Newspace parameters
Level: | \( N \) | \(=\) | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 168.t (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.91232088096\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(48\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −2.82552 | + | 0.128292i | −2.59808 | + | 1.50000i | 7.96708 | − | 0.724984i | −8.82092 | + | 15.2783i | 7.14847 | − | 4.57159i | −18.4632 | − | 1.45285i | −22.4181 | + | 3.07057i | 4.50000 | − | 7.79423i | 22.9636 | − | 44.3007i |
19.2 | −2.82155 | − | 0.197133i | −2.59808 | + | 1.50000i | 7.92228 | + | 1.11244i | −1.03601 | + | 1.79443i | 7.62630 | − | 3.72016i | 17.7288 | + | 5.35612i | −22.1338 | − | 4.70055i | 4.50000 | − | 7.79423i | 3.27690 | − | 4.85883i |
19.3 | −2.80302 | + | 0.378234i | 2.59808 | − | 1.50000i | 7.71388 | − | 2.12040i | −7.30307 | + | 12.6493i | −6.71512 | + | 5.18721i | −0.782311 | + | 18.5037i | −20.8202 | + | 8.86116i | 4.50000 | − | 7.79423i | 15.6863 | − | 38.2185i |
19.4 | −2.77443 | − | 0.550031i | 2.59808 | − | 1.50000i | 7.39493 | + | 3.05204i | 4.82508 | − | 8.35729i | −8.03323 | + | 2.73262i | 14.2799 | − | 11.7934i | −18.8380 | − | 12.5351i | 4.50000 | − | 7.79423i | −17.9836 | + | 20.5328i |
19.5 | −2.61501 | − | 1.07784i | −2.59808 | + | 1.50000i | 5.67651 | + | 5.63713i | 8.86587 | − | 15.3561i | 8.41075 | − | 1.12219i | −14.8898 | + | 11.0134i | −8.76816 | − | 20.8595i | 4.50000 | − | 7.79423i | −39.7358 | + | 30.6004i |
19.6 | −2.58902 | + | 1.13884i | −2.59808 | + | 1.50000i | 5.40608 | − | 5.89697i | 10.5886 | − | 18.3401i | 5.01822 | − | 6.84233i | 3.62295 | − | 18.1624i | −7.28075 | + | 21.4241i | 4.50000 | − | 7.79423i | −6.52781 | + | 59.5416i |
19.7 | −2.52997 | − | 1.26461i | 2.59808 | − | 1.50000i | 4.80152 | + | 6.39886i | 1.10134 | − | 1.90757i | −8.46998 | + | 0.509406i | −7.13695 | + | 17.0899i | −4.05567 | − | 22.2610i | 4.50000 | − | 7.79423i | −5.19868 | + | 3.43334i |
19.8 | −2.45618 | + | 1.40256i | 2.59808 | − | 1.50000i | 4.06565 | − | 6.88988i | −6.01586 | + | 10.4198i | −4.27751 | + | 7.32823i | 9.34266 | − | 15.9911i | −0.322521 | + | 22.6251i | 4.50000 | − | 7.79423i | 0.161692 | − | 34.0305i |
19.9 | −2.31785 | + | 1.62097i | −2.59808 | + | 1.50000i | 2.74489 | − | 7.51436i | 1.39001 | − | 2.40757i | 3.59050 | − | 7.68819i | −15.3983 | + | 10.2904i | 5.81831 | + | 21.8666i | 4.50000 | − | 7.79423i | 0.680764 | + | 7.83358i |
19.10 | −2.28546 | + | 1.66633i | 2.59808 | − | 1.50000i | 2.44666 | − | 7.61668i | 7.16825 | − | 12.4158i | −3.43830 | + | 7.75746i | 12.0691 | + | 14.0477i | 7.10021 | + | 21.4846i | 4.50000 | − | 7.79423i | 4.30608 | + | 40.3204i |
19.11 | −2.25437 | − | 1.70816i | −2.59808 | + | 1.50000i | 2.16435 | + | 7.70166i | −1.27195 | + | 2.20309i | 8.41927 | + | 1.05639i | −2.37801 | − | 18.3670i | 8.27645 | − | 21.0594i | 4.50000 | − | 7.79423i | 6.63069 | − | 2.79387i |
19.12 | −2.23123 | − | 1.73828i | 2.59808 | − | 1.50000i | 1.95677 | + | 7.75700i | −4.53700 | + | 7.85831i | −8.40432 | − | 1.16934i | −18.3201 | − | 2.71568i | 9.11784 | − | 20.7091i | 4.50000 | − | 7.79423i | 23.7830 | − | 9.64712i |
19.13 | −1.82256 | + | 2.16293i | −2.59808 | + | 1.50000i | −1.35652 | − | 7.88415i | −2.37822 | + | 4.11919i | 1.49077 | − | 8.35330i | 14.8436 | + | 11.0755i | 19.5252 | + | 11.4353i | 4.50000 | − | 7.79423i | −4.57507 | − | 12.6514i |
19.14 | −1.74973 | − | 2.22226i | −2.59808 | + | 1.50000i | −1.87689 | + | 7.77671i | −5.68130 | + | 9.84030i | 7.87932 | + | 3.14901i | 1.38512 | + | 18.4684i | 20.5659 | − | 9.43622i | 4.50000 | − | 7.79423i | 31.8084 | − | 4.59254i |
19.15 | −1.72076 | + | 2.24477i | 2.59808 | − | 1.50000i | −2.07798 | − | 7.72541i | 4.08960 | − | 7.08340i | −1.10351 | + | 8.41322i | −18.1007 | − | 3.91988i | 20.9175 | + | 8.62897i | 4.50000 | − | 7.79423i | 8.86339 | + | 21.3690i |
19.16 | −1.40242 | − | 2.45626i | 2.59808 | − | 1.50000i | −4.06643 | + | 6.88942i | −6.00810 | + | 10.4063i | −7.32799 | − | 4.27792i | 8.17074 | − | 16.6204i | 22.6251 | + | 0.326351i | 4.50000 | − | 7.79423i | 33.9865 | + | 0.163401i |
19.17 | −1.21695 | − | 2.55324i | 2.59808 | − | 1.50000i | −5.03804 | + | 6.21435i | 9.44320 | − | 16.3561i | −6.99160 | − | 4.80807i | −10.2846 | − | 15.4022i | 21.9978 | + | 5.30073i | 4.50000 | − | 7.79423i | −53.2530 | − | 4.20609i |
19.18 | −1.08365 | + | 2.61261i | 2.59808 | − | 1.50000i | −5.65141 | − | 5.66229i | −4.08960 | + | 7.08340i | 1.10351 | + | 8.41322i | 18.1007 | + | 3.91988i | 20.9175 | − | 8.62897i | 4.50000 | − | 7.79423i | −14.0744 | − | 18.3604i |
19.19 | −0.961869 | + | 2.65985i | −2.59808 | + | 1.50000i | −6.14962 | − | 5.11686i | 2.37822 | − | 4.11919i | −1.49077 | − | 8.35330i | −14.8436 | − | 11.0755i | 19.5252 | − | 11.4353i | 4.50000 | − | 7.79423i | 8.66891 | + | 10.2878i |
19.20 | −0.475069 | − | 2.78824i | 2.59808 | − | 1.50000i | −7.54862 | + | 2.64922i | −2.37912 | + | 4.12075i | −5.41663 | − | 6.53147i | 11.6311 | + | 14.4124i | 10.9728 | + | 19.7888i | 4.50000 | − | 7.79423i | 12.6199 | + | 4.67592i |
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
8.d | odd | 2 | 1 | inner |
56.m | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 168.4.t.a | ✓ | 96 |
4.b | odd | 2 | 1 | 672.4.bb.a | 96 | ||
7.d | odd | 6 | 1 | inner | 168.4.t.a | ✓ | 96 |
8.b | even | 2 | 1 | 672.4.bb.a | 96 | ||
8.d | odd | 2 | 1 | inner | 168.4.t.a | ✓ | 96 |
28.f | even | 6 | 1 | 672.4.bb.a | 96 | ||
56.j | odd | 6 | 1 | 672.4.bb.a | 96 | ||
56.m | even | 6 | 1 | inner | 168.4.t.a | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.4.t.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
168.4.t.a | ✓ | 96 | 7.d | odd | 6 | 1 | inner |
168.4.t.a | ✓ | 96 | 8.d | odd | 2 | 1 | inner |
168.4.t.a | ✓ | 96 | 56.m | even | 6 | 1 | inner |
672.4.bb.a | 96 | 4.b | odd | 2 | 1 | ||
672.4.bb.a | 96 | 8.b | even | 2 | 1 | ||
672.4.bb.a | 96 | 28.f | even | 6 | 1 | ||
672.4.bb.a | 96 | 56.j | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(168, [\chi])\).