Properties

Label 1674.2.q.a.1115.27
Level $1674$
Weight $2$
Character 1674.1115
Analytic conductor $13.367$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1674,2,Mod(557,1674)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1674.557"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1674, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1674 = 2 \cdot 3^{3} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1674.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3669572984\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 558)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1115.27
Character \(\chi\) \(=\) 1674.1115
Dual form 1674.2.q.a.557.27

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(2.42613 - 1.40073i) q^{5} +(-0.855855 + 1.48238i) q^{7} +1.00000i q^{8} +2.80145 q^{10} +(0.733565 - 1.27057i) q^{11} +(3.07658 - 1.77627i) q^{13} +(-1.48238 + 0.855855i) q^{14} +(-0.500000 + 0.866025i) q^{16} -1.55277 q^{17} +7.16077 q^{19} +(2.42613 + 1.40073i) q^{20} +(1.27057 - 0.733565i) q^{22} +(-3.83599 - 6.64412i) q^{23} +(1.42407 - 2.46656i) q^{25} +3.55253 q^{26} -1.71171 q^{28} +(0.755499 - 1.30856i) q^{29} +(5.54699 - 0.480466i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(-1.34474 - 0.776384i) q^{34} +4.79527i q^{35} +10.5948i q^{37} +(6.20141 + 3.58039i) q^{38} +(1.40073 + 2.42613i) q^{40} +(-4.73504 + 2.73378i) q^{41} +(-3.01033 - 1.73802i) q^{43} +1.46713 q^{44} -7.67197i q^{46} +(8.53055 + 4.92512i) q^{47} +(2.03502 + 3.52477i) q^{49} +(2.46656 - 1.42407i) q^{50} +(3.07658 + 1.77627i) q^{52} -7.26920 q^{53} -4.11009i q^{55} +(-1.48238 - 0.855855i) q^{56} +(1.30856 - 0.755499i) q^{58} +(9.52695 - 5.50039i) q^{59} +(0.811064 + 0.468268i) q^{61} +(5.04407 + 2.35740i) q^{62} -1.00000 q^{64} +(4.97612 - 8.61890i) q^{65} +(-6.03957 - 10.4608i) q^{67} +(-0.776384 - 1.34474i) q^{68} +(-2.39764 + 4.15283i) q^{70} -11.1071i q^{71} +0.138072i q^{73} +(-5.29741 + 9.17538i) q^{74} +(3.58039 + 6.20141i) q^{76} +(1.25565 + 2.17485i) q^{77} +(10.6375 + 6.14158i) q^{79} +2.80145i q^{80} -5.46756 q^{82} +(-3.12049 + 5.40484i) q^{83} +(-3.76721 + 2.17500i) q^{85} +(-1.73802 - 3.01033i) q^{86} +(1.27057 + 0.733565i) q^{88} -1.01069 q^{89} +6.08090i q^{91} +(3.83599 - 6.64412i) q^{92} +(4.92512 + 8.53055i) q^{94} +(17.3730 - 10.0303i) q^{95} +(-5.03375 + 8.71871i) q^{97} +4.07005i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} - 12 q^{5} - 4 q^{7} - 32 q^{16} - 8 q^{19} - 12 q^{20} + 44 q^{25} - 8 q^{28} + 8 q^{31} - 36 q^{38} - 24 q^{41} + 48 q^{47} - 36 q^{49} + 12 q^{59} - 64 q^{64} + 16 q^{67} - 12 q^{70}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1674\mathbb{Z}\right)^\times\).

\(n\) \(1055\) \(1243\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 2.42613 1.40073i 1.08500 0.626424i 0.152757 0.988264i \(-0.451185\pi\)
0.932240 + 0.361840i \(0.117851\pi\)
\(6\) 0 0
\(7\) −0.855855 + 1.48238i −0.323483 + 0.560289i −0.981204 0.192973i \(-0.938187\pi\)
0.657721 + 0.753261i \(0.271520\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.80145 0.885897
\(11\) 0.733565 1.27057i 0.221178 0.383092i −0.733988 0.679163i \(-0.762343\pi\)
0.955166 + 0.296071i \(0.0956765\pi\)
\(12\) 0 0
\(13\) 3.07658 1.77627i 0.853290 0.492647i −0.00846930 0.999964i \(-0.502696\pi\)
0.861760 + 0.507317i \(0.169363\pi\)
\(14\) −1.48238 + 0.855855i −0.396184 + 0.228737i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.55277 −0.376601 −0.188301 0.982111i \(-0.560298\pi\)
−0.188301 + 0.982111i \(0.560298\pi\)
\(18\) 0 0
\(19\) 7.16077 1.64279 0.821397 0.570357i \(-0.193195\pi\)
0.821397 + 0.570357i \(0.193195\pi\)
\(20\) 2.42613 + 1.40073i 0.542499 + 0.313212i
\(21\) 0 0
\(22\) 1.27057 0.733565i 0.270887 0.156396i
\(23\) −3.83599 6.64412i −0.799859 1.38540i −0.919708 0.392604i \(-0.871574\pi\)
0.119849 0.992792i \(-0.461759\pi\)
\(24\) 0 0
\(25\) 1.42407 2.46656i 0.284813 0.493311i
\(26\) 3.55253 0.696709
\(27\) 0 0
\(28\) −1.71171 −0.323483
\(29\) 0.755499 1.30856i 0.140293 0.242994i −0.787314 0.616552i \(-0.788529\pi\)
0.927607 + 0.373558i \(0.121862\pi\)
\(30\) 0 0
\(31\) 5.54699 0.480466i 0.996270 0.0862943i
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) −1.34474 0.776384i −0.230620 0.133149i
\(35\) 4.79527i 0.810549i
\(36\) 0 0
\(37\) 10.5948i 1.74178i 0.491480 + 0.870889i \(0.336456\pi\)
−0.491480 + 0.870889i \(0.663544\pi\)
\(38\) 6.20141 + 3.58039i 1.00600 + 0.580816i
\(39\) 0 0
\(40\) 1.40073 + 2.42613i 0.221474 + 0.383605i
\(41\) −4.73504 + 2.73378i −0.739489 + 0.426944i −0.821884 0.569655i \(-0.807077\pi\)
0.0823943 + 0.996600i \(0.473743\pi\)
\(42\) 0 0
\(43\) −3.01033 1.73802i −0.459072 0.265045i 0.252582 0.967575i \(-0.418720\pi\)
−0.711654 + 0.702530i \(0.752054\pi\)
\(44\) 1.46713 0.221178
\(45\) 0 0
\(46\) 7.67197i 1.13117i
\(47\) 8.53055 + 4.92512i 1.24431 + 0.718402i 0.969968 0.243231i \(-0.0782073\pi\)
0.274340 + 0.961633i \(0.411541\pi\)
\(48\) 0 0
\(49\) 2.03502 + 3.52477i 0.290718 + 0.503538i
\(50\) 2.46656 1.42407i 0.348824 0.201393i
\(51\) 0 0
\(52\) 3.07658 + 1.77627i 0.426645 + 0.246324i
\(53\) −7.26920 −0.998501 −0.499251 0.866458i \(-0.666391\pi\)
−0.499251 + 0.866458i \(0.666391\pi\)
\(54\) 0 0
\(55\) 4.11009i 0.554205i
\(56\) −1.48238 0.855855i −0.198092 0.114368i
\(57\) 0 0
\(58\) 1.30856 0.755499i 0.171823 0.0992018i
\(59\) 9.52695 5.50039i 1.24030 0.716089i 0.271147 0.962538i \(-0.412597\pi\)
0.969156 + 0.246449i \(0.0792637\pi\)
\(60\) 0 0
\(61\) 0.811064 + 0.468268i 0.103846 + 0.0599556i 0.551024 0.834490i \(-0.314237\pi\)
−0.447177 + 0.894445i \(0.647571\pi\)
\(62\) 5.04407 + 2.35740i 0.640598 + 0.299390i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 4.97612 8.61890i 0.617212 1.06904i
\(66\) 0 0
\(67\) −6.03957 10.4608i −0.737851 1.27799i −0.953461 0.301515i \(-0.902508\pi\)
0.215611 0.976479i \(-0.430826\pi\)
\(68\) −0.776384 1.34474i −0.0941504 0.163073i
\(69\) 0 0
\(70\) −2.39764 + 4.15283i −0.286572 + 0.496358i
\(71\) 11.1071i 1.31817i −0.752070 0.659084i \(-0.770944\pi\)
0.752070 0.659084i \(-0.229056\pi\)
\(72\) 0 0
\(73\) 0.138072i 0.0161601i 0.999967 + 0.00808004i \(0.00257198\pi\)
−0.999967 + 0.00808004i \(0.997428\pi\)
\(74\) −5.29741 + 9.17538i −0.615811 + 1.06662i
\(75\) 0 0
\(76\) 3.58039 + 6.20141i 0.410699 + 0.711351i
\(77\) 1.25565 + 2.17485i 0.143095 + 0.247847i
\(78\) 0 0
\(79\) 10.6375 + 6.14158i 1.19681 + 0.690981i 0.959844 0.280535i \(-0.0905120\pi\)
0.236971 + 0.971517i \(0.423845\pi\)
\(80\) 2.80145i 0.313212i
\(81\) 0 0
\(82\) −5.46756 −0.603790
\(83\) −3.12049 + 5.40484i −0.342518 + 0.593258i −0.984900 0.173126i \(-0.944613\pi\)
0.642382 + 0.766385i \(0.277946\pi\)
\(84\) 0 0
\(85\) −3.76721 + 2.17500i −0.408612 + 0.235912i
\(86\) −1.73802 3.01033i −0.187415 0.324613i
\(87\) 0 0
\(88\) 1.27057 + 0.733565i 0.135443 + 0.0781982i
\(89\) −1.01069 −0.107133 −0.0535664 0.998564i \(-0.517059\pi\)
−0.0535664 + 0.998564i \(0.517059\pi\)
\(90\) 0 0
\(91\) 6.08090i 0.637452i
\(92\) 3.83599 6.64412i 0.399929 0.692698i
\(93\) 0 0
\(94\) 4.92512 + 8.53055i 0.507987 + 0.879859i
\(95\) 17.3730 10.0303i 1.78243 1.02909i
\(96\) 0 0
\(97\) −5.03375 + 8.71871i −0.511100 + 0.885251i 0.488817 + 0.872386i \(0.337428\pi\)
−0.999917 + 0.0128649i \(0.995905\pi\)
\(98\) 4.07005i 0.411137i
\(99\) 0 0
\(100\) 2.84813 0.284813
\(101\) −5.14898 2.97276i −0.512343 0.295801i 0.221453 0.975171i \(-0.428920\pi\)
−0.733796 + 0.679370i \(0.762253\pi\)
\(102\) 0 0
\(103\) −0.186316 0.322708i −0.0183582 0.0317974i 0.856700 0.515814i \(-0.172511\pi\)
−0.875059 + 0.484017i \(0.839177\pi\)
\(104\) 1.77627 + 3.07658i 0.174177 + 0.301684i
\(105\) 0 0
\(106\) −6.29531 3.63460i −0.611455 0.353024i
\(107\) 4.45522i 0.430702i 0.976537 + 0.215351i \(0.0690896\pi\)
−0.976537 + 0.215351i \(0.930910\pi\)
\(108\) 0 0
\(109\) −9.27511 −0.888395 −0.444197 0.895929i \(-0.646511\pi\)
−0.444197 + 0.895929i \(0.646511\pi\)
\(110\) 2.05505 3.55944i 0.195941 0.339380i
\(111\) 0 0
\(112\) −0.855855 1.48238i −0.0808707 0.140072i
\(113\) −0.738545 + 0.426399i −0.0694764 + 0.0401122i −0.534336 0.845272i \(-0.679438\pi\)
0.464859 + 0.885385i \(0.346105\pi\)
\(114\) 0 0
\(115\) −18.6132 10.7463i −1.73569 1.00210i
\(116\) 1.51100 0.140293
\(117\) 0 0
\(118\) 11.0008 1.01270
\(119\) 1.32894 2.30180i 0.121824 0.211005i
\(120\) 0 0
\(121\) 4.42377 + 7.66219i 0.402161 + 0.696563i
\(122\) 0.468268 + 0.811064i 0.0423950 + 0.0734303i
\(123\) 0 0
\(124\) 3.18959 + 4.56361i 0.286434 + 0.409824i
\(125\) 6.02835i 0.539192i
\(126\) 0 0
\(127\) 1.27925i 0.113515i 0.998388 + 0.0567577i \(0.0180762\pi\)
−0.998388 + 0.0567577i \(0.981924\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) 8.61890 4.97612i 0.755927 0.436435i
\(131\) 3.33518 1.92557i 0.291396 0.168238i −0.347175 0.937800i \(-0.612859\pi\)
0.638571 + 0.769563i \(0.279526\pi\)
\(132\) 0 0
\(133\) −6.12858 + 10.6150i −0.531416 + 0.920439i
\(134\) 12.0791i 1.04348i
\(135\) 0 0
\(136\) 1.55277i 0.133149i
\(137\) 3.18244 5.51214i 0.271894 0.470934i −0.697453 0.716631i \(-0.745683\pi\)
0.969347 + 0.245697i \(0.0790167\pi\)
\(138\) 0 0
\(139\) 12.2227 7.05676i 1.03671 0.598546i 0.117812 0.993036i \(-0.462412\pi\)
0.918900 + 0.394490i \(0.129079\pi\)
\(140\) −4.15283 + 2.39764i −0.350978 + 0.202637i
\(141\) 0 0
\(142\) 5.55354 9.61901i 0.466042 0.807209i
\(143\) 5.21202i 0.435851i
\(144\) 0 0
\(145\) 4.23299i 0.351530i
\(146\) −0.0690359 + 0.119574i −0.00571345 + 0.00989599i
\(147\) 0 0
\(148\) −9.17538 + 5.29741i −0.754212 + 0.435444i
\(149\) −3.45276 + 1.99345i −0.282861 + 0.163310i −0.634718 0.772744i \(-0.718884\pi\)
0.351857 + 0.936054i \(0.385550\pi\)
\(150\) 0 0
\(151\) −19.7926 11.4273i −1.61070 0.929939i −0.989208 0.146519i \(-0.953193\pi\)
−0.621493 0.783420i \(-0.713474\pi\)
\(152\) 7.16077i 0.580816i
\(153\) 0 0
\(154\) 2.51130i 0.202366i
\(155\) 12.7847 8.93549i 1.02689 0.717716i
\(156\) 0 0
\(157\) −3.75070 6.49641i −0.299339 0.518470i 0.676646 0.736308i \(-0.263433\pi\)
−0.975985 + 0.217839i \(0.930099\pi\)
\(158\) 6.14158 + 10.6375i 0.488598 + 0.846276i
\(159\) 0 0
\(160\) −1.40073 + 2.42613i −0.110737 + 0.191802i
\(161\) 13.1322 1.03496
\(162\) 0 0
\(163\) −7.62392 −0.597151 −0.298576 0.954386i \(-0.596512\pi\)
−0.298576 + 0.954386i \(0.596512\pi\)
\(164\) −4.73504 2.73378i −0.369745 0.213472i
\(165\) 0 0
\(166\) −5.40484 + 3.12049i −0.419497 + 0.242197i
\(167\) 9.90418 + 17.1545i 0.766408 + 1.32746i 0.939499 + 0.342552i \(0.111291\pi\)
−0.173090 + 0.984906i \(0.555375\pi\)
\(168\) 0 0
\(169\) −0.189761 + 0.328676i −0.0145970 + 0.0252827i
\(170\) −4.35000 −0.333630
\(171\) 0 0
\(172\) 3.47603i 0.265045i
\(173\) −21.7443 12.5541i −1.65319 0.954468i −0.975750 0.218886i \(-0.929758\pi\)
−0.677436 0.735582i \(-0.736909\pi\)
\(174\) 0 0
\(175\) 2.43759 + 4.22203i 0.184264 + 0.319155i
\(176\) 0.733565 + 1.27057i 0.0552945 + 0.0957729i
\(177\) 0 0
\(178\) −0.875282 0.505344i −0.0656052 0.0378772i
\(179\) −15.3162 −1.14478 −0.572392 0.819980i \(-0.693984\pi\)
−0.572392 + 0.819980i \(0.693984\pi\)
\(180\) 0 0
\(181\) 17.1311i 1.27335i 0.771133 + 0.636674i \(0.219690\pi\)
−0.771133 + 0.636674i \(0.780310\pi\)
\(182\) −3.04045 + 5.26622i −0.225373 + 0.390358i
\(183\) 0 0
\(184\) 6.64412 3.83599i 0.489811 0.282793i
\(185\) 14.8404 + 25.7044i 1.09109 + 1.88982i
\(186\) 0 0
\(187\) −1.13906 + 1.97290i −0.0832960 + 0.144273i
\(188\) 9.85023i 0.718402i
\(189\) 0 0
\(190\) 20.0606 1.45535
\(191\) 1.58477 + 0.914970i 0.114670 + 0.0662049i 0.556238 0.831023i \(-0.312244\pi\)
−0.441568 + 0.897228i \(0.645578\pi\)
\(192\) 0 0
\(193\) −2.95915 5.12540i −0.213004 0.368934i 0.739649 0.672993i \(-0.234991\pi\)
−0.952653 + 0.304059i \(0.901658\pi\)
\(194\) −8.71871 + 5.03375i −0.625967 + 0.361402i
\(195\) 0 0
\(196\) −2.03502 + 3.52477i −0.145359 + 0.251769i
\(197\) −12.4301 −0.885606 −0.442803 0.896619i \(-0.646016\pi\)
−0.442803 + 0.896619i \(0.646016\pi\)
\(198\) 0 0
\(199\) 3.47989i 0.246683i 0.992364 + 0.123342i \(0.0393611\pi\)
−0.992364 + 0.123342i \(0.960639\pi\)
\(200\) 2.46656 + 1.42407i 0.174412 + 0.100697i
\(201\) 0 0
\(202\) −2.97276 5.14898i −0.209163 0.362281i
\(203\) 1.29319 + 2.23988i 0.0907645 + 0.157209i
\(204\) 0 0
\(205\) −7.65855 + 13.2650i −0.534896 + 0.926467i
\(206\) 0.372631i 0.0259624i
\(207\) 0 0
\(208\) 3.55253i 0.246324i
\(209\) 5.25289 9.09827i 0.363350 0.629341i
\(210\) 0 0
\(211\) −6.02815 10.4411i −0.414995 0.718792i 0.580433 0.814308i \(-0.302883\pi\)
−0.995428 + 0.0955160i \(0.969550\pi\)
\(212\) −3.63460 6.29531i −0.249625 0.432364i
\(213\) 0 0
\(214\) −2.22761 + 3.85833i −0.152276 + 0.263750i
\(215\) −9.73794 −0.664122
\(216\) 0 0
\(217\) −4.03519 + 8.63399i −0.273926 + 0.586113i
\(218\) −8.03248 4.63756i −0.544028 0.314095i
\(219\) 0 0
\(220\) 3.55944 2.05505i 0.239978 0.138551i
\(221\) −4.77722 + 2.75813i −0.321350 + 0.185532i
\(222\) 0 0
\(223\) 21.6565 + 12.5034i 1.45023 + 0.837288i 0.998494 0.0548651i \(-0.0174729\pi\)
0.451732 + 0.892154i \(0.350806\pi\)
\(224\) 1.71171i 0.114368i
\(225\) 0 0
\(226\) −0.852798 −0.0567273
\(227\) 2.95339 + 1.70514i 0.196023 + 0.113174i 0.594799 0.803874i \(-0.297232\pi\)
−0.398776 + 0.917048i \(0.630565\pi\)
\(228\) 0 0
\(229\) 7.49557 4.32757i 0.495321 0.285974i −0.231458 0.972845i \(-0.574350\pi\)
0.726779 + 0.686871i \(0.241016\pi\)
\(230\) −10.7463 18.6132i −0.708592 1.22732i
\(231\) 0 0
\(232\) 1.30856 + 0.755499i 0.0859113 + 0.0496009i
\(233\) 11.0476i 0.723749i −0.932227 0.361875i \(-0.882137\pi\)
0.932227 0.361875i \(-0.117863\pi\)
\(234\) 0 0
\(235\) 27.5949 1.80010
\(236\) 9.52695 + 5.50039i 0.620151 + 0.358045i
\(237\) 0 0
\(238\) 2.30180 1.32894i 0.149203 0.0861426i
\(239\) −10.6056 18.3695i −0.686022 1.18822i −0.973115 0.230322i \(-0.926022\pi\)
0.287093 0.957903i \(-0.407311\pi\)
\(240\) 0 0
\(241\) 1.62450 + 0.937906i 0.104643 + 0.0604158i 0.551408 0.834236i \(-0.314091\pi\)
−0.446765 + 0.894651i \(0.647424\pi\)
\(242\) 8.84753i 0.568741i
\(243\) 0 0
\(244\) 0.936536i 0.0599556i
\(245\) 9.87446 + 5.70102i 0.630856 + 0.364225i
\(246\) 0 0
\(247\) 22.0307 12.7194i 1.40178 0.809318i
\(248\) 0.480466 + 5.54699i 0.0305096 + 0.352235i
\(249\) 0 0
\(250\) −3.01418 + 5.22070i −0.190633 + 0.330186i
\(251\) −23.3528 −1.47402 −0.737008 0.675884i \(-0.763762\pi\)
−0.737008 + 0.675884i \(0.763762\pi\)
\(252\) 0 0
\(253\) −11.2558 −0.707645
\(254\) −0.639627 + 1.10787i −0.0401337 + 0.0695137i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.266405 + 0.153809i −0.0166179 + 0.00959436i −0.508286 0.861188i \(-0.669721\pi\)
0.491668 + 0.870783i \(0.336387\pi\)
\(258\) 0 0
\(259\) −15.7056 9.06763i −0.975898 0.563435i
\(260\) 9.95225 0.617212
\(261\) 0 0
\(262\) 3.85114 0.237924
\(263\) −12.4680 + 21.5952i −0.768810 + 1.33162i 0.169399 + 0.985548i \(0.445817\pi\)
−0.938209 + 0.346070i \(0.887516\pi\)
\(264\) 0 0
\(265\) −17.6360 + 10.1822i −1.08337 + 0.625485i
\(266\) −10.6150 + 6.12858i −0.650849 + 0.375768i
\(267\) 0 0
\(268\) 6.03957 10.4608i 0.368925 0.638997i
\(269\) −5.85961 −0.357267 −0.178633 0.983916i \(-0.557168\pi\)
−0.178633 + 0.983916i \(0.557168\pi\)
\(270\) 0 0
\(271\) 18.2115i 1.10627i 0.833091 + 0.553136i \(0.186569\pi\)
−0.833091 + 0.553136i \(0.813431\pi\)
\(272\) 0.776384 1.34474i 0.0470752 0.0815366i
\(273\) 0 0
\(274\) 5.51214 3.18244i 0.333001 0.192258i
\(275\) −2.08929 3.61876i −0.125989 0.218219i
\(276\) 0 0
\(277\) 9.65869 + 5.57645i 0.580334 + 0.335056i 0.761266 0.648439i \(-0.224578\pi\)
−0.180932 + 0.983496i \(0.557911\pi\)
\(278\) 14.1135 0.846472
\(279\) 0 0
\(280\) −4.79527 −0.286572
\(281\) 1.20286 + 0.694470i 0.0717564 + 0.0414286i 0.535449 0.844568i \(-0.320142\pi\)
−0.463693 + 0.885996i \(0.653476\pi\)
\(282\) 0 0
\(283\) −12.9929 22.5044i −0.772348 1.33775i −0.936273 0.351273i \(-0.885749\pi\)
0.163925 0.986473i \(-0.447585\pi\)
\(284\) 9.61901 5.55354i 0.570783 0.329542i
\(285\) 0 0
\(286\) 2.60601 4.51374i 0.154097 0.266903i
\(287\) 9.35887i 0.552437i
\(288\) 0 0
\(289\) −14.5889 −0.858171
\(290\) 2.11649 3.66587i 0.124285 0.215268i
\(291\) 0 0
\(292\) −0.119574 + 0.0690359i −0.00699752 + 0.00404002i
\(293\) 1.52102 0.878162i 0.0888591 0.0513028i −0.454912 0.890536i \(-0.650329\pi\)
0.543771 + 0.839234i \(0.316996\pi\)
\(294\) 0 0
\(295\) 15.4091 26.6893i 0.897150 1.55391i
\(296\) −10.5948 −0.615811
\(297\) 0 0
\(298\) −3.98691 −0.230955
\(299\) −23.6035 13.6275i −1.36502 0.788097i
\(300\) 0 0
\(301\) 5.15282 2.97498i 0.297003 0.171475i
\(302\) −11.4273 19.7926i −0.657566 1.13894i
\(303\) 0 0
\(304\) −3.58039 + 6.20141i −0.205349 + 0.355675i
\(305\) 2.62366 0.150230
\(306\) 0 0
\(307\) −19.6057 −1.11895 −0.559477 0.828846i \(-0.688998\pi\)
−0.559477 + 0.828846i \(0.688998\pi\)
\(308\) −1.25565 + 2.17485i −0.0715473 + 0.123924i
\(309\) 0 0
\(310\) 15.5396 1.34600i 0.882592 0.0764478i
\(311\) 14.9268 8.61798i 0.846420 0.488681i −0.0130214 0.999915i \(-0.504145\pi\)
0.859441 + 0.511234i \(0.170812\pi\)
\(312\) 0 0
\(313\) −22.5106 12.9965i −1.27238 0.734607i −0.296942 0.954895i \(-0.595967\pi\)
−0.975435 + 0.220288i \(0.929300\pi\)
\(314\) 7.50140i 0.423329i
\(315\) 0 0
\(316\) 12.2832i 0.690981i
\(317\) −16.6768 9.62837i −0.936664 0.540783i −0.0477510 0.998859i \(-0.515205\pi\)
−0.888913 + 0.458076i \(0.848539\pi\)
\(318\) 0 0
\(319\) −1.10841 1.91983i −0.0620593 0.107490i
\(320\) −2.42613 + 1.40073i −0.135625 + 0.0783030i
\(321\) 0 0
\(322\) 11.3728 + 6.56610i 0.633782 + 0.365914i
\(323\) −11.1190 −0.618679
\(324\) 0 0
\(325\) 10.1181i 0.561250i
\(326\) −6.60251 3.81196i −0.365679 0.211125i
\(327\) 0 0
\(328\) −2.73378 4.73504i −0.150948 0.261449i
\(329\) −14.6018 + 8.43037i −0.805025 + 0.464781i
\(330\) 0 0
\(331\) −17.2573 9.96350i −0.948546 0.547643i −0.0559171 0.998435i \(-0.517808\pi\)
−0.892629 + 0.450792i \(0.851142\pi\)
\(332\) −6.24097 −0.342518
\(333\) 0 0
\(334\) 19.8084i 1.08387i
\(335\) −29.3055 16.9196i −1.60113 0.924414i
\(336\) 0 0
\(337\) −11.4177 + 6.59199i −0.621960 + 0.359089i −0.777632 0.628720i \(-0.783579\pi\)
0.155672 + 0.987809i \(0.450246\pi\)
\(338\) −0.328676 + 0.189761i −0.0178776 + 0.0103216i
\(339\) 0 0
\(340\) −3.76721 2.17500i −0.204306 0.117956i
\(341\) 3.45861 7.40030i 0.187294 0.400749i
\(342\) 0 0
\(343\) −18.9487 −1.02313
\(344\) 1.73802 3.01033i 0.0937076 0.162306i
\(345\) 0 0
\(346\) −12.5541 21.7443i −0.674911 1.16898i
\(347\) 15.8053 + 27.3756i 0.848474 + 1.46960i 0.882570 + 0.470182i \(0.155812\pi\)
−0.0340955 + 0.999419i \(0.510855\pi\)
\(348\) 0 0
\(349\) 14.7463 25.5413i 0.789349 1.36719i −0.137017 0.990569i \(-0.543751\pi\)
0.926366 0.376624i \(-0.122915\pi\)
\(350\) 4.87518i 0.260589i
\(351\) 0 0
\(352\) 1.46713i 0.0781982i
\(353\) −2.19529 + 3.80236i −0.116844 + 0.202379i −0.918515 0.395386i \(-0.870611\pi\)
0.801672 + 0.597765i \(0.203944\pi\)
\(354\) 0 0
\(355\) −15.5580 26.9472i −0.825731 1.43021i
\(356\) −0.505344 0.875282i −0.0267832 0.0463899i
\(357\) 0 0
\(358\) −13.2642 7.65808i −0.701034 0.404742i
\(359\) 15.9884i 0.843836i 0.906634 + 0.421918i \(0.138643\pi\)
−0.906634 + 0.421918i \(0.861357\pi\)
\(360\) 0 0
\(361\) 32.2767 1.69877
\(362\) −8.56557 + 14.8360i −0.450196 + 0.779763i
\(363\) 0 0
\(364\) −5.26622 + 3.04045i −0.276025 + 0.159363i
\(365\) 0.193401 + 0.334980i 0.0101231 + 0.0175336i
\(366\) 0 0
\(367\) −26.6166 15.3671i −1.38937 0.802155i −0.396129 0.918195i \(-0.629647\pi\)
−0.993245 + 0.116040i \(0.962980\pi\)
\(368\) 7.67197 0.399929
\(369\) 0 0
\(370\) 29.6809i 1.54304i
\(371\) 6.22138 10.7757i 0.322998 0.559449i
\(372\) 0 0
\(373\) −13.4906 23.3664i −0.698516 1.20987i −0.968981 0.247136i \(-0.920511\pi\)
0.270465 0.962730i \(-0.412823\pi\)
\(374\) −1.97290 + 1.13906i −0.102016 + 0.0588991i
\(375\) 0 0
\(376\) −4.92512 + 8.53055i −0.253993 + 0.439930i
\(377\) 5.36787i 0.276459i
\(378\) 0 0
\(379\) 19.1216 0.982211 0.491106 0.871100i \(-0.336593\pi\)
0.491106 + 0.871100i \(0.336593\pi\)
\(380\) 17.3730 + 10.0303i 0.891214 + 0.514543i
\(381\) 0 0
\(382\) 0.914970 + 1.58477i 0.0468139 + 0.0810841i
\(383\) −0.976928 1.69209i −0.0499187 0.0864617i 0.839986 0.542607i \(-0.182563\pi\)
−0.889905 + 0.456146i \(0.849230\pi\)
\(384\) 0 0
\(385\) 6.09274 + 3.51764i 0.310515 + 0.179276i
\(386\) 5.91830i 0.301234i
\(387\) 0 0
\(388\) −10.0675 −0.511100
\(389\) −15.7084 + 27.2077i −0.796447 + 1.37949i 0.125470 + 0.992097i \(0.459956\pi\)
−0.921916 + 0.387389i \(0.873377\pi\)
\(390\) 0 0
\(391\) 5.95640 + 10.3168i 0.301228 + 0.521742i
\(392\) −3.52477 + 2.03502i −0.178028 + 0.102784i
\(393\) 0 0
\(394\) −10.7648 6.21503i −0.542320 0.313109i
\(395\) 34.4107 1.73139
\(396\) 0 0
\(397\) 18.7186 0.939458 0.469729 0.882811i \(-0.344352\pi\)
0.469729 + 0.882811i \(0.344352\pi\)
\(398\) −1.73995 + 3.01368i −0.0872157 + 0.151062i
\(399\) 0 0
\(400\) 1.42407 + 2.46656i 0.0712033 + 0.123328i
\(401\) 1.80742 + 3.13054i 0.0902583 + 0.156332i 0.907620 0.419793i \(-0.137897\pi\)
−0.817361 + 0.576125i \(0.804564\pi\)
\(402\) 0 0
\(403\) 16.2124 11.3311i 0.807595 0.564444i
\(404\) 5.94553i 0.295801i
\(405\) 0 0
\(406\) 2.58639i 0.128360i
\(407\) 13.4615 + 7.77198i 0.667260 + 0.385243i
\(408\) 0 0
\(409\) −3.08139 + 1.77904i −0.152365 + 0.0879679i −0.574244 0.818684i \(-0.694704\pi\)
0.421879 + 0.906652i \(0.361371\pi\)
\(410\) −13.2650 + 7.65855i −0.655111 + 0.378229i
\(411\) 0 0
\(412\) 0.186316 0.322708i 0.00917911 0.0158987i
\(413\) 18.8301i 0.926570i
\(414\) 0 0
\(415\) 17.4838i 0.858245i
\(416\) −1.77627 + 3.07658i −0.0870886 + 0.150842i
\(417\) 0 0
\(418\) 9.09827 5.25289i 0.445011 0.256927i
\(419\) −29.1162 + 16.8102i −1.42242 + 0.821233i −0.996505 0.0835308i \(-0.973380\pi\)
−0.425913 + 0.904764i \(0.640047\pi\)
\(420\) 0 0
\(421\) 3.44737 5.97103i 0.168015 0.291010i −0.769707 0.638397i \(-0.779598\pi\)
0.937722 + 0.347387i \(0.112931\pi\)
\(422\) 12.0563i 0.586891i
\(423\) 0 0
\(424\) 7.26920i 0.353024i
\(425\) −2.21124 + 3.82999i −0.107261 + 0.185782i
\(426\) 0 0
\(427\) −1.38831 + 0.801539i −0.0671848 + 0.0387892i
\(428\) −3.85833 + 2.22761i −0.186500 + 0.107676i
\(429\) 0 0
\(430\) −8.43331 4.86897i −0.406690 0.234803i
\(431\) 1.48642i 0.0715984i 0.999359 + 0.0357992i \(0.0113977\pi\)
−0.999359 + 0.0357992i \(0.988602\pi\)
\(432\) 0 0
\(433\) 16.5728i 0.796440i −0.917290 0.398220i \(-0.869628\pi\)
0.917290 0.398220i \(-0.130372\pi\)
\(434\) −7.81157 + 5.45966i −0.374967 + 0.262072i
\(435\) 0 0
\(436\) −4.63756 8.03248i −0.222099 0.384686i
\(437\) −27.4686 47.5771i −1.31400 2.27592i
\(438\) 0 0
\(439\) −17.8947 + 30.9945i −0.854065 + 1.47928i 0.0234440 + 0.999725i \(0.492537\pi\)
−0.877509 + 0.479559i \(0.840796\pi\)
\(440\) 4.11009 0.195941
\(441\) 0 0
\(442\) −5.51626 −0.262381
\(443\) 16.1237 + 9.30903i 0.766061 + 0.442286i 0.831468 0.555573i \(-0.187501\pi\)
−0.0654066 + 0.997859i \(0.520834\pi\)
\(444\) 0 0
\(445\) −2.45206 + 1.41570i −0.116239 + 0.0671105i
\(446\) 12.5034 + 21.6565i 0.592052 + 1.02546i
\(447\) 0 0
\(448\) 0.855855 1.48238i 0.0404353 0.0700361i
\(449\) 37.5508 1.77213 0.886065 0.463560i \(-0.153428\pi\)
0.886065 + 0.463560i \(0.153428\pi\)
\(450\) 0 0
\(451\) 8.02161i 0.377723i
\(452\) −0.738545 0.426399i −0.0347382 0.0200561i
\(453\) 0 0
\(454\) 1.70514 + 2.95339i 0.0800262 + 0.138609i
\(455\) 8.51768 + 14.7531i 0.399315 + 0.691634i
\(456\) 0 0
\(457\) 15.3789 + 8.87898i 0.719392 + 0.415341i 0.814529 0.580123i \(-0.196995\pi\)
−0.0951366 + 0.995464i \(0.530329\pi\)
\(458\) 8.65514 0.404428
\(459\) 0 0
\(460\) 21.4927i 1.00210i
\(461\) 16.6185 28.7841i 0.774000 1.34061i −0.161355 0.986896i \(-0.551586\pi\)
0.935355 0.353711i \(-0.115080\pi\)
\(462\) 0 0
\(463\) 13.2832 7.66907i 0.617323 0.356412i −0.158503 0.987359i \(-0.550667\pi\)
0.775826 + 0.630947i \(0.217333\pi\)
\(464\) 0.755499 + 1.30856i 0.0350731 + 0.0607485i
\(465\) 0 0
\(466\) 5.52378 9.56746i 0.255884 0.443204i
\(467\) 7.95169i 0.367960i −0.982930 0.183980i \(-0.941102\pi\)
0.982930 0.183980i \(-0.0588982\pi\)
\(468\) 0 0
\(469\) 20.6760 0.954728
\(470\) 23.8979 + 13.7975i 1.10233 + 0.636430i
\(471\) 0 0
\(472\) 5.50039 + 9.52695i 0.253176 + 0.438513i
\(473\) −4.41655 + 2.54989i −0.203073 + 0.117244i
\(474\) 0 0
\(475\) 10.1974 17.6625i 0.467890 0.810409i
\(476\) 2.65789 0.121824
\(477\) 0 0
\(478\) 21.2113i 0.970181i
\(479\) −0.289339 0.167050i −0.0132202 0.00763271i 0.493375 0.869817i \(-0.335763\pi\)
−0.506596 + 0.862184i \(0.669096\pi\)
\(480\) 0 0
\(481\) 18.8192 + 32.5958i 0.858082 + 1.48624i
\(482\) 0.937906 + 1.62450i 0.0427204 + 0.0739940i
\(483\) 0 0
\(484\) −4.42377 + 7.66219i −0.201080 + 0.348281i
\(485\) 28.2036i 1.28066i
\(486\) 0 0
\(487\) 26.5619i 1.20363i −0.798634 0.601817i \(-0.794444\pi\)
0.798634 0.601817i \(-0.205556\pi\)
\(488\) −0.468268 + 0.811064i −0.0211975 + 0.0367151i
\(489\) 0 0
\(490\) 5.70102 + 9.87446i 0.257546 + 0.446083i
\(491\) −0.293876 0.509009i −0.0132625 0.0229712i 0.859318 0.511442i \(-0.170888\pi\)
−0.872580 + 0.488470i \(0.837555\pi\)
\(492\) 0 0
\(493\) −1.17311 + 2.03189i −0.0528344 + 0.0915118i
\(494\) 25.4389 1.14455
\(495\) 0 0
\(496\) −2.35740 + 5.04407i −0.105850 + 0.226486i
\(497\) 16.4650 + 9.50604i 0.738554 + 0.426404i
\(498\) 0 0
\(499\) −24.6683 + 14.2422i −1.10430 + 0.637571i −0.937348 0.348394i \(-0.886727\pi\)
−0.166956 + 0.985964i \(0.553394\pi\)
\(500\) −5.22070 + 3.01418i −0.233477 + 0.134798i
\(501\) 0 0
\(502\) −20.2241 11.6764i −0.902647 0.521144i
\(503\) 1.68247i 0.0750177i 0.999296 + 0.0375088i \(0.0119422\pi\)
−0.999296 + 0.0375088i \(0.988058\pi\)
\(504\) 0 0
\(505\) −16.6561 −0.741187
\(506\) −9.74779 5.62789i −0.433342 0.250190i
\(507\) 0 0
\(508\) −1.10787 + 0.639627i −0.0491536 + 0.0283788i
\(509\) 3.73041 + 6.46126i 0.165347 + 0.286390i 0.936779 0.349923i \(-0.113792\pi\)
−0.771431 + 0.636313i \(0.780459\pi\)
\(510\) 0 0
\(511\) −0.204675 0.118169i −0.00905431 0.00522751i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −0.307619 −0.0135685
\(515\) −0.904051 0.521954i −0.0398373 0.0230001i
\(516\) 0 0
\(517\) 12.5154 7.22578i 0.550427 0.317789i
\(518\) −9.06763 15.7056i −0.398409 0.690064i
\(519\) 0 0
\(520\) 8.61890 + 4.97612i 0.377964 + 0.218217i
\(521\) 5.59532i 0.245136i −0.992460 0.122568i \(-0.960887\pi\)
0.992460 0.122568i \(-0.0391129\pi\)
\(522\) 0 0
\(523\) 1.73661i 0.0759367i −0.999279 0.0379684i \(-0.987911\pi\)
0.999279 0.0379684i \(-0.0120886\pi\)
\(524\) 3.33518 + 1.92557i 0.145698 + 0.0841188i
\(525\) 0 0
\(526\) −21.5952 + 12.4680i −0.941596 + 0.543630i
\(527\) −8.61319 + 0.746052i −0.375197 + 0.0324986i
\(528\) 0 0
\(529\) −17.9296 + 31.0550i −0.779548 + 1.35022i
\(530\) −20.3643 −0.884569
\(531\) 0 0
\(532\) −12.2572 −0.531416
\(533\) −9.71183 + 16.8214i −0.420666 + 0.728615i
\(534\) 0 0
\(535\) 6.24054 + 10.8089i 0.269802 + 0.467311i
\(536\) 10.4608 6.03957i 0.451839 0.260870i
\(537\) 0 0
\(538\) −5.07457 2.92980i −0.218780 0.126313i
\(539\) 5.97129 0.257202
\(540\) 0 0
\(541\) −8.04805 −0.346013 −0.173006 0.984921i \(-0.555348\pi\)
−0.173006 + 0.984921i \(0.555348\pi\)
\(542\) −9.10576 + 15.7716i −0.391126 + 0.677450i
\(543\) 0 0
\(544\) 1.34474 0.776384i 0.0576551 0.0332872i
\(545\) −22.5026 + 12.9919i −0.963906 + 0.556511i
\(546\) 0 0
\(547\) 6.72268 11.6440i 0.287441 0.497863i −0.685757 0.727831i \(-0.740529\pi\)
0.973198 + 0.229968i \(0.0738621\pi\)
\(548\) 6.36487 0.271894
\(549\) 0 0
\(550\) 4.17858i 0.178175i
\(551\) 5.40996 9.37032i 0.230472 0.399189i
\(552\) 0 0
\(553\) −18.2084 + 10.5126i −0.774298 + 0.447041i
\(554\) 5.57645 + 9.65869i 0.236920 + 0.410358i
\(555\) 0 0
\(556\) 12.2227 + 7.05676i 0.518356 + 0.299273i
\(557\) 0.933781 0.0395656 0.0197828 0.999804i \(-0.493703\pi\)
0.0197828 + 0.999804i \(0.493703\pi\)
\(558\) 0 0
\(559\) −12.3487 −0.522295
\(560\) −4.15283 2.39764i −0.175489 0.101319i
\(561\) 0 0
\(562\) 0.694470 + 1.20286i 0.0292944 + 0.0507394i
\(563\) 10.9266 6.30846i 0.460500 0.265870i −0.251754 0.967791i \(-0.581008\pi\)
0.712254 + 0.701921i \(0.247674\pi\)
\(564\) 0 0
\(565\) −1.19454 + 2.06900i −0.0502545 + 0.0870434i
\(566\) 25.9858i 1.09227i
\(567\) 0 0
\(568\) 11.1071 0.466042
\(569\) −21.0010 + 36.3748i −0.880407 + 1.52491i −0.0295185 + 0.999564i \(0.509397\pi\)
−0.850889 + 0.525346i \(0.823936\pi\)
\(570\) 0 0
\(571\) −22.8546 + 13.1951i −0.956435 + 0.552198i −0.895074 0.445917i \(-0.852877\pi\)
−0.0613612 + 0.998116i \(0.519544\pi\)
\(572\) 4.51374 2.60601i 0.188729 0.108963i
\(573\) 0 0
\(574\) 4.67943 8.10502i 0.195316 0.338297i
\(575\) −21.8508 −0.911242
\(576\) 0 0
\(577\) 11.6642 0.485586 0.242793 0.970078i \(-0.421936\pi\)
0.242793 + 0.970078i \(0.421936\pi\)
\(578\) −12.6344 7.29446i −0.525520 0.303409i
\(579\) 0 0
\(580\) 3.66587 2.11649i 0.152217 0.0878826i
\(581\) −5.34137 9.25152i −0.221597 0.383818i
\(582\) 0 0
\(583\) −5.33243 + 9.23603i −0.220847 + 0.382517i
\(584\) −0.138072 −0.00571345
\(585\) 0 0
\(586\) 1.75632 0.0725531
\(587\) 15.8654 27.4797i 0.654835 1.13421i −0.327101 0.944990i \(-0.606072\pi\)
0.981935 0.189217i \(-0.0605951\pi\)
\(588\) 0 0
\(589\) 39.7208 3.44051i 1.63667 0.141764i
\(590\) 26.6893 15.4091i 1.09878 0.634381i
\(591\) 0 0
\(592\) −9.17538 5.29741i −0.377106 0.217722i
\(593\) 14.9623i 0.614426i −0.951641 0.307213i \(-0.900604\pi\)
0.951641 0.307213i \(-0.0993964\pi\)
\(594\) 0 0
\(595\) 7.44594i 0.305254i
\(596\) −3.45276 1.99345i −0.141431 0.0816550i
\(597\) 0 0
\(598\) −13.6275 23.6035i −0.557268 0.965217i
\(599\) 32.4012 18.7068i 1.32388 0.764341i 0.339532 0.940594i \(-0.389731\pi\)
0.984345 + 0.176254i \(0.0563979\pi\)
\(600\) 0 0
\(601\) 29.9367 + 17.2840i 1.22115 + 0.705028i 0.965162 0.261653i \(-0.0842675\pi\)
0.255983 + 0.966681i \(0.417601\pi\)
\(602\) 5.94996 0.242502
\(603\) 0 0
\(604\) 22.8546i 0.929939i
\(605\) 21.4653 + 12.3930i 0.872687 + 0.503846i
\(606\) 0 0
\(607\) 6.70104 + 11.6065i 0.271987 + 0.471095i 0.969371 0.245603i \(-0.0789859\pi\)
−0.697384 + 0.716698i \(0.745653\pi\)
\(608\) −6.20141 + 3.58039i −0.251500 + 0.145204i
\(609\) 0 0
\(610\) 2.27216 + 1.31183i 0.0919969 + 0.0531144i
\(611\) 34.9933 1.41568
\(612\) 0 0
\(613\) 22.6537i 0.914975i −0.889216 0.457488i \(-0.848749\pi\)
0.889216 0.457488i \(-0.151251\pi\)
\(614\) −16.9790 9.80284i −0.685217 0.395610i
\(615\) 0 0
\(616\) −2.17485 + 1.25565i −0.0876272 + 0.0505916i
\(617\) 19.6767 11.3604i 0.792155 0.457351i −0.0485657 0.998820i \(-0.515465\pi\)
0.840721 + 0.541469i \(0.182132\pi\)
\(618\) 0 0
\(619\) 29.8488 + 17.2332i 1.19973 + 0.692662i 0.960494 0.278300i \(-0.0897709\pi\)
0.239232 + 0.970962i \(0.423104\pi\)
\(620\) 14.1307 + 6.60415i 0.567504 + 0.265229i
\(621\) 0 0
\(622\) 17.2360 0.691099
\(623\) 0.865003 1.49823i 0.0346556 0.0600253i
\(624\) 0 0
\(625\) 15.5644 + 26.9583i 0.622576 + 1.07833i
\(626\) −12.9965 22.5106i −0.519446 0.899706i
\(627\) 0 0
\(628\) 3.75070 6.49641i 0.149669 0.259235i
\(629\) 16.4513i 0.655956i
\(630\) 0 0
\(631\) 22.1803i 0.882983i −0.897265 0.441492i \(-0.854449\pi\)
0.897265 0.441492i \(-0.145551\pi\)
\(632\) −6.14158 + 10.6375i −0.244299 + 0.423138i
\(633\) 0 0
\(634\) −9.62837 16.6768i −0.382391 0.662321i
\(635\) 1.79188 + 3.10363i 0.0711087 + 0.123164i
\(636\) 0 0
\(637\) 12.5218 + 7.22949i 0.496133 + 0.286443i
\(638\) 2.21683i 0.0877651i
\(639\) 0 0
\(640\) −2.80145 −0.110737
\(641\) 4.64820 8.05092i 0.183593 0.317992i −0.759509 0.650497i \(-0.774560\pi\)
0.943101 + 0.332505i \(0.107894\pi\)
\(642\) 0 0
\(643\) −31.8796 + 18.4057i −1.25721 + 0.725849i −0.972531 0.232775i \(-0.925220\pi\)
−0.284677 + 0.958624i \(0.591886\pi\)
\(644\) 6.56610 + 11.3728i 0.258740 + 0.448152i
\(645\) 0 0
\(646\) −9.62935 5.55951i −0.378862 0.218736i
\(647\) −0.908098 −0.0357010 −0.0178505 0.999841i \(-0.505682\pi\)
−0.0178505 + 0.999841i \(0.505682\pi\)
\(648\) 0 0
\(649\) 16.1395i 0.633533i
\(650\) 5.05904 8.76252i 0.198432 0.343694i
\(651\) 0 0
\(652\) −3.81196 6.60251i −0.149288 0.258574i
\(653\) −20.6816 + 11.9405i −0.809335 + 0.467270i −0.846725 0.532031i \(-0.821429\pi\)
0.0373900 + 0.999301i \(0.488096\pi\)
\(654\) 0 0
\(655\) 5.39439 9.34335i 0.210776 0.365075i
\(656\) 5.46756i 0.213472i
\(657\) 0 0
\(658\) −16.8607 −0.657300
\(659\) 28.4514 + 16.4264i 1.10831 + 0.639883i 0.938391 0.345575i \(-0.112316\pi\)
0.169919 + 0.985458i \(0.445649\pi\)
\(660\) 0 0
\(661\) 12.3834 + 21.4487i 0.481659 + 0.834258i 0.999778 0.0210506i \(-0.00670112\pi\)
−0.518120 + 0.855308i \(0.673368\pi\)
\(662\) −9.96350 17.2573i −0.387242 0.670723i
\(663\) 0 0
\(664\) −5.40484 3.12049i −0.209749 0.121098i
\(665\) 34.3379i 1.33157i
\(666\) 0 0
\(667\) −11.5923 −0.448857
\(668\) −9.90418 + 17.1545i −0.383204 + 0.663729i
\(669\) 0 0
\(670\) −16.9196 29.3055i −0.653660 1.13217i
\(671\) 1.18994 0.687009i 0.0459369 0.0265217i
\(672\) 0 0
\(673\) 7.04262 + 4.06606i 0.271473 + 0.156735i 0.629557 0.776954i \(-0.283236\pi\)
−0.358084 + 0.933689i \(0.616570\pi\)
\(674\) −13.1840 −0.507828
\(675\) 0 0
\(676\) −0.379522 −0.0145970
\(677\) −25.5772 + 44.3010i −0.983012 + 1.70263i −0.332556 + 0.943084i \(0.607911\pi\)
−0.650456 + 0.759544i \(0.725422\pi\)
\(678\) 0 0
\(679\) −8.61632 14.9239i −0.330664 0.572727i
\(680\) −2.17500 3.76721i −0.0834075 0.144466i
\(681\) 0 0
\(682\) 6.69540 4.67955i 0.256380 0.179189i
\(683\) 37.0300i 1.41691i 0.705755 + 0.708456i \(0.250608\pi\)
−0.705755 + 0.708456i \(0.749392\pi\)
\(684\) 0 0
\(685\) 17.8309i 0.681283i
\(686\) −16.4101 9.47436i −0.626539 0.361733i
\(687\) 0 0
\(688\) 3.01033 1.73802i 0.114768 0.0662613i
\(689\) −22.3643 + 12.9120i −0.852012 + 0.491909i
\(690\) 0 0
\(691\) 18.9242 32.7776i 0.719909 1.24692i −0.241127 0.970494i \(-0.577517\pi\)
0.961035 0.276425i \(-0.0891498\pi\)
\(692\) 25.1081i 0.954468i
\(693\) 0 0
\(694\) 31.6106i 1.19992i
\(695\) 19.7692 34.2412i 0.749887 1.29884i
\(696\) 0 0
\(697\) 7.35242 4.24492i 0.278493 0.160788i
\(698\) 25.5413 14.7463i 0.966751 0.558154i
\(699\) 0 0
\(700\) −2.43759 + 4.22203i −0.0921322 + 0.159578i
\(701\) 11.1960i 0.422866i −0.977392 0.211433i \(-0.932187\pi\)
0.977392 0.211433i \(-0.0678130\pi\)
\(702\) 0 0
\(703\) 75.8671i 2.86138i
\(704\) −0.733565 + 1.27057i −0.0276473 + 0.0478864i
\(705\) 0 0
\(706\) −3.80236 + 2.19529i −0.143104 + 0.0826210i
\(707\) 8.81356 5.08851i 0.331468 0.191373i
\(708\) 0 0
\(709\) 14.6470 + 8.45643i 0.550078 + 0.317588i 0.749154 0.662396i \(-0.230460\pi\)
−0.199075 + 0.979984i \(0.563794\pi\)
\(710\) 31.1159i 1.16776i
\(711\) 0 0
\(712\) 1.01069i 0.0378772i
\(713\) −24.4705 35.0119i −0.916427 1.31120i
\(714\) 0 0
\(715\) −7.30061 12.6450i −0.273027 0.472897i
\(716\) −7.65808 13.2642i −0.286196 0.495706i
\(717\) 0 0
\(718\) −7.99421 + 13.8464i −0.298341 + 0.516742i
\(719\) −19.5121 −0.727680 −0.363840 0.931461i \(-0.618535\pi\)
−0.363840 + 0.931461i \(0.618535\pi\)
\(720\) 0 0
\(721\) 0.637837 0.0237543
\(722\) 27.9524 + 16.1383i 1.04028 + 0.600607i
\(723\) 0 0
\(724\) −14.8360 + 8.56557i −0.551376 + 0.318337i
\(725\) −2.15176 3.72696i −0.0799144 0.138416i
\(726\) 0 0
\(727\) −21.7893 + 37.7402i −0.808121 + 1.39971i 0.106043 + 0.994362i \(0.466182\pi\)
−0.914164 + 0.405345i \(0.867151\pi\)
\(728\) −6.08090 −0.225373
\(729\) 0 0
\(730\) 0.386801i 0.0143162i
\(731\) 4.67435 + 2.69874i 0.172887 + 0.0998164i
\(732\) 0 0
\(733\) 7.07522 + 12.2546i 0.261329 + 0.452635i 0.966595 0.256307i \(-0.0825059\pi\)
−0.705266 + 0.708943i \(0.749173\pi\)
\(734\) −15.3671 26.6166i −0.567209 0.982435i
\(735\) 0 0
\(736\) 6.64412 + 3.83599i 0.244906 + 0.141396i
\(737\) −17.7217 −0.652785
\(738\) 0 0
\(739\) 9.47332i 0.348482i −0.984703 0.174241i \(-0.944253\pi\)
0.984703 0.174241i \(-0.0557471\pi\)
\(740\) −14.8404 + 25.7044i −0.545545 + 0.944912i
\(741\) 0 0
\(742\) 10.7757 6.22138i 0.395590 0.228394i
\(743\) 0.971636 + 1.68292i 0.0356459 + 0.0617404i 0.883298 0.468812i \(-0.155318\pi\)
−0.847652 + 0.530552i \(0.821984\pi\)
\(744\) 0 0
\(745\) −5.58457 + 9.67275i −0.204603 + 0.354382i
\(746\) 26.9812i 0.987851i
\(747\) 0 0
\(748\) −2.27811 −0.0832960
\(749\) −6.60435 3.81302i −0.241318 0.139325i
\(750\) 0 0
\(751\) 2.74754 + 4.75887i 0.100259 + 0.173654i 0.911791 0.410654i \(-0.134700\pi\)
−0.811532 + 0.584308i \(0.801366\pi\)
\(752\) −8.53055 + 4.92512i −0.311077 + 0.179600i
\(753\) 0 0
\(754\) 2.68393 4.64871i 0.0977431 0.169296i
\(755\) −64.0259 −2.33014
\(756\) 0 0
\(757\) 1.41065i 0.0512710i −0.999671 0.0256355i \(-0.991839\pi\)
0.999671 0.0256355i \(-0.00816093\pi\)
\(758\) 16.5598 + 9.56081i 0.601479 + 0.347264i
\(759\) 0 0
\(760\) 10.0303 + 17.3730i 0.363837 + 0.630184i
\(761\) −2.55571 4.42662i −0.0926445 0.160465i 0.815979 0.578082i \(-0.196199\pi\)
−0.908623 + 0.417617i \(0.862865\pi\)
\(762\) 0 0
\(763\) 7.93815 13.7493i 0.287380 0.497757i
\(764\) 1.82994i 0.0662049i
\(765\) 0 0
\(766\) 1.95386i 0.0705957i
\(767\) 19.5403 33.8448i 0.705559 1.22206i
\(768\) 0 0
\(769\) −0.0607588 0.105237i −0.00219102 0.00379496i 0.864928 0.501896i \(-0.167364\pi\)
−0.867119 + 0.498101i \(0.834031\pi\)
\(770\) 3.51764 + 6.09274i 0.126767 + 0.219567i
\(771\) 0 0
\(772\) 2.95915 5.12540i 0.106502 0.184467i
\(773\) 48.3540 1.73917 0.869585 0.493782i \(-0.164386\pi\)
0.869585 + 0.493782i \(0.164386\pi\)
\(774\) 0 0
\(775\) 6.71419 14.3662i 0.241181 0.516049i
\(776\) −8.71871 5.03375i −0.312984 0.180701i
\(777\) 0 0
\(778\) −27.2077 + 15.7084i −0.975444 + 0.563173i
\(779\) −33.9066 + 19.5760i −1.21483 + 0.701382i
\(780\) 0 0
\(781\) −14.1123 8.14775i −0.504979 0.291550i
\(782\) 11.9128i 0.426001i
\(783\) 0 0
\(784\) −4.07005 −0.145359
\(785\) −18.1994 10.5074i −0.649563 0.375026i
\(786\) 0 0
\(787\) 27.9505 16.1372i 0.996326 0.575229i 0.0891668 0.996017i \(-0.471580\pi\)
0.907159 + 0.420788i \(0.138246\pi\)
\(788\) −6.21503 10.7648i −0.221401 0.383478i
\(789\) 0 0
\(790\) 29.8005 + 17.2053i 1.06025 + 0.612138i
\(791\) 1.45974i 0.0519025i
\(792\) 0 0
\(793\) 3.32707 0.118148
\(794\) 16.2108 + 9.35928i 0.575298 + 0.332148i
\(795\) 0 0
\(796\) −3.01368 + 1.73995i −0.106817 + 0.0616708i
\(797\) 22.9770 + 39.7974i 0.813888 + 1.40969i 0.910124 + 0.414336i \(0.135986\pi\)
−0.0962361 + 0.995359i \(0.530680\pi\)
\(798\) 0 0
\(799\) −13.2460 7.64756i −0.468608 0.270551i
\(800\) 2.84813i 0.100697i
\(801\) 0 0
\(802\) 3.61484i 0.127644i
\(803\) 0.175430 + 0.101285i 0.00619079 + 0.00357425i
\(804\) 0 0
\(805\) 31.8604 18.3946i 1.12293 0.648325i
\(806\) 19.7059 1.70687i 0.694110 0.0601220i
\(807\) 0 0
\(808\) 2.97276 5.14898i 0.104581 0.181140i
\(809\) −39.8147 −1.39981 −0.699906 0.714235i \(-0.746775\pi\)
−0.699906 + 0.714235i \(0.746775\pi\)
\(810\) 0 0
\(811\) 30.5818 1.07387 0.536936 0.843623i \(-0.319582\pi\)
0.536936 + 0.843623i \(0.319582\pi\)
\(812\) −1.29319 + 2.23988i −0.0453822 + 0.0786043i
\(813\) 0 0
\(814\) 7.77198 + 13.4615i 0.272408 + 0.471824i
\(815\) −18.4966 + 10.6790i −0.647908 + 0.374070i
\(816\) 0 0
\(817\) −21.5563 12.4455i −0.754160 0.435415i
\(818\) −3.55808 −0.124405
\(819\) 0 0
\(820\) −15.3171 −0.534896
\(821\) 12.0397 20.8533i 0.420187 0.727786i −0.575770 0.817612i \(-0.695298\pi\)
0.995957 + 0.0898259i \(0.0286311\pi\)
\(822\) 0 0
\(823\) −0.553517 + 0.319573i −0.0192944 + 0.0111396i −0.509616 0.860402i \(-0.670213\pi\)
0.490322 + 0.871541i \(0.336879\pi\)
\(824\) 0.322708 0.186316i 0.0112421 0.00649061i
\(825\) 0 0
\(826\) −9.41506 + 16.3074i −0.327592 + 0.567406i
\(827\) −25.0098 −0.869675 −0.434838 0.900509i \(-0.643194\pi\)
−0.434838 + 0.900509i \(0.643194\pi\)
\(828\) 0 0
\(829\) 25.9309i 0.900617i 0.892873 + 0.450308i \(0.148686\pi\)
−0.892873 + 0.450308i \(0.851314\pi\)
\(830\) −8.74189 + 15.1414i −0.303436 + 0.525566i
\(831\) 0 0
\(832\) −3.07658 + 1.77627i −0.106661 + 0.0615809i
\(833\) −3.15992 5.47314i −0.109485 0.189633i
\(834\) 0 0
\(835\) 48.0576 + 27.7461i 1.66310 + 0.960193i
\(836\) 10.5058 0.363350
\(837\) 0 0
\(838\) −33.6205 −1.16140
\(839\) 40.3348 + 23.2873i 1.39251 + 0.803966i 0.993593 0.113020i \(-0.0360525\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(840\) 0 0
\(841\) 13.3584 + 23.1375i 0.460636 + 0.797845i
\(842\) 5.97103 3.44737i 0.205775 0.118804i
\(843\) 0 0
\(844\) 6.02815 10.4411i 0.207497 0.359396i
\(845\) 1.06321i 0.0365756i
\(846\) 0 0
\(847\) −15.1444 −0.520368
\(848\) 3.63460 6.29531i 0.124813 0.216182i
\(849\) 0 0
\(850\) −3.82999 + 2.21124i −0.131368 + 0.0758451i
\(851\) 70.3933 40.6416i 2.41305 1.39318i
\(852\) 0 0
\(853\) −21.9940 + 38.0947i −0.753061 + 1.30434i 0.193272 + 0.981145i \(0.438090\pi\)
−0.946333 + 0.323194i \(0.895243\pi\)
\(854\) −1.60308 −0.0548562
\(855\) 0 0
\(856\) −4.45522 −0.152276
\(857\) −32.2115 18.5973i −1.10033 0.635273i −0.164019 0.986457i \(-0.552446\pi\)
−0.936306 + 0.351184i \(0.885779\pi\)
\(858\) 0 0
\(859\) 36.5777 21.1182i 1.24802 0.720542i 0.277302 0.960783i \(-0.410560\pi\)
0.970713 + 0.240241i \(0.0772264\pi\)
\(860\) −4.86897 8.43331i −0.166031 0.287573i
\(861\) 0 0
\(862\) −0.743210 + 1.28728i −0.0253138 + 0.0438449i
\(863\) 38.2498 1.30204 0.651019 0.759062i \(-0.274342\pi\)
0.651019 + 0.759062i \(0.274342\pi\)
\(864\) 0 0
\(865\) −70.3392 −2.39160
\(866\) 8.28642 14.3525i 0.281584 0.487718i
\(867\) 0 0
\(868\) −9.49485 + 0.822419i −0.322276 + 0.0279147i
\(869\) 15.6066 9.01048i 0.529418 0.305660i
\(870\) 0 0
\(871\) −37.1625 21.4558i −1.25920 0.727000i
\(872\) 9.27511i 0.314095i
\(873\) 0 0
\(874\) 54.9373i 1.85828i
\(875\) −8.93633 5.15939i −0.302103 0.174419i
\(876\) 0 0
\(877\) 22.6974 + 39.3131i 0.766437 + 1.32751i 0.939483 + 0.342594i \(0.111306\pi\)
−0.173046 + 0.984914i \(0.555361\pi\)
\(878\) −30.9945 + 17.8947i −1.04601 + 0.603915i
\(879\) 0 0
\(880\) 3.55944 + 2.05505i 0.119989 + 0.0692756i
\(881\) 28.3421 0.954870 0.477435 0.878667i \(-0.341567\pi\)
0.477435 + 0.878667i \(0.341567\pi\)
\(882\) 0 0
\(883\) 30.2606i 1.01835i −0.860663 0.509176i \(-0.829950\pi\)
0.860663 0.509176i \(-0.170050\pi\)
\(884\) −4.77722 2.75813i −0.160675 0.0927659i
\(885\) 0 0
\(886\) 9.30903 + 16.1237i 0.312743 + 0.541687i
\(887\) −9.66606 + 5.58070i −0.324554 + 0.187382i −0.653421 0.756995i \(-0.726667\pi\)
0.328866 + 0.944376i \(0.393333\pi\)
\(888\) 0 0
\(889\) −1.89634 1.09486i −0.0636014 0.0367203i
\(890\) −2.83140 −0.0949086
\(891\) 0 0
\(892\) 25.0068i 0.837288i
\(893\) 61.0853 + 35.2676i 2.04414 + 1.18019i
\(894\) 0 0
\(895\) −37.1590 + 21.4537i −1.24209 + 0.717119i
\(896\) 1.48238 0.855855i 0.0495230 0.0285921i
\(897\) 0 0
\(898\) 32.5199 + 18.7754i 1.08520 + 0.626543i
\(899\) 3.56203 7.62158i 0.118800 0.254194i
\(900\) 0 0
\(901\) 11.2874 0.376037
\(902\) −4.01080 + 6.94692i −0.133545 + 0.231307i
\(903\) 0 0
\(904\) −0.426399 0.738545i −0.0141818 0.0245636i
\(905\) 23.9960 + 41.5623i 0.797655 + 1.38158i
\(906\) 0 0
\(907\) −21.7875 + 37.7371i −0.723443 + 1.25304i 0.236169 + 0.971712i \(0.424108\pi\)
−0.959612 + 0.281328i \(0.909225\pi\)
\(908\) 3.41028i 0.113174i
\(909\) 0 0
\(910\) 17.0354i 0.564717i
\(911\) 15.0062 25.9915i 0.497178 0.861137i −0.502817 0.864393i \(-0.667703\pi\)
0.999995 + 0.00325559i \(0.00103629\pi\)
\(912\) 0 0
\(913\) 4.57816 + 7.92960i 0.151515 + 0.262431i
\(914\) 8.87898 + 15.3789i 0.293691 + 0.508687i
\(915\) 0 0
\(916\) 7.49557 + 4.32757i 0.247661 + 0.142987i
\(917\) 6.59203i 0.217688i
\(918\) 0 0
\(919\) 7.79709 0.257202 0.128601 0.991696i \(-0.458951\pi\)
0.128601 + 0.991696i \(0.458951\pi\)
\(920\) 10.7463 18.6132i 0.354296 0.613659i
\(921\) 0 0
\(922\) 28.7841 16.6185i 0.947953 0.547301i
\(923\) −19.7291 34.1718i −0.649392 1.12478i
\(924\) 0 0
\(925\) 26.1327 + 15.0877i 0.859238 + 0.496082i
\(926\) 15.3381 0.504042
\(927\) 0 0
\(928\) 1.51100i 0.0496009i
\(929\) 2.51238 4.35156i 0.0824284 0.142770i −0.821864 0.569684i \(-0.807066\pi\)
0.904293 + 0.426913i \(0.140399\pi\)
\(930\) 0 0
\(931\) 14.5724 + 25.2401i 0.477590 + 0.827209i
\(932\) 9.56746 5.52378i 0.313393 0.180937i
\(933\) 0 0
\(934\) 3.97584 6.88637i 0.130094 0.225329i
\(935\) 6.38202i 0.208714i
\(936\) 0 0
\(937\) 43.6734 1.42675 0.713373 0.700784i \(-0.247166\pi\)
0.713373 + 0.700784i \(0.247166\pi\)
\(938\) 17.9059 + 10.3380i 0.584649 + 0.337547i
\(939\) 0 0
\(940\) 13.7975 + 23.8979i 0.450024 + 0.779464i
\(941\) −20.0254 34.6850i −0.652810 1.13070i −0.982438 0.186589i \(-0.940257\pi\)
0.329628 0.944111i \(-0.393077\pi\)
\(942\) 0 0
\(943\) 36.3271 + 20.9735i 1.18297 + 0.682990i
\(944\) 11.0008i 0.358045i
\(945\) 0 0
\(946\) −5.09979 −0.165808
\(947\) −11.7628 + 20.3738i −0.382241 + 0.662061i −0.991382 0.131001i \(-0.958181\pi\)
0.609141 + 0.793062i \(0.291514\pi\)
\(948\) 0 0
\(949\) 0.245252 + 0.424789i 0.00796122 + 0.0137892i
\(950\) 17.6625 10.1974i 0.573046 0.330848i
\(951\) 0 0
\(952\) 2.30180 + 1.32894i 0.0746017 + 0.0430713i
\(953\) −21.2533 −0.688463 −0.344232 0.938885i \(-0.611861\pi\)
−0.344232 + 0.938885i \(0.611861\pi\)
\(954\) 0 0
\(955\) 5.12649 0.165889
\(956\) 10.6056 18.3695i 0.343011 0.594112i
\(957\) 0 0
\(958\) −0.167050 0.289339i −0.00539714 0.00934812i
\(959\) 5.44741 + 9.43519i 0.175906 + 0.304678i
\(960\) 0 0
\(961\) 30.5383 5.33029i 0.985107 0.171945i
\(962\) 37.6384i 1.21351i
\(963\) 0 0
\(964\) 1.87581i 0.0604158i
\(965\) −14.3586 8.28992i −0.462218 0.266862i
\(966\) 0 0
\(967\) 1.99596 1.15237i 0.0641858 0.0370577i −0.467564 0.883959i \(-0.654868\pi\)
0.531749 + 0.846902i \(0.321535\pi\)
\(968\) −7.66219 + 4.42377i −0.246272 + 0.142185i
\(969\) 0 0
\(970\) −14.1018 + 24.4251i −0.452782 + 0.784241i
\(971\) 31.8838i 1.02320i 0.859224 + 0.511600i \(0.170947\pi\)
−0.859224 + 0.511600i \(0.829053\pi\)
\(972\) 0 0
\(973\) 24.1582i 0.774478i
\(974\) 13.2809 23.0033i 0.425549 0.737072i
\(975\) 0 0
\(976\) −0.811064 + 0.468268i −0.0259615 + 0.0149889i
\(977\) 7.76184 4.48130i 0.248323 0.143369i −0.370673 0.928763i \(-0.620873\pi\)
0.618996 + 0.785394i \(0.287540\pi\)
\(978\) 0 0
\(979\) −0.741405 + 1.28415i −0.0236954 + 0.0410417i
\(980\) 11.4020i 0.364225i
\(981\) 0 0
\(982\) 0.587753i 0.0187559i
\(983\) 0.172770 0.299246i 0.00551050 0.00954446i −0.863257 0.504765i \(-0.831579\pi\)
0.868768 + 0.495220i \(0.164913\pi\)
\(984\) 0 0
\(985\) −30.1569 + 17.4111i −0.960880 + 0.554764i
\(986\) −2.03189 + 1.17311i −0.0647086 + 0.0373596i
\(987\) 0 0
\(988\) 22.0307 + 12.7194i 0.700890 + 0.404659i
\(989\) 26.6680i 0.847994i
\(990\) 0 0
\(991\) 23.9983i 0.762333i −0.924507 0.381166i \(-0.875523\pi\)
0.924507 0.381166i \(-0.124477\pi\)
\(992\) −4.56361 + 3.18959i −0.144895 + 0.101270i
\(993\) 0 0
\(994\) 9.50604 + 16.4650i 0.301513 + 0.522237i
\(995\) 4.87438 + 8.44267i 0.154528 + 0.267651i
\(996\) 0 0
\(997\) 12.7281 22.0457i 0.403102 0.698194i −0.590996 0.806674i \(-0.701265\pi\)
0.994099 + 0.108481i \(0.0345985\pi\)
\(998\) −28.4845 −0.901661
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1674.2.q.a.1115.27 64
3.2 odd 2 558.2.q.a.371.10 yes 64
9.4 even 3 558.2.q.a.185.7 64
9.5 odd 6 inner 1674.2.q.a.557.24 64
31.30 odd 2 inner 1674.2.q.a.1115.24 64
93.92 even 2 558.2.q.a.371.7 yes 64
279.185 even 6 inner 1674.2.q.a.557.27 64
279.247 odd 6 558.2.q.a.185.10 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.q.a.185.7 64 9.4 even 3
558.2.q.a.185.10 yes 64 279.247 odd 6
558.2.q.a.371.7 yes 64 93.92 even 2
558.2.q.a.371.10 yes 64 3.2 odd 2
1674.2.q.a.557.24 64 9.5 odd 6 inner
1674.2.q.a.557.27 64 279.185 even 6 inner
1674.2.q.a.1115.24 64 31.30 odd 2 inner
1674.2.q.a.1115.27 64 1.1 even 1 trivial