
\(521\) 16.0937i 0.705076i −0.935797 0.352538i \(-0.885319\pi\)
0.935797 0.352538i \(-0.114681\pi\)
\(522\) 0 0
\(523\) 34.4109i 1.50468i 0.658773 + 0.752342i \(0.271076\pi\)
−0.658773 + 0.752342i \(0.728924\pi\)
\(524\) 0 0
\(525\) 0.972180 + 1.43348i 0.0424294 + 0.0625622i
\(526\) 0 0
\(527\) −20.1624 −0.878289
\(528\) 0 0
\(529\) −18.4141 −0.800614
\(530\) 0 0
\(531\) 8.78993 22.0768i 0.381451 0.958051i
\(532\) 0 0
\(533\) 0.468595i 0.0202971i
\(534\) 0 0
\(535\) 12.0882i 0.522619i
\(536\) 0 0
\(537\) −8.35349 + 5.66530i −0.360480 + 0.244476i
\(538\) 0 0
\(539\) 0.323488 0.0139336
\(540\) 0 0
\(541\) −13.9111 −0.598085 −0.299042 0.954240i \(-0.596667\pi\)
−0.299042 + 0.954240i \(0.596667\pi\)
\(542\) 0 0
\(543\) −10.5352 + 7.14491i −0.452108 + 0.306618i
\(544\) 0 0
\(545\) 0.153658i 0.00658197i
\(546\) 0 0
\(547\) 6.84919i 0.292850i −0.989222 0.146425i \(-0.953223\pi\)
0.989222 0.146425i \(-0.0467768\pi\)
\(548\) 0 0
\(549\) −9.29529 + 23.3460i −0.396713 + 0.996385i
\(550\) 0 0
\(551\) 49.1271 2.09288
\(552\) 0 0
\(553\) −10.2173 −0.434486
\(554\) 0 0
\(555\) 5.21096 + 7.68357i 0.221193 + 0.326149i
\(556\) 0 0
\(557\) 30.0492i 1.27322i −0.771184 0.636612i \(-0.780335\pi\)
0.771184 0.636612i \(-0.219665\pi\)
\(558\) 0 0
\(559\) 0.502046i 0.0212343i
\(560\) 0 0
\(561\) 1.05026 + 1.54860i 0.0443418 + 0.0653821i
\(562\) 0 0
\(563\) 16.4071 0.691477 0.345739 0.938331i \(-0.387628\pi\)
0.345739 + 0.938331i \(0.387628\pi\)
\(564\) 0 0
\(565\) 9.24636 0.388997
\(566\) 0 0
\(567\) −6.18609 + 6.53699i −0.259792 + 0.274528i
\(568\) 0 0
\(569\) 8.48964i 0.355904i −0.984039 0.177952i \(-0.943053\pi\)
0.984039 0.177952i \(-0.0569472\pi\)
\(570\) 0 0
\(571\) 0.443759i 0.0185707i 0.999957 + 0.00928536i \(0.00295567\pi\)
−0.999957 + 0.00928536i \(0.997044\pi\)
\(572\) 0 0
\(573\) −24.8843 + 16.8764i −1.03955 + 0.705022i
\(574\) 0 0
\(575\) 2.14146 0.0893052
\(576\) 0 0
\(577\) 40.3709 1.68066 0.840331 0.542074i \(-0.182361\pi\)
0.840331 + 0.542074i \(0.182361\pi\)
\(578\) 0 0
\(579\) −26.5184 + 17.9846i −1.10207 + 0.747416i
\(580\) 0 0
\(581\) 5.08834i 0.211100i
\(582\) 0 0
\(583\) 2.12694i 0.0880887i
\(584\) 0 0
\(585\) −0.415619 0.165480i −0.0171837 0.00684175i
\(586\) 0 0
\(587\) 39.6680 1.63727 0.818636 0.574313i \(-0.194731\pi\)
0.818636 + 0.574313i \(0.194731\pi\)
\(588\) 0 0
\(589\) −44.2017 −1.82130
\(590\) 0 0
\(591\) −1.78031 2.62507i −0.0732323 0.107981i
\(592\) 0 0
\(593\) 44.1724i 1.81394i 0.421193 + 0.906971i \(0.361611\pi\)
−0.421193 + 0.906971i \(0.638389\pi\)
\(594\) 0 0
\(595\) 3.33957i 0.136909i
\(596\) 0 0
\(597\) 7.32969 + 10.8076i 0.299984 + 0.442327i
\(598\) 0 0
\(599\) −23.2508 −0.950004 −0.475002 0.879985i \(-0.657553\pi\)
−0.475002 + 0.879985i \(0.657553\pi\)
\(600\) 0 0
\(601\) −18.4518 −0.752664 −0.376332 0.926485i \(-0.622815\pi\)
−0.376332 + 0.926485i \(0.622815\pi\)
\(602\) 0 0
\(603\) −11.3456 4.51727i −0.462027 0.183957i
\(604\) 0 0
\(605\) 10.8954i 0.442959i
\(606\) 0 0
\(607\) 26.1636i 1.06195i −0.847389 0.530973i \(-0.821827\pi\)
0.847389 0.530973i \(-0.178173\pi\)
\(608\) 0 0
\(609\) 9.61893 6.52351i 0.389779 0.264346i
\(610\) 0 0
\(611\) −1.29668 −0.0524583
\(612\) 0 0
\(613\) 17.3607 0.701193 0.350596 0.936527i \(-0.385979\pi\)
0.350596 + 0.936527i \(0.385979\pi\)
\(614\) 0 0
\(615\) 4.50466 3.05504i 0.181645 0.123191i
\(616\) 0 0
\(617\) 33.7808i 1.35996i −0.733229 0.679981i \(-0.761988\pi\)
0.733229 0.679981i \(-0.238012\pi\)
\(618\) 0 0
\(619\) 42.1957i 1.69599i −0.530004 0.847995i \(-0.677810\pi\)
0.530004 0.847995i \(-0.322190\pi\)
\(620\) 0 0
\(621\) 2.39605 + 10.8663i 0.0961501 + 0.436051i
\(622\) 0 0
\(623\) 12.4661 0.499443
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 2.30245 + 3.39497i 0.0919512 + 0.135582i
\(628\) 0 0
\(629\) 17.9003i 0.713733i
\(630\) 0 0
\(631\) 28.1746i 1.12161i −0.827947 0.560807i \(-0.810491\pi\)
0.827947 0.560807i \(-0.189509\pi\)
\(632\) 0 0
\(633\) 11.8352 + 17.4509i 0.470405 + 0.693613i
\(634\) 0 0
\(635\) −12.8181 −0.508672
\(636\) 0 0
\(637\) 0.149117 0.00590823
\(638\) 0 0
\(639\) 10.5281 26.4423i 0.416485 1.04604i
\(640\) 0 0
\(641\) 4.45528i 0.175973i −0.996122 0.0879864i \(-0.971957\pi\)
0.996122 0.0879864i \(-0.0280432\pi\)
\(642\) 0 0
\(643\) 11.4662i 0.452185i 0.974106 + 0.226092i \(0.0725951\pi\)
−0.974106 + 0.226092i \(0.927405\pi\)
\(644\) 0 0
\(645\) −4.82623 + 3.27313i −0.190033 + 0.128879i
\(646\) 0 0
\(647\) −19.1859 −0.754274 −0.377137 0.926157i \(-0.623091\pi\)
−0.377137 + 0.926157i \(0.623091\pi\)
\(648\) 0 0
\(649\) −2.56228 −0.100578
\(650\) 0 0
\(651\) −8.65455 + 5.86948i −0.339199 + 0.230043i
\(652\) 0 0
\(653\) 1.84828i 0.0723286i 0.999346 + 0.0361643i \(0.0115140\pi\)
−0.999346 + 0.0361643i \(0.988486\pi\)
\(654\) 0 0
\(655\) 4.45842i 0.174205i
\(656\) 0 0
\(657\) 0.0373957 0.0939231i 0.00145895 0.00366429i
\(658\) 0 0
\(659\) 8.45557 0.329382 0.164691 0.986345i \(-0.447337\pi\)
0.164691 + 0.986345i \(0.447337\pi\)
\(660\) 0 0
\(661\) 10.9536 0.426047 0.213024 0.977047i \(-0.431669\pi\)
0.213024 + 0.977047i \(0.431669\pi\)
\(662\) 0 0
\(663\) 0.484132 + 0.713853i 0.0188021 + 0.0277238i
\(664\) 0 0
\(665\) 7.32126i 0.283906i
\(666\) 0 0
\(667\) 14.3696i 0.556394i
\(668\) 0 0
\(669\) −2.68098 3.95310i −0.103653 0.152836i
\(670\) 0 0
\(671\) 2.70959 0.104602
\(672\) 0 0
\(673\) 5.49441 0.211794 0.105897 0.994377i \(-0.466229\pi\)
0.105897 + 0.994377i \(0.466229\pi\)
\(674\) 0 0
\(675\) 1.11888 + 5.07426i 0.0430658 + 0.195308i
\(676\) 0 0
\(677\) 23.7957i 0.914543i 0.889327 + 0.457271i \(0.151173\pi\)
−0.889327 + 0.457271i \(0.848827\pi\)
\(678\) 0 0
\(679\) 7.69471i 0.295296i
\(680\) 0 0
\(681\) 40.2005 27.2638i 1.54049 1.04475i
\(682\) 0 0
\(683\) 31.8861 1.22009 0.610044 0.792368i \(-0.291152\pi\)
0.610044 + 0.792368i \(0.291152\pi\)
\(684\) 0 0
\(685\) −4.16349 −0.159079
\(686\) 0 0
\(687\) 30.0192 20.3589i 1.14531 0.776741i
\(688\) 0 0
\(689\) 0.980445i 0.0373520i
\(690\) 0 0
\(691\) 25.8822i 0.984606i 0.870424 + 0.492303i \(0.163845\pi\)
−0.870424 + 0.492303i \(0.836155\pi\)
\(692\) 0 0
\(693\) 0.901627 + 0.358985i 0.0342500 + 0.0136367i
\(694\) 0 0
\(695\) 7.85313 0.297886
\(696\) 0 0
\(697\) −10.4945 −0.397506
\(698\) 0 0
\(699\) 17.2876 + 25.4906i 0.653877 + 0.964142i
\(700\) 0 0
\(701\) 3.89184i 0.146993i −0.997295 0.0734964i \(-0.976584\pi\)
0.997295 0.0734964i \(-0.0234157\pi\)
\(702\) 0 0
\(703\) 39.2425i 1.48006i
\(704\) 0 0
\(705\) 8.45384 + 12.4652i 0.318390 + 0.469466i
\(706\) 0 0
\(707\) 11.9619 0.449873
\(708\) 0 0
\(709\) 27.3378 1.02669 0.513347 0.858181i \(-0.328405\pi\)
0.513347 + 0.858181i \(0.328405\pi\)
\(710\) 0 0
\(711\) −28.4778 11.3385i −1.06800 0.425227i
\(712\) 0 0
\(713\) 12.9290i 0.484193i
\(714\) 0 0
\(715\) 0.0482376i 0.00180398i
\(716\) 0 0
\(717\) −8.12122 + 5.50778i −0.303293 + 0.205692i
\(718\) 0 0
\(719\) 3.28236 0.122411 0.0612057 0.998125i \(-0.480505\pi\)
0.0612057 + 0.998125i \(0.480505\pi\)
\(720\) 0 0
\(721\) −3.99886 −0.148925
\(722\) 0 0
\(723\) 43.4701 29.4813i 1.61667 1.09642i
\(724\) 0 0
\(725\) 6.71019i 0.249210i
\(726\) 0 0
\(727\) 1.66432i 0.0617263i −0.999524 0.0308631i \(-0.990174\pi\)
0.999524 0.0308631i \(-0.00982560\pi\)
\(728\) 0 0
\(729\) −24.4962 + 11.3550i −0.907267 + 0.420556i
\(730\) 0 0
\(731\) 11.2436 0.415860
\(732\) 0 0
\(733\) −8.16593 −0.301615 −0.150808 0.988563i \(-0.548187\pi\)
−0.150808 + 0.988563i \(0.548187\pi\)
\(734\) 0 0
\(735\) −0.972180 1.43348i −0.0358594 0.0528747i
\(736\) 0 0
\(737\) 1.31679i 0.0485046i
\(738\) 0 0
\(739\) 25.1763i 0.926125i −0.886326 0.463063i \(-0.846751\pi\)
0.886326 0.463063i \(-0.153249\pi\)
\(740\) 0 0
\(741\) 1.06135 + 1.56497i 0.0389898 + 0.0574905i
\(742\) 0 0
\(743\) −36.0524 −1.32264 −0.661318 0.750106i \(-0.730002\pi\)
−0.661318 + 0.750106i \(0.730002\pi\)
\(744\) 0 0
\(745\) −12.9773 −0.475453
\(746\) 0 0
\(747\) −5.64669 + 14.1822i −0.206602 + 0.518901i
\(748\) 0 0
\(749\) 12.0882i 0.441694i
\(750\) 0 0
\(751\) 34.1513i 1.24620i 0.782143 + 0.623099i \(0.214127\pi\)
−0.782143 + 0.623099i \(0.785873\pi\)
\(752\) 0 0
\(753\) −13.1736 + 8.93427i −0.480072 + 0.325583i
\(754\) 0 0
\(755\) −21.5628 −0.784752
\(756\) 0 0
\(757\) −3.59204 −0.130555 −0.0652774 0.997867i \(-0.520793\pi\)
−0.0652774 + 0.997867i \(0.520793\pi\)
\(758\) 0 0
\(759\) 0.993026 0.673466i 0.0360446 0.0244453i
\(760\) 0 0
\(761\) 27.9356i 1.01267i −0.862338 0.506333i \(-0.831001\pi\)
0.862338 0.506333i \(-0.168999\pi\)
\(762\) 0 0
\(763\) 0.153658i 0.00556278i
\(764\) 0 0
\(765\) 3.70602 9.30804i 0.133992 0.336533i
\(766\) 0 0
\(767\) −1.18112 −0.0426478
\(768\) 0 0
\(769\) 3.96273 0.142900 0.0714499 0.997444i \(-0.477237\pi\)
0.0714499 + 0.997444i \(0.477237\pi\)
\(770\) 0 0
\(771\) −20.4182 30.1067i −0.735344 1.08426i
\(772\) 0 0
\(773\) 26.3807i 0.948847i −0.880297 0.474424i \(-0.842657\pi\)
0.880297 0.474424i \(-0.157343\pi\)
\(774\) 0 0
\(775\) 6.03744i 0.216871i
\(776\) 0 0
\(777\) −5.21096 7.68357i −0.186942 0.275646i
\(778\) 0 0
\(779\) −23.0068 −0.824304
\(780\) 0 0
\(781\) −3.06895 −0.109816
\(782\) 0 0
\(783\) 34.0492 7.50792i 1.21682 0.268311i
\(784\) 0 0
\(785\) 15.9701i 0.569996i
\(786\) 0 0
\(787\) 54.0742i 1.92754i −0.266739 0.963769i \(-0.585946\pi\)
0.266739 0.963769i \(-0.414054\pi\)
\(788\) 0 0
\(789\) 14.5937 9.89738i 0.519550 0.352356i
\(790\) 0 0
\(791\) −9.24636 −0.328763
\(792\) 0 0
\(793\) 1.24903 0.0443543
\(794\) 0 0
\(795\) 9.42514 6.39209i 0.334275 0.226704i
\(796\) 0 0
\(797\) 38.7047i 1.37099i −0.728077 0.685495i \(-0.759586\pi\)
0.728077 0.685495i \(-0.240414\pi\)
\(798\) 0 0
\(799\) 29.0400i 1.02736i
\(800\) 0 0
\(801\) 34.7455 + 13.8340i 1.22767 + 0.488800i
\(802\) 0 0
\(803\) −0.0109009 −0.000384684
\(804\) 0 0
\(805\) −2.14146 −0.0754767
\(806\) 0 0
\(807\) 22.6949 + 33.4636i 0.798898 + 1.17798i
\(808\) 0 0
\(809\) 51.8638i 1.82343i −0.410821 0.911716i \(-0.634758\pi\)
0.410821 0.911716i \(-0.365242\pi\)
\(810\) 0 0
\(811\) 20.7071i 0.727123i 0.931570 + 0.363562i \(0.118439\pi\)
−0.931570 + 0.363562i \(0.881561\pi\)
\(812\) 0 0
\(813\) −20.9580 30.9027i −0.735031 1.08380i
\(814\) 0 0
\(815\) 20.5888 0.721193
\(816\) 0 0
\(817\) 24.6492 0.862365
\(818\) 0 0
\(819\) 0.415619 + 0.165480i 0.0145229 + 0.00578234i
\(820\) 0 0
\(821\) 40.1707i 1.40197i 0.713178 + 0.700983i \(0.247255\pi\)
−0.713178 + 0.700983i \(0.752745\pi\)
\(822\) 0 0
\(823\) 27.4546i 0.957006i −0.878086 0.478503i \(-0.841180\pi\)
0.878086 0.478503i \(-0.158820\pi\)
\(824\) 0 0
\(825\) 0.463714 0.314489i 0.0161444 0.0109491i
\(826\) 0 0
\(827\) −1.32264 −0.0459927 −0.0229964 0.999736i \(-0.507321\pi\)
−0.0229964 + 0.999736i \(0.507321\pi\)
\(828\) 0 0
\(829\) −5.62094 −0.195223 −0.0976116 0.995225i \(-0.531120\pi\)
−0.0976116 + 0.995225i \(0.531120\pi\)
\(830\) 0 0
\(831\) 46.4823 31.5241i 1.61245 1.09356i
\(832\) 0 0
\(833\) 3.33957i 0.115709i
\(834\) 0 0
\(835\) 0.279911i 0.00968670i
\(836\) 0 0
\(837\) −30.6355 + 6.75519i −1.05892 + 0.233494i
\(838\) 0 0
\(839\) −41.2351 −1.42360 −0.711798 0.702385i \(-0.752119\pi\)
−0.711798 + 0.702385i \(0.752119\pi\)
\(840\) 0 0
\(841\) −16.0267 −0.552643
\(842\) 0 0
\(843\) −19.9294 29.3859i −0.686406 1.01211i
\(844\) 0 0
\(845\) 12.9778i 0.446449i
\(846\) 0 0
\(847\) 10.8954i 0.374369i
\(848\) 0 0
\(849\) −0.429000 0.632562i −0.0147233 0.0217095i
\(850\) 0 0
\(851\) −11.4784 −0.393475
\(852\) 0 0
\(853\) 1.63724 0.0560580 0.0280290 0.999607i \(-0.491077\pi\)
0.0280290 + 0.999607i \(0.491077\pi\)
\(854\) 0 0
\(855\) 8.12464 20.4058i 0.277857 0.697865i
\(856\) 0 0
\(857\) 6.88726i 0.235264i 0.993057 + 0.117632i \(0.0375304\pi\)
−0.993057 + 0.117632i \(0.962470\pi\)
\(858\) 0 0
\(859\) 22.0906i 0.753723i −0.926270 0.376861i \(-0.877003\pi\)
0.926270 0.376861i \(-0.122997\pi\)
\(860\) 0 0
\(861\) −4.50466 + 3.05504i −0.153518 + 0.104115i
\(862\) 0 0
\(863\) −20.2484 −0.689263 −0.344632 0.938738i \(-0.611996\pi\)
−0.344632 + 0.938738i \(0.611996\pi\)
\(864\) 0 0
\(865\) −13.5061 −0.459220
\(866\) 0 0
\(867\) 8.38199 5.68463i 0.284667 0.193060i
\(868\) 0 0
\(869\) 3.30519i 0.112121i
\(870\) 0 0
\(871\) 0.606995i 0.0205672i
\(872\) 0 0
\(873\) −8.53906 + 21.4467i −0.289004 + 0.725861i
\(874\) 0 0
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) 2.99329 0.101076 0.0505380 0.998722i \(-0.483906\pi\)
0.0505380 + 0.998722i \(0.483906\pi\)
\(878\) 0 0
\(879\) 12.8259 + 18.9117i 0.432606 + 0.637877i
\(880\) 0 0
\(881\) 24.3411i 0.820073i −0.912069 0.410036i \(-0.865516\pi\)
0.912069 0.410036i \(-0.134484\pi\)
\(882\) 0 0
\(883\) 22.5699i 0.759538i −0.925081 0.379769i \(-0.876004\pi\)
0.925081 0.379769i \(-0.123996\pi\)
\(884\) 0 0
\(885\) 7.70042 + 11.3543i 0.258847 + 0.381670i
\(886\) 0 0
\(887\) 46.2301 1.55225 0.776127 0.630577i \(-0.217182\pi\)
0.776127 + 0.630577i \(0.217182\pi\)
\(888\) 0 0
\(889\) 12.8181 0.429906
\(890\) 0 0
\(891\) 2.11464 + 2.00113i 0.0708431 + 0.0670403i
\(892\) 0 0
\(893\) 63.6639i 2.13043i
\(894\) 0 0
\(895\) 5.82742i 0.194789i
\(896\) 0 0
\(897\) 0.457751 0.310445i 0.0152839 0.0103655i
\(898\) 0 0
\(899\) 40.5124 1.35116
\(900\) 0 0
\(901\) −21.9577 −0.731516
\(902\) 0 0
\(903\) 4.82623 3.27313i 0.160607 0.108923i
\(904\) 0 0
\(905\) 7.34937i 0.244301i
\(906\) 0 0
\(907\) 8.40278i 0.279010i −0.990221 0.139505i \(-0.955449\pi\)
0.990221 0.139505i \(-0.0445511\pi\)
\(908\) 0 0
\(909\) 33.3402 + 13.2745i 1.10583 + 0.440287i
\(910\) 0 0
\(911\) 12.1429 0.402312 0.201156 0.979559i \(-0.435530\pi\)
0.201156 + 0.979559i \(0.435530\pi\)
\(912\) 0 0
\(913\) 1.64602 0.0544752
\(914\) 0 0
\(915\) −8.14313 12.0071i −0.269204 0.396941i
\(916\) 0 0
\(917\) 4.45842i 0.147230i
\(918\) 0 0
\(919\) 1.86348i 0.0614706i 0.999528 + 0.0307353i \(0.00978489\pi\)
−0.999528 + 0.0307353i \(0.990215\pi\)
\(920\) 0 0
\(921\) 26.5146 + 39.0959i 0.873687 + 1.28825i
\(922\) 0 0
\(923\) −1.41468 −0.0465648
\(924\) 0 0
\(925\) −5.36008 −0.176238
\(926\) 0 0
\(927\) −11.1456 4.43766i −0.366070 0.145752i
\(928\) 0 0
\(929\) 1.74263i 0.0571737i −0.999591 0.0285868i \(-0.990899\pi\)
0.999591 0.0285868i \(-0.00910072\pi\)
\(930\) 0 0
\(931\) 7.32126i 0.239945i
\(932\) 0 0
\(933\) 28.7342 19.4874i 0.940716 0.637989i
\(934\) 0 0
\(935\) −1.08031 −0.0353299
\(936\) 0 0
\(937\) 56.8886 1.85847 0.929234 0.369491i \(-0.120468\pi\)
0.929234 + 0.369491i \(0.120468\pi\)
\(938\) 0 0
\(939\) −7.84900 + 5.32315i −0.256142 + 0.173715i
\(940\) 0 0
\(941\) 1.42589i 0.0464826i 0.999730 + 0.0232413i \(0.00739861\pi\)
−0.999730 + 0.0232413i \(0.992601\pi\)
\(942\) 0 0
\(943\) 6.72947i 0.219142i
\(944\) 0 0
\(945\) −1.11888 5.07426i −0.0363973 0.165066i
\(946\) 0 0
\(947\) −31.0660 −1.00951 −0.504754 0.863263i \(-0.668417\pi\)
−0.504754 + 0.863263i \(0.668417\pi\)
\(948\) 0 0
\(949\) −0.00502494 −0.000163117
\(950\) 0 0
\(951\) 14.8609 + 21.9124i 0.481898 + 0.710560i
\(952\) 0 0
\(953\) 20.4058i 0.661010i −0.943804 0.330505i \(-0.892781\pi\)
0.943804 0.330505i \(-0.107219\pi\)
\(954\) 0 0
\(955\) 17.3593i 0.561735i
\(956\) 0 0
\(957\) −2.11028 3.11161i −0.0682156 0.100584i
\(958\) 0 0
\(959\) 4.16349 0.134446
\(960\) 0 0
\(961\) −5.45067 −0.175828
\(962\) 0 0
\(963\) 13.4147 33.6923i 0.432282 1.08572i
\(964\) 0 0
\(965\) 18.4993i 0.595513i
\(966\) 0 0
\(967\) 0.962974i 0.0309671i −0.999880 0.0154836i \(-0.995071\pi\)
0.999880 0.0154836i \(-0.00492877\pi\)
\(968\) 0 0
\(969\) −35.0484 + 23.7696i −1.12592 + 0.763591i
\(970\) 0 0
\(971\) 30.9386 0.992866 0.496433 0.868075i \(-0.334643\pi\)
0.496433 + 0.868075i \(0.334643\pi\)
\(972\) 0 0
\(973\) −7.85313 −0.251760
\(974\) 0 0
\(975\) 0.213756 0.144969i 0.00684568 0.00464271i
\(976\) 0 0
\(977\) 15.8558i 0.507272i 0.967300 + 0.253636i \(0.0816265\pi\)
−0.967300 + 0.253636i \(0.918373\pi\)
\(978\) 0 0
\(979\) 4.03263i 0.128883i
\(980\) 0 0
\(981\) −0.170519 + 0.428275i −0.00544424 + 0.0136738i
\(982\) 0 0
\(983\) 34.6971 1.10667 0.553333 0.832960i \(-0.313356\pi\)
0.553333 + 0.832960i \(0.313356\pi\)
\(984\) 0 0
\(985\) 1.83126 0.0583488
\(986\) 0 0
\(987\) −8.45384 12.4652i −0.269089 0.396771i
\(988\) 0 0
\(989\) 7.20986i 0.229260i
\(990\) 0 0
\(991\) 19.1032i 0.606834i −0.952858 0.303417i \(-0.901872\pi\)
0.952858 0.303417i \(-0.0981276\pi\)
\(992\) 0 0
\(993\) 13.8812 + 20.4679i 0.440507 + 0.649528i
\(994\) 0 0
\(995\) −7.53944 −0.239016
\(996\) 0 0
\(997\) −35.8525 −1.13546 −0.567730 0.823215i \(-0.692178\pi\)
−0.567730 + 0.823215i \(0.692178\pi\)
\(998\) 0 0
\(999\) −5.99730 27.1984i −0.189746 0.860520i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.ba.d.911.15 yes 16
3.2 odd 2 1680.2.ba.c.911.1 16
4.3 odd 2 1680.2.ba.c.911.2 yes 16
12.11 even 2 inner 1680.2.ba.d.911.16 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.ba.c.911.1 16 3.2 odd 2
1680.2.ba.c.911.2 yes 16 4.3 odd 2
1680.2.ba.d.911.15 yes 16 1.1 even 1 trivial
1680.2.ba.d.911.16 yes 16 12.11 even 2 inner