gp: [N,k,chi] = [168,4,Mod(5,168)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(168, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 3, 5]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("168.5");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [176,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{88} - 3028 T_{5}^{86} + 4967424 T_{5}^{84} - 5635337432 T_{5}^{82} + 4890926593820 T_{5}^{80} + \cdots + 70\!\cdots\!84 \)
T5^88 - 3028*T5^86 + 4967424*T5^84 - 5635337432*T5^82 + 4890926593820*T5^80 - 3421846172649564*T5^78 + 1993171355769378640*T5^76 - 987263976554777423716*T5^74 + 422047814212138224664242*T5^72 - 157373729783253047689392000*T5^70 + 51585376005944696993434992984*T5^68 - 14949446719738174043699994350868*T5^66 + 3846356646641445991045149410211888*T5^64 - 881251591093786283107716752062505028*T5^62 + 180165304573706690842641823884601201464*T5^60 - 32909419098208262818772274852478138294128*T5^58 + 5374414000060928173519533727048324251797835*T5^56 - 784784354212432175119536145842781755326801784*T5^54 + 102430084584042325188153060619161488719092291552*T5^52 - 11940792749795824298392926238464996830606290500324*T5^50 + 1241899094886098140783211950430893248180353950084848*T5^48 - 115069824794971380634262575629162959049880724250686772*T5^46 + 9482296253297442039101993438043839606017373448348257880*T5^44 - 693560394326705818167380040102224684711275092079179433104*T5^42 + 44930463187927278883297133014542301640687691637164687603138*T5^40 - 2572131318800748968251211220862513706167876179753946494524148*T5^38 + 129824754913734606286992487760281877605904182928385084227700384*T5^36 - 5764664111460110569517043243791908607331395021162766394061259676*T5^34 + 224736119706667781568419280652541213697302590816631811694585819276*T5^32 - 7677543134326079086860987916316052223113229948284722244085371007800*T5^30 + 229423040092488524527462067604688389887947012344944038454592219969704*T5^28 - 5984172228239811711159458758176650194448057023567107932597979926793116*T5^26 + 135900607886349976589071761102230037438658953400319346936365385603676113*T5^24 - 2677591604245282824125733386826396257150793120068459307000252864073317976*T5^22 + 45550618333628761542928761849535013498122334781065068844270072317406608552*T5^20 - 664484634578970871295076902017006605084528133355323993211288115138414683712*T5^18 + 8234836196904585329087999188444530819562885556407172342828386126629715625856*T5^16 - 85529671260112631887259704034561055194043844228472081566123417238774346425856*T5^14 + 730642822187427780266231052871897093227365681187035603730595483245667125170688*T5^12 - 4986435887130105410310875156587451329529006382643033226121120711201538108059648*T5^10 + 26037349993971578413286755743434347980731179270946246955543151524440402481635328*T5^8 - 95805638517624188665420559905583861178532692689572371231025532850463341346455552*T5^6 + 214100923128233264585998283011325879084802887325778903467536742515924877438517248*T5^4 - 139083237126636611728050556503404574579050379096419557161258028943376380653731840*T5^2 + 70081324936131131326284445774791321819802491236747917355137681867207586600976384
acting on \(S_{4}^{\mathrm{new}}(168, [\chi])\).