gp: [N,k,chi] = [168,4,Mod(1,168)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(168, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("168.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,-3,0,-10]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 168 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(168)) S 4 n e w ( Γ 0 ( 1 6 8 ) ) :
T 5 + 10 T_{5} + 10 T 5 + 1 0
T5 + 10
T 11 + 12 T_{11} + 12 T 1 1 + 1 2
T11 + 12
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T + 3 T + 3 T + 3
T + 3
5 5 5
T + 10 T + 10 T + 1 0
T + 10
7 7 7
T − 7 T - 7 T − 7
T - 7
11 11 1 1
T + 12 T + 12 T + 1 2
T + 12
13 13 1 3
T − 30 T - 30 T − 3 0
T - 30
17 17 1 7
T − 34 T - 34 T − 3 4
T - 34
19 19 1 9
T − 148 T - 148 T − 1 4 8
T - 148
23 23 2 3
T − 152 T - 152 T − 1 5 2
T - 152
29 29 2 9
T + 106 T + 106 T + 1 0 6
T + 106
31 31 3 1
T − 304 T - 304 T − 3 0 4
T - 304
37 37 3 7
T + 114 T + 114 T + 1 1 4
T + 114
41 41 4 1
T − 202 T - 202 T − 2 0 2
T - 202
43 43 4 3
T − 116 T - 116 T − 1 1 6
T - 116
47 47 4 7
T − 224 T - 224 T − 2 2 4
T - 224
53 53 5 3
T + 274 T + 274 T + 2 7 4
T + 274
59 59 5 9
T + 660 T + 660 T + 6 6 0
T + 660
61 61 6 1
T − 382 T - 382 T − 3 8 2
T - 382
67 67 6 7
T − 12 T - 12 T − 1 2
T - 12
71 71 7 1
T + 552 T + 552 T + 5 5 2
T + 552
73 73 7 3
T + 614 T + 614 T + 6 1 4
T + 614
79 79 7 9
T − 880 T - 880 T − 8 8 0
T - 880
83 83 8 3
T + 108 T + 108 T + 1 0 8
T + 108
89 89 8 9
T + 86 T + 86 T + 8 6
T + 86
97 97 9 7
T − 1426 T - 1426 T − 1 4 2 6
T - 1426
show more
show less