Properties

Label 168.1.s.a
Level $168$
Weight $1$
Character orbit 168.s
Analytic conductor $0.084$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -24
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,1,Mod(53,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 4])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.53"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 168.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.0838429221223\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.1176.1
Artin image: $C_3\times S_3$
Artin field: Galois closure of 6.0.677376.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6}^{2} q^{2} - \zeta_{6} q^{3} - \zeta_{6} q^{4} - \zeta_{6}^{2} q^{5} + q^{6} - \zeta_{6} q^{7} + q^{8} + \zeta_{6}^{2} q^{9} + \zeta_{6} q^{10} + \zeta_{6} q^{11} + \zeta_{6}^{2} q^{12} + \cdots - q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{3} - q^{4} + q^{5} + 2 q^{6} - q^{7} + 2 q^{8} - q^{9} + q^{10} + q^{11} - q^{12} + 2 q^{14} - 2 q^{15} - q^{16} - q^{18} - 2 q^{20} - q^{21} - 2 q^{22} - q^{24} + 2 q^{27}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(\zeta_{6}^{2}\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 −0.500000 + 0.866025i 1.00000 −0.500000 0.866025i 0.500000 0.866025i
149.1 −0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 1.00000 −0.500000 0.866025i 1.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
7.c even 3 1 inner
168.s odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 168.1.s.a 2
3.b odd 2 1 168.1.s.b yes 2
4.b odd 2 1 672.1.ba.b 2
7.b odd 2 1 1176.1.s.a 2
7.c even 3 1 inner 168.1.s.a 2
7.c even 3 1 1176.1.n.d 1
7.d odd 6 1 1176.1.n.c 1
7.d odd 6 1 1176.1.s.a 2
8.b even 2 1 168.1.s.b yes 2
8.d odd 2 1 672.1.ba.a 2
12.b even 2 1 672.1.ba.a 2
21.c even 2 1 1176.1.s.b 2
21.g even 6 1 1176.1.n.b 1
21.g even 6 1 1176.1.s.b 2
21.h odd 6 1 168.1.s.b yes 2
21.h odd 6 1 1176.1.n.a 1
24.f even 2 1 672.1.ba.b 2
24.h odd 2 1 CM 168.1.s.a 2
28.g odd 6 1 672.1.ba.b 2
56.h odd 2 1 1176.1.s.b 2
56.j odd 6 1 1176.1.n.b 1
56.j odd 6 1 1176.1.s.b 2
56.k odd 6 1 672.1.ba.a 2
56.p even 6 1 168.1.s.b yes 2
56.p even 6 1 1176.1.n.a 1
84.n even 6 1 672.1.ba.a 2
168.i even 2 1 1176.1.s.a 2
168.s odd 6 1 inner 168.1.s.a 2
168.s odd 6 1 1176.1.n.d 1
168.v even 6 1 672.1.ba.b 2
168.ba even 6 1 1176.1.n.c 1
168.ba even 6 1 1176.1.s.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.1.s.a 2 1.a even 1 1 trivial
168.1.s.a 2 7.c even 3 1 inner
168.1.s.a 2 24.h odd 2 1 CM
168.1.s.a 2 168.s odd 6 1 inner
168.1.s.b yes 2 3.b odd 2 1
168.1.s.b yes 2 8.b even 2 1
168.1.s.b yes 2 21.h odd 6 1
168.1.s.b yes 2 56.p even 6 1
672.1.ba.a 2 8.d odd 2 1
672.1.ba.a 2 12.b even 2 1
672.1.ba.a 2 56.k odd 6 1
672.1.ba.a 2 84.n even 6 1
672.1.ba.b 2 4.b odd 2 1
672.1.ba.b 2 24.f even 2 1
672.1.ba.b 2 28.g odd 6 1
672.1.ba.b 2 168.v even 6 1
1176.1.n.a 1 21.h odd 6 1
1176.1.n.a 1 56.p even 6 1
1176.1.n.b 1 21.g even 6 1
1176.1.n.b 1 56.j odd 6 1
1176.1.n.c 1 7.d odd 6 1
1176.1.n.c 1 168.ba even 6 1
1176.1.n.d 1 7.c even 3 1
1176.1.n.d 1 168.s odd 6 1
1176.1.s.a 2 7.b odd 2 1
1176.1.s.a 2 7.d odd 6 1
1176.1.s.a 2 168.i even 2 1
1176.1.s.a 2 168.ba even 6 1
1176.1.s.b 2 21.c even 2 1
1176.1.s.b 2 21.g even 6 1
1176.1.s.b 2 56.h odd 2 1
1176.1.s.b 2 56.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - T_{5} + 1 \) acting on \(S_{1}^{\mathrm{new}}(168, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$59$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$83$ \( (T + 1)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( (T + 1)^{2} \) Copy content Toggle raw display
show more
show less