Properties

Label 168.8.a.b
Level $168$
Weight $8$
Character orbit 168.a
Self dual yes
Analytic conductor $52.481$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,8,Mod(1,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 168.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-54,0,-52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.4806842813\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{211}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 211 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 24\sqrt{211}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 27 q^{3} + (\beta - 26) q^{5} + 343 q^{7} + 729 q^{9} + ( - 5 \beta - 2028) q^{11} + ( - 20 \beta - 3234) q^{13} + ( - 27 \beta + 702) q^{15} + ( - 45 \beta + 3890) q^{17} + (26 \beta + 7732) q^{19}+ \cdots + ( - 3645 \beta - 1478412) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{3} - 52 q^{5} + 686 q^{7} + 1458 q^{9} - 4056 q^{11} - 6468 q^{13} + 1404 q^{15} + 7780 q^{17} + 15464 q^{19} - 18522 q^{21} + 103184 q^{23} + 88174 q^{25} - 39366 q^{27} + 102284 q^{29} - 71776 q^{31}+ \cdots - 2956824 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−14.5258
14.5258
0 −27.0000 0 −374.620 0 343.000 0 729.000 0
1.2 0 −27.0000 0 322.620 0 343.000 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 168.8.a.b 2
3.b odd 2 1 504.8.a.g 2
4.b odd 2 1 336.8.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.8.a.b 2 1.a even 1 1 trivial
336.8.a.o 2 4.b odd 2 1
504.8.a.g 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 52T_{5} - 120860 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(168))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 52T - 120860 \) Copy content Toggle raw display
$7$ \( (T - 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4056 T + 1074384 \) Copy content Toggle raw display
$13$ \( T^{2} + 6468 T - 38155644 \) Copy content Toggle raw display
$17$ \( T^{2} - 7780 T - 230978300 \) Copy content Toggle raw display
$19$ \( T^{2} - 15464 T - 22374512 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 2393261440 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 9367459292 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 8377080320 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 2675912580 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 2447733220 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 93153917200 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 159574591744 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 340404611332 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 678842463600 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 2649767265028 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1137117299184 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 2277258731136 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 8409288180572 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 246065890816 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 20649853460880 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 39523841602844 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 3581899117636 \) Copy content Toggle raw display
show more
show less