Properties

Label 1680.2.ba.c.911.15
Level $1680$
Weight $2$
Character 1680.911
Analytic conductor $13.415$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,2,Mod(911,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.911"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.ba (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-10,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 640 x^{12} - 1656 x^{11} + 3522 x^{10} - 6148 x^{9} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 911.15
Root \(0.500000 + 0.0342497i\) of defining polynomial
Character \(\chi\) \(=\) 1680.911
Dual form 1680.2.ba.c.911.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.69926 - 0.335422i) q^{3} -1.00000i q^{5} -1.00000i q^{7} +(2.77498 - 1.13994i) q^{9} +4.49036 q^{11} +1.59797 q^{13} +(-0.335422 - 1.69926i) q^{15} -0.506137i q^{17} -0.377701i q^{19} +(-0.335422 - 1.69926i) q^{21} -2.84053 q^{23} -1.00000 q^{25} +(4.33306 - 2.86785i) q^{27} +1.04311i q^{29} -0.219074i q^{31} +(7.63030 - 1.50617i) q^{33} -1.00000 q^{35} -2.40449 q^{37} +(2.71538 - 0.535996i) q^{39} +3.00524i q^{41} -1.31398i q^{43} +(-1.13994 - 2.77498i) q^{45} -8.43265 q^{47} -1.00000 q^{49} +(-0.169770 - 0.860060i) q^{51} +2.04125i q^{53} -4.49036i q^{55} +(-0.126689 - 0.641814i) q^{57} +6.65739 q^{59} +7.40099 q^{61} +(-1.13994 - 2.77498i) q^{63} -1.59797i q^{65} -11.9407i q^{67} +(-4.82681 + 0.952777i) q^{69} +3.89564 q^{71} +12.3491 q^{73} +(-1.69926 + 0.335422i) q^{75} -4.49036i q^{77} -15.2574i q^{79} +(6.40107 - 6.32663i) q^{81} -0.697682 q^{83} -0.506137 q^{85} +(0.349882 + 1.77252i) q^{87} +2.30345i q^{89} -1.59797i q^{91} +(-0.0734824 - 0.372265i) q^{93} -0.377701 q^{95} +5.53949 q^{97} +(12.4607 - 5.11874i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{9} - 12 q^{11} + 2 q^{15} + 2 q^{21} - 8 q^{23} - 16 q^{25} + 12 q^{27} + 12 q^{33} - 16 q^{35} - 8 q^{37} + 14 q^{39} + 8 q^{45} - 16 q^{47} - 16 q^{49} + 34 q^{51} + 12 q^{57} - 32 q^{59}+ \cdots + 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.69926 0.335422i 0.981069 0.193656i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 2.77498 1.13994i 0.924995 0.379980i
\(10\) 0 0
\(11\) 4.49036 1.35389 0.676947 0.736031i \(-0.263302\pi\)
0.676947 + 0.736031i \(0.263302\pi\)
\(12\) 0 0
\(13\) 1.59797 0.443198 0.221599 0.975138i \(-0.428872\pi\)
0.221599 + 0.975138i \(0.428872\pi\)
\(14\) 0 0
\(15\) −0.335422 1.69926i −0.0866056 0.438748i
\(16\) 0 0
\(17\) 0.506137i 0.122756i −0.998115 0.0613782i \(-0.980450\pi\)
0.998115 0.0613782i \(-0.0195496\pi\)
\(18\) 0 0
\(19\) 0.377701i 0.0866506i −0.999061 0.0433253i \(-0.986205\pi\)
0.999061 0.0433253i \(-0.0137952\pi\)
\(20\) 0 0
\(21\) −0.335422 1.69926i −0.0731951 0.370809i
\(22\) 0 0
\(23\) −2.84053 −0.592292 −0.296146 0.955143i \(-0.595701\pi\)
−0.296146 + 0.955143i \(0.595701\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 4.33306 2.86785i 0.833899 0.551918i
\(28\) 0 0
\(29\) 1.04311i 0.193700i 0.995299 + 0.0968502i \(0.0308768\pi\)
−0.995299 + 0.0968502i \(0.969123\pi\)
\(30\) 0 0
\(31\) 0.219074i 0.0393469i −0.999806 0.0196735i \(-0.993737\pi\)
0.999806 0.0196735i \(-0.00626266\pi\)
\(32\) 0 0
\(33\) 7.63030 1.50617i 1.32826 0.262190i
\(34\) 0 0
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −2.40449 −0.395296 −0.197648 0.980273i \(-0.563330\pi\)
−0.197648 + 0.980273i \(0.563330\pi\)
\(38\) 0 0
\(39\) 2.71538 0.535996i 0.434808 0.0858280i
\(40\) 0 0
\(41\) 3.00524i 0.469340i 0.972075 + 0.234670i \(0.0754009\pi\)
−0.972075 + 0.234670i \(0.924599\pi\)
\(42\) 0 0
\(43\) 1.31398i 0.200380i −0.994968 0.100190i \(-0.968055\pi\)
0.994968 0.100190i \(-0.0319451\pi\)
\(44\) 0 0
\(45\) −1.13994 2.77498i −0.169932 0.413670i
\(46\) 0 0
\(47\) −8.43265 −1.23003 −0.615014 0.788516i \(-0.710850\pi\)
−0.615014 + 0.788516i \(0.710850\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −0.169770 0.860060i −0.0237725 0.120433i
\(52\) 0 0
\(53\) 2.04125i 0.280388i 0.990124 + 0.140194i \(0.0447726\pi\)
−0.990124 + 0.140194i \(0.955227\pi\)
\(54\) 0 0
\(55\) 4.49036i 0.605480i
\(56\) 0 0
\(57\) −0.126689 0.641814i −0.0167804 0.0850103i
\(58\) 0 0
\(59\) 6.65739 0.866718 0.433359 0.901221i \(-0.357328\pi\)
0.433359 + 0.901221i \(0.357328\pi\)
\(60\) 0 0
\(61\) 7.40099 0.947600 0.473800 0.880632i \(-0.342882\pi\)
0.473800 + 0.880632i \(0.342882\pi\)
\(62\) 0 0
\(63\) −1.13994 2.77498i −0.143619 0.349615i
\(64\) 0 0
\(65\) 1.59797i 0.198204i
\(66\) 0 0
\(67\) 11.9407i 1.45879i −0.684091 0.729397i \(-0.739801\pi\)
0.684091 0.729397i \(-0.260199\pi\)
\(68\) 0 0
\(69\) −4.82681 + 0.952777i −0.581080 + 0.114701i
\(70\) 0 0
\(71\) 3.89564 0.462327 0.231164 0.972915i \(-0.425747\pi\)
0.231164 + 0.972915i \(0.425747\pi\)
\(72\) 0 0
\(73\) 12.3491 1.44535 0.722675 0.691188i \(-0.242912\pi\)
0.722675 + 0.691188i \(0.242912\pi\)
\(74\) 0 0
\(75\) −1.69926 + 0.335422i −0.196214 + 0.0387312i
\(76\) 0 0
\(77\) 4.49036i 0.511724i
\(78\) 0 0
\(79\) 15.2574i 1.71659i −0.513155 0.858296i \(-0.671523\pi\)
0.513155 0.858296i \(-0.328477\pi\)
\(80\) 0 0
\(81\) 6.40107 6.32663i 0.711230 0.702959i
\(82\) 0 0
\(83\) −0.697682 −0.0765805 −0.0382903 0.999267i \(-0.512191\pi\)
−0.0382903 + 0.999267i \(0.512191\pi\)
\(84\) 0 0
\(85\) −0.506137 −0.0548983
\(86\) 0 0
\(87\) 0.349882 + 1.77252i 0.0375113 + 0.190034i
\(88\) 0 0
\(89\) 2.30345i 0.244165i 0.992520 + 0.122083i \(0.0389573\pi\)
−0.992520 + 0.122083i \(0.961043\pi\)
\(90\) 0 0
\(91\) 1.59797i 0.167513i
\(92\) 0 0
\(93\) −0.0734824 0.372265i −0.00761977 0.0386021i
\(94\) 0 0
\(95\) −0.377701 −0.0387513
\(96\) 0 0
\(97\) 5.53949 0.562450 0.281225 0.959642i \(-0.409259\pi\)
0.281225 + 0.959642i \(0.409259\pi\)
\(98\) 0 0
\(99\) 12.4607 5.11874i 1.25235 0.514453i
\(100\) 0 0
\(101\) 14.4480i 1.43763i 0.695200 + 0.718816i \(0.255316\pi\)
−0.695200 + 0.718816i \(0.744684\pi\)
\(102\) 0 0
\(103\) 9.18152i 0.904683i −0.891845 0.452341i \(-0.850589\pi\)
0.891845 0.452341i \(-0.149411\pi\)
\(104\) 0 0
\(105\) −1.69926 + 0.335422i −0.165831 + 0.0327338i
\(106\) 0 0
\(107\) −15.4174 −1.49046 −0.745229 0.666809i \(-0.767660\pi\)
−0.745229 + 0.666809i \(0.767660\pi\)
\(108\) 0 0
\(109\) −15.3203 −1.46741 −0.733707 0.679465i \(-0.762212\pi\)
−0.733707 + 0.679465i \(0.762212\pi\)
\(110\) 0 0
\(111\) −4.08587 + 0.806520i −0.387813 + 0.0765515i
\(112\) 0 0
\(113\) 19.7155i 1.85468i 0.374218 + 0.927341i \(0.377911\pi\)
−0.374218 + 0.927341i \(0.622089\pi\)
\(114\) 0 0
\(115\) 2.84053i 0.264881i
\(116\) 0 0
\(117\) 4.43435 1.82159i 0.409956 0.168406i
\(118\) 0 0
\(119\) −0.506137 −0.0463975
\(120\) 0 0
\(121\) 9.16334 0.833031
\(122\) 0 0
\(123\) 1.00802 + 5.10669i 0.0908904 + 0.460455i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 3.05575i 0.271154i 0.990767 + 0.135577i \(0.0432888\pi\)
−0.990767 + 0.135577i \(0.956711\pi\)
\(128\) 0 0
\(129\) −0.440738 2.23280i −0.0388048 0.196587i
\(130\) 0 0
\(131\) −2.61320 −0.228317 −0.114158 0.993463i \(-0.536417\pi\)
−0.114158 + 0.993463i \(0.536417\pi\)
\(132\) 0 0
\(133\) −0.377701 −0.0327509
\(134\) 0 0
\(135\) −2.86785 4.33306i −0.246825 0.372931i
\(136\) 0 0
\(137\) 9.11266i 0.778547i 0.921122 + 0.389273i \(0.127274\pi\)
−0.921122 + 0.389273i \(0.872726\pi\)
\(138\) 0 0
\(139\) 12.3984i 1.05162i −0.850603 0.525808i \(-0.823763\pi\)
0.850603 0.525808i \(-0.176237\pi\)
\(140\) 0 0
\(141\) −14.3293 + 2.82850i −1.20674 + 0.238202i
\(142\) 0 0
\(143\) 7.17548 0.600044
\(144\) 0 0
\(145\) 1.04311 0.0866255
\(146\) 0 0
\(147\) −1.69926 + 0.335422i −0.140153 + 0.0276651i
\(148\) 0 0
\(149\) 16.0780i 1.31716i 0.752510 + 0.658581i \(0.228843\pi\)
−0.752510 + 0.658581i \(0.771157\pi\)
\(150\) 0 0
\(151\) 10.8950i 0.886622i −0.896368 0.443311i \(-0.853804\pi\)
0.896368 0.443311i \(-0.146196\pi\)
\(152\) 0 0
\(153\) −0.576966 1.40452i −0.0466450 0.113549i
\(154\) 0 0
\(155\) −0.219074 −0.0175965
\(156\) 0 0
\(157\) 15.8489 1.26488 0.632442 0.774608i \(-0.282053\pi\)
0.632442 + 0.774608i \(0.282053\pi\)
\(158\) 0 0
\(159\) 0.684681 + 3.46862i 0.0542987 + 0.275080i
\(160\) 0 0
\(161\) 2.84053i 0.223865i
\(162\) 0 0
\(163\) 23.6635i 1.85346i 0.375722 + 0.926732i \(0.377395\pi\)
−0.375722 + 0.926732i \(0.622605\pi\)
\(164\) 0 0
\(165\) −1.50617 7.63030i −0.117255 0.594018i
\(166\) 0 0
\(167\) −22.8687 −1.76964 −0.884818 0.465937i \(-0.845717\pi\)
−0.884818 + 0.465937i \(0.845717\pi\)
\(168\) 0 0
\(169\) −10.4465 −0.803575
\(170\) 0 0
\(171\) −0.430557 1.04812i −0.0329255 0.0801514i
\(172\) 0 0
\(173\) 7.58403i 0.576603i 0.957540 + 0.288302i \(0.0930906\pi\)
−0.957540 + 0.288302i \(0.906909\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) 0 0
\(177\) 11.3126 2.23303i 0.850311 0.167845i
\(178\) 0 0
\(179\) 6.83244 0.510681 0.255340 0.966851i \(-0.417812\pi\)
0.255340 + 0.966851i \(0.417812\pi\)
\(180\) 0 0
\(181\) −5.36693 −0.398921 −0.199460 0.979906i \(-0.563919\pi\)
−0.199460 + 0.979906i \(0.563919\pi\)
\(182\) 0 0
\(183\) 12.5762 2.48246i 0.929662 0.183508i
\(184\) 0 0
\(185\) 2.40449i 0.176782i
\(186\) 0 0
\(187\) 2.27274i 0.166199i
\(188\) 0 0
\(189\) −2.86785 4.33306i −0.208605 0.315184i
\(190\) 0 0
\(191\) 0.142457 0.0103078 0.00515391 0.999987i \(-0.498359\pi\)
0.00515391 + 0.999987i \(0.498359\pi\)
\(192\) 0 0
\(193\) −10.1022 −0.727176 −0.363588 0.931560i \(-0.618448\pi\)
−0.363588 + 0.931560i \(0.618448\pi\)
\(194\) 0 0
\(195\) −0.535996 2.71538i −0.0383834 0.194452i
\(196\) 0 0
\(197\) 10.1619i 0.724008i −0.932176 0.362004i \(-0.882093\pi\)
0.932176 0.362004i \(-0.117907\pi\)
\(198\) 0 0
\(199\) 20.0613i 1.42211i 0.703137 + 0.711054i \(0.251782\pi\)
−0.703137 + 0.711054i \(0.748218\pi\)
\(200\) 0 0
\(201\) −4.00519 20.2904i −0.282504 1.43118i
\(202\) 0 0
\(203\) 1.04311 0.0732119
\(204\) 0 0
\(205\) 3.00524 0.209895
\(206\) 0 0
\(207\) −7.88243 + 3.23804i −0.547867 + 0.225059i
\(208\) 0 0
\(209\) 1.69602i 0.117316i
\(210\) 0 0
\(211\) 9.77698i 0.673075i 0.941670 + 0.336537i \(0.109256\pi\)
−0.941670 + 0.336537i \(0.890744\pi\)
\(212\) 0 0
\(213\) 6.61971 1.30668i 0.453575 0.0895324i
\(214\) 0 0
\(215\) −1.31398 −0.0896127
\(216\) 0 0
\(217\) −0.219074 −0.0148717
\(218\) 0 0
\(219\) 20.9843 4.14215i 1.41799 0.279901i
\(220\) 0 0
\(221\) 0.808794i 0.0544054i
\(222\) 0 0
\(223\) 3.77035i 0.252481i 0.992000 + 0.126241i \(0.0402912\pi\)
−0.992000 + 0.126241i \(0.959709\pi\)
\(224\) 0 0
\(225\) −2.77498 + 1.13994i −0.184999 + 0.0759960i
\(226\) 0 0
\(227\) −7.03702 −0.467064 −0.233532 0.972349i \(-0.575028\pi\)
−0.233532 + 0.972349i \(0.575028\pi\)
\(228\) 0 0
\(229\) −20.3487 −1.34468 −0.672341 0.740242i \(-0.734711\pi\)
−0.672341 + 0.740242i \(0.734711\pi\)
\(230\) 0 0
\(231\) −1.50617 7.63030i −0.0990984 0.502037i
\(232\) 0 0
\(233\) 4.86976i 0.319029i 0.987196 + 0.159514i \(0.0509929\pi\)
−0.987196 + 0.159514i \(0.949007\pi\)
\(234\) 0 0
\(235\) 8.43265i 0.550085i
\(236\) 0 0
\(237\) −5.11767 25.9263i −0.332428 1.68410i
\(238\) 0 0
\(239\) 27.6916 1.79122 0.895611 0.444838i \(-0.146739\pi\)
0.895611 + 0.444838i \(0.146739\pi\)
\(240\) 0 0
\(241\) 24.4442 1.57459 0.787294 0.616578i \(-0.211482\pi\)
0.787294 + 0.616578i \(0.211482\pi\)
\(242\) 0 0
\(243\) 8.75501 12.8977i 0.561634 0.827386i
\(244\) 0 0
\(245\) 1.00000i 0.0638877i
\(246\) 0 0
\(247\) 0.603557i 0.0384034i
\(248\) 0 0
\(249\) −1.18554 + 0.234018i −0.0751308 + 0.0148303i
\(250\) 0 0
\(251\) −18.3504 −1.15827 −0.579133 0.815233i \(-0.696609\pi\)
−0.579133 + 0.815233i \(0.696609\pi\)
\(252\) 0 0
\(253\) −12.7550 −0.801901
\(254\) 0 0
\(255\) −0.860060 + 0.169770i −0.0538591 + 0.0106314i
\(256\) 0 0
\(257\) 11.2438i 0.701371i −0.936493 0.350685i \(-0.885949\pi\)
0.936493 0.350685i \(-0.114051\pi\)
\(258\) 0 0
\(259\) 2.40449i 0.149408i
\(260\) 0 0
\(261\) 1.18908 + 2.89461i 0.0736023 + 0.179172i
\(262\) 0 0
\(263\) 2.94134 0.181371 0.0906853 0.995880i \(-0.471094\pi\)
0.0906853 + 0.995880i \(0.471094\pi\)
\(264\) 0 0
\(265\) 2.04125 0.125393
\(266\) 0 0
\(267\) 0.772629 + 3.91417i 0.0472841 + 0.239543i
\(268\) 0 0
\(269\) 3.79117i 0.231152i 0.993299 + 0.115576i \(0.0368714\pi\)
−0.993299 + 0.115576i \(0.963129\pi\)
\(270\) 0 0
\(271\) 17.9389i 1.08971i 0.838530 + 0.544855i \(0.183415\pi\)
−0.838530 + 0.544855i \(0.816585\pi\)
\(272\) 0 0
\(273\) −0.535996 2.71538i −0.0324399 0.164342i
\(274\) 0 0
\(275\) −4.49036 −0.270779
\(276\) 0 0
\(277\) −22.1475 −1.33072 −0.665358 0.746525i \(-0.731721\pi\)
−0.665358 + 0.746525i \(0.731721\pi\)
\(278\) 0 0
\(279\) −0.249732 0.607928i −0.0149510 0.0363957i
\(280\) 0 0
\(281\) 16.4121i 0.979065i 0.871985 + 0.489532i \(0.162832\pi\)
−0.871985 + 0.489532i \(0.837168\pi\)
\(282\) 0 0
\(283\) 16.4262i 0.976436i 0.872722 + 0.488218i \(0.162353\pi\)
−0.872722 + 0.488218i \(0.837647\pi\)
\(284\) 0 0
\(285\) −0.641814 + 0.126689i −0.0380178 + 0.00750443i
\(286\) 0 0
\(287\) 3.00524 0.177394
\(288\) 0 0
\(289\) 16.7438 0.984931
\(290\) 0 0
\(291\) 9.41305 1.85807i 0.551803 0.108922i
\(292\) 0 0
\(293\) 22.3301i 1.30454i −0.757989 0.652268i \(-0.773818\pi\)
0.757989 0.652268i \(-0.226182\pi\)
\(294\) 0 0
\(295\) 6.65739i 0.387608i
\(296\) 0 0
\(297\) 19.4570 12.8777i 1.12901 0.747238i
\(298\) 0 0
\(299\) −4.53910 −0.262503
\(300\) 0 0
\(301\) −1.31398 −0.0757366
\(302\) 0 0
\(303\) 4.84619 + 24.5510i 0.278406 + 1.41042i
\(304\) 0 0
\(305\) 7.40099i 0.423780i
\(306\) 0 0
\(307\) 7.60545i 0.434066i −0.976164 0.217033i \(-0.930362\pi\)
0.976164 0.217033i \(-0.0696379\pi\)
\(308\) 0 0
\(309\) −3.07969 15.6018i −0.175197 0.887556i
\(310\) 0 0
\(311\) 1.48281 0.0840822 0.0420411 0.999116i \(-0.486614\pi\)
0.0420411 + 0.999116i \(0.486614\pi\)
\(312\) 0 0
\(313\) 25.4496 1.43849 0.719247 0.694754i \(-0.244487\pi\)
0.719247 + 0.694754i \(0.244487\pi\)
\(314\) 0 0
\(315\) −2.77498 + 1.13994i −0.156353 + 0.0642283i
\(316\) 0 0
\(317\) 11.2766i 0.633354i −0.948533 0.316677i \(-0.897433\pi\)
0.948533 0.316677i \(-0.102567\pi\)
\(318\) 0 0
\(319\) 4.68394i 0.262250i
\(320\) 0 0
\(321\) −26.1982 + 5.17134i −1.46224 + 0.288636i
\(322\) 0 0
\(323\) −0.191169 −0.0106369
\(324\) 0 0
\(325\) −1.59797 −0.0886397
\(326\) 0 0
\(327\) −26.0331 + 5.13875i −1.43964 + 0.284174i
\(328\) 0 0
\(329\) 8.43265i 0.464907i
\(330\) 0 0
\(331\) 22.1430i 1.21709i 0.793519 + 0.608545i \(0.208247\pi\)
−0.793519 + 0.608545i \(0.791753\pi\)
\(332\) 0 0
\(333\) −6.67243 + 2.74098i −0.365647 + 0.150205i
\(334\) 0 0
\(335\) −11.9407 −0.652392
\(336\) 0 0
\(337\) −28.1418 −1.53298 −0.766491 0.642255i \(-0.777999\pi\)
−0.766491 + 0.642255i \(0.777999\pi\)
\(338\) 0 0
\(339\) 6.61302 + 33.5019i 0.359170 + 1.81957i
\(340\) 0 0
\(341\) 0.983723i 0.0532716i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 0.952777 + 4.82681i 0.0512958 + 0.259867i
\(346\) 0 0
\(347\) −25.5141 −1.36967 −0.684835 0.728698i \(-0.740126\pi\)
−0.684835 + 0.728698i \(0.740126\pi\)
\(348\) 0 0
\(349\) 3.55066 0.190063 0.0950313 0.995474i \(-0.469705\pi\)
0.0950313 + 0.995474i \(0.469705\pi\)
\(350\) 0 0
\(351\) 6.92413 4.58275i 0.369582 0.244609i
\(352\) 0 0
\(353\) 33.0204i 1.75750i 0.477283 + 0.878750i \(0.341622\pi\)
−0.477283 + 0.878750i \(0.658378\pi\)
\(354\) 0 0
\(355\) 3.89564i 0.206759i
\(356\) 0 0
\(357\) −0.860060 + 0.169770i −0.0455192 + 0.00898516i
\(358\) 0 0
\(359\) −19.4832 −1.02828 −0.514142 0.857705i \(-0.671890\pi\)
−0.514142 + 0.857705i \(0.671890\pi\)
\(360\) 0 0
\(361\) 18.8573 0.992492
\(362\) 0 0
\(363\) 15.5709 3.07359i 0.817262 0.161321i
\(364\) 0 0
\(365\) 12.3491i 0.646380i
\(366\) 0 0
\(367\) 12.9394i 0.675432i 0.941248 + 0.337716i \(0.109654\pi\)
−0.941248 + 0.337716i \(0.890346\pi\)
\(368\) 0 0
\(369\) 3.42579 + 8.33949i 0.178340 + 0.434137i
\(370\) 0 0
\(371\) 2.04125 0.105977
\(372\) 0 0
\(373\) −14.7091 −0.761609 −0.380805 0.924656i \(-0.624353\pi\)
−0.380805 + 0.924656i \(0.624353\pi\)
\(374\) 0 0
\(375\) 0.335422 + 1.69926i 0.0173211 + 0.0877495i
\(376\) 0 0
\(377\) 1.66686i 0.0858477i
\(378\) 0 0
\(379\) 2.04347i 0.104966i −0.998622 0.0524831i \(-0.983286\pi\)
0.998622 0.0524831i \(-0.0167136\pi\)
\(380\) 0 0
\(381\) 1.02497 + 5.19252i 0.0525106 + 0.266021i
\(382\) 0 0
\(383\) 19.0507 0.973447 0.486723 0.873556i \(-0.338192\pi\)
0.486723 + 0.873556i \(0.338192\pi\)
\(384\) 0 0
\(385\) −4.49036 −0.228850
\(386\) 0 0
\(387\) −1.49786 3.64627i −0.0761404 0.185351i
\(388\) 0 0
\(389\) 20.2842i 1.02845i 0.857656 + 0.514224i \(0.171920\pi\)
−0.857656 + 0.514224i \(0.828080\pi\)
\(390\) 0 0
\(391\) 1.43770i 0.0727076i
\(392\) 0 0
\(393\) −4.44052 + 0.876525i −0.223994 + 0.0442149i
\(394\) 0 0
\(395\) −15.2574 −0.767683
\(396\) 0 0
\(397\) −17.5290 −0.879756 −0.439878 0.898057i \(-0.644978\pi\)
−0.439878 + 0.898057i \(0.644978\pi\)
\(398\) 0 0
\(399\) −0.641814 + 0.126689i −0.0321309 + 0.00634240i
\(400\) 0 0
\(401\) 24.2810i 1.21253i −0.795261 0.606267i \(-0.792666\pi\)
0.795261 0.606267i \(-0.207334\pi\)
\(402\) 0 0
\(403\) 0.350075i 0.0174385i
\(404\) 0 0
\(405\) −6.32663 6.40107i −0.314373 0.318072i
\(406\) 0 0
\(407\) −10.7970 −0.535190
\(408\) 0 0
\(409\) 25.9536 1.28332 0.641662 0.766988i \(-0.278245\pi\)
0.641662 + 0.766988i \(0.278245\pi\)
\(410\) 0 0
\(411\) 3.05659 + 15.4848i 0.150770 + 0.763808i
\(412\) 0 0
\(413\) 6.65739i 0.327589i
\(414\) 0 0
\(415\) 0.697682i 0.0342479i
\(416\) 0 0
\(417\) −4.15868 21.0681i −0.203652 1.03171i
\(418\) 0 0
\(419\) 22.8542 1.11650 0.558250 0.829673i \(-0.311473\pi\)
0.558250 + 0.829673i \(0.311473\pi\)
\(420\) 0 0
\(421\) −37.7870 −1.84162 −0.920812 0.390007i \(-0.872473\pi\)
−0.920812 + 0.390007i \(0.872473\pi\)
\(422\) 0 0
\(423\) −23.4005 + 9.61271i −1.13777 + 0.467386i
\(424\) 0 0
\(425\) 0.506137i 0.0245513i
\(426\) 0 0
\(427\) 7.40099i 0.358159i
\(428\) 0 0
\(429\) 12.1930 2.40681i 0.588685 0.116202i
\(430\) 0 0
\(431\) 17.3083 0.833712 0.416856 0.908973i \(-0.363132\pi\)
0.416856 + 0.908973i \(0.363132\pi\)
\(432\) 0 0
\(433\) −17.2683 −0.829863 −0.414932 0.909853i \(-0.636194\pi\)
−0.414932 + 0.909853i \(0.636194\pi\)
\(434\) 0 0
\(435\) 1.77252 0.349882i 0.0849856 0.0167755i
\(436\) 0 0
\(437\) 1.07287i 0.0513225i
\(438\) 0 0
\(439\) 38.0720i 1.81708i 0.417803 + 0.908538i \(0.362800\pi\)
−0.417803 + 0.908538i \(0.637200\pi\)
\(440\) 0 0
\(441\) −2.77498 + 1.13994i −0.132142 + 0.0542829i
\(442\) 0 0
\(443\) −27.6089 −1.31174 −0.655870 0.754874i \(-0.727698\pi\)
−0.655870 + 0.754874i \(0.727698\pi\)
\(444\) 0 0
\(445\) 2.30345 0.109194
\(446\) 0 0
\(447\) 5.39292 + 27.3207i 0.255076 + 1.29223i
\(448\) 0 0
\(449\) 11.2427i 0.530576i −0.964169 0.265288i \(-0.914533\pi\)
0.964169 0.265288i \(-0.0854670\pi\)
\(450\) 0 0
\(451\) 13.4946i 0.635436i
\(452\) 0 0
\(453\) −3.65442 18.5135i −0.171700 0.869838i
\(454\) 0 0
\(455\) −1.59797 −0.0749142
\(456\) 0 0
\(457\) 12.4653 0.583100 0.291550 0.956556i \(-0.405829\pi\)
0.291550 + 0.956556i \(0.405829\pi\)
\(458\) 0 0
\(459\) −1.45152 2.19313i −0.0677514 0.102366i
\(460\) 0 0
\(461\) 2.78102i 0.129525i 0.997901 + 0.0647625i \(0.0206290\pi\)
−0.997901 + 0.0647625i \(0.979371\pi\)
\(462\) 0 0
\(463\) 5.10682i 0.237334i −0.992934 0.118667i \(-0.962138\pi\)
0.992934 0.118667i \(-0.0378621\pi\)
\(464\) 0 0
\(465\) −0.372265 + 0.0734824i −0.0172634 + 0.00340766i
\(466\) 0 0
\(467\) −5.70181 −0.263848 −0.131924 0.991260i \(-0.542116\pi\)
−0.131924 + 0.991260i \(0.542116\pi\)
\(468\) 0 0
\(469\) −11.9407 −0.551372
\(470\) 0 0
\(471\) 26.9315 5.31609i 1.24094 0.244952i
\(472\) 0 0
\(473\) 5.90025i 0.271294i
\(474\) 0 0
\(475\) 0.377701i 0.0173301i
\(476\) 0 0
\(477\) 2.32691 + 5.66444i 0.106542 + 0.259357i
\(478\) 0 0
\(479\) 28.8974 1.32036 0.660179 0.751109i \(-0.270481\pi\)
0.660179 + 0.751109i \(0.270481\pi\)
\(480\) 0 0
\(481\) −3.84232 −0.175195
\(482\) 0 0
\(483\) 0.952777 + 4.82681i 0.0433529 + 0.219627i
\(484\) 0 0
\(485\) 5.53949i 0.251535i
\(486\) 0 0
\(487\) 27.1360i 1.22965i −0.788663 0.614826i \(-0.789226\pi\)
0.788663 0.614826i \(-0.210774\pi\)
\(488\) 0 0
\(489\) 7.93724 + 40.2104i 0.358935 + 1.81838i
\(490\) 0 0
\(491\) −34.3384 −1.54967 −0.774835 0.632164i \(-0.782167\pi\)
−0.774835 + 0.632164i \(0.782167\pi\)
\(492\) 0 0
\(493\) 0.527956 0.0237780
\(494\) 0 0
\(495\) −5.11874 12.4607i −0.230070 0.560066i
\(496\) 0 0
\(497\) 3.89564i 0.174743i
\(498\) 0 0
\(499\) 20.3244i 0.909843i 0.890532 + 0.454921i \(0.150333\pi\)
−0.890532 + 0.454921i \(0.849667\pi\)
\(500\) 0 0
\(501\) −38.8600 + 7.67068i −1.73614 + 0.342700i
\(502\) 0 0
\(503\) 25.6193 1.14231 0.571153 0.820843i \(-0.306496\pi\)
0.571153 + 0.820843i \(0.306496\pi\)
\(504\) 0 0
\(505\) 14.4480 0.642929
\(506\) 0 0
\(507\) −17.7513 + 3.50398i −0.788363 + 0.155617i
\(508\) 0 0
\(509\) 43.0798i 1.90948i 0.297441 + 0.954740i \(0.403867\pi\)
−0.297441 + 0.954740i \(0.596133\pi\)
\(510\) 0 0
\(511\) 12.3491i 0.546291i
\(512\) 0 0
\(513\) −1.08319 1.63660i −0.0478240 0.0722579i
\(514\) 0 0
\(515\) −9.18152 −0.404586
\(516\) 0 0
\(517\) −37.8656 −1.66533
\(518\) 0 0
\(519\) 2.54385 + 12.8873i 0.111663 + 0.565688i
\(520\) 0 0
\(521\) 14.0521i 0.615634i 0.951446 + 0.307817i \(0.0995984\pi\)
−0.951446 + 0.307817i \(0.900402\pi\)
\(522\) 0 0
\(523\) 42.0750i 1.83981i −0.392142 0.919905i \(-0.628266\pi\)
0.392142 0.919905i \(-0.371734\pi\)
\(524\) 0 0
\(525\) 0.335422 + 1.69926i 0.0146390 + 0.0741619i
\(526\) 0 0
\(527\) −0.110882 −0.00483008
\(528\) 0 0
\(529\) −14.9314 −0.649190
\(530\) 0 0
\(531\) 18.4741 7.58902i 0.801710 0.329336i
\(532\) 0 0
\(533\) 4.80229i 0.208010i
\(534\) 0 0
\(535\) 15.4174i 0.666553i
\(536\) 0 0
\(537\) 11.6101 2.29175i 0.501013 0.0988964i
\(538\) 0 0
\(539\) −4.49036 −0.193414
\(540\) 0 0
\(541\) 29.8322 1.28259 0.641293 0.767296i \(-0.278398\pi\)
0.641293 + 0.767296i \(0.278398\pi\)
\(542\) 0 0
\(543\) −9.11982 + 1.80019i −0.391369 + 0.0772534i
\(544\) 0 0
\(545\) 15.3203i 0.656248i
\(546\) 0 0
\(547\) 33.0089i 1.41136i −0.708531 0.705679i \(-0.750642\pi\)
0.708531 0.705679i \(-0.249358\pi\)
\(548\) 0 0
\(549\) 20.5376 8.43669i 0.876525 0.360069i
\(550\) 0 0
\(551\) 0.393984 0.0167843
\(552\) 0 0
\(553\) −15.2574 −0.648811
\(554\) 0 0
\(555\) 0.806520 + 4.08587i 0.0342349 + 0.173435i
\(556\) 0 0
\(557\) 24.2862i 1.02904i 0.857479 + 0.514519i \(0.172029\pi\)
−0.857479 + 0.514519i \(0.827971\pi\)
\(558\) 0 0
\(559\) 2.09971i 0.0888081i
\(560\) 0 0
\(561\) −0.762327 3.86198i −0.0321855 0.163053i
\(562\) 0 0
\(563\) −3.80335 −0.160292 −0.0801461 0.996783i \(-0.525539\pi\)
−0.0801461 + 0.996783i \(0.525539\pi\)
\(564\) 0 0
\(565\) 19.7155 0.829439
\(566\) 0 0
\(567\) −6.32663 6.40107i −0.265694 0.268820i
\(568\) 0 0
\(569\) 22.4847i 0.942608i 0.881971 + 0.471304i \(0.156217\pi\)
−0.881971 + 0.471304i \(0.843783\pi\)
\(570\) 0 0
\(571\) 5.59266i 0.234045i 0.993129 + 0.117023i \(0.0373350\pi\)
−0.993129 + 0.117023i \(0.962665\pi\)
\(572\) 0 0
\(573\) 0.242072 0.0477832i 0.0101127 0.00199617i
\(574\) 0 0
\(575\) 2.84053 0.118458
\(576\) 0 0
\(577\) −4.75638 −0.198011 −0.0990053 0.995087i \(-0.531566\pi\)
−0.0990053 + 0.995087i \(0.531566\pi\)
\(578\) 0 0
\(579\) −17.1664 + 3.38852i −0.713410 + 0.140822i
\(580\) 0 0
\(581\) 0.697682i 0.0289447i
\(582\) 0 0
\(583\) 9.16596i 0.379615i
\(584\) 0 0
\(585\) −1.82159 4.43435i −0.0753137 0.183338i
\(586\) 0 0
\(587\) −17.0701 −0.704559 −0.352279 0.935895i \(-0.614593\pi\)
−0.352279 + 0.935895i \(0.614593\pi\)
\(588\) 0 0
\(589\) −0.0827447 −0.00340944
\(590\) 0 0
\(591\) −3.40854 17.2678i −0.140209 0.710303i
\(592\) 0 0
\(593\) 24.5169i 1.00679i 0.864057 + 0.503394i \(0.167915\pi\)
−0.864057 + 0.503394i \(0.832085\pi\)
\(594\) 0 0
\(595\) 0.506137i 0.0207496i
\(596\) 0 0
\(597\) 6.72900 + 34.0894i 0.275400 + 1.39519i
\(598\) 0 0
\(599\) 32.3347 1.32116 0.660580 0.750755i \(-0.270310\pi\)
0.660580 + 0.750755i \(0.270310\pi\)
\(600\) 0 0
\(601\) −0.757011 −0.0308791 −0.0154396 0.999881i \(-0.504915\pi\)
−0.0154396 + 0.999881i \(0.504915\pi\)
\(602\) 0 0
\(603\) −13.6117 33.1354i −0.554312 1.34938i
\(604\) 0 0
\(605\) 9.16334i 0.372543i
\(606\) 0 0
\(607\) 32.9204i 1.33620i 0.744072 + 0.668100i \(0.232892\pi\)
−0.744072 + 0.668100i \(0.767108\pi\)
\(608\) 0 0
\(609\) 1.77252 0.349882i 0.0718260 0.0141779i
\(610\) 0 0
\(611\) −13.4752 −0.545146
\(612\) 0 0
\(613\) −28.5463 −1.15297 −0.576487 0.817106i \(-0.695577\pi\)
−0.576487 + 0.817106i \(0.695577\pi\)
\(614\) 0 0
\(615\) 5.10669 1.00802i 0.205922 0.0406474i
\(616\) 0 0
\(617\) 25.9719i 1.04559i −0.852458 0.522795i \(-0.824889\pi\)
0.852458 0.522795i \(-0.175111\pi\)
\(618\) 0 0
\(619\) 28.0578i 1.12774i −0.825864 0.563869i \(-0.809312\pi\)
0.825864 0.563869i \(-0.190688\pi\)
\(620\) 0 0
\(621\) −12.3082 + 8.14621i −0.493912 + 0.326896i
\(622\) 0 0
\(623\) 2.30345 0.0922859
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −0.568881 2.88198i −0.0227189 0.115095i
\(628\) 0 0
\(629\) 1.21700i 0.0485251i
\(630\) 0 0
\(631\) 3.49217i 0.139021i 0.997581 + 0.0695105i \(0.0221437\pi\)
−0.997581 + 0.0695105i \(0.977856\pi\)
\(632\) 0 0
\(633\) 3.27941 + 16.6136i 0.130345 + 0.660333i
\(634\) 0 0
\(635\) 3.05575 0.121264
\(636\) 0 0
\(637\) −1.59797 −0.0633140
\(638\) 0 0
\(639\) 10.8103 4.44079i 0.427650 0.175675i
\(640\) 0 0
\(641\) 18.2734i 0.721755i −0.932613 0.360877i \(-0.882477\pi\)
0.932613 0.360877i \(-0.117523\pi\)
\(642\) 0 0
\(643\) 20.1319i 0.793926i −0.917835 0.396963i \(-0.870064\pi\)
0.917835 0.396963i \(-0.129936\pi\)
\(644\) 0 0
\(645\) −2.23280 + 0.440738i −0.0879163 + 0.0173540i
\(646\) 0 0
\(647\) −7.95277 −0.312655 −0.156328 0.987705i \(-0.549966\pi\)
−0.156328 + 0.987705i \(0.549966\pi\)
\(648\) 0 0
\(649\) 29.8941 1.17345
\(650\) 0 0
\(651\) −0.372265 + 0.0734824i −0.0145902 + 0.00288000i
\(652\) 0 0
\(653\) 42.1791i 1.65059i −0.564699 0.825297i \(-0.691008\pi\)
0.564699 0.825297i \(-0.308992\pi\)
\(654\) 0 0
\(655\) 2.61320i 0.102106i
\(656\) 0 0
\(657\) 34.2685 14.0772i 1.33694 0.549204i
\(658\) 0 0
\(659\) −9.31028 −0.362677 −0.181339 0.983421i \(-0.558043\pi\)
−0.181339 + 0.983421i \(0.558043\pi\)
\(660\) 0 0
\(661\) 29.9209 1.16379 0.581895 0.813264i \(-0.302312\pi\)
0.581895 + 0.813264i \(0.302312\pi\)
\(662\) 0 0
\(663\) −0.271287 1.37435i −0.0105359 0.0533755i
\(664\) 0 0
\(665\) 0.377701i 0.0146466i
\(666\) 0 0
\(667\) 2.96298i 0.114727i
\(668\) 0 0
\(669\) 1.26466 + 6.40681i 0.0488945 + 0.247702i
\(670\) 0 0
\(671\) 33.2331 1.28295
\(672\) 0 0
\(673\) −25.2562 −0.973555 −0.486777 0.873526i \(-0.661828\pi\)
−0.486777 + 0.873526i \(0.661828\pi\)
\(674\) 0 0
\(675\) −4.33306 + 2.86785i −0.166780 + 0.110384i
\(676\) 0 0
\(677\) 12.9463i 0.497568i 0.968559 + 0.248784i \(0.0800310\pi\)
−0.968559 + 0.248784i \(0.919969\pi\)
\(678\) 0 0
\(679\) 5.53949i 0.212586i
\(680\) 0 0
\(681\) −11.9577 + 2.36037i −0.458222 + 0.0904497i
\(682\) 0 0
\(683\) 8.94085 0.342112 0.171056 0.985261i \(-0.445282\pi\)
0.171056 + 0.985261i \(0.445282\pi\)
\(684\) 0 0
\(685\) 9.11266 0.348177
\(686\) 0 0
\(687\) −34.5778 + 6.82541i −1.31923 + 0.260406i
\(688\) 0 0
\(689\) 3.26187i 0.124267i
\(690\) 0 0
\(691\) 41.0870i 1.56302i 0.623890 + 0.781512i \(0.285551\pi\)
−0.623890 + 0.781512i \(0.714449\pi\)
\(692\) 0 0
\(693\) −5.11874 12.4607i −0.194445 0.473342i
\(694\) 0 0
\(695\) −12.3984 −0.470297
\(696\) 0 0
\(697\) 1.52106 0.0576144
\(698\) 0 0
\(699\) 1.63343 + 8.27501i 0.0617819 + 0.312989i
\(700\) 0 0
\(701\) 8.30601i 0.313714i −0.987621 0.156857i \(-0.949864\pi\)
0.987621 0.156857i \(-0.0501361\pi\)
\(702\) 0 0
\(703\) 0.908181i 0.0342527i
\(704\) 0 0
\(705\) 2.82850 + 14.3293i 0.106527 + 0.539672i
\(706\) 0 0
\(707\) 14.4480 0.543374
\(708\) 0 0
\(709\) −9.90380 −0.371945 −0.185972 0.982555i \(-0.559544\pi\)
−0.185972 + 0.982555i \(0.559544\pi\)
\(710\) 0 0
\(711\) −17.3925 42.3391i −0.652271 1.58784i
\(712\) 0 0
\(713\) 0.622288i 0.0233049i
\(714\) 0 0
\(715\) 7.17548i 0.268348i
\(716\) 0 0
\(717\) 47.0553 9.28838i 1.75731 0.346881i
\(718\) 0 0
\(719\) 17.7191 0.660812 0.330406 0.943839i \(-0.392814\pi\)
0.330406 + 0.943839i \(0.392814\pi\)
\(720\) 0 0
\(721\) −9.18152 −0.341938
\(722\) 0 0
\(723\) 41.5370 8.19911i 1.54478 0.304928i
\(724\) 0 0
\(725\) 1.04311i 0.0387401i
\(726\) 0 0
\(727\) 25.5246i 0.946655i −0.880886 0.473328i \(-0.843053\pi\)
0.880886 0.473328i \(-0.156947\pi\)
\(728\) 0 0
\(729\) 10.5509 24.8531i 0.390774 0.920487i
\(730\) 0 0
\(731\) −0.665055 −0.0245979
\(732\) 0 0
\(733\) 34.9292 1.29014 0.645070 0.764124i \(-0.276828\pi\)
0.645070 + 0.764124i \(0.276828\pi\)
\(734\) 0 0
\(735\) 0.335422 + 1.69926i 0.0123722 + 0.0626782i
\(736\) 0 0
\(737\) 53.6182i 1.97505i
\(738\) 0 0
\(739\) 1.68178i 0.0618652i −0.999521 0.0309326i \(-0.990152\pi\)
0.999521 0.0309326i \(-0.00984772\pi\)
\(740\) 0 0
\(741\) −0.202446 1.02560i −0.00743705 0.0376764i
\(742\) 0 0
\(743\) −22.5532 −0.827397 −0.413698 0.910414i \(-0.635763\pi\)
−0.413698 + 0.910414i \(0.635763\pi\)
\(744\) 0 0
\(745\) 16.0780 0.589053
\(746\) 0 0
\(747\) −1.93606 + 0.795315i −0.0708366 + 0.0290991i
\(748\) 0 0
\(749\) 15.4174i 0.563340i
\(750\) 0 0
\(751\) 40.0442i 1.46123i −0.682789 0.730616i \(-0.739233\pi\)
0.682789 0.730616i \(-0.260767\pi\)
\(752\) 0 0
\(753\) −31.1821 + 6.15513i −1.13634 + 0.224305i
\(754\) 0 0
\(755\) −10.8950 −0.396509
\(756\) 0 0
\(757\) 16.1907 0.588459 0.294230 0.955735i \(-0.404937\pi\)
0.294230 + 0.955735i \(0.404937\pi\)
\(758\) 0 0
\(759\) −21.6741 + 4.27831i −0.786721 + 0.155293i
\(760\) 0 0
\(761\) 33.4166i 1.21135i −0.795711 0.605676i \(-0.792903\pi\)
0.795711 0.605676i \(-0.207097\pi\)
\(762\) 0 0
\(763\) 15.3203i 0.554631i
\(764\) 0 0
\(765\) −1.40452 + 0.576966i −0.0507806 + 0.0208603i
\(766\) 0 0
\(767\) 10.6383 0.384128
\(768\) 0 0
\(769\) −50.3186 −1.81454 −0.907268 0.420553i \(-0.861836\pi\)
−0.907268 + 0.420553i \(0.861836\pi\)
\(770\) 0 0
\(771\) −3.77143 19.1062i −0.135825 0.688093i
\(772\) 0 0
\(773\) 30.8312i 1.10892i −0.832210 0.554461i \(-0.812925\pi\)
0.832210 0.554461i \(-0.187075\pi\)
\(774\) 0 0
\(775\) 0.219074i 0.00786938i
\(776\) 0 0
\(777\) 0.806520 + 4.08587i 0.0289338 + 0.146580i
\(778\) 0 0
\(779\) 1.13508 0.0406686
\(780\) 0 0
\(781\) 17.4928 0.625942
\(782\) 0 0
\(783\) 2.99148 + 4.51986i 0.106907 + 0.161527i
\(784\) 0 0
\(785\) 15.8489i 0.565673i
\(786\) 0 0
\(787\) 6.72636i 0.239769i 0.992788 + 0.119884i \(0.0382524\pi\)
−0.992788 + 0.119884i \(0.961748\pi\)
\(788\) 0 0
\(789\) 4.99810 0.986589i 0.177937 0.0351235i
\(790\) 0 0
\(791\) 19.7155 0.701004
\(792\) 0 0
\(793\) 11.8266 0.419975
\(794\) 0 0
\(795\) 3.46862 0.684681i 0.123019 0.0242831i
\(796\) 0 0
\(797\) 0.0624056i 0.00221052i 0.999999 + 0.00110526i \(0.000351815\pi\)
−0.999999 + 0.00110526i \(0.999648\pi\)
\(798\) 0 0
\(799\) 4.26808i 0.150994i
\(800\) 0 0
\(801\) 2.62580 + 6.39204i 0.0927780 + 0.225852i
\(802\) 0 0
\(803\) 55.4518 1.95685
\(804\) 0 0
\(805\) 2.84053 0.100116
\(806\) 0 0
\(807\) 1.27164 + 6.44220i 0.0447639 + 0.226776i
\(808\) 0 0
\(809\) 52.5906i 1.84899i −0.381197 0.924494i \(-0.624488\pi\)
0.381197 0.924494i \(-0.375512\pi\)
\(810\) 0 0
\(811\) 18.6372i 0.654439i 0.944948 + 0.327220i \(0.106112\pi\)
−0.944948 + 0.327220i \(0.893888\pi\)
\(812\) 0 0
\(813\) 6.01710 + 30.4829i 0.211029 + 1.06908i
\(814\) 0 0
\(815\) 23.6635 0.828895
\(816\) 0 0
\(817\) −0.496292 −0.0173631
\(818\) 0 0
\(819\) −1.82159 4.43435i −0.0636517 0.154949i
\(820\) 0 0
\(821\) 33.7327i 1.17728i 0.808396 + 0.588639i \(0.200336\pi\)
−0.808396 + 0.588639i \(0.799664\pi\)
\(822\) 0 0
\(823\) 5.09754i 0.177689i −0.996046 0.0888445i \(-0.971683\pi\)
0.996046 0.0888445i \(-0.0283174\pi\)
\(824\) 0 0
\(825\) −7.63030 + 1.50617i −0.265653 + 0.0524380i
\(826\) 0 0
\(827\) −9.75310 −0.339149 −0.169574 0.985517i \(-0.554239\pi\)
−0.169574 + 0.985517i \(0.554239\pi\)
\(828\) 0 0
\(829\) 47.2069 1.63956 0.819782 0.572676i \(-0.194095\pi\)
0.819782 + 0.572676i \(0.194095\pi\)
\(830\) 0 0
\(831\) −37.6344 + 7.42876i −1.30552 + 0.257701i
\(832\) 0 0
\(833\) 0.506137i 0.0175366i
\(834\) 0 0
\(835\) 22.8687i 0.791405i
\(836\) 0 0
\(837\) −0.628272 0.949264i −0.0217163 0.0328113i
\(838\) 0 0
\(839\) −22.0695 −0.761923 −0.380962 0.924591i \(-0.624407\pi\)
−0.380962 + 0.924591i \(0.624407\pi\)
\(840\) 0 0
\(841\) 27.9119 0.962480
\(842\) 0 0
\(843\) 5.50498 + 27.8885i 0.189602 + 0.960530i
\(844\) 0 0
\(845\) 10.4465i 0.359370i
\(846\) 0 0
\(847\) 9.16334i 0.314856i
\(848\) 0 0
\(849\) 5.50971 + 27.9124i 0.189093 + 0.957952i
\(850\) 0 0
\(851\) 6.83005 0.234131
\(852\) 0 0
\(853\) 11.1304 0.381099 0.190550 0.981678i \(-0.438973\pi\)
0.190550 + 0.981678i \(0.438973\pi\)
\(854\) 0 0
\(855\) −1.04812 + 0.430557i −0.0358448 + 0.0147247i
\(856\) 0 0
\(857\) 31.5913i 1.07914i 0.841941 + 0.539570i \(0.181413\pi\)
−0.841941 + 0.539570i \(0.818587\pi\)
\(858\) 0 0
\(859\) 54.7698i 1.86872i −0.356327 0.934361i \(-0.615971\pi\)
0.356327 0.934361i \(-0.384029\pi\)
\(860\) 0 0
\(861\) 5.10669 1.00802i 0.174036 0.0343533i
\(862\) 0 0
\(863\) 31.2131 1.06251 0.531253 0.847213i \(-0.321721\pi\)
0.531253 + 0.847213i \(0.321721\pi\)
\(864\) 0 0
\(865\) 7.58403 0.257865
\(866\) 0 0
\(867\) 28.4521 5.61625i 0.966286 0.190738i
\(868\) 0 0
\(869\) 68.5112i 2.32408i
\(870\) 0 0
\(871\) 19.0810i 0.646535i
\(872\) 0 0
\(873\) 15.3720 6.31469i 0.520264 0.213720i
\(874\) 0 0
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) 0.564288 0.0190546 0.00952732 0.999955i \(-0.496967\pi\)
0.00952732 + 0.999955i \(0.496967\pi\)
\(878\) 0 0
\(879\) −7.48999 37.9446i −0.252631 1.27984i
\(880\) 0 0
\(881\) 56.5866i 1.90645i −0.302259 0.953226i \(-0.597741\pi\)
0.302259 0.953226i \(-0.402259\pi\)
\(882\) 0 0
\(883\) 55.6710i 1.87348i −0.350027 0.936739i \(-0.613828\pi\)
0.350027 0.936739i \(-0.386172\pi\)
\(884\) 0 0
\(885\) −2.23303 11.3126i −0.0750626 0.380271i
\(886\) 0 0
\(887\) 27.0471 0.908152 0.454076 0.890963i \(-0.349969\pi\)
0.454076 + 0.890963i \(0.349969\pi\)
\(888\) 0 0
\(889\) 3.05575 0.102487
\(890\) 0 0
\(891\) 28.7431 28.4089i 0.962931 0.951732i
\(892\) 0 0
\(893\) 3.18502i 0.106583i
\(894\) 0 0
\(895\) 6.83244i 0.228383i
\(896\) 0 0
\(897\) −7.71312 + 1.52251i −0.257533 + 0.0508352i
\(898\) 0 0
\(899\) 0.228518 0.00762152
\(900\) 0 0
\(901\) 1.03315 0.0344194
\(902\) 0 0
\(903\) −2.23280 + 0.440738i −0.0743028 + 0.0146668i
\(904\) 0 0
\(905\) 5.36693i 0.178403i
\(906\) 0 0
\(907\) 14.4312i 0.479179i −0.970874 0.239590i \(-0.922987\pi\)
0.970874 0.239590i \(-0.0770129\pi\)
\(908\) 0 0
\(909\) 16.4699 + 40.0930i 0.546271 + 1.32980i
\(910\) 0 0
\(911\) −15.2814 −0.506294 −0.253147 0.967428i \(-0.581466\pi\)
−0.253147 + 0.967428i \(0.581466\pi\)
\(912\) 0 0
\(913\) −3.13284 −0.103682
\(914\) 0 0
\(915\) −2.48246 12.5762i −0.0820675 0.415757i
\(916\) 0 0
\(917\) 2.61320i 0.0862955i
\(918\) 0 0
\(919\) 11.5120i 0.379746i 0.981809 + 0.189873i \(0.0608077\pi\)
−0.981809 + 0.189873i \(0.939192\pi\)
\(920\) 0 0
\(921\) −2.55103 12.9236i −0.0840594 0.425849i
\(922\) 0 0
\(923\) 6.22513 0.204903
\(924\) 0 0
\(925\) 2.40449 0.0790593
\(926\) 0 0
\(927\) −10.4664 25.4786i −0.343761 0.836827i
\(928\) 0 0
\(929\) 46.9026i 1.53883i 0.638752 + 0.769413i \(0.279451\pi\)
−0.638752 + 0.769413i \(0.720549\pi\)
\(930\) 0 0
\(931\) 0.377701i 0.0123787i
\(932\) 0 0
\(933\) 2.51968 0.497366i 0.0824905 0.0162830i
\(934\) 0 0
\(935\) −2.27274 −0.0743265
\(936\) 0 0
\(937\) 7.72755 0.252448 0.126224 0.992002i \(-0.459714\pi\)
0.126224 + 0.992002i \(0.459714\pi\)
\(938\) 0 0
\(939\) 43.2455 8.53634i 1.41126 0.278573i
\(940\) 0 0
\(941\) 8.77099i 0.285926i −0.989728 0.142963i \(-0.954337\pi\)
0.989728 0.142963i \(-0.0456630\pi\)
\(942\) 0 0
\(943\) 8.53648i 0.277986i
\(944\) 0 0
\(945\) −4.33306 + 2.86785i −0.140955 + 0.0932911i
\(946\) 0 0
\(947\) −8.37854 −0.272266 −0.136133 0.990691i \(-0.543467\pi\)
−0.136133 + 0.990691i \(0.543467\pi\)
\(948\) 0 0
\(949\) 19.7335 0.640576
\(950\) 0 0
\(951\) −3.78240 19.1618i −0.122653 0.621365i
\(952\) 0 0
\(953\) 51.8327i 1.67902i 0.543341 + 0.839512i \(0.317159\pi\)
−0.543341 + 0.839512i \(0.682841\pi\)
\(954\) 0 0
\(955\) 0.142457i 0.00460980i
\(956\) 0 0
\(957\) 1.57110 + 7.95923i 0.0507863 + 0.257286i
\(958\) 0 0
\(959\) 9.11266 0.294263
\(960\) 0 0
\(961\) 30.9520 0.998452
\(962\) 0 0
\(963\) −42.7831 + 17.5749i −1.37867 + 0.566344i
\(964\) 0 0
\(965\) 10.1022i 0.325203i
\(966\) 0 0
\(967\) 8.69391i 0.279577i −0.990181 0.139789i \(-0.955358\pi\)
0.990181 0.139789i \(-0.0446423\pi\)
\(968\) 0 0
\(969\) −0.324846 + 0.0641222i −0.0104356 + 0.00205990i
\(970\) 0 0
\(971\) 42.7949 1.37335 0.686677 0.726962i \(-0.259069\pi\)
0.686677 + 0.726962i \(0.259069\pi\)
\(972\) 0 0
\(973\) −12.3984 −0.397473
\(974\) 0 0
\(975\) −2.71538 + 0.535996i −0.0869617 + 0.0171656i
\(976\) 0 0
\(977\) 38.7722i 1.24043i −0.784431 0.620216i \(-0.787045\pi\)
0.784431 0.620216i \(-0.212955\pi\)
\(978\) 0 0
\(979\) 10.3433i 0.330574i
\(980\) 0 0
\(981\) −42.5135 + 17.4642i −1.35735 + 0.557588i
\(982\) 0 0
\(983\) −13.4573 −0.429220 −0.214610 0.976700i \(-0.568848\pi\)
−0.214610 + 0.976700i \(0.568848\pi\)
\(984\) 0 0
\(985\) −10.1619 −0.323786
\(986\) 0 0
\(987\) 2.82850 + 14.3293i 0.0900320 + 0.456106i
\(988\) 0 0
\(989\) 3.73240i 0.118684i
\(990\) 0 0
\(991\) 37.7507i 1.19919i −0.800303 0.599595i \(-0.795328\pi\)
0.800303 0.599595i \(-0.204672\pi\)
\(992\) 0 0
\(993\) 7.42725 + 37.6268i 0.235697 + 1.19405i
\(994\) 0 0
\(995\) 20.0613 0.635986
\(996\) 0 0
\(997\) −11.3781 −0.360348 −0.180174 0.983635i \(-0.557666\pi\)
−0.180174 + 0.983635i \(0.557666\pi\)
\(998\) 0 0
\(999\) −10.4188 + 6.89572i −0.329637 + 0.218171i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.2.ba.c.911.15 16
3.2 odd 2 1680.2.ba.d.911.1 yes 16
4.3 odd 2 1680.2.ba.d.911.2 yes 16
12.11 even 2 inner 1680.2.ba.c.911.16 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.ba.c.911.15 16 1.1 even 1 trivial
1680.2.ba.c.911.16 yes 16 12.11 even 2 inner
1680.2.ba.d.911.1 yes 16 3.2 odd 2
1680.2.ba.d.911.2 yes 16 4.3 odd 2