Properties

Label 1674.2.q.a.557.20
Level $1674$
Weight $2$
Character 1674.557
Analytic conductor $13.367$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1674,2,Mod(557,1674)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1674.557"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1674, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1674 = 2 \cdot 3^{3} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1674.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3669572984\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 558)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 557.20
Character \(\chi\) \(=\) 1674.557
Dual form 1674.2.q.a.1115.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-2.53994 - 1.46644i) q^{5} +(2.03804 + 3.52999i) q^{7} -1.00000i q^{8} -2.93287 q^{10} +(1.42757 + 2.47262i) q^{11} +(0.887117 + 0.512177i) q^{13} +(3.52999 + 2.03804i) q^{14} +(-0.500000 - 0.866025i) q^{16} -5.67253 q^{17} -7.01983 q^{19} +(-2.53994 + 1.46644i) q^{20} +(2.47262 + 1.42757i) q^{22} +(-4.35174 + 7.53743i) q^{23} +(1.80087 + 3.11920i) q^{25} +1.02435 q^{26} +4.07608 q^{28} +(3.19560 + 5.53494i) q^{29} +(1.41782 - 5.38422i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-4.91256 + 2.83627i) q^{34} -11.9546i q^{35} +5.63967i q^{37} +(-6.07935 + 3.50991i) q^{38} +(-1.46644 + 2.53994i) q^{40} +(-3.22261 - 1.86058i) q^{41} +(3.66962 - 2.11866i) q^{43} +2.85513 q^{44} +8.70347i q^{46} +(-2.99058 + 1.72661i) q^{47} +(-4.80721 + 8.32632i) q^{49} +(3.11920 + 1.80087i) q^{50} +(0.887117 - 0.512177i) q^{52} +10.5738 q^{53} -8.37374i q^{55} +(3.52999 - 2.03804i) q^{56} +(5.53494 + 3.19560i) q^{58} +(4.81405 + 2.77939i) q^{59} +(-10.8811 + 6.28219i) q^{61} +(-1.46424 - 5.37178i) q^{62} -1.00000 q^{64} +(-1.50215 - 2.60180i) q^{65} +(-0.327613 + 0.567442i) q^{67} +(-2.83627 + 4.91256i) q^{68} +(-5.97731 - 10.3530i) q^{70} +1.41846i q^{71} +12.9850i q^{73} +(2.81984 + 4.88410i) q^{74} +(-3.50991 + 6.07935i) q^{76} +(-5.81887 + 10.0786i) q^{77} +(3.28967 - 1.89929i) q^{79} +2.93287i q^{80} -3.72115 q^{82} +(2.20366 + 3.81685i) q^{83} +(14.4079 + 8.31841i) q^{85} +(2.11866 - 3.66962i) q^{86} +(2.47262 - 1.42757i) q^{88} +2.33927 q^{89} +4.17535i q^{91} +(4.35174 + 7.53743i) q^{92} +(-1.72661 + 2.99058i) q^{94} +(17.8300 + 10.2941i) q^{95} +(2.69419 + 4.66648i) q^{97} +9.61441i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} - 12 q^{5} - 4 q^{7} - 32 q^{16} - 8 q^{19} - 12 q^{20} + 44 q^{25} - 8 q^{28} + 8 q^{31} - 36 q^{38} - 24 q^{41} + 48 q^{47} - 36 q^{49} + 12 q^{59} - 64 q^{64} + 16 q^{67} - 12 q^{70}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1674\mathbb{Z}\right)^\times\).

\(n\) \(1055\) \(1243\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −2.53994 1.46644i −1.13590 0.655810i −0.190486 0.981690i \(-0.561006\pi\)
−0.945411 + 0.325879i \(0.894340\pi\)
\(6\) 0 0
\(7\) 2.03804 + 3.52999i 0.770306 + 1.33421i 0.937395 + 0.348268i \(0.113230\pi\)
−0.167089 + 0.985942i \(0.553437\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.93287 −0.927456
\(11\) 1.42757 + 2.47262i 0.430428 + 0.745522i 0.996910 0.0785514i \(-0.0250295\pi\)
−0.566483 + 0.824074i \(0.691696\pi\)
\(12\) 0 0
\(13\) 0.887117 + 0.512177i 0.246042 + 0.142052i 0.617951 0.786217i \(-0.287963\pi\)
−0.371909 + 0.928269i \(0.621297\pi\)
\(14\) 3.52999 + 2.03804i 0.943429 + 0.544689i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −5.67253 −1.37579 −0.687896 0.725810i \(-0.741465\pi\)
−0.687896 + 0.725810i \(0.741465\pi\)
\(18\) 0 0
\(19\) −7.01983 −1.61046 −0.805229 0.592964i \(-0.797958\pi\)
−0.805229 + 0.592964i \(0.797958\pi\)
\(20\) −2.53994 + 1.46644i −0.567949 + 0.327905i
\(21\) 0 0
\(22\) 2.47262 + 1.42757i 0.527164 + 0.304358i
\(23\) −4.35174 + 7.53743i −0.907400 + 1.57166i −0.0897370 + 0.995965i \(0.528603\pi\)
−0.817663 + 0.575697i \(0.804731\pi\)
\(24\) 0 0
\(25\) 1.80087 + 3.11920i 0.360175 + 0.623841i
\(26\) 1.02435 0.200892
\(27\) 0 0
\(28\) 4.07608 0.770306
\(29\) 3.19560 + 5.53494i 0.593408 + 1.02781i 0.993769 + 0.111456i \(0.0355513\pi\)
−0.400361 + 0.916357i \(0.631115\pi\)
\(30\) 0 0
\(31\) 1.41782 5.38422i 0.254649 0.967034i
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −4.91256 + 2.83627i −0.842497 + 0.486416i
\(35\) 11.9546i 2.02070i
\(36\) 0 0
\(37\) 5.63967i 0.927157i 0.886056 + 0.463578i \(0.153435\pi\)
−0.886056 + 0.463578i \(0.846565\pi\)
\(38\) −6.07935 + 3.50991i −0.986200 + 0.569383i
\(39\) 0 0
\(40\) −1.46644 + 2.53994i −0.231864 + 0.401600i
\(41\) −3.22261 1.86058i −0.503288 0.290573i 0.226783 0.973945i \(-0.427179\pi\)
−0.730070 + 0.683372i \(0.760513\pi\)
\(42\) 0 0
\(43\) 3.66962 2.11866i 0.559612 0.323092i −0.193378 0.981124i \(-0.561944\pi\)
0.752990 + 0.658032i \(0.228611\pi\)
\(44\) 2.85513 0.430428
\(45\) 0 0
\(46\) 8.70347i 1.28326i
\(47\) −2.99058 + 1.72661i −0.436221 + 0.251852i −0.701993 0.712184i \(-0.747706\pi\)
0.265773 + 0.964036i \(0.414373\pi\)
\(48\) 0 0
\(49\) −4.80721 + 8.32632i −0.686744 + 1.18947i
\(50\) 3.11920 + 1.80087i 0.441122 + 0.254682i
\(51\) 0 0
\(52\) 0.887117 0.512177i 0.123021 0.0710262i
\(53\) 10.5738 1.45242 0.726211 0.687472i \(-0.241279\pi\)
0.726211 + 0.687472i \(0.241279\pi\)
\(54\) 0 0
\(55\) 8.37374i 1.12912i
\(56\) 3.52999 2.03804i 0.471714 0.272344i
\(57\) 0 0
\(58\) 5.53494 + 3.19560i 0.726773 + 0.419603i
\(59\) 4.81405 + 2.77939i 0.626736 + 0.361846i 0.779487 0.626419i \(-0.215480\pi\)
−0.152751 + 0.988265i \(0.548813\pi\)
\(60\) 0 0
\(61\) −10.8811 + 6.28219i −1.39318 + 0.804352i −0.993666 0.112376i \(-0.964154\pi\)
−0.399512 + 0.916728i \(0.630821\pi\)
\(62\) −1.46424 5.37178i −0.185958 0.682217i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.50215 2.60180i −0.186319 0.322714i
\(66\) 0 0
\(67\) −0.327613 + 0.567442i −0.0400242 + 0.0693240i −0.885344 0.464937i \(-0.846077\pi\)
0.845319 + 0.534261i \(0.179410\pi\)
\(68\) −2.83627 + 4.91256i −0.343948 + 0.595735i
\(69\) 0 0
\(70\) −5.97731 10.3530i −0.714425 1.23742i
\(71\) 1.41846i 0.168340i 0.996451 + 0.0841701i \(0.0268239\pi\)
−0.996451 + 0.0841701i \(0.973176\pi\)
\(72\) 0 0
\(73\) 12.9850i 1.51978i 0.650052 + 0.759890i \(0.274747\pi\)
−0.650052 + 0.759890i \(0.725253\pi\)
\(74\) 2.81984 + 4.88410i 0.327799 + 0.567765i
\(75\) 0 0
\(76\) −3.50991 + 6.07935i −0.402615 + 0.697349i
\(77\) −5.81887 + 10.0786i −0.663122 + 1.14856i
\(78\) 0 0
\(79\) 3.28967 1.89929i 0.370117 0.213687i −0.303393 0.952866i \(-0.598119\pi\)
0.673510 + 0.739178i \(0.264786\pi\)
\(80\) 2.93287i 0.327905i
\(81\) 0 0
\(82\) −3.72115 −0.410933
\(83\) 2.20366 + 3.81685i 0.241883 + 0.418954i 0.961251 0.275676i \(-0.0889015\pi\)
−0.719367 + 0.694630i \(0.755568\pi\)
\(84\) 0 0
\(85\) 14.4079 + 8.31841i 1.56276 + 0.902258i
\(86\) 2.11866 3.66962i 0.228460 0.395705i
\(87\) 0 0
\(88\) 2.47262 1.42757i 0.263582 0.152179i
\(89\) 2.33927 0.247962 0.123981 0.992285i \(-0.460434\pi\)
0.123981 + 0.992285i \(0.460434\pi\)
\(90\) 0 0
\(91\) 4.17535i 0.437696i
\(92\) 4.35174 + 7.53743i 0.453700 + 0.785831i
\(93\) 0 0
\(94\) −1.72661 + 2.99058i −0.178086 + 0.308455i
\(95\) 17.8300 + 10.2941i 1.82932 + 1.05616i
\(96\) 0 0
\(97\) 2.69419 + 4.66648i 0.273554 + 0.473809i 0.969769 0.244024i \(-0.0784675\pi\)
−0.696215 + 0.717833i \(0.745134\pi\)
\(98\) 9.61441i 0.971202i
\(99\) 0 0
\(100\) 3.60175 0.360175
\(101\) −16.1150 + 9.30400i −1.60350 + 0.925782i −0.612722 + 0.790298i \(0.709926\pi\)
−0.990780 + 0.135484i \(0.956741\pi\)
\(102\) 0 0
\(103\) 0.824711 1.42844i 0.0812612 0.140748i −0.822531 0.568721i \(-0.807439\pi\)
0.903792 + 0.427972i \(0.140772\pi\)
\(104\) 0.512177 0.887117i 0.0502231 0.0869890i
\(105\) 0 0
\(106\) 9.15718 5.28690i 0.889423 0.513509i
\(107\) 9.92203i 0.959199i −0.877488 0.479599i \(-0.840782\pi\)
0.877488 0.479599i \(-0.159218\pi\)
\(108\) 0 0
\(109\) 18.8530 1.80579 0.902897 0.429857i \(-0.141436\pi\)
0.902897 + 0.429857i \(0.141436\pi\)
\(110\) −4.18687 7.25188i −0.399203 0.691439i
\(111\) 0 0
\(112\) 2.03804 3.52999i 0.192577 0.333552i
\(113\) −8.43172 4.86805i −0.793189 0.457948i 0.0478950 0.998852i \(-0.484749\pi\)
−0.841084 + 0.540904i \(0.818082\pi\)
\(114\) 0 0
\(115\) 22.1063 12.7631i 2.06143 1.19016i
\(116\) 6.39120 0.593408
\(117\) 0 0
\(118\) 5.55879 0.511728
\(119\) −11.5608 20.0240i −1.05978 1.83559i
\(120\) 0 0
\(121\) 1.42411 2.46663i 0.129464 0.224239i
\(122\) −6.28219 + 10.8811i −0.568763 + 0.985126i
\(123\) 0 0
\(124\) −3.95396 3.91998i −0.355076 0.352025i
\(125\) 4.10090i 0.366795i
\(126\) 0 0
\(127\) 9.65404i 0.856657i −0.903623 0.428329i \(-0.859103\pi\)
0.903623 0.428329i \(-0.140897\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −2.60180 1.50215i −0.228193 0.131747i
\(131\) 0.961641 + 0.555203i 0.0840189 + 0.0485084i 0.541421 0.840752i \(-0.317887\pi\)
−0.457402 + 0.889260i \(0.651220\pi\)
\(132\) 0 0
\(133\) −14.3067 24.7799i −1.24055 2.14869i
\(134\) 0.655225i 0.0566028i
\(135\) 0 0
\(136\) 5.67253i 0.486416i
\(137\) 1.18927 + 2.05988i 0.101606 + 0.175987i 0.912347 0.409419i \(-0.134268\pi\)
−0.810740 + 0.585406i \(0.800935\pi\)
\(138\) 0 0
\(139\) −15.1170 8.72781i −1.28221 0.740283i −0.304956 0.952366i \(-0.598642\pi\)
−0.977252 + 0.212084i \(0.931975\pi\)
\(140\) −10.3530 5.97731i −0.874989 0.505175i
\(141\) 0 0
\(142\) 0.709229 + 1.22842i 0.0595172 + 0.103087i
\(143\) 2.92467i 0.244573i
\(144\) 0 0
\(145\) 18.7446i 1.55665i
\(146\) 6.49250 + 11.2453i 0.537323 + 0.930671i
\(147\) 0 0
\(148\) 4.88410 + 2.81984i 0.401471 + 0.231789i
\(149\) −1.94748 1.12438i −0.159544 0.0921129i 0.418102 0.908400i \(-0.362695\pi\)
−0.577646 + 0.816287i \(0.696029\pi\)
\(150\) 0 0
\(151\) 0.945284 0.545760i 0.0769261 0.0444133i −0.461044 0.887378i \(-0.652525\pi\)
0.537970 + 0.842964i \(0.319191\pi\)
\(152\) 7.01983i 0.569383i
\(153\) 0 0
\(154\) 11.6377i 0.937796i
\(155\) −11.4968 + 11.5965i −0.923445 + 0.931449i
\(156\) 0 0
\(157\) −3.28221 + 5.68495i −0.261949 + 0.453708i −0.966760 0.255687i \(-0.917698\pi\)
0.704811 + 0.709395i \(0.251032\pi\)
\(158\) 1.89929 3.28967i 0.151100 0.261712i
\(159\) 0 0
\(160\) 1.46644 + 2.53994i 0.115932 + 0.200800i
\(161\) −35.4760 −2.79590
\(162\) 0 0
\(163\) 9.26680 0.725832 0.362916 0.931822i \(-0.381781\pi\)
0.362916 + 0.931822i \(0.381781\pi\)
\(164\) −3.22261 + 1.86058i −0.251644 + 0.145287i
\(165\) 0 0
\(166\) 3.81685 + 2.20366i 0.296245 + 0.171037i
\(167\) 0.313267 0.542595i 0.0242414 0.0419873i −0.853650 0.520847i \(-0.825616\pi\)
0.877892 + 0.478859i \(0.158950\pi\)
\(168\) 0 0
\(169\) −5.97535 10.3496i −0.459642 0.796124i
\(170\) 16.6368 1.27599
\(171\) 0 0
\(172\) 4.23731i 0.323092i
\(173\) 20.4999 11.8356i 1.55857 0.899844i 0.561181 0.827693i \(-0.310347\pi\)
0.997394 0.0721506i \(-0.0229862\pi\)
\(174\) 0 0
\(175\) −7.34050 + 12.7141i −0.554890 + 0.961097i
\(176\) 1.42757 2.47262i 0.107607 0.186381i
\(177\) 0 0
\(178\) 2.02587 1.16963i 0.151845 0.0876678i
\(179\) −1.55169 −0.115979 −0.0579894 0.998317i \(-0.518469\pi\)
−0.0579894 + 0.998317i \(0.518469\pi\)
\(180\) 0 0
\(181\) 12.3884i 0.920822i 0.887706 + 0.460411i \(0.152298\pi\)
−0.887706 + 0.460411i \(0.847702\pi\)
\(182\) 2.08767 + 3.61596i 0.154749 + 0.268033i
\(183\) 0 0
\(184\) 7.53743 + 4.35174i 0.555667 + 0.320814i
\(185\) 8.27022 14.3244i 0.608039 1.05315i
\(186\) 0 0
\(187\) −8.09792 14.0260i −0.592178 1.02568i
\(188\) 3.45322i 0.251852i
\(189\) 0 0
\(190\) 20.5883 1.49363
\(191\) −2.87262 + 1.65851i −0.207855 + 0.120005i −0.600314 0.799764i \(-0.704958\pi\)
0.392459 + 0.919770i \(0.371625\pi\)
\(192\) 0 0
\(193\) 0.0584452 0.101230i 0.00420698 0.00728670i −0.863914 0.503639i \(-0.831994\pi\)
0.868121 + 0.496352i \(0.165328\pi\)
\(194\) 4.66648 + 2.69419i 0.335034 + 0.193432i
\(195\) 0 0
\(196\) 4.80721 + 8.32632i 0.343372 + 0.594737i
\(197\) −15.1370 −1.07847 −0.539233 0.842157i \(-0.681286\pi\)
−0.539233 + 0.842157i \(0.681286\pi\)
\(198\) 0 0
\(199\) 11.8299i 0.838598i −0.907848 0.419299i \(-0.862276\pi\)
0.907848 0.419299i \(-0.137724\pi\)
\(200\) 3.11920 1.80087i 0.220561 0.127341i
\(201\) 0 0
\(202\) −9.30400 + 16.1150i −0.654627 + 1.13385i
\(203\) −13.0255 + 22.5609i −0.914212 + 1.58346i
\(204\) 0 0
\(205\) 5.45684 + 9.45152i 0.381122 + 0.660123i
\(206\) 1.64942i 0.114921i
\(207\) 0 0
\(208\) 1.02435i 0.0710262i
\(209\) −10.0213 17.3573i −0.693186 1.20063i
\(210\) 0 0
\(211\) −2.95666 + 5.12109i −0.203545 + 0.352550i −0.949668 0.313258i \(-0.898580\pi\)
0.746123 + 0.665808i \(0.231913\pi\)
\(212\) 5.28690 9.15718i 0.363106 0.628917i
\(213\) 0 0
\(214\) −4.96101 8.59273i −0.339128 0.587387i
\(215\) −12.4275 −0.847548
\(216\) 0 0
\(217\) 21.8958 5.96834i 1.48638 0.405157i
\(218\) 16.3272 9.42652i 1.10582 0.638445i
\(219\) 0 0
\(220\) −7.25188 4.18687i −0.488921 0.282279i
\(221\) −5.03220 2.90534i −0.338502 0.195434i
\(222\) 0 0
\(223\) −20.5760 + 11.8796i −1.37787 + 0.795514i −0.991903 0.126999i \(-0.959465\pi\)
−0.385967 + 0.922513i \(0.626132\pi\)
\(224\) 4.07608i 0.272344i
\(225\) 0 0
\(226\) −9.73611 −0.647636
\(227\) 6.15389 3.55295i 0.408448 0.235818i −0.281675 0.959510i \(-0.590890\pi\)
0.690123 + 0.723692i \(0.257557\pi\)
\(228\) 0 0
\(229\) −11.7189 6.76589i −0.774405 0.447103i 0.0600390 0.998196i \(-0.480877\pi\)
−0.834444 + 0.551093i \(0.814211\pi\)
\(230\) 12.7631 22.1063i 0.841574 1.45765i
\(231\) 0 0
\(232\) 5.53494 3.19560i 0.363387 0.209801i
\(233\) 4.43140i 0.290311i −0.989409 0.145155i \(-0.953632\pi\)
0.989409 0.145155i \(-0.0463682\pi\)
\(234\) 0 0
\(235\) 10.1279 0.660669
\(236\) 4.81405 2.77939i 0.313368 0.180923i
\(237\) 0 0
\(238\) −20.0240 11.5608i −1.29796 0.749378i
\(239\) 15.1818 26.2956i 0.982028 1.70092i 0.327562 0.944830i \(-0.393773\pi\)
0.654465 0.756092i \(-0.272894\pi\)
\(240\) 0 0
\(241\) 6.71197 3.87516i 0.432356 0.249621i −0.267994 0.963421i \(-0.586361\pi\)
0.700350 + 0.713800i \(0.253027\pi\)
\(242\) 2.84821i 0.183090i
\(243\) 0 0
\(244\) 12.5644i 0.804352i
\(245\) 24.4201 14.0989i 1.56014 0.900747i
\(246\) 0 0
\(247\) −6.22741 3.59540i −0.396240 0.228770i
\(248\) −5.38422 1.41782i −0.341898 0.0900319i
\(249\) 0 0
\(250\) 2.05045 + 3.55148i 0.129682 + 0.224615i
\(251\) −8.86796 −0.559740 −0.279870 0.960038i \(-0.590291\pi\)
−0.279870 + 0.960038i \(0.590291\pi\)
\(252\) 0 0
\(253\) −24.8496 −1.56228
\(254\) −4.82702 8.36064i −0.302874 0.524593i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 23.6507 + 13.6547i 1.47529 + 0.851759i 0.999612 0.0278599i \(-0.00886922\pi\)
0.475679 + 0.879619i \(0.342203\pi\)
\(258\) 0 0
\(259\) −19.9080 + 11.4939i −1.23702 + 0.714195i
\(260\) −3.00430 −0.186319
\(261\) 0 0
\(262\) 1.11041 0.0686012
\(263\) −6.96217 12.0588i −0.429306 0.743580i 0.567506 0.823369i \(-0.307908\pi\)
−0.996812 + 0.0797897i \(0.974575\pi\)
\(264\) 0 0
\(265\) −26.8568 15.5058i −1.64980 0.952514i
\(266\) −24.7799 14.3067i −1.51935 0.877199i
\(267\) 0 0
\(268\) 0.327613 + 0.567442i 0.0200121 + 0.0346620i
\(269\) 11.4048 0.695365 0.347683 0.937612i \(-0.386969\pi\)
0.347683 + 0.937612i \(0.386969\pi\)
\(270\) 0 0
\(271\) 2.56098i 0.155568i −0.996970 0.0777842i \(-0.975215\pi\)
0.996970 0.0777842i \(-0.0247845\pi\)
\(272\) 2.83627 + 4.91256i 0.171974 + 0.297868i
\(273\) 0 0
\(274\) 2.05988 + 1.18927i 0.124442 + 0.0718466i
\(275\) −5.14173 + 8.90575i −0.310058 + 0.537037i
\(276\) 0 0
\(277\) 26.5465 15.3266i 1.59502 0.920888i 0.602599 0.798044i \(-0.294132\pi\)
0.992426 0.122844i \(-0.0392014\pi\)
\(278\) −17.4556 −1.04692
\(279\) 0 0
\(280\) −11.9546 −0.714425
\(281\) −11.1689 + 6.44836i −0.666279 + 0.384677i −0.794665 0.607048i \(-0.792354\pi\)
0.128386 + 0.991724i \(0.459020\pi\)
\(282\) 0 0
\(283\) 1.29250 2.23868i 0.0768312 0.133076i −0.825050 0.565060i \(-0.808853\pi\)
0.901881 + 0.431984i \(0.142186\pi\)
\(284\) 1.22842 + 0.709229i 0.0728934 + 0.0420850i
\(285\) 0 0
\(286\) 1.46233 + 2.53284i 0.0864697 + 0.149770i
\(287\) 15.1677i 0.895322i
\(288\) 0 0
\(289\) 15.1776 0.892801
\(290\) −9.37229 16.2333i −0.550360 0.953251i
\(291\) 0 0
\(292\) 11.2453 + 6.49250i 0.658084 + 0.379945i
\(293\) −1.12509 0.649569i −0.0657282 0.0379482i 0.466776 0.884376i \(-0.345416\pi\)
−0.532504 + 0.846428i \(0.678749\pi\)
\(294\) 0 0
\(295\) −8.15161 14.1190i −0.474605 0.822040i
\(296\) 5.63967 0.327799
\(297\) 0 0
\(298\) −2.24876 −0.130267
\(299\) −7.72100 + 4.45772i −0.446517 + 0.257797i
\(300\) 0 0
\(301\) 14.9577 + 8.63580i 0.862145 + 0.497759i
\(302\) 0.545760 0.945284i 0.0314050 0.0543950i
\(303\) 0 0
\(304\) 3.50991 + 6.07935i 0.201307 + 0.348674i
\(305\) 36.8497 2.11001
\(306\) 0 0
\(307\) −2.15765 −0.123144 −0.0615718 0.998103i \(-0.519611\pi\)
−0.0615718 + 0.998103i \(0.519611\pi\)
\(308\) 5.81887 + 10.0786i 0.331561 + 0.574281i
\(309\) 0 0
\(310\) −4.15830 + 15.7912i −0.236175 + 0.896881i
\(311\) 11.9653 + 6.90814i 0.678487 + 0.391725i 0.799285 0.600952i \(-0.205212\pi\)
−0.120798 + 0.992677i \(0.538545\pi\)
\(312\) 0 0
\(313\) 15.1750 8.76129i 0.857741 0.495217i −0.00551388 0.999985i \(-0.501755\pi\)
0.863255 + 0.504768i \(0.168422\pi\)
\(314\) 6.56441i 0.370451i
\(315\) 0 0
\(316\) 3.79859i 0.213687i
\(317\) −13.8613 + 8.00281i −0.778527 + 0.449483i −0.835908 0.548870i \(-0.815058\pi\)
0.0573812 + 0.998352i \(0.481725\pi\)
\(318\) 0 0
\(319\) −9.12386 + 15.8030i −0.510838 + 0.884798i
\(320\) 2.53994 + 1.46644i 0.141987 + 0.0819763i
\(321\) 0 0
\(322\) −30.7232 + 17.7380i −1.71213 + 0.988501i
\(323\) 39.8202 2.21565
\(324\) 0 0
\(325\) 3.68947i 0.204655i
\(326\) 8.02529 4.63340i 0.444479 0.256620i
\(327\) 0 0
\(328\) −1.86058 + 3.22261i −0.102733 + 0.177939i
\(329\) −12.1898 7.03780i −0.672047 0.388006i
\(330\) 0 0
\(331\) −30.6325 + 17.6857i −1.68371 + 0.972093i −0.724559 + 0.689213i \(0.757957\pi\)
−0.959155 + 0.282880i \(0.908710\pi\)
\(332\) 4.40732 0.241883
\(333\) 0 0
\(334\) 0.626535i 0.0342824i
\(335\) 1.66423 0.960846i 0.0909268 0.0524966i
\(336\) 0 0
\(337\) 13.3807 + 7.72535i 0.728893 + 0.420827i 0.818017 0.575194i \(-0.195073\pi\)
−0.0891240 + 0.996021i \(0.528407\pi\)
\(338\) −10.3496 5.97535i −0.562944 0.325016i
\(339\) 0 0
\(340\) 14.4079 8.31841i 0.781379 0.451129i
\(341\) 15.3371 4.18059i 0.830553 0.226392i
\(342\) 0 0
\(343\) −10.6565 −0.575399
\(344\) −2.11866 3.66962i −0.114230 0.197853i
\(345\) 0 0
\(346\) 11.8356 20.4999i 0.636286 1.10208i
\(347\) −14.6770 + 25.4213i −0.787902 + 1.36469i 0.139348 + 0.990244i \(0.455499\pi\)
−0.927250 + 0.374443i \(0.877834\pi\)
\(348\) 0 0
\(349\) 5.36076 + 9.28512i 0.286955 + 0.497021i 0.973081 0.230462i \(-0.0740236\pi\)
−0.686126 + 0.727482i \(0.740690\pi\)
\(350\) 14.6810i 0.784733i
\(351\) 0 0
\(352\) 2.85513i 0.152179i
\(353\) −1.65198 2.86131i −0.0879258 0.152292i 0.818708 0.574210i \(-0.194691\pi\)
−0.906634 + 0.421918i \(0.861357\pi\)
\(354\) 0 0
\(355\) 2.08008 3.60280i 0.110399 0.191217i
\(356\) 1.16963 2.02587i 0.0619905 0.107371i
\(357\) 0 0
\(358\) −1.34380 + 0.775846i −0.0710223 + 0.0410047i
\(359\) 15.3585i 0.810589i −0.914186 0.405295i \(-0.867169\pi\)
0.914186 0.405295i \(-0.132831\pi\)
\(360\) 0 0
\(361\) 30.2780 1.59358
\(362\) 6.19420 + 10.7287i 0.325560 + 0.563886i
\(363\) 0 0
\(364\) 3.61596 + 2.08767i 0.189528 + 0.109424i
\(365\) 19.0417 32.9812i 0.996687 1.72631i
\(366\) 0 0
\(367\) −9.12269 + 5.26699i −0.476200 + 0.274934i −0.718832 0.695184i \(-0.755323\pi\)
0.242631 + 0.970119i \(0.421989\pi\)
\(368\) 8.70347 0.453700
\(369\) 0 0
\(370\) 16.5404i 0.859897i
\(371\) 21.5498 + 37.3254i 1.11881 + 1.93784i
\(372\) 0 0
\(373\) −14.7654 + 25.5743i −0.764521 + 1.32419i 0.175978 + 0.984394i \(0.443691\pi\)
−0.940499 + 0.339796i \(0.889642\pi\)
\(374\) −14.0260 8.09792i −0.725267 0.418733i
\(375\) 0 0
\(376\) 1.72661 + 2.99058i 0.0890432 + 0.154227i
\(377\) 6.54686i 0.337180i
\(378\) 0 0
\(379\) −7.54595 −0.387609 −0.193805 0.981040i \(-0.562083\pi\)
−0.193805 + 0.981040i \(0.562083\pi\)
\(380\) 17.8300 10.2941i 0.914658 0.528078i
\(381\) 0 0
\(382\) −1.65851 + 2.87262i −0.0848566 + 0.146976i
\(383\) 0.603701 1.04564i 0.0308477 0.0534297i −0.850189 0.526477i \(-0.823513\pi\)
0.881037 + 0.473047i \(0.156846\pi\)
\(384\) 0 0
\(385\) 29.5592 17.0660i 1.50648 0.869765i
\(386\) 0.116890i 0.00594957i
\(387\) 0 0
\(388\) 5.38838 0.273554
\(389\) 5.74579 + 9.95201i 0.291323 + 0.504587i 0.974123 0.226019i \(-0.0725711\pi\)
−0.682800 + 0.730606i \(0.739238\pi\)
\(390\) 0 0
\(391\) 24.6854 42.7563i 1.24839 2.16228i
\(392\) 8.32632 + 4.80721i 0.420543 + 0.242801i
\(393\) 0 0
\(394\) −13.1090 + 7.56850i −0.660423 + 0.381295i
\(395\) −11.1408 −0.560553
\(396\) 0 0
\(397\) −17.4608 −0.876333 −0.438167 0.898894i \(-0.644372\pi\)
−0.438167 + 0.898894i \(0.644372\pi\)
\(398\) −5.91494 10.2450i −0.296489 0.513534i
\(399\) 0 0
\(400\) 1.80087 3.11920i 0.0900437 0.155960i
\(401\) −9.37877 + 16.2445i −0.468354 + 0.811212i −0.999346 0.0361645i \(-0.988486\pi\)
0.530992 + 0.847377i \(0.321819\pi\)
\(402\) 0 0
\(403\) 4.01545 4.05025i 0.200024 0.201757i
\(404\) 18.6080i 0.925782i
\(405\) 0 0
\(406\) 26.0510i 1.29289i
\(407\) −13.9448 + 8.05101i −0.691216 + 0.399074i
\(408\) 0 0
\(409\) −12.5445 7.24259i −0.620287 0.358123i 0.156693 0.987647i \(-0.449917\pi\)
−0.776981 + 0.629524i \(0.783250\pi\)
\(410\) 9.45152 + 5.45684i 0.466777 + 0.269494i
\(411\) 0 0
\(412\) −0.824711 1.42844i −0.0406306 0.0703742i
\(413\) 22.6580i 1.11493i
\(414\) 0 0
\(415\) 12.9261i 0.634518i
\(416\) −0.512177 0.887117i −0.0251116 0.0434945i
\(417\) 0 0
\(418\) −17.3573 10.0213i −0.848976 0.490156i
\(419\) 22.1910 + 12.8120i 1.08410 + 0.625906i 0.932000 0.362459i \(-0.118063\pi\)
0.152101 + 0.988365i \(0.451396\pi\)
\(420\) 0 0
\(421\) 15.0985 + 26.1513i 0.735854 + 1.27454i 0.954348 + 0.298698i \(0.0965522\pi\)
−0.218494 + 0.975838i \(0.570114\pi\)
\(422\) 5.91332i 0.287856i
\(423\) 0 0
\(424\) 10.5738i 0.513509i
\(425\) −10.2155 17.6938i −0.495525 0.858275i
\(426\) 0 0
\(427\) −44.3521 25.6067i −2.14635 1.23919i
\(428\) −8.59273 4.96101i −0.415345 0.239800i
\(429\) 0 0
\(430\) −10.7625 + 6.21375i −0.519015 + 0.299654i
\(431\) 22.9545i 1.10568i 0.833287 + 0.552840i \(0.186456\pi\)
−0.833287 + 0.552840i \(0.813544\pi\)
\(432\) 0 0
\(433\) 15.5286i 0.746257i 0.927780 + 0.373129i \(0.121715\pi\)
−0.927780 + 0.373129i \(0.878285\pi\)
\(434\) 15.9781 16.1166i 0.766975 0.773623i
\(435\) 0 0
\(436\) 9.42652 16.3272i 0.451449 0.781932i
\(437\) 30.5484 52.9114i 1.46133 2.53110i
\(438\) 0 0
\(439\) −4.51078 7.81290i −0.215288 0.372889i 0.738074 0.674720i \(-0.235736\pi\)
−0.953362 + 0.301831i \(0.902402\pi\)
\(440\) −8.37374 −0.399203
\(441\) 0 0
\(442\) −5.81068 −0.276386
\(443\) −26.8128 + 15.4804i −1.27392 + 0.735496i −0.975723 0.219009i \(-0.929718\pi\)
−0.298194 + 0.954505i \(0.596384\pi\)
\(444\) 0 0
\(445\) −5.94161 3.43039i −0.281659 0.162616i
\(446\) −11.8796 + 20.5760i −0.562513 + 0.974301i
\(447\) 0 0
\(448\) −2.03804 3.52999i −0.0962883 0.166776i
\(449\) −0.114241 −0.00539135 −0.00269568 0.999996i \(-0.500858\pi\)
−0.00269568 + 0.999996i \(0.500858\pi\)
\(450\) 0 0
\(451\) 10.6244i 0.500283i
\(452\) −8.43172 + 4.86805i −0.396595 + 0.228974i
\(453\) 0 0
\(454\) 3.55295 6.15389i 0.166748 0.288816i
\(455\) 6.12289 10.6051i 0.287045 0.497177i
\(456\) 0 0
\(457\) 14.0698 8.12321i 0.658158 0.379988i −0.133417 0.991060i \(-0.542595\pi\)
0.791575 + 0.611072i \(0.209261\pi\)
\(458\) −13.5318 −0.632299
\(459\) 0 0
\(460\) 25.5262i 1.19016i
\(461\) −12.0624 20.8926i −0.561800 0.973066i −0.997340 0.0728965i \(-0.976776\pi\)
0.435540 0.900170i \(-0.356558\pi\)
\(462\) 0 0
\(463\) 2.07227 + 1.19642i 0.0963065 + 0.0556026i 0.547380 0.836884i \(-0.315625\pi\)
−0.451073 + 0.892487i \(0.648959\pi\)
\(464\) 3.19560 5.53494i 0.148352 0.256953i
\(465\) 0 0
\(466\) −2.21570 3.83770i −0.102640 0.177778i
\(467\) 13.5383i 0.626476i −0.949675 0.313238i \(-0.898586\pi\)
0.949675 0.313238i \(-0.101414\pi\)
\(468\) 0 0
\(469\) −2.67075 −0.123324
\(470\) 8.77099 5.06393i 0.404575 0.233582i
\(471\) 0 0
\(472\) 2.77939 4.81405i 0.127932 0.221585i
\(473\) 10.4772 + 6.04904i 0.481744 + 0.278135i
\(474\) 0 0
\(475\) −12.6418 21.8963i −0.580046 1.00467i
\(476\) −23.1217 −1.05978
\(477\) 0 0
\(478\) 30.3636i 1.38880i
\(479\) 21.6971 12.5268i 0.991364 0.572364i 0.0856824 0.996323i \(-0.472693\pi\)
0.905682 + 0.423958i \(0.139360\pi\)
\(480\) 0 0
\(481\) −2.88851 + 5.00305i −0.131705 + 0.228119i
\(482\) 3.87516 6.71197i 0.176509 0.305722i
\(483\) 0 0
\(484\) −1.42411 2.46663i −0.0647321 0.112119i
\(485\) 15.8035i 0.717598i
\(486\) 0 0
\(487\) 2.48634i 0.112667i 0.998412 + 0.0563335i \(0.0179410\pi\)
−0.998412 + 0.0563335i \(0.982059\pi\)
\(488\) 6.28219 + 10.8811i 0.284381 + 0.492563i
\(489\) 0 0
\(490\) 14.0989 24.4201i 0.636925 1.10319i
\(491\) −10.5582 + 18.2873i −0.476484 + 0.825294i −0.999637 0.0269445i \(-0.991422\pi\)
0.523153 + 0.852239i \(0.324756\pi\)
\(492\) 0 0
\(493\) −18.1271 31.3971i −0.816406 1.41406i
\(494\) −7.19079 −0.323529
\(495\) 0 0
\(496\) −5.37178 + 1.46424i −0.241200 + 0.0657462i
\(497\) −5.00714 + 2.89087i −0.224601 + 0.129673i
\(498\) 0 0
\(499\) 9.97074 + 5.75661i 0.446352 + 0.257701i 0.706288 0.707925i \(-0.250368\pi\)
−0.259937 + 0.965626i \(0.583702\pi\)
\(500\) 3.55148 + 2.05045i 0.158827 + 0.0916989i
\(501\) 0 0
\(502\) −7.67988 + 4.43398i −0.342770 + 0.197898i
\(503\) 39.6468i 1.76776i −0.467710 0.883882i \(-0.654921\pi\)
0.467710 0.883882i \(-0.345079\pi\)
\(504\) 0 0
\(505\) 54.5749 2.42855
\(506\) −21.5204 + 12.4248i −0.956697 + 0.552349i
\(507\) 0 0
\(508\) −8.36064 4.82702i −0.370944 0.214164i
\(509\) 11.2188 19.4315i 0.497265 0.861288i −0.502730 0.864443i \(-0.667671\pi\)
0.999995 + 0.00315565i \(0.00100448\pi\)
\(510\) 0 0
\(511\) −45.8369 + 26.4639i −2.02770 + 1.17070i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 27.3095 1.20457
\(515\) −4.18944 + 2.41877i −0.184609 + 0.106584i
\(516\) 0 0
\(517\) −8.53850 4.92970i −0.375523 0.216808i
\(518\) −11.4939 + 19.9080i −0.505012 + 0.874706i
\(519\) 0 0
\(520\) −2.60180 + 1.50215i −0.114097 + 0.0658737i
\(521\) 20.4636i 0.896526i 0.893902 + 0.448263i \(0.147957\pi\)
−0.893902 + 0.448263i \(0.852043\pi\)
\(522\) 0 0
\(523\) 24.0253i 1.05055i 0.850931 + 0.525277i \(0.176038\pi\)
−0.850931 + 0.525277i \(0.823962\pi\)
\(524\) 0.961641 0.555203i 0.0420095 0.0242542i
\(525\) 0 0
\(526\) −12.0588 6.96217i −0.525790 0.303565i
\(527\) −8.04265 + 30.5421i −0.350343 + 1.33044i
\(528\) 0 0
\(529\) −26.3752 45.6832i −1.14675 1.98623i
\(530\) −31.0116 −1.34706
\(531\) 0 0
\(532\) −28.6134 −1.24055
\(533\) −1.90589 3.30110i −0.0825533 0.142986i
\(534\) 0 0
\(535\) −14.5500 + 25.2014i −0.629052 + 1.08955i
\(536\) 0.567442 + 0.327613i 0.0245097 + 0.0141507i
\(537\) 0 0
\(538\) 9.87688 5.70242i 0.425822 0.245849i
\(539\) −27.4504 −1.18237
\(540\) 0 0
\(541\) 4.82179 0.207305 0.103653 0.994614i \(-0.466947\pi\)
0.103653 + 0.994614i \(0.466947\pi\)
\(542\) −1.28049 2.21787i −0.0550018 0.0952658i
\(543\) 0 0
\(544\) 4.91256 + 2.83627i 0.210624 + 0.121604i
\(545\) −47.8857 27.6468i −2.05120 1.18426i
\(546\) 0 0
\(547\) 10.7763 + 18.6651i 0.460761 + 0.798061i 0.998999 0.0447319i \(-0.0142434\pi\)
−0.538238 + 0.842793i \(0.680910\pi\)
\(548\) 2.37854 0.101606
\(549\) 0 0
\(550\) 10.2835i 0.438489i
\(551\) −22.4326 38.8543i −0.955659 1.65525i
\(552\) 0 0
\(553\) 13.4090 + 7.74167i 0.570207 + 0.329209i
\(554\) 15.3266 26.5465i 0.651166 1.12785i
\(555\) 0 0
\(556\) −15.1170 + 8.72781i −0.641104 + 0.370141i
\(557\) 29.6046 1.25439 0.627194 0.778863i \(-0.284203\pi\)
0.627194 + 0.778863i \(0.284203\pi\)
\(558\) 0 0
\(559\) 4.34051 0.183584
\(560\) −10.3530 + 5.97731i −0.437494 + 0.252587i
\(561\) 0 0
\(562\) −6.44836 + 11.1689i −0.272007 + 0.471131i
\(563\) 35.1826 + 20.3127i 1.48277 + 0.856079i 0.999809 0.0195620i \(-0.00622716\pi\)
0.482963 + 0.875641i \(0.339560\pi\)
\(564\) 0 0
\(565\) 14.2774 + 24.7292i 0.600654 + 1.04036i
\(566\) 2.58500i 0.108656i
\(567\) 0 0
\(568\) 1.41846 0.0595172
\(569\) −0.258866 0.448369i −0.0108522 0.0187966i 0.860548 0.509369i \(-0.170121\pi\)
−0.871401 + 0.490572i \(0.836788\pi\)
\(570\) 0 0
\(571\) 37.4562 + 21.6254i 1.56749 + 0.904993i 0.996460 + 0.0840671i \(0.0267910\pi\)
0.571034 + 0.820926i \(0.306542\pi\)
\(572\) 2.53284 + 1.46233i 0.105903 + 0.0611433i
\(573\) 0 0
\(574\) −7.58386 13.1356i −0.316544 0.548270i
\(575\) −31.3477 −1.30729
\(576\) 0 0
\(577\) −24.4727 −1.01881 −0.509405 0.860527i \(-0.670135\pi\)
−0.509405 + 0.860527i \(0.670135\pi\)
\(578\) 13.1442 7.58881i 0.546727 0.315653i
\(579\) 0 0
\(580\) −16.2333 9.37229i −0.674050 0.389163i
\(581\) −8.98230 + 15.5578i −0.372648 + 0.645446i
\(582\) 0 0
\(583\) 15.0948 + 26.1450i 0.625163 + 1.08281i
\(584\) 12.9850 0.537323
\(585\) 0 0
\(586\) −1.29914 −0.0536669
\(587\) 5.84891 + 10.1306i 0.241410 + 0.418135i 0.961116 0.276144i \(-0.0890568\pi\)
−0.719706 + 0.694279i \(0.755723\pi\)
\(588\) 0 0
\(589\) −9.95287 + 37.7963i −0.410101 + 1.55737i
\(590\) −14.1190 8.15161i −0.581270 0.335596i
\(591\) 0 0
\(592\) 4.88410 2.81984i 0.200735 0.115895i
\(593\) 13.5891i 0.558039i −0.960285 0.279020i \(-0.909991\pi\)
0.960285 0.279020i \(-0.0900094\pi\)
\(594\) 0 0
\(595\) 67.8130i 2.78006i
\(596\) −1.94748 + 1.12438i −0.0797721 + 0.0460564i
\(597\) 0 0
\(598\) −4.45772 + 7.72100i −0.182290 + 0.315735i
\(599\) −10.1957 5.88651i −0.416587 0.240516i 0.277029 0.960861i \(-0.410650\pi\)
−0.693616 + 0.720345i \(0.743983\pi\)
\(600\) 0 0
\(601\) −4.87209 + 2.81290i −0.198737 + 0.114741i −0.596066 0.802935i \(-0.703270\pi\)
0.397329 + 0.917676i \(0.369937\pi\)
\(602\) 17.2716 0.703938
\(603\) 0 0
\(604\) 1.09152i 0.0444133i
\(605\) −7.23430 + 4.17673i −0.294116 + 0.169808i
\(606\) 0 0
\(607\) 17.5127 30.3328i 0.710817 1.23117i −0.253734 0.967274i \(-0.581659\pi\)
0.964551 0.263897i \(-0.0850079\pi\)
\(608\) 6.07935 + 3.50991i 0.246550 + 0.142346i
\(609\) 0 0
\(610\) 31.9128 18.4249i 1.29211 0.746001i
\(611\) −3.53732 −0.143105
\(612\) 0 0
\(613\) 41.6914i 1.68390i −0.539555 0.841950i \(-0.681408\pi\)
0.539555 0.841950i \(-0.318592\pi\)
\(614\) −1.86858 + 1.07883i −0.0754098 + 0.0435379i
\(615\) 0 0
\(616\) 10.0786 + 5.81887i 0.406078 + 0.234449i
\(617\) 24.1663 + 13.9524i 0.972900 + 0.561704i 0.900119 0.435644i \(-0.143479\pi\)
0.0727809 + 0.997348i \(0.476813\pi\)
\(618\) 0 0
\(619\) 11.3385 6.54630i 0.455734 0.263118i −0.254515 0.967069i \(-0.581916\pi\)
0.710249 + 0.703951i \(0.248582\pi\)
\(620\) 4.29442 + 15.7547i 0.172468 + 0.632726i
\(621\) 0 0
\(622\) 13.8163 0.553982
\(623\) 4.76752 + 8.25759i 0.191007 + 0.330833i
\(624\) 0 0
\(625\) 15.0181 26.0121i 0.600723 1.04048i
\(626\) 8.76129 15.1750i 0.350171 0.606515i
\(627\) 0 0
\(628\) 3.28221 + 5.68495i 0.130974 + 0.226854i
\(629\) 31.9912i 1.27557i
\(630\) 0 0
\(631\) 10.9471i 0.435796i 0.975972 + 0.217898i \(0.0699200\pi\)
−0.975972 + 0.217898i \(0.930080\pi\)
\(632\) −1.89929 3.28967i −0.0755498 0.130856i
\(633\) 0 0
\(634\) −8.00281 + 13.8613i −0.317832 + 0.550502i
\(635\) −14.1570 + 24.5207i −0.561805 + 0.973075i
\(636\) 0 0
\(637\) −8.52911 + 4.92428i −0.337936 + 0.195107i
\(638\) 18.2477i 0.722434i
\(639\) 0 0
\(640\) 2.93287 0.115932
\(641\) −12.6285 21.8732i −0.498796 0.863939i 0.501203 0.865329i \(-0.332891\pi\)
−0.999999 + 0.00139021i \(0.999557\pi\)
\(642\) 0 0
\(643\) −5.65600 3.26550i −0.223051 0.128779i 0.384311 0.923204i \(-0.374439\pi\)
−0.607362 + 0.794425i \(0.707772\pi\)
\(644\) −17.7380 + 30.7232i −0.698976 + 1.21066i
\(645\) 0 0
\(646\) 34.4853 19.9101i 1.35681 0.783352i
\(647\) 30.8555 1.21306 0.606528 0.795062i \(-0.292562\pi\)
0.606528 + 0.795062i \(0.292562\pi\)
\(648\) 0 0
\(649\) 15.8711i 0.622994i
\(650\) 1.84473 + 3.19517i 0.0723564 + 0.125325i
\(651\) 0 0
\(652\) 4.63340 8.02529i 0.181458 0.314294i
\(653\) 21.0077 + 12.1288i 0.822095 + 0.474637i 0.851139 0.524941i \(-0.175913\pi\)
−0.0290431 + 0.999578i \(0.509246\pi\)
\(654\) 0 0
\(655\) −1.62834 2.82037i −0.0636246 0.110201i
\(656\) 3.72115i 0.145287i
\(657\) 0 0
\(658\) −14.0756 −0.548724
\(659\) 12.9132 7.45542i 0.503026 0.290422i −0.226937 0.973910i \(-0.572871\pi\)
0.729962 + 0.683488i \(0.239538\pi\)
\(660\) 0 0
\(661\) −5.59524 + 9.69123i −0.217629 + 0.376945i −0.954083 0.299543i \(-0.903166\pi\)
0.736453 + 0.676488i \(0.236499\pi\)
\(662\) −17.6857 + 30.6325i −0.687373 + 1.19057i
\(663\) 0 0
\(664\) 3.81685 2.20366i 0.148123 0.0855187i
\(665\) 83.9194i 3.25425i
\(666\) 0 0
\(667\) −55.6256 −2.15383
\(668\) −0.313267 0.542595i −0.0121207 0.0209936i
\(669\) 0 0
\(670\) 0.960846 1.66423i 0.0371207 0.0642950i
\(671\) −31.0669 17.9365i −1.19932 0.692430i
\(672\) 0 0
\(673\) −32.2169 + 18.6004i −1.24187 + 0.716993i −0.969474 0.245192i \(-0.921149\pi\)
−0.272395 + 0.962186i \(0.587816\pi\)
\(674\) 15.4507 0.595139
\(675\) 0 0
\(676\) −11.9507 −0.459642
\(677\) 15.6341 + 27.0790i 0.600867 + 1.04073i 0.992690 + 0.120692i \(0.0385112\pi\)
−0.391823 + 0.920041i \(0.628155\pi\)
\(678\) 0 0
\(679\) −10.9817 + 19.0209i −0.421440 + 0.729956i
\(680\) 8.31841 14.4079i 0.318996 0.552518i
\(681\) 0 0
\(682\) 11.1921 11.2891i 0.428566 0.432281i
\(683\) 13.5166i 0.517199i 0.965985 + 0.258600i \(0.0832610\pi\)
−0.965985 + 0.258600i \(0.916739\pi\)
\(684\) 0 0
\(685\) 6.97597i 0.266538i
\(686\) −9.22884 + 5.32827i −0.352359 + 0.203434i
\(687\) 0 0
\(688\) −3.66962 2.11866i −0.139903 0.0807730i
\(689\) 9.38019 + 5.41566i 0.357357 + 0.206320i
\(690\) 0 0
\(691\) −0.917897 1.58984i −0.0349185 0.0604805i 0.848038 0.529935i \(-0.177784\pi\)
−0.882956 + 0.469455i \(0.844450\pi\)
\(692\) 23.6712i 0.899844i
\(693\) 0 0
\(694\) 29.3540i 1.11426i
\(695\) 25.5976 + 44.3363i 0.970970 + 1.68177i
\(696\) 0 0
\(697\) 18.2804 + 10.5542i 0.692419 + 0.399768i
\(698\) 9.28512 + 5.36076i 0.351447 + 0.202908i
\(699\) 0 0
\(700\) 7.34050 + 12.7141i 0.277445 + 0.480549i
\(701\) 32.7034i 1.23519i −0.786496 0.617595i \(-0.788107\pi\)
0.786496 0.617595i \(-0.211893\pi\)
\(702\) 0 0
\(703\) 39.5895i 1.49315i
\(704\) −1.42757 2.47262i −0.0538034 0.0931903i
\(705\) 0 0
\(706\) −2.86131 1.65198i −0.107687 0.0621729i
\(707\) −65.6860 37.9238i −2.47038 1.42627i
\(708\) 0 0
\(709\) 31.9531 18.4481i 1.20002 0.692833i 0.239462 0.970906i \(-0.423029\pi\)
0.960560 + 0.278073i \(0.0896956\pi\)
\(710\) 4.16016i 0.156128i
\(711\) 0 0
\(712\) 2.33927i 0.0876678i
\(713\) 34.4132 + 34.1174i 1.28878 + 1.27771i
\(714\) 0 0
\(715\) 4.28884 7.42849i 0.160394 0.277810i
\(716\) −0.775846 + 1.34380i −0.0289947 + 0.0502203i
\(717\) 0 0
\(718\) −7.67923 13.3008i −0.286587 0.496382i
\(719\) 16.0983 0.600367 0.300183 0.953881i \(-0.402952\pi\)
0.300183 + 0.953881i \(0.402952\pi\)
\(720\) 0 0
\(721\) 6.72317 0.250384
\(722\) 26.2215 15.1390i 0.975862 0.563414i
\(723\) 0 0
\(724\) 10.7287 + 6.19420i 0.398728 + 0.230206i
\(725\) −11.5097 + 19.9355i −0.427461 + 0.740384i
\(726\) 0 0
\(727\) −0.646145 1.11916i −0.0239642 0.0415072i 0.853795 0.520610i \(-0.174295\pi\)
−0.877759 + 0.479103i \(0.840962\pi\)
\(728\) 4.17535 0.154749
\(729\) 0 0
\(730\) 38.0834i 1.40953i
\(731\) −20.8160 + 12.0181i −0.769909 + 0.444507i
\(732\) 0 0
\(733\) 6.61585 11.4590i 0.244362 0.423247i −0.717590 0.696466i \(-0.754755\pi\)
0.961952 + 0.273218i \(0.0880882\pi\)
\(734\) −5.26699 + 9.12269i −0.194408 + 0.336725i
\(735\) 0 0
\(736\) 7.53743 4.35174i 0.277833 0.160407i
\(737\) −1.87075 −0.0689101
\(738\) 0 0
\(739\) 14.0404i 0.516483i 0.966080 + 0.258242i \(0.0831431\pi\)
−0.966080 + 0.258242i \(0.916857\pi\)
\(740\) −8.27022 14.3244i −0.304020 0.526577i
\(741\) 0 0
\(742\) 37.3254 + 21.5498i 1.37026 + 0.791118i
\(743\) 12.3917 21.4630i 0.454606 0.787401i −0.544059 0.839047i \(-0.683113\pi\)
0.998665 + 0.0516459i \(0.0164467\pi\)
\(744\) 0 0
\(745\) 3.29767 + 5.71173i 0.120817 + 0.209261i
\(746\) 29.5307i 1.08120i
\(747\) 0 0
\(748\) −16.1958 −0.592178
\(749\) 35.0246 20.2215i 1.27977 0.738877i
\(750\) 0 0
\(751\) −1.28802 + 2.23091i −0.0470004 + 0.0814071i −0.888569 0.458744i \(-0.848300\pi\)
0.841568 + 0.540151i \(0.181633\pi\)
\(752\) 2.99058 + 1.72661i 0.109055 + 0.0629630i
\(753\) 0 0
\(754\) 3.27343 + 5.66974i 0.119211 + 0.206480i
\(755\) −3.20129 −0.116507
\(756\) 0 0
\(757\) 29.0801i 1.05693i 0.848954 + 0.528466i \(0.177233\pi\)
−0.848954 + 0.528466i \(0.822767\pi\)
\(758\) −6.53498 + 3.77297i −0.237361 + 0.137041i
\(759\) 0 0
\(760\) 10.2941 17.8300i 0.373407 0.646761i
\(761\) −0.248473 + 0.430368i −0.00900715 + 0.0156008i −0.870494 0.492179i \(-0.836200\pi\)
0.861487 + 0.507780i \(0.169534\pi\)
\(762\) 0 0
\(763\) 38.4232 + 66.5510i 1.39101 + 2.40931i
\(764\) 3.31701i 0.120005i
\(765\) 0 0
\(766\) 1.20740i 0.0436252i
\(767\) 2.84708 + 4.93129i 0.102802 + 0.178059i
\(768\) 0 0
\(769\) 7.63741 13.2284i 0.275412 0.477028i −0.694827 0.719177i \(-0.744519\pi\)
0.970239 + 0.242149i \(0.0778524\pi\)
\(770\) 17.0660 29.5592i 0.615017 1.06524i
\(771\) 0 0
\(772\) −0.0584452 0.101230i −0.00210349 0.00364335i
\(773\) 40.0384 1.44008 0.720040 0.693932i \(-0.244123\pi\)
0.720040 + 0.693932i \(0.244123\pi\)
\(774\) 0 0
\(775\) 19.3478 5.27381i 0.694993 0.189441i
\(776\) 4.66648 2.69419i 0.167517 0.0967159i
\(777\) 0 0
\(778\) 9.95201 + 5.74579i 0.356797 + 0.205997i
\(779\) 22.6222 + 13.0609i 0.810524 + 0.467956i
\(780\) 0 0
\(781\) −3.50731 + 2.02494i −0.125501 + 0.0724582i
\(782\) 49.3707i 1.76549i
\(783\) 0 0
\(784\) 9.61441 0.343372
\(785\) 16.6732 9.62629i 0.595093 0.343577i
\(786\) 0 0
\(787\) 15.8897 + 9.17391i 0.566406 + 0.327015i 0.755713 0.654903i \(-0.227291\pi\)
−0.189307 + 0.981918i \(0.560624\pi\)
\(788\) −7.56850 + 13.1090i −0.269616 + 0.466989i
\(789\) 0 0
\(790\) −9.64819 + 5.57039i −0.343267 + 0.198185i
\(791\) 39.6851i 1.41104i
\(792\) 0 0
\(793\) −12.8704 −0.457040
\(794\) −15.1215 + 8.73041i −0.536642 + 0.309831i
\(795\) 0 0
\(796\) −10.2450 5.91494i −0.363123 0.209649i
\(797\) 3.44226 5.96217i 0.121931 0.211191i −0.798598 0.601865i \(-0.794425\pi\)
0.920529 + 0.390674i \(0.127758\pi\)
\(798\) 0 0
\(799\) 16.9641 9.79426i 0.600148 0.346496i
\(800\) 3.60175i 0.127341i
\(801\) 0 0
\(802\) 18.7575i 0.662352i
\(803\) −32.1069 + 18.5370i −1.13303 + 0.654155i
\(804\) 0 0
\(805\) 90.1071 + 52.0234i 3.17586 + 1.83358i
\(806\) 1.45235 5.51535i 0.0511570 0.194270i
\(807\) 0 0
\(808\) 9.30400 + 16.1150i 0.327313 + 0.566924i
\(809\) −4.22765 −0.148636 −0.0743182 0.997235i \(-0.523678\pi\)
−0.0743182 + 0.997235i \(0.523678\pi\)
\(810\) 0 0
\(811\) −5.17461 −0.181705 −0.0908525 0.995864i \(-0.528959\pi\)
−0.0908525 + 0.995864i \(0.528959\pi\)
\(812\) 13.0255 + 22.5609i 0.457106 + 0.791731i
\(813\) 0 0
\(814\) −8.05101 + 13.9448i −0.282188 + 0.488763i
\(815\) −23.5371 13.5892i −0.824470 0.476008i
\(816\) 0 0
\(817\) −25.7601 + 14.8726i −0.901231 + 0.520326i
\(818\) −14.4852 −0.506463
\(819\) 0 0
\(820\) 10.9137 0.381122
\(821\) 7.94452 + 13.7603i 0.277266 + 0.480238i 0.970704 0.240278i \(-0.0772385\pi\)
−0.693439 + 0.720516i \(0.743905\pi\)
\(822\) 0 0
\(823\) −30.1165 17.3878i −1.04979 0.606099i −0.127203 0.991877i \(-0.540600\pi\)
−0.922592 + 0.385778i \(0.873933\pi\)
\(824\) −1.42844 0.824711i −0.0497621 0.0287302i
\(825\) 0 0
\(826\) 11.3290 + 19.6224i 0.394187 + 0.682752i
\(827\) −41.8701 −1.45597 −0.727983 0.685595i \(-0.759542\pi\)
−0.727983 + 0.685595i \(0.759542\pi\)
\(828\) 0 0
\(829\) 8.11598i 0.281880i 0.990018 + 0.140940i \(0.0450124\pi\)
−0.990018 + 0.140940i \(0.954988\pi\)
\(830\) −6.46306 11.1944i −0.224336 0.388562i
\(831\) 0 0
\(832\) −0.887117 0.512177i −0.0307553 0.0177566i
\(833\) 27.2690 47.2313i 0.944816 1.63647i
\(834\) 0 0
\(835\) −1.59136 + 0.918773i −0.0550714 + 0.0317955i
\(836\) −20.0425 −0.693186
\(837\) 0 0
\(838\) 25.6239 0.885165
\(839\) 9.44010 5.45024i 0.325908 0.188163i −0.328115 0.944638i \(-0.606413\pi\)
0.654023 + 0.756475i \(0.273080\pi\)
\(840\) 0 0
\(841\) −5.92372 + 10.2602i −0.204266 + 0.353800i
\(842\) 26.1513 + 15.0985i 0.901233 + 0.520327i
\(843\) 0 0
\(844\) 2.95666 + 5.12109i 0.101772 + 0.176275i
\(845\) 35.0499i 1.20575i
\(846\) 0 0
\(847\) 11.6095 0.398909
\(848\) −5.28690 9.15718i −0.181553 0.314459i
\(849\) 0 0
\(850\) −17.6938 10.2155i −0.606892 0.350389i
\(851\) −42.5086 24.5424i −1.45718 0.841302i
\(852\) 0 0
\(853\) 26.0774 + 45.1673i 0.892872 + 1.54650i 0.836417 + 0.548094i \(0.184646\pi\)
0.0564553 + 0.998405i \(0.482020\pi\)
\(854\) −51.2134 −1.75249
\(855\) 0 0
\(856\) −9.92203 −0.339128
\(857\) −7.31813 + 4.22512i −0.249982 + 0.144327i −0.619756 0.784794i \(-0.712769\pi\)
0.369774 + 0.929122i \(0.379435\pi\)
\(858\) 0 0
\(859\) −2.65979 1.53563i −0.0907510 0.0523951i 0.453938 0.891033i \(-0.350019\pi\)
−0.544689 + 0.838638i \(0.683352\pi\)
\(860\) −6.21375 + 10.7625i −0.211887 + 0.366999i
\(861\) 0 0
\(862\) 11.4773 + 19.8792i 0.390917 + 0.677088i
\(863\) −10.0748 −0.342949 −0.171475 0.985189i \(-0.554853\pi\)
−0.171475 + 0.985189i \(0.554853\pi\)
\(864\) 0 0
\(865\) −69.4246 −2.36051
\(866\) 7.76430 + 13.4482i 0.263842 + 0.456987i
\(867\) 0 0
\(868\) 5.77916 21.9465i 0.196157 0.744912i
\(869\) 9.39245 + 5.42273i 0.318617 + 0.183954i
\(870\) 0 0
\(871\) −0.581261 + 0.335591i −0.0196953 + 0.0113711i
\(872\) 18.8530i 0.638445i
\(873\) 0 0
\(874\) 61.0969i 2.06663i
\(875\) −14.4761 + 8.35779i −0.489382 + 0.282545i
\(876\) 0 0
\(877\) −3.27797 + 5.67761i −0.110689 + 0.191719i −0.916048 0.401068i \(-0.868639\pi\)
0.805359 + 0.592787i \(0.201972\pi\)
\(878\) −7.81290 4.51078i −0.263673 0.152231i
\(879\) 0 0
\(880\) −7.25188 + 4.18687i −0.244461 + 0.141139i
\(881\) −3.02318 −0.101854 −0.0509268 0.998702i \(-0.516218\pi\)
−0.0509268 + 0.998702i \(0.516218\pi\)
\(882\) 0 0
\(883\) 20.0772i 0.675653i 0.941208 + 0.337826i \(0.109692\pi\)
−0.941208 + 0.337826i \(0.890308\pi\)
\(884\) −5.03220 + 2.90534i −0.169251 + 0.0977172i
\(885\) 0 0
\(886\) −15.4804 + 26.8128i −0.520074 + 0.900795i
\(887\) 28.6270 + 16.5278i 0.961202 + 0.554950i 0.896543 0.442957i \(-0.146071\pi\)
0.0646591 + 0.997907i \(0.479404\pi\)
\(888\) 0 0
\(889\) 34.0786 19.6753i 1.14296 0.659889i
\(890\) −6.86078 −0.229974
\(891\) 0 0
\(892\) 23.7591i 0.795514i
\(893\) 20.9933 12.1205i 0.702515 0.405597i
\(894\) 0 0
\(895\) 3.94121 + 2.27546i 0.131740 + 0.0760602i
\(896\) −3.52999 2.03804i −0.117929 0.0680861i
\(897\) 0 0
\(898\) −0.0989353 + 0.0571203i −0.00330151 + 0.00190613i
\(899\) 34.3321 9.35823i 1.14504 0.312114i
\(900\) 0 0
\(901\) −59.9802 −1.99823
\(902\) −5.31219 9.20099i −0.176877 0.306359i
\(903\) 0 0
\(904\) −4.86805 + 8.43172i −0.161909 + 0.280435i
\(905\) 18.1668 31.4658i 0.603885 1.04596i
\(906\) 0 0
\(907\) −18.6969 32.3839i −0.620820 1.07529i −0.989333 0.145669i \(-0.953467\pi\)
0.368514 0.929622i \(-0.379867\pi\)
\(908\) 7.10590i 0.235818i
\(909\) 0 0
\(910\) 12.2458i 0.405943i
\(911\) 1.50507 + 2.60685i 0.0498651 + 0.0863689i 0.889881 0.456194i \(-0.150788\pi\)
−0.840015 + 0.542562i \(0.817454\pi\)
\(912\) 0 0
\(913\) −6.29175 + 10.8976i −0.208226 + 0.360659i
\(914\) 8.12321 14.0698i 0.268692 0.465388i
\(915\) 0 0
\(916\) −11.7189 + 6.76589i −0.387202 + 0.223551i
\(917\) 4.52611i 0.149465i
\(918\) 0 0
\(919\) 3.34394 0.110306 0.0551532 0.998478i \(-0.482435\pi\)
0.0551532 + 0.998478i \(0.482435\pi\)
\(920\) −12.7631 22.1063i −0.420787 0.728824i
\(921\) 0 0
\(922\) −20.8926 12.0624i −0.688062 0.397253i
\(923\) −0.726503 + 1.25834i −0.0239131 + 0.0414187i
\(924\) 0 0
\(925\) −17.5913 + 10.1563i −0.578398 + 0.333938i
\(926\) 2.39285 0.0786339
\(927\) 0 0
\(928\) 6.39120i 0.209801i
\(929\) 13.0827 + 22.6599i 0.429229 + 0.743447i 0.996805 0.0798745i \(-0.0254520\pi\)
−0.567576 + 0.823321i \(0.692119\pi\)
\(930\) 0 0
\(931\) 33.7457 58.4493i 1.10597 1.91560i
\(932\) −3.83770 2.21570i −0.125708 0.0725777i
\(933\) 0 0
\(934\) −6.76913 11.7245i −0.221493 0.383637i
\(935\) 47.5003i 1.55343i
\(936\) 0 0
\(937\) −6.83244 −0.223206 −0.111603 0.993753i \(-0.535599\pi\)
−0.111603 + 0.993753i \(0.535599\pi\)
\(938\) −2.31294 + 1.33537i −0.0755200 + 0.0436015i
\(939\) 0 0
\(940\) 5.06393 8.77099i 0.165167 0.286078i
\(941\) −23.4056 + 40.5397i −0.763002 + 1.32156i 0.178295 + 0.983977i \(0.442942\pi\)
−0.941297 + 0.337580i \(0.890392\pi\)
\(942\) 0 0
\(943\) 28.0479 16.1935i 0.913366 0.527332i
\(944\) 5.55879i 0.180923i
\(945\) 0 0
\(946\) 12.0981 0.393343
\(947\) −17.1034 29.6240i −0.555786 0.962649i −0.997842 0.0656618i \(-0.979084\pi\)
0.442056 0.896987i \(-0.354249\pi\)
\(948\) 0 0
\(949\) −6.65062 + 11.5192i −0.215888 + 0.373930i
\(950\) −21.8963 12.6418i −0.710409 0.410155i
\(951\) 0 0
\(952\) −20.0240 + 11.5608i −0.648980 + 0.374689i
\(953\) 9.49649 0.307621 0.153811 0.988100i \(-0.450845\pi\)
0.153811 + 0.988100i \(0.450845\pi\)
\(954\) 0 0
\(955\) 9.72838 0.314803
\(956\) −15.1818 26.2956i −0.491014 0.850461i
\(957\) 0 0
\(958\) 12.5268 21.6971i 0.404723 0.701000i
\(959\) −4.84757 + 8.39623i −0.156536 + 0.271128i
\(960\) 0 0
\(961\) −26.9796 15.2677i −0.870308 0.492508i
\(962\) 5.77703i 0.186259i
\(963\) 0 0
\(964\) 7.75032i 0.249621i
\(965\) −0.296895 + 0.171412i −0.00955739 + 0.00551796i
\(966\) 0 0
\(967\) 26.2672 + 15.1654i 0.844696 + 0.487686i 0.858858 0.512214i \(-0.171175\pi\)
−0.0141616 + 0.999900i \(0.504508\pi\)
\(968\) −2.46663 1.42411i −0.0792804 0.0457725i
\(969\) 0 0
\(970\) −7.90173 13.6862i −0.253709 0.439437i
\(971\) 14.1371i 0.453682i −0.973932 0.226841i \(-0.927160\pi\)
0.973932 0.226841i \(-0.0728397\pi\)
\(972\) 0 0
\(973\) 71.1504i 2.28098i
\(974\) 1.24317 + 2.15324i 0.0398338 + 0.0689942i
\(975\) 0 0
\(976\) 10.8811 + 6.28219i 0.348295 + 0.201088i
\(977\) 31.3324 + 18.0898i 1.00241 + 0.578744i 0.908962 0.416880i \(-0.136876\pi\)
0.0934521 + 0.995624i \(0.470210\pi\)
\(978\) 0 0
\(979\) 3.33946 + 5.78412i 0.106730 + 0.184861i
\(980\) 28.1979i 0.900747i
\(981\) 0 0
\(982\) 21.1164i 0.673850i
\(983\) −19.6881 34.1009i −0.627954 1.08765i −0.987962 0.154699i \(-0.950559\pi\)
0.360008 0.932949i \(-0.382774\pi\)
\(984\) 0 0
\(985\) 38.4471 + 22.1974i 1.22503 + 0.707269i
\(986\) −31.3971 18.1271i −0.999889 0.577286i
\(987\) 0 0
\(988\) −6.22741 + 3.59540i −0.198120 + 0.114385i
\(989\) 36.8793i 1.17269i
\(990\) 0 0
\(991\) 16.6544i 0.529045i −0.964379 0.264523i \(-0.914786\pi\)
0.964379 0.264523i \(-0.0852144\pi\)
\(992\) −3.91998 + 3.95396i −0.124459 + 0.125538i
\(993\) 0 0
\(994\) −2.89087 + 5.00714i −0.0916930 + 0.158817i
\(995\) −17.3478 + 30.0472i −0.549961 + 0.952560i
\(996\) 0 0
\(997\) 24.8521 + 43.0450i 0.787073 + 1.36325i 0.927753 + 0.373195i \(0.121738\pi\)
−0.140680 + 0.990055i \(0.544929\pi\)
\(998\) 11.5132 0.364445
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1674.2.q.a.557.20 64
3.2 odd 2 558.2.q.a.185.12 yes 64
9.2 odd 6 inner 1674.2.q.a.1115.25 64
9.7 even 3 558.2.q.a.371.5 yes 64
31.30 odd 2 inner 1674.2.q.a.557.25 64
93.92 even 2 558.2.q.a.185.5 64
279.61 odd 6 558.2.q.a.371.12 yes 64
279.92 even 6 inner 1674.2.q.a.1115.20 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.q.a.185.5 64 93.92 even 2
558.2.q.a.185.12 yes 64 3.2 odd 2
558.2.q.a.371.5 yes 64 9.7 even 3
558.2.q.a.371.12 yes 64 279.61 odd 6
1674.2.q.a.557.20 64 1.1 even 1 trivial
1674.2.q.a.557.25 64 31.30 odd 2 inner
1674.2.q.a.1115.20 64 279.92 even 6 inner
1674.2.q.a.1115.25 64 9.2 odd 6 inner