Properties

Label 1674.2.h.b.253.10
Level $1674$
Weight $2$
Character 1674.253
Analytic conductor $13.367$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1674,2,Mod(253,1674)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1674, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1674.253"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1674 = 2 \cdot 3^{3} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1674.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3669572984\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 558)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 253.10
Character \(\chi\) \(=\) 1674.253
Dual form 1674.2.h.b.397.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +0.562790 q^{5} -1.00505 q^{7} -1.00000 q^{8} +(0.281395 + 0.487391i) q^{10} +(-0.0722513 + 0.125143i) q^{11} -4.71641 q^{13} +(-0.502527 - 0.870402i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-0.900123 + 1.55906i) q^{17} +(1.19266 - 2.06575i) q^{19} +(-0.281395 + 0.487391i) q^{20} -0.144503 q^{22} +(-1.87458 + 3.24686i) q^{23} -4.68327 q^{25} +(-2.35820 - 4.08453i) q^{26} +(0.502527 - 0.870402i) q^{28} +(0.145225 + 0.251538i) q^{29} +(-4.88891 - 2.66430i) q^{31} +(0.500000 - 0.866025i) q^{32} -1.80025 q^{34} -0.565634 q^{35} +(1.95794 - 3.39125i) q^{37} +2.38532 q^{38} -0.562790 q^{40} -1.52633 q^{41} -9.11103 q^{43} +(-0.0722513 - 0.125143i) q^{44} -3.74915 q^{46} +(5.11631 + 8.86171i) q^{47} -5.98987 q^{49} +(-2.34163 - 4.05583i) q^{50} +(2.35820 - 4.08453i) q^{52} +(-2.18202 - 3.77937i) q^{53} +(-0.0406623 + 0.0704292i) q^{55} +1.00505 q^{56} +(-0.145225 + 0.251538i) q^{58} +(-0.586070 - 1.01510i) q^{59} +(1.68911 + 2.92562i) q^{61} +(-0.137103 - 5.56608i) q^{62} +1.00000 q^{64} -2.65435 q^{65} -11.7407 q^{67} +(-0.900123 - 1.55906i) q^{68} +(-0.282817 - 0.489854i) q^{70} +(-2.93897 - 5.09045i) q^{71} +(2.10808 + 3.65130i) q^{73} +3.91588 q^{74} +(1.19266 + 2.06575i) q^{76} +(0.0726165 - 0.125775i) q^{77} +5.85031 q^{79} +(-0.281395 - 0.487391i) q^{80} +(-0.763164 - 1.32184i) q^{82} +(3.08762 - 5.34792i) q^{83} +(-0.506580 + 0.877423i) q^{85} +(-4.55551 - 7.89038i) q^{86} +(0.0722513 - 0.125143i) q^{88} +6.44167 q^{89} +4.74024 q^{91} +(-1.87458 - 3.24686i) q^{92} +(-5.11631 + 8.86171i) q^{94} +(0.671217 - 1.16258i) q^{95} +(2.71229 + 4.69783i) q^{97} +(-2.99493 - 5.18738i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{2} - 16 q^{4} - 2 q^{5} - 2 q^{7} - 32 q^{8} - q^{10} + 2 q^{11} + 20 q^{13} - q^{14} - 16 q^{16} + 4 q^{17} + 4 q^{19} + q^{20} + 4 q^{22} + q^{23} + 38 q^{25} + 10 q^{26} + q^{28} + 3 q^{29}+ \cdots + 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1674\mathbb{Z}\right)^\times\).

\(n\) \(1055\) \(1243\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.562790 0.251687 0.125844 0.992050i \(-0.459836\pi\)
0.125844 + 0.992050i \(0.459836\pi\)
\(6\) 0 0
\(7\) −1.00505 −0.379875 −0.189937 0.981796i \(-0.560828\pi\)
−0.189937 + 0.981796i \(0.560828\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.281395 + 0.487391i 0.0889849 + 0.154126i
\(11\) −0.0722513 + 0.125143i −0.0217846 + 0.0377320i −0.876712 0.481015i \(-0.840268\pi\)
0.854928 + 0.518747i \(0.173601\pi\)
\(12\) 0 0
\(13\) −4.71641 −1.30810 −0.654048 0.756453i \(-0.726931\pi\)
−0.654048 + 0.756453i \(0.726931\pi\)
\(14\) −0.502527 0.870402i −0.134306 0.232625i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.900123 + 1.55906i −0.218312 + 0.378127i −0.954292 0.298876i \(-0.903388\pi\)
0.735980 + 0.677003i \(0.236722\pi\)
\(18\) 0 0
\(19\) 1.19266 2.06575i 0.273615 0.473915i −0.696170 0.717877i \(-0.745114\pi\)
0.969785 + 0.243962i \(0.0784472\pi\)
\(20\) −0.281395 + 0.487391i −0.0629218 + 0.108984i
\(21\) 0 0
\(22\) −0.144503 −0.0308081
\(23\) −1.87458 + 3.24686i −0.390876 + 0.677017i −0.992565 0.121713i \(-0.961161\pi\)
0.601689 + 0.798730i \(0.294495\pi\)
\(24\) 0 0
\(25\) −4.68327 −0.936653
\(26\) −2.35820 4.08453i −0.462482 0.801042i
\(27\) 0 0
\(28\) 0.502527 0.870402i 0.0949687 0.164491i
\(29\) 0.145225 + 0.251538i 0.0269677 + 0.0467093i 0.879194 0.476463i \(-0.158082\pi\)
−0.852227 + 0.523173i \(0.824748\pi\)
\(30\) 0 0
\(31\) −4.88891 2.66430i −0.878075 0.478523i
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −1.80025 −0.308740
\(35\) −0.565634 −0.0956097
\(36\) 0 0
\(37\) 1.95794 3.39125i 0.321883 0.557518i −0.658994 0.752149i \(-0.729018\pi\)
0.980877 + 0.194631i \(0.0623509\pi\)
\(38\) 2.38532 0.386950
\(39\) 0 0
\(40\) −0.562790 −0.0889849
\(41\) −1.52633 −0.238372 −0.119186 0.992872i \(-0.538029\pi\)
−0.119186 + 0.992872i \(0.538029\pi\)
\(42\) 0 0
\(43\) −9.11103 −1.38942 −0.694709 0.719290i \(-0.744467\pi\)
−0.694709 + 0.719290i \(0.744467\pi\)
\(44\) −0.0722513 0.125143i −0.0108923 0.0188660i
\(45\) 0 0
\(46\) −3.74915 −0.552782
\(47\) 5.11631 + 8.86171i 0.746291 + 1.29261i 0.949589 + 0.313496i \(0.101500\pi\)
−0.203299 + 0.979117i \(0.565166\pi\)
\(48\) 0 0
\(49\) −5.98987 −0.855695
\(50\) −2.34163 4.05583i −0.331157 0.573581i
\(51\) 0 0
\(52\) 2.35820 4.08453i 0.327024 0.566422i
\(53\) −2.18202 3.77937i −0.299723 0.519136i 0.676349 0.736581i \(-0.263561\pi\)
−0.976073 + 0.217445i \(0.930228\pi\)
\(54\) 0 0
\(55\) −0.0406623 + 0.0704292i −0.00548291 + 0.00949667i
\(56\) 1.00505 0.134306
\(57\) 0 0
\(58\) −0.145225 + 0.251538i −0.0190690 + 0.0330285i
\(59\) −0.586070 1.01510i −0.0762998 0.132155i 0.825351 0.564620i \(-0.190977\pi\)
−0.901651 + 0.432465i \(0.857644\pi\)
\(60\) 0 0
\(61\) 1.68911 + 2.92562i 0.216268 + 0.374588i 0.953664 0.300873i \(-0.0972781\pi\)
−0.737396 + 0.675461i \(0.763945\pi\)
\(62\) −0.137103 5.56608i −0.0174121 0.706892i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.65435 −0.329231
\(66\) 0 0
\(67\) −11.7407 −1.43435 −0.717176 0.696893i \(-0.754565\pi\)
−0.717176 + 0.696893i \(0.754565\pi\)
\(68\) −0.900123 1.55906i −0.109156 0.189064i
\(69\) 0 0
\(70\) −0.282817 0.489854i −0.0338031 0.0585487i
\(71\) −2.93897 5.09045i −0.348792 0.604125i 0.637243 0.770663i \(-0.280075\pi\)
−0.986035 + 0.166537i \(0.946741\pi\)
\(72\) 0 0
\(73\) 2.10808 + 3.65130i 0.246732 + 0.427352i 0.962617 0.270866i \(-0.0873099\pi\)
−0.715885 + 0.698218i \(0.753977\pi\)
\(74\) 3.91588 0.455211
\(75\) 0 0
\(76\) 1.19266 + 2.06575i 0.136808 + 0.236958i
\(77\) 0.0726165 0.125775i 0.00827541 0.0143334i
\(78\) 0 0
\(79\) 5.85031 0.658212 0.329106 0.944293i \(-0.393253\pi\)
0.329106 + 0.944293i \(0.393253\pi\)
\(80\) −0.281395 0.487391i −0.0314609 0.0544919i
\(81\) 0 0
\(82\) −0.763164 1.32184i −0.0842774 0.145973i
\(83\) 3.08762 5.34792i 0.338911 0.587011i −0.645317 0.763915i \(-0.723275\pi\)
0.984228 + 0.176904i \(0.0566082\pi\)
\(84\) 0 0
\(85\) −0.506580 + 0.877423i −0.0549463 + 0.0951698i
\(86\) −4.55551 7.89038i −0.491234 0.850842i
\(87\) 0 0
\(88\) 0.0722513 0.125143i 0.00770202 0.0133403i
\(89\) 6.44167 0.682815 0.341408 0.939915i \(-0.389096\pi\)
0.341408 + 0.939915i \(0.389096\pi\)
\(90\) 0 0
\(91\) 4.74024 0.496913
\(92\) −1.87458 3.24686i −0.195438 0.338509i
\(93\) 0 0
\(94\) −5.11631 + 8.86171i −0.527707 + 0.914016i
\(95\) 0.671217 1.16258i 0.0688655 0.119278i
\(96\) 0 0
\(97\) 2.71229 + 4.69783i 0.275392 + 0.476992i 0.970234 0.242170i \(-0.0778592\pi\)
−0.694842 + 0.719162i \(0.744526\pi\)
\(98\) −2.99493 5.18738i −0.302534 0.524004i
\(99\) 0 0
\(100\) 2.34163 4.05583i 0.234163 0.405583i
\(101\) −5.63378 9.75799i −0.560582 0.970956i −0.997446 0.0714286i \(-0.977244\pi\)
0.436864 0.899528i \(-0.356089\pi\)
\(102\) 0 0
\(103\) −11.3556 −1.11890 −0.559450 0.828864i \(-0.688988\pi\)
−0.559450 + 0.828864i \(0.688988\pi\)
\(104\) 4.71641 0.462482
\(105\) 0 0
\(106\) 2.18202 3.77937i 0.211936 0.367085i
\(107\) −7.45699 + 12.9159i −0.720895 + 1.24863i 0.239747 + 0.970835i \(0.422936\pi\)
−0.960642 + 0.277791i \(0.910398\pi\)
\(108\) 0 0
\(109\) −3.27184 −0.313386 −0.156693 0.987647i \(-0.550083\pi\)
−0.156693 + 0.987647i \(0.550083\pi\)
\(110\) −0.0813246 −0.00775400
\(111\) 0 0
\(112\) 0.502527 + 0.870402i 0.0474843 + 0.0822453i
\(113\) 6.21456 0.584617 0.292308 0.956324i \(-0.405577\pi\)
0.292308 + 0.956324i \(0.405577\pi\)
\(114\) 0 0
\(115\) −1.05499 + 1.82730i −0.0983786 + 0.170397i
\(116\) −0.290450 −0.0269677
\(117\) 0 0
\(118\) 0.586070 1.01510i 0.0539521 0.0934477i
\(119\) 0.904672 1.56694i 0.0829311 0.143641i
\(120\) 0 0
\(121\) 5.48956 + 9.50820i 0.499051 + 0.864381i
\(122\) −1.68911 + 2.92562i −0.152925 + 0.264874i
\(123\) 0 0
\(124\) 4.75181 2.90177i 0.426725 0.260587i
\(125\) −5.44965 −0.487431
\(126\) 0 0
\(127\) 1.36027 2.35605i 0.120704 0.209066i −0.799341 0.600877i \(-0.794818\pi\)
0.920046 + 0.391812i \(0.128151\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1.32717 2.29873i −0.116401 0.201612i
\(131\) −6.30206 10.9155i −0.550613 0.953690i −0.998230 0.0594646i \(-0.981061\pi\)
0.447617 0.894225i \(-0.352273\pi\)
\(132\) 0 0
\(133\) −1.19869 + 2.07619i −0.103939 + 0.180028i
\(134\) −5.87033 10.1677i −0.507120 0.878357i
\(135\) 0 0
\(136\) 0.900123 1.55906i 0.0771849 0.133688i
\(137\) 3.18632 5.51886i 0.272226 0.471508i −0.697206 0.716871i \(-0.745574\pi\)
0.969431 + 0.245363i \(0.0789070\pi\)
\(138\) 0 0
\(139\) 2.25964 3.91382i 0.191660 0.331966i −0.754140 0.656713i \(-0.771946\pi\)
0.945801 + 0.324748i \(0.105279\pi\)
\(140\) 0.282817 0.489854i 0.0239024 0.0414002i
\(141\) 0 0
\(142\) 2.93897 5.09045i 0.246633 0.427181i
\(143\) 0.340767 0.590225i 0.0284963 0.0493571i
\(144\) 0 0
\(145\) 0.0817313 + 0.141563i 0.00678742 + 0.0117562i
\(146\) −2.10808 + 3.65130i −0.174466 + 0.302184i
\(147\) 0 0
\(148\) 1.95794 + 3.39125i 0.160942 + 0.278759i
\(149\) 2.44593 + 4.23647i 0.200378 + 0.347066i 0.948650 0.316327i \(-0.102450\pi\)
−0.748272 + 0.663392i \(0.769116\pi\)
\(150\) 0 0
\(151\) −12.0587 20.8862i −0.981320 1.69970i −0.657269 0.753656i \(-0.728288\pi\)
−0.324051 0.946039i \(-0.605045\pi\)
\(152\) −1.19266 + 2.06575i −0.0967375 + 0.167554i
\(153\) 0 0
\(154\) 0.145233 0.0117032
\(155\) −2.75143 1.49944i −0.221000 0.120438i
\(156\) 0 0
\(157\) −2.71077 + 4.69520i −0.216343 + 0.374717i −0.953687 0.300800i \(-0.902746\pi\)
0.737344 + 0.675517i \(0.236080\pi\)
\(158\) 2.92516 + 5.06652i 0.232713 + 0.403071i
\(159\) 0 0
\(160\) 0.281395 0.487391i 0.0222462 0.0385316i
\(161\) 1.88405 3.26327i 0.148484 0.257182i
\(162\) 0 0
\(163\) 12.9586 1.01500 0.507498 0.861653i \(-0.330571\pi\)
0.507498 + 0.861653i \(0.330571\pi\)
\(164\) 0.763164 1.32184i 0.0595931 0.103218i
\(165\) 0 0
\(166\) 6.17525 0.479292
\(167\) 2.63275 + 4.56006i 0.203729 + 0.352868i 0.949727 0.313079i \(-0.101361\pi\)
−0.745998 + 0.665948i \(0.768027\pi\)
\(168\) 0 0
\(169\) 9.24451 0.711116
\(170\) −1.01316 −0.0777059
\(171\) 0 0
\(172\) 4.55551 7.89038i 0.347355 0.601636i
\(173\) −5.98983 + 10.3747i −0.455398 + 0.788773i −0.998711 0.0507573i \(-0.983837\pi\)
0.543313 + 0.839530i \(0.317170\pi\)
\(174\) 0 0
\(175\) 4.70694 0.355811
\(176\) 0.144503 0.0108923
\(177\) 0 0
\(178\) 3.22083 + 5.57865i 0.241412 + 0.418137i
\(179\) 6.85731 11.8772i 0.512539 0.887744i −0.487355 0.873204i \(-0.662038\pi\)
0.999894 0.0145400i \(-0.00462837\pi\)
\(180\) 0 0
\(181\) 11.0891 + 19.2069i 0.824247 + 1.42764i 0.902493 + 0.430704i \(0.141735\pi\)
−0.0782463 + 0.996934i \(0.524932\pi\)
\(182\) 2.37012 + 4.10517i 0.175685 + 0.304296i
\(183\) 0 0
\(184\) 1.87458 3.24686i 0.138196 0.239362i
\(185\) 1.10191 1.90856i 0.0810139 0.140320i
\(186\) 0 0
\(187\) −0.130070 0.225288i −0.00951167 0.0164747i
\(188\) −10.2326 −0.746291
\(189\) 0 0
\(190\) 1.34243 0.0973905
\(191\) −7.44184 + 12.8897i −0.538473 + 0.932662i 0.460514 + 0.887653i \(0.347665\pi\)
−0.998987 + 0.0450098i \(0.985668\pi\)
\(192\) 0 0
\(193\) 9.35593 + 16.2050i 0.673455 + 1.16646i 0.976918 + 0.213615i \(0.0685237\pi\)
−0.303463 + 0.952843i \(0.598143\pi\)
\(194\) −2.71229 + 4.69783i −0.194731 + 0.337284i
\(195\) 0 0
\(196\) 2.99493 5.18738i 0.213924 0.370527i
\(197\) 7.08002 + 12.2629i 0.504430 + 0.873699i 0.999987 + 0.00512323i \(0.00163078\pi\)
−0.495557 + 0.868576i \(0.665036\pi\)
\(198\) 0 0
\(199\) −4.65872 8.06915i −0.330248 0.572007i 0.652312 0.757950i \(-0.273799\pi\)
−0.982560 + 0.185944i \(0.940466\pi\)
\(200\) 4.68327 0.331157
\(201\) 0 0
\(202\) 5.63378 9.75799i 0.396391 0.686570i
\(203\) −0.145959 0.252809i −0.0102443 0.0177437i
\(204\) 0 0
\(205\) −0.859003 −0.0599953
\(206\) −5.67780 9.83424i −0.395591 0.685184i
\(207\) 0 0
\(208\) 2.35820 + 4.08453i 0.163512 + 0.283211i
\(209\) 0.172343 + 0.298506i 0.0119212 + 0.0206481i
\(210\) 0 0
\(211\) 4.01230 + 6.94950i 0.276218 + 0.478423i 0.970442 0.241336i \(-0.0775856\pi\)
−0.694224 + 0.719759i \(0.744252\pi\)
\(212\) 4.36404 0.299723
\(213\) 0 0
\(214\) −14.9140 −1.01950
\(215\) −5.12760 −0.349699
\(216\) 0 0
\(217\) 4.91362 + 2.67777i 0.333558 + 0.181779i
\(218\) −1.63592 2.83350i −0.110799 0.191909i
\(219\) 0 0
\(220\) −0.0406623 0.0704292i −0.00274145 0.00474834i
\(221\) 4.24535 7.35316i 0.285573 0.494627i
\(222\) 0 0
\(223\) −14.5273 −0.972817 −0.486409 0.873731i \(-0.661693\pi\)
−0.486409 + 0.873731i \(0.661693\pi\)
\(224\) −0.502527 + 0.870402i −0.0335765 + 0.0581562i
\(225\) 0 0
\(226\) 3.10728 + 5.38197i 0.206693 + 0.358003i
\(227\) 9.41079 16.3000i 0.624616 1.08187i −0.363999 0.931399i \(-0.618589\pi\)
0.988615 0.150467i \(-0.0480779\pi\)
\(228\) 0 0
\(229\) −0.879392 1.52315i −0.0581119 0.100653i 0.835506 0.549481i \(-0.185175\pi\)
−0.893618 + 0.448829i \(0.851841\pi\)
\(230\) −2.10999 −0.139128
\(231\) 0 0
\(232\) −0.145225 0.251538i −0.00953450 0.0165142i
\(233\) 23.2370 1.52231 0.761154 0.648571i \(-0.224633\pi\)
0.761154 + 0.648571i \(0.224633\pi\)
\(234\) 0 0
\(235\) 2.87941 + 4.98728i 0.187832 + 0.325334i
\(236\) 1.17214 0.0762998
\(237\) 0 0
\(238\) 1.80934 0.117282
\(239\) −8.88915 −0.574991 −0.287496 0.957782i \(-0.592823\pi\)
−0.287496 + 0.957782i \(0.592823\pi\)
\(240\) 0 0
\(241\) −14.7318 −0.948957 −0.474479 0.880267i \(-0.657363\pi\)
−0.474479 + 0.880267i \(0.657363\pi\)
\(242\) −5.48956 + 9.50820i −0.352882 + 0.611210i
\(243\) 0 0
\(244\) −3.37822 −0.216268
\(245\) −3.37104 −0.215368
\(246\) 0 0
\(247\) −5.62507 + 9.74291i −0.357915 + 0.619927i
\(248\) 4.88891 + 2.66430i 0.310446 + 0.169183i
\(249\) 0 0
\(250\) −2.72482 4.71953i −0.172333 0.298489i
\(251\) −1.91785 + 3.32181i −0.121053 + 0.209671i −0.920183 0.391488i \(-0.871961\pi\)
0.799130 + 0.601158i \(0.205294\pi\)
\(252\) 0 0
\(253\) −0.270881 0.469180i −0.0170302 0.0294971i
\(254\) 2.72053 0.170701
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 8.62606 0.538079 0.269039 0.963129i \(-0.413294\pi\)
0.269039 + 0.963129i \(0.413294\pi\)
\(258\) 0 0
\(259\) −1.96783 + 3.40839i −0.122275 + 0.211787i
\(260\) 1.32717 2.29873i 0.0823078 0.142561i
\(261\) 0 0
\(262\) 6.30206 10.9155i 0.389342 0.674361i
\(263\) 11.0513 + 19.1415i 0.681455 + 1.18031i 0.974537 + 0.224227i \(0.0719858\pi\)
−0.293082 + 0.956087i \(0.594681\pi\)
\(264\) 0 0
\(265\) −1.22802 2.12699i −0.0754366 0.130660i
\(266\) −2.39738 −0.146993
\(267\) 0 0
\(268\) 5.87033 10.1677i 0.358588 0.621092i
\(269\) 7.76488 + 13.4492i 0.473433 + 0.820010i 0.999538 0.0304096i \(-0.00968118\pi\)
−0.526104 + 0.850420i \(0.676348\pi\)
\(270\) 0 0
\(271\) −24.5909 −1.49379 −0.746894 0.664943i \(-0.768456\pi\)
−0.746894 + 0.664943i \(0.768456\pi\)
\(272\) 1.80025 0.109156
\(273\) 0 0
\(274\) 6.37264 0.384985
\(275\) 0.338372 0.586078i 0.0204046 0.0353418i
\(276\) 0 0
\(277\) −2.42178 4.19464i −0.145510 0.252031i 0.784053 0.620694i \(-0.213149\pi\)
−0.929563 + 0.368663i \(0.879816\pi\)
\(278\) 4.51929 0.271049
\(279\) 0 0
\(280\) 0.565634 0.0338031
\(281\) −1.76336 3.05424i −0.105194 0.182201i 0.808624 0.588326i \(-0.200213\pi\)
−0.913817 + 0.406126i \(0.866880\pi\)
\(282\) 0 0
\(283\) −0.972049 + 1.68364i −0.0577823 + 0.100082i −0.893470 0.449124i \(-0.851736\pi\)
0.835687 + 0.549206i \(0.185070\pi\)
\(284\) 5.87794 0.348792
\(285\) 0 0
\(286\) 0.681533 0.0402999
\(287\) 1.53404 0.0905517
\(288\) 0 0
\(289\) 6.87956 + 11.9157i 0.404680 + 0.700926i
\(290\) −0.0817313 + 0.141563i −0.00479943 + 0.00831285i
\(291\) 0 0
\(292\) −4.21616 −0.246732
\(293\) 11.0367 + 19.1162i 0.644773 + 1.11678i 0.984354 + 0.176203i \(0.0563814\pi\)
−0.339581 + 0.940577i \(0.610285\pi\)
\(294\) 0 0
\(295\) −0.329834 0.571289i −0.0192037 0.0332618i
\(296\) −1.95794 + 3.39125i −0.113803 + 0.197112i
\(297\) 0 0
\(298\) −2.44593 + 4.23647i −0.141689 + 0.245412i
\(299\) 8.84127 15.3135i 0.511304 0.885604i
\(300\) 0 0
\(301\) 9.15708 0.527805
\(302\) 12.0587 20.8862i 0.693898 1.20187i
\(303\) 0 0
\(304\) −2.38532 −0.136808
\(305\) 0.950614 + 1.64651i 0.0544320 + 0.0942790i
\(306\) 0 0
\(307\) −8.51193 + 14.7431i −0.485801 + 0.841433i −0.999867 0.0163183i \(-0.994805\pi\)
0.514066 + 0.857751i \(0.328139\pi\)
\(308\) 0.0726165 + 0.125775i 0.00413771 + 0.00716672i
\(309\) 0 0
\(310\) −0.0771603 3.13253i −0.00438241 0.177916i
\(311\) −4.84163 + 8.38595i −0.274544 + 0.475523i −0.970020 0.243026i \(-0.921860\pi\)
0.695476 + 0.718549i \(0.255193\pi\)
\(312\) 0 0
\(313\) 0.773372 0.0437136 0.0218568 0.999761i \(-0.493042\pi\)
0.0218568 + 0.999761i \(0.493042\pi\)
\(314\) −5.42155 −0.305955
\(315\) 0 0
\(316\) −2.92516 + 5.06652i −0.164553 + 0.285014i
\(317\) −14.4868 −0.813660 −0.406830 0.913504i \(-0.633366\pi\)
−0.406830 + 0.913504i \(0.633366\pi\)
\(318\) 0 0
\(319\) −0.0419709 −0.00234992
\(320\) 0.562790 0.0314609
\(321\) 0 0
\(322\) 3.76810 0.209988
\(323\) 2.14708 + 3.71885i 0.119467 + 0.206923i
\(324\) 0 0
\(325\) 22.0882 1.22523
\(326\) 6.47930 + 11.2225i 0.358855 + 0.621555i
\(327\) 0 0
\(328\) 1.52633 0.0842774
\(329\) −5.14217 8.90650i −0.283497 0.491031i
\(330\) 0 0
\(331\) 10.9088 18.8945i 0.599600 1.03854i −0.393280 0.919419i \(-0.628660\pi\)
0.992880 0.119119i \(-0.0380070\pi\)
\(332\) 3.08762 + 5.34792i 0.169455 + 0.293505i
\(333\) 0 0
\(334\) −2.63275 + 4.56006i −0.144058 + 0.249516i
\(335\) −6.60753 −0.361008
\(336\) 0 0
\(337\) 6.85960 11.8812i 0.373666 0.647209i −0.616460 0.787386i \(-0.711434\pi\)
0.990126 + 0.140177i \(0.0447673\pi\)
\(338\) 4.62225 + 8.00598i 0.251417 + 0.435468i
\(339\) 0 0
\(340\) −0.506580 0.877423i −0.0274732 0.0475849i
\(341\) 0.686649 0.419314i 0.0371841 0.0227071i
\(342\) 0 0
\(343\) 13.0555 0.704932
\(344\) 9.11103 0.491234
\(345\) 0 0
\(346\) −11.9797 −0.644031
\(347\) 7.16616 + 12.4122i 0.384700 + 0.666319i 0.991727 0.128361i \(-0.0409717\pi\)
−0.607028 + 0.794681i \(0.707638\pi\)
\(348\) 0 0
\(349\) 7.33248 + 12.7002i 0.392498 + 0.679827i 0.992778 0.119963i \(-0.0382775\pi\)
−0.600280 + 0.799790i \(0.704944\pi\)
\(350\) 2.35347 + 4.07633i 0.125798 + 0.217889i
\(351\) 0 0
\(352\) 0.0722513 + 0.125143i 0.00385101 + 0.00667014i
\(353\) 12.5009 0.665357 0.332678 0.943040i \(-0.392048\pi\)
0.332678 + 0.943040i \(0.392048\pi\)
\(354\) 0 0
\(355\) −1.65402 2.86485i −0.0877865 0.152051i
\(356\) −3.22083 + 5.57865i −0.170704 + 0.295668i
\(357\) 0 0
\(358\) 13.7146 0.724840
\(359\) 16.2102 + 28.0769i 0.855543 + 1.48184i 0.876140 + 0.482057i \(0.160110\pi\)
−0.0205965 + 0.999788i \(0.506557\pi\)
\(360\) 0 0
\(361\) 6.65512 + 11.5270i 0.350270 + 0.606685i
\(362\) −11.0891 + 19.2069i −0.582831 + 1.00949i
\(363\) 0 0
\(364\) −2.37012 + 4.10517i −0.124228 + 0.215169i
\(365\) 1.18641 + 2.05492i 0.0620993 + 0.107559i
\(366\) 0 0
\(367\) 3.87593 6.71330i 0.202322 0.350431i −0.746954 0.664875i \(-0.768485\pi\)
0.949276 + 0.314444i \(0.101818\pi\)
\(368\) 3.74915 0.195438
\(369\) 0 0
\(370\) 2.20382 0.114571
\(371\) 2.19305 + 3.79847i 0.113857 + 0.197207i
\(372\) 0 0
\(373\) 4.35411 7.54154i 0.225447 0.390486i −0.731006 0.682371i \(-0.760949\pi\)
0.956454 + 0.291885i \(0.0942823\pi\)
\(374\) 0.130070 0.225288i 0.00672577 0.0116494i
\(375\) 0 0
\(376\) −5.11631 8.86171i −0.263854 0.457008i
\(377\) −0.684942 1.18635i −0.0352763 0.0611003i
\(378\) 0 0
\(379\) 12.2708 21.2536i 0.630307 1.09172i −0.357182 0.934035i \(-0.616263\pi\)
0.987489 0.157688i \(-0.0504041\pi\)
\(380\) 0.671217 + 1.16258i 0.0344327 + 0.0596392i
\(381\) 0 0
\(382\) −14.8837 −0.761516
\(383\) −11.9253 −0.609356 −0.304678 0.952455i \(-0.598549\pi\)
−0.304678 + 0.952455i \(0.598549\pi\)
\(384\) 0 0
\(385\) 0.0408678 0.0707852i 0.00208282 0.00360755i
\(386\) −9.35593 + 16.2050i −0.476204 + 0.824810i
\(387\) 0 0
\(388\) −5.42458 −0.275392
\(389\) −35.2837 −1.78896 −0.894478 0.447113i \(-0.852452\pi\)
−0.894478 + 0.447113i \(0.852452\pi\)
\(390\) 0 0
\(391\) −3.37470 5.84515i −0.170666 0.295602i
\(392\) 5.98987 0.302534
\(393\) 0 0
\(394\) −7.08002 + 12.2629i −0.356686 + 0.617798i
\(395\) 3.29250 0.165664
\(396\) 0 0
\(397\) −5.24729 + 9.08858i −0.263354 + 0.456143i −0.967131 0.254278i \(-0.918162\pi\)
0.703777 + 0.710421i \(0.251495\pi\)
\(398\) 4.65872 8.06915i 0.233521 0.404470i
\(399\) 0 0
\(400\) 2.34163 + 4.05583i 0.117082 + 0.202791i
\(401\) −17.4404 + 30.2077i −0.870933 + 1.50850i −0.00989984 + 0.999951i \(0.503151\pi\)
−0.861033 + 0.508549i \(0.830182\pi\)
\(402\) 0 0
\(403\) 23.0581 + 12.5659i 1.14861 + 0.625954i
\(404\) 11.2676 0.560582
\(405\) 0 0
\(406\) 0.145959 0.252809i 0.00724383 0.0125467i
\(407\) 0.282927 + 0.490044i 0.0140242 + 0.0242906i
\(408\) 0 0
\(409\) 2.06271 + 3.57272i 0.101994 + 0.176660i 0.912506 0.409063i \(-0.134144\pi\)
−0.810512 + 0.585722i \(0.800811\pi\)
\(410\) −0.429501 0.743918i −0.0212116 0.0367395i
\(411\) 0 0
\(412\) 5.67780 9.83424i 0.279725 0.484498i
\(413\) 0.589032 + 1.02023i 0.0289843 + 0.0502024i
\(414\) 0 0
\(415\) 1.73768 3.00976i 0.0852996 0.147743i
\(416\) −2.35820 + 4.08453i −0.115620 + 0.200261i
\(417\) 0 0
\(418\) −0.172343 + 0.298506i −0.00842955 + 0.0146004i
\(419\) 4.66325 8.07699i 0.227815 0.394587i −0.729345 0.684146i \(-0.760175\pi\)
0.957160 + 0.289559i \(0.0935086\pi\)
\(420\) 0 0
\(421\) 13.5827 23.5260i 0.661982 1.14659i −0.318112 0.948053i \(-0.603049\pi\)
0.980094 0.198534i \(-0.0636179\pi\)
\(422\) −4.01230 + 6.94950i −0.195315 + 0.338296i
\(423\) 0 0
\(424\) 2.18202 + 3.77937i 0.105968 + 0.183542i
\(425\) 4.21552 7.30149i 0.204483 0.354174i
\(426\) 0 0
\(427\) −1.69765 2.94041i −0.0821549 0.142296i
\(428\) −7.45699 12.9159i −0.360447 0.624313i
\(429\) 0 0
\(430\) −2.56380 4.44063i −0.123637 0.214146i
\(431\) 12.0917 20.9434i 0.582435 1.00881i −0.412755 0.910842i \(-0.635433\pi\)
0.995190 0.0979652i \(-0.0312334\pi\)
\(432\) 0 0
\(433\) −12.9103 −0.620429 −0.310215 0.950667i \(-0.600401\pi\)
−0.310215 + 0.950667i \(0.600401\pi\)
\(434\) 0.137796 + 5.59421i 0.00661442 + 0.268531i
\(435\) 0 0
\(436\) 1.63592 2.83350i 0.0783464 0.135700i
\(437\) 4.47147 + 7.74481i 0.213899 + 0.370484i
\(438\) 0 0
\(439\) −2.14079 + 3.70795i −0.102174 + 0.176971i −0.912580 0.408898i \(-0.865913\pi\)
0.810406 + 0.585869i \(0.199247\pi\)
\(440\) 0.0406623 0.0704292i 0.00193850 0.00335758i
\(441\) 0 0
\(442\) 8.49069 0.403861
\(443\) −11.5049 + 19.9272i −0.546616 + 0.946767i 0.451887 + 0.892075i \(0.350751\pi\)
−0.998503 + 0.0546922i \(0.982582\pi\)
\(444\) 0 0
\(445\) 3.62531 0.171856
\(446\) −7.26363 12.5810i −0.343943 0.595727i
\(447\) 0 0
\(448\) −1.00505 −0.0474843
\(449\) 0.738049 0.0348307 0.0174153 0.999848i \(-0.494456\pi\)
0.0174153 + 0.999848i \(0.494456\pi\)
\(450\) 0 0
\(451\) 0.110279 0.191009i 0.00519285 0.00899427i
\(452\) −3.10728 + 5.38197i −0.146154 + 0.253147i
\(453\) 0 0
\(454\) 18.8216 0.883341
\(455\) 2.66776 0.125067
\(456\) 0 0
\(457\) −18.3750 31.8265i −0.859548 1.48878i −0.872361 0.488863i \(-0.837412\pi\)
0.0128131 0.999918i \(-0.495921\pi\)
\(458\) 0.879392 1.52315i 0.0410913 0.0711722i
\(459\) 0 0
\(460\) −1.05499 1.82730i −0.0491893 0.0851984i
\(461\) −12.6047 21.8321i −0.587062 1.01682i −0.994615 0.103639i \(-0.966951\pi\)
0.407553 0.913181i \(-0.366382\pi\)
\(462\) 0 0
\(463\) 1.36131 2.35786i 0.0632655 0.109579i −0.832658 0.553788i \(-0.813182\pi\)
0.895923 + 0.444209i \(0.146515\pi\)
\(464\) 0.145225 0.251538i 0.00674191 0.0116773i
\(465\) 0 0
\(466\) 11.6185 + 20.1239i 0.538217 + 0.932219i
\(467\) −2.41485 −0.111746 −0.0558730 0.998438i \(-0.517794\pi\)
−0.0558730 + 0.998438i \(0.517794\pi\)
\(468\) 0 0
\(469\) 11.8000 0.544874
\(470\) −2.87941 + 4.98728i −0.132817 + 0.230046i
\(471\) 0 0
\(472\) 0.586070 + 1.01510i 0.0269760 + 0.0467239i
\(473\) 0.658284 1.14018i 0.0302679 0.0524256i
\(474\) 0 0
\(475\) −5.58555 + 9.67445i −0.256282 + 0.443894i
\(476\) 0.904672 + 1.56694i 0.0414656 + 0.0718205i
\(477\) 0 0
\(478\) −4.44457 7.69823i −0.203290 0.352109i
\(479\) −32.6616 −1.49235 −0.746173 0.665752i \(-0.768111\pi\)
−0.746173 + 0.665752i \(0.768111\pi\)
\(480\) 0 0
\(481\) −9.23444 + 15.9945i −0.421054 + 0.729287i
\(482\) −7.36589 12.7581i −0.335507 0.581115i
\(483\) 0 0
\(484\) −10.9791 −0.499051
\(485\) 1.52645 + 2.64389i 0.0693126 + 0.120053i
\(486\) 0 0
\(487\) −18.4595 31.9728i −0.836480 1.44883i −0.892819 0.450415i \(-0.851276\pi\)
0.0563390 0.998412i \(-0.482057\pi\)
\(488\) −1.68911 2.92562i −0.0764624 0.132437i
\(489\) 0 0
\(490\) −1.68552 2.91940i −0.0761440 0.131885i
\(491\) −14.1020 −0.636415 −0.318207 0.948021i \(-0.603081\pi\)
−0.318207 + 0.948021i \(0.603081\pi\)
\(492\) 0 0
\(493\) −0.522882 −0.0235494
\(494\) −11.2501 −0.506168
\(495\) 0 0
\(496\) 0.137103 + 5.56608i 0.00615611 + 0.249924i
\(497\) 2.95383 + 5.11618i 0.132497 + 0.229492i
\(498\) 0 0
\(499\) 17.1482 + 29.7016i 0.767659 + 1.32962i 0.938829 + 0.344383i \(0.111912\pi\)
−0.171170 + 0.985241i \(0.554755\pi\)
\(500\) 2.72482 4.71953i 0.121858 0.211064i
\(501\) 0 0
\(502\) −3.83569 −0.171195
\(503\) −9.19335 + 15.9234i −0.409911 + 0.709987i −0.994879 0.101069i \(-0.967774\pi\)
0.584968 + 0.811056i \(0.301107\pi\)
\(504\) 0 0
\(505\) −3.17063 5.49170i −0.141091 0.244377i
\(506\) 0.270881 0.469180i 0.0120421 0.0208576i
\(507\) 0 0
\(508\) 1.36027 + 2.35605i 0.0603520 + 0.104533i
\(509\) 26.3867 1.16957 0.584786 0.811188i \(-0.301178\pi\)
0.584786 + 0.811188i \(0.301178\pi\)
\(510\) 0 0
\(511\) −2.11873 3.66975i −0.0937273 0.162340i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 4.31303 + 7.47039i 0.190240 + 0.329505i
\(515\) −6.39082 −0.281613
\(516\) 0 0
\(517\) −1.47864 −0.0650305
\(518\) −3.93567 −0.172923
\(519\) 0 0
\(520\) 2.65435 0.116401
\(521\) −16.4542 + 28.4995i −0.720871 + 1.24859i 0.239780 + 0.970827i \(0.422925\pi\)
−0.960651 + 0.277758i \(0.910409\pi\)
\(522\) 0 0
\(523\) −22.4005 −0.979506 −0.489753 0.871861i \(-0.662913\pi\)
−0.489753 + 0.871861i \(0.662913\pi\)
\(524\) 12.6041 0.550613
\(525\) 0 0
\(526\) −11.0513 + 19.1415i −0.481861 + 0.834608i
\(527\) 8.55443 5.22390i 0.372637 0.227557i
\(528\) 0 0
\(529\) 4.47193 + 7.74560i 0.194432 + 0.336765i
\(530\) 1.22802 2.12699i 0.0533417 0.0923906i
\(531\) 0 0
\(532\) −1.19869 2.07619i −0.0519697 0.0900142i
\(533\) 7.19879 0.311814
\(534\) 0 0
\(535\) −4.19672 + 7.26894i −0.181440 + 0.314264i
\(536\) 11.7407 0.507120
\(537\) 0 0
\(538\) −7.76488 + 13.4492i −0.334768 + 0.579835i
\(539\) 0.432776 0.749590i 0.0186410 0.0322871i
\(540\) 0 0
\(541\) 7.32005 12.6787i 0.314714 0.545100i −0.664663 0.747143i \(-0.731425\pi\)
0.979377 + 0.202043i \(0.0647582\pi\)
\(542\) −12.2954 21.2963i −0.528134 0.914755i
\(543\) 0 0
\(544\) 0.900123 + 1.55906i 0.0385924 + 0.0668441i
\(545\) −1.84136 −0.0788752
\(546\) 0 0
\(547\) 5.27049 9.12876i 0.225350 0.390318i −0.731074 0.682298i \(-0.760981\pi\)
0.956424 + 0.291980i \(0.0943141\pi\)
\(548\) 3.18632 + 5.51886i 0.136113 + 0.235754i
\(549\) 0 0
\(550\) 0.676744 0.0288565
\(551\) 0.692818 0.0295150
\(552\) 0 0
\(553\) −5.87988 −0.250038
\(554\) 2.42178 4.19464i 0.102891 0.178213i
\(555\) 0 0
\(556\) 2.25964 + 3.91382i 0.0958302 + 0.165983i
\(557\) 20.9081 0.885905 0.442952 0.896545i \(-0.353931\pi\)
0.442952 + 0.896545i \(0.353931\pi\)
\(558\) 0 0
\(559\) 42.9713 1.81749
\(560\) 0.282817 + 0.489854i 0.0119512 + 0.0207001i
\(561\) 0 0
\(562\) 1.76336 3.05424i 0.0743830 0.128835i
\(563\) −23.7565 −1.00122 −0.500608 0.865674i \(-0.666890\pi\)
−0.500608 + 0.865674i \(0.666890\pi\)
\(564\) 0 0
\(565\) 3.49749 0.147141
\(566\) −1.94410 −0.0817165
\(567\) 0 0
\(568\) 2.93897 + 5.09045i 0.123317 + 0.213591i
\(569\) 17.2022 29.7950i 0.721152 1.24907i −0.239386 0.970924i \(-0.576946\pi\)
0.960538 0.278148i \(-0.0897205\pi\)
\(570\) 0 0
\(571\) 3.81450 0.159632 0.0798159 0.996810i \(-0.474567\pi\)
0.0798159 + 0.996810i \(0.474567\pi\)
\(572\) 0.340767 + 0.590225i 0.0142482 + 0.0246786i
\(573\) 0 0
\(574\) 0.767021 + 1.32852i 0.0320148 + 0.0554513i
\(575\) 8.77914 15.2059i 0.366116 0.634131i
\(576\) 0 0
\(577\) −15.1861 + 26.3032i −0.632207 + 1.09502i 0.354892 + 0.934907i \(0.384518\pi\)
−0.987100 + 0.160108i \(0.948816\pi\)
\(578\) −6.87956 + 11.9157i −0.286152 + 0.495630i
\(579\) 0 0
\(580\) −0.163463 −0.00678742
\(581\) −3.10323 + 5.37495i −0.128744 + 0.222991i
\(582\) 0 0
\(583\) 0.630615 0.0261174
\(584\) −2.10808 3.65130i −0.0872330 0.151092i
\(585\) 0 0
\(586\) −11.0367 + 19.1162i −0.455923 + 0.789682i
\(587\) −5.22247 9.04558i −0.215554 0.373351i 0.737890 0.674921i \(-0.235822\pi\)
−0.953444 + 0.301570i \(0.902489\pi\)
\(588\) 0 0
\(589\) −11.3346 + 6.92166i −0.467034 + 0.285202i
\(590\) 0.329834 0.571289i 0.0135791 0.0235196i
\(591\) 0 0
\(592\) −3.91588 −0.160942
\(593\) 37.7447 1.54999 0.774995 0.631968i \(-0.217753\pi\)
0.774995 + 0.631968i \(0.217753\pi\)
\(594\) 0 0
\(595\) 0.509140 0.881857i 0.0208727 0.0361526i
\(596\) −4.89186 −0.200378
\(597\) 0 0
\(598\) 17.6825 0.723093
\(599\) −38.8992 −1.58938 −0.794690 0.607016i \(-0.792367\pi\)
−0.794690 + 0.607016i \(0.792367\pi\)
\(600\) 0 0
\(601\) −19.9963 −0.815667 −0.407834 0.913056i \(-0.633716\pi\)
−0.407834 + 0.913056i \(0.633716\pi\)
\(602\) 4.57854 + 7.93026i 0.186607 + 0.323213i
\(603\) 0 0
\(604\) 24.1173 0.981320
\(605\) 3.08947 + 5.35112i 0.125605 + 0.217554i
\(606\) 0 0
\(607\) −26.8055 −1.08800 −0.544000 0.839085i \(-0.683091\pi\)
−0.544000 + 0.839085i \(0.683091\pi\)
\(608\) −1.19266 2.06575i −0.0483688 0.0837772i
\(609\) 0 0
\(610\) −0.950614 + 1.64651i −0.0384893 + 0.0666653i
\(611\) −24.1306 41.7954i −0.976220 1.69086i
\(612\) 0 0
\(613\) −0.164854 + 0.285536i −0.00665840 + 0.0115327i −0.869335 0.494223i \(-0.835453\pi\)
0.862677 + 0.505755i \(0.168786\pi\)
\(614\) −17.0239 −0.687027
\(615\) 0 0
\(616\) −0.0726165 + 0.125775i −0.00292580 + 0.00506764i
\(617\) −17.0312 29.4990i −0.685652 1.18758i −0.973232 0.229827i \(-0.926184\pi\)
0.287580 0.957757i \(-0.407149\pi\)
\(618\) 0 0
\(619\) 10.7938 + 18.6954i 0.433838 + 0.751430i 0.997200 0.0747805i \(-0.0238256\pi\)
−0.563362 + 0.826210i \(0.690492\pi\)
\(620\) 2.67427 1.63309i 0.107401 0.0655864i
\(621\) 0 0
\(622\) −9.68326 −0.388263
\(623\) −6.47422 −0.259384
\(624\) 0 0
\(625\) 20.3493 0.813973
\(626\) 0.386686 + 0.669760i 0.0154551 + 0.0267690i
\(627\) 0 0
\(628\) −2.71077 4.69520i −0.108172 0.187359i
\(629\) 3.52477 + 6.10508i 0.140542 + 0.243425i
\(630\) 0 0
\(631\) −1.47927 2.56218i −0.0588889 0.101999i 0.835078 0.550132i \(-0.185422\pi\)
−0.893967 + 0.448133i \(0.852089\pi\)
\(632\) −5.85031 −0.232713
\(633\) 0 0
\(634\) −7.24340 12.5459i −0.287672 0.498263i
\(635\) 0.765544 1.32596i 0.0303797 0.0526192i
\(636\) 0 0
\(637\) 28.2507 1.11933
\(638\) −0.0209854 0.0363478i −0.000830821 0.00143902i
\(639\) 0 0
\(640\) 0.281395 + 0.487391i 0.0111231 + 0.0192658i
\(641\) 13.5699 23.5037i 0.535978 0.928341i −0.463137 0.886287i \(-0.653276\pi\)
0.999115 0.0420546i \(-0.0133903\pi\)
\(642\) 0 0
\(643\) 21.2148 36.7450i 0.836628 1.44908i −0.0560698 0.998427i \(-0.517857\pi\)
0.892698 0.450656i \(-0.148810\pi\)
\(644\) 1.88405 + 3.26327i 0.0742420 + 0.128591i
\(645\) 0 0
\(646\) −2.14708 + 3.71885i −0.0844758 + 0.146316i
\(647\) 23.6612 0.930219 0.465109 0.885253i \(-0.346015\pi\)
0.465109 + 0.885253i \(0.346015\pi\)
\(648\) 0 0
\(649\) 0.169377 0.00664864
\(650\) 11.0441 + 19.1289i 0.433185 + 0.750299i
\(651\) 0 0
\(652\) −6.47930 + 11.2225i −0.253749 + 0.439506i
\(653\) −21.6145 + 37.4374i −0.845840 + 1.46504i 0.0390505 + 0.999237i \(0.487567\pi\)
−0.884890 + 0.465800i \(0.845767\pi\)
\(654\) 0 0
\(655\) −3.54673 6.14312i −0.138582 0.240032i
\(656\) 0.763164 + 1.32184i 0.0297966 + 0.0516092i
\(657\) 0 0
\(658\) 5.14217 8.90650i 0.200463 0.347211i
\(659\) 11.6466 + 20.1725i 0.453686 + 0.785807i 0.998612 0.0526770i \(-0.0167754\pi\)
−0.544925 + 0.838485i \(0.683442\pi\)
\(660\) 0 0
\(661\) 17.1907 0.668640 0.334320 0.942460i \(-0.391493\pi\)
0.334320 + 0.942460i \(0.391493\pi\)
\(662\) 21.8175 0.847962
\(663\) 0 0
\(664\) −3.08762 + 5.34792i −0.119823 + 0.207540i
\(665\) −0.674610 + 1.16846i −0.0261602 + 0.0453109i
\(666\) 0 0
\(667\) −1.08894 −0.0421641
\(668\) −5.26551 −0.203729
\(669\) 0 0
\(670\) −3.30377 5.72229i −0.127636 0.221071i
\(671\) −0.488162 −0.0188453
\(672\) 0 0
\(673\) −21.1913 + 36.7044i −0.816865 + 1.41485i 0.0911157 + 0.995840i \(0.470957\pi\)
−0.907981 + 0.419012i \(0.862377\pi\)
\(674\) 13.7192 0.528444
\(675\) 0 0
\(676\) −4.62225 + 8.00598i −0.177779 + 0.307922i
\(677\) 21.1735 36.6736i 0.813764 1.40948i −0.0964477 0.995338i \(-0.530748\pi\)
0.910212 0.414143i \(-0.135919\pi\)
\(678\) 0 0
\(679\) −2.72600 4.72157i −0.104614 0.181197i
\(680\) 0.506580 0.877423i 0.0194265 0.0336476i
\(681\) 0 0
\(682\) 0.706461 + 0.384999i 0.0270518 + 0.0147424i
\(683\) −7.88799 −0.301825 −0.150913 0.988547i \(-0.548221\pi\)
−0.150913 + 0.988547i \(0.548221\pi\)
\(684\) 0 0
\(685\) 1.79323 3.10596i 0.0685157 0.118673i
\(686\) 6.52776 + 11.3064i 0.249231 + 0.431681i
\(687\) 0 0
\(688\) 4.55551 + 7.89038i 0.173677 + 0.300818i
\(689\) 10.2913 + 17.8250i 0.392067 + 0.679080i
\(690\) 0 0
\(691\) 21.9346 37.9919i 0.834433 1.44528i −0.0600577 0.998195i \(-0.519128\pi\)
0.894491 0.447086i \(-0.147538\pi\)
\(692\) −5.98983 10.3747i −0.227699 0.394387i
\(693\) 0 0
\(694\) −7.16616 + 12.4122i −0.272024 + 0.471159i
\(695\) 1.27170 2.20266i 0.0482385 0.0835516i
\(696\) 0 0
\(697\) 1.37388 2.37964i 0.0520395 0.0901351i
\(698\) −7.33248 + 12.7002i −0.277538 + 0.480710i
\(699\) 0 0
\(700\) −2.35347 + 4.07633i −0.0889527 + 0.154071i
\(701\) 0.0214641 0.0371768i 0.000810686 0.00140415i −0.865620 0.500702i \(-0.833075\pi\)
0.866430 + 0.499298i \(0.166409\pi\)
\(702\) 0 0
\(703\) −4.67031 8.08922i −0.176144 0.305091i
\(704\) −0.0722513 + 0.125143i −0.00272307 + 0.00471650i
\(705\) 0 0
\(706\) 6.25046 + 10.8261i 0.235239 + 0.407446i
\(707\) 5.66225 + 9.80731i 0.212951 + 0.368842i
\(708\) 0 0
\(709\) −14.5464 25.1950i −0.546300 0.946220i −0.998524 0.0543151i \(-0.982702\pi\)
0.452224 0.891905i \(-0.350631\pi\)
\(710\) 1.65402 2.86485i 0.0620744 0.107516i
\(711\) 0 0
\(712\) −6.44167 −0.241412
\(713\) 17.8153 10.8792i 0.667187 0.407429i
\(714\) 0 0
\(715\) 0.191780 0.332173i 0.00717217 0.0124226i
\(716\) 6.85731 + 11.8772i 0.256270 + 0.443872i
\(717\) 0 0
\(718\) −16.2102 + 28.0769i −0.604961 + 1.04782i
\(719\) 2.08236 3.60676i 0.0776590 0.134509i −0.824580 0.565745i \(-0.808589\pi\)
0.902240 + 0.431235i \(0.141922\pi\)
\(720\) 0 0
\(721\) 11.4130 0.425042
\(722\) −6.65512 + 11.5270i −0.247678 + 0.428991i
\(723\) 0 0
\(724\) −22.1782 −0.824247
\(725\) −0.680129 1.17802i −0.0252593 0.0437505i
\(726\) 0 0
\(727\) −2.44996 −0.0908641 −0.0454320 0.998967i \(-0.514466\pi\)
−0.0454320 + 0.998967i \(0.514466\pi\)
\(728\) −4.74024 −0.175685
\(729\) 0 0
\(730\) −1.18641 + 2.05492i −0.0439109 + 0.0760559i
\(731\) 8.20105 14.2046i 0.303327 0.525377i
\(732\) 0 0
\(733\) 12.0610 0.445484 0.222742 0.974877i \(-0.428499\pi\)
0.222742 + 0.974877i \(0.428499\pi\)
\(734\) 7.75185 0.286126
\(735\) 0 0
\(736\) 1.87458 + 3.24686i 0.0690978 + 0.119681i
\(737\) 0.848279 1.46926i 0.0312468 0.0541210i
\(738\) 0 0
\(739\) −22.3007 38.6259i −0.820343 1.42088i −0.905427 0.424502i \(-0.860449\pi\)
0.0850836 0.996374i \(-0.472884\pi\)
\(740\) 1.10191 + 1.90856i 0.0405070 + 0.0701601i
\(741\) 0 0
\(742\) −2.19305 + 3.79847i −0.0805093 + 0.139446i
\(743\) −4.26426 + 7.38592i −0.156441 + 0.270963i −0.933583 0.358362i \(-0.883335\pi\)
0.777142 + 0.629325i \(0.216669\pi\)
\(744\) 0 0
\(745\) 1.37654 + 2.38425i 0.0504327 + 0.0873520i
\(746\) 8.70822 0.318831
\(747\) 0 0
\(748\) 0.260140 0.00951167
\(749\) 7.49468 12.9812i 0.273850 0.474322i
\(750\) 0 0
\(751\) 12.4273 + 21.5247i 0.453477 + 0.785446i 0.998599 0.0529110i \(-0.0168500\pi\)
−0.545122 + 0.838357i \(0.683517\pi\)
\(752\) 5.11631 8.86171i 0.186573 0.323153i
\(753\) 0 0
\(754\) 0.684942 1.18635i 0.0249441 0.0432044i
\(755\) −6.78649 11.7546i −0.246986 0.427792i
\(756\) 0 0
\(757\) −0.273055 0.472945i −0.00992435 0.0171895i 0.861021 0.508570i \(-0.169826\pi\)
−0.870945 + 0.491381i \(0.836492\pi\)
\(758\) 24.5415 0.891388
\(759\) 0 0
\(760\) −0.671217 + 1.16258i −0.0243476 + 0.0421713i
\(761\) −11.0381 19.1186i −0.400133 0.693050i 0.593609 0.804754i \(-0.297703\pi\)
−0.993742 + 0.111704i \(0.964369\pi\)
\(762\) 0 0
\(763\) 3.28838 0.119047
\(764\) −7.44184 12.8897i −0.269236 0.466331i
\(765\) 0 0
\(766\) −5.96267 10.3276i −0.215440 0.373153i
\(767\) 2.76414 + 4.78764i 0.0998074 + 0.172872i
\(768\) 0 0
\(769\) −20.9975 36.3687i −0.757188 1.31149i −0.944279 0.329146i \(-0.893239\pi\)
0.187091 0.982343i \(-0.440094\pi\)
\(770\) 0.0817357 0.00294555
\(771\) 0 0
\(772\) −18.7119 −0.673455
\(773\) −46.8946 −1.68668 −0.843341 0.537379i \(-0.819415\pi\)
−0.843341 + 0.537379i \(0.819415\pi\)
\(774\) 0 0
\(775\) 22.8961 + 12.4776i 0.822452 + 0.448210i
\(776\) −2.71229 4.69783i −0.0973656 0.168642i
\(777\) 0 0
\(778\) −17.6419 30.5566i −0.632491 1.09551i
\(779\) −1.82039 + 3.15301i −0.0652223 + 0.112968i
\(780\) 0 0
\(781\) 0.849379 0.0303932
\(782\) 3.37470 5.84515i 0.120679 0.209022i
\(783\) 0 0
\(784\) 2.99493 + 5.18738i 0.106962 + 0.185263i
\(785\) −1.52560 + 2.64241i −0.0544509 + 0.0943116i
\(786\) 0 0
\(787\) 2.96881 + 5.14212i 0.105826 + 0.183297i 0.914076 0.405544i \(-0.132918\pi\)
−0.808249 + 0.588841i \(0.799585\pi\)
\(788\) −14.1600 −0.504430
\(789\) 0 0
\(790\) 1.64625 + 2.85139i 0.0585709 + 0.101448i
\(791\) −6.24597 −0.222081
\(792\) 0 0
\(793\) −7.96653 13.7984i −0.282900 0.489997i
\(794\) −10.4946 −0.372439
\(795\) 0 0
\(796\) 9.31745 0.330248
\(797\) −8.83594 −0.312985 −0.156492 0.987679i \(-0.550019\pi\)
−0.156492 + 0.987679i \(0.550019\pi\)
\(798\) 0 0
\(799\) −18.4212 −0.651696
\(800\) −2.34163 + 4.05583i −0.0827893 + 0.143395i
\(801\) 0 0
\(802\) −34.8808 −1.23169
\(803\) −0.609246 −0.0214998
\(804\) 0 0
\(805\) 1.06032 1.83654i 0.0373715 0.0647294i
\(806\) 0.646634 + 26.2519i 0.0227767 + 0.924683i
\(807\) 0 0
\(808\) 5.63378 + 9.75799i 0.198196 + 0.343285i
\(809\) −0.882494 + 1.52852i −0.0310268 + 0.0537401i −0.881122 0.472889i \(-0.843211\pi\)
0.850095 + 0.526629i \(0.176544\pi\)
\(810\) 0 0
\(811\) −7.05458 12.2189i −0.247720 0.429063i 0.715173 0.698947i \(-0.246348\pi\)
−0.962893 + 0.269884i \(0.913015\pi\)
\(812\) 0.291918 0.0102443
\(813\) 0 0
\(814\) −0.282927 + 0.490044i −0.00991659 + 0.0171760i
\(815\) 7.29297 0.255462
\(816\) 0 0
\(817\) −10.8664 + 18.8211i −0.380166 + 0.658467i
\(818\) −2.06271 + 3.57272i −0.0721210 + 0.124917i
\(819\) 0 0
\(820\) 0.429501 0.743918i 0.0149988 0.0259787i
\(821\) −4.58364 7.93910i −0.159970 0.277076i 0.774888 0.632099i \(-0.217806\pi\)
−0.934858 + 0.355023i \(0.884473\pi\)
\(822\) 0 0
\(823\) −18.3062 31.7073i −0.638114 1.10525i −0.985846 0.167652i \(-0.946381\pi\)
0.347732 0.937594i \(-0.386952\pi\)
\(824\) 11.3556 0.395591
\(825\) 0 0
\(826\) −0.589032 + 1.02023i −0.0204950 + 0.0354984i
\(827\) −23.9647 41.5081i −0.833335 1.44338i −0.895379 0.445306i \(-0.853095\pi\)
0.0620432 0.998073i \(-0.480238\pi\)
\(828\) 0 0
\(829\) −41.7758 −1.45093 −0.725467 0.688257i \(-0.758376\pi\)
−0.725467 + 0.688257i \(0.758376\pi\)
\(830\) 3.47537 0.120632
\(831\) 0 0
\(832\) −4.71641 −0.163512
\(833\) 5.39162 9.33855i 0.186808 0.323562i
\(834\) 0 0
\(835\) 1.48169 + 2.56636i 0.0512759 + 0.0888125i
\(836\) −0.344685 −0.0119212
\(837\) 0 0
\(838\) 9.32651 0.322179
\(839\) −10.7603 18.6374i −0.371487 0.643435i 0.618307 0.785936i \(-0.287819\pi\)
−0.989795 + 0.142502i \(0.954485\pi\)
\(840\) 0 0
\(841\) 14.4578 25.0417i 0.498545 0.863506i
\(842\) 27.1655 0.936184
\(843\) 0 0
\(844\) −8.02459 −0.276218
\(845\) 5.20272 0.178979
\(846\) 0 0
\(847\) −5.51730 9.55625i −0.189577 0.328357i
\(848\) −2.18202 + 3.77937i −0.0749309 + 0.129784i
\(849\) 0 0
\(850\) 8.43103 0.289182
\(851\) 7.34061 + 12.7143i 0.251633 + 0.435841i
\(852\) 0 0
\(853\) 16.3170 + 28.2618i 0.558682 + 0.967666i 0.997607 + 0.0691423i \(0.0220263\pi\)
−0.438924 + 0.898524i \(0.644640\pi\)
\(854\) 1.69765 2.94041i 0.0580923 0.100619i
\(855\) 0 0
\(856\) 7.45699 12.9159i 0.254875 0.441456i
\(857\) 26.6693 46.1927i 0.911007 1.57791i 0.0983637 0.995151i \(-0.468639\pi\)
0.812644 0.582761i \(-0.198028\pi\)
\(858\) 0 0
\(859\) −4.57793 −0.156197 −0.0780985 0.996946i \(-0.524885\pi\)
−0.0780985 + 0.996946i \(0.524885\pi\)
\(860\) 2.56380 4.44063i 0.0874248 0.151424i
\(861\) 0 0
\(862\) 24.1833 0.823688
\(863\) −25.5424 44.2408i −0.869475 1.50597i −0.862534 0.505999i \(-0.831124\pi\)
−0.00694067 0.999976i \(-0.502209\pi\)
\(864\) 0 0
\(865\) −3.37102 + 5.83877i −0.114618 + 0.198524i
\(866\) −6.45515 11.1806i −0.219355 0.379934i
\(867\) 0 0
\(868\) −4.77583 + 2.91644i −0.162102 + 0.0989904i
\(869\) −0.422693 + 0.732126i −0.0143389 + 0.0248357i
\(870\) 0 0
\(871\) 55.3738 1.87627
\(872\) 3.27184 0.110799
\(873\) 0 0
\(874\) −4.47147 + 7.74481i −0.151250 + 0.261972i
\(875\) 5.47719 0.185163
\(876\) 0 0
\(877\) −17.7699 −0.600045 −0.300023 0.953932i \(-0.596994\pi\)
−0.300023 + 0.953932i \(0.596994\pi\)
\(878\) −4.28157 −0.144496
\(879\) 0 0
\(880\) 0.0813246 0.00274145
\(881\) −14.3083 24.7828i −0.482060 0.834952i 0.517728 0.855545i \(-0.326778\pi\)
−0.999788 + 0.0205930i \(0.993445\pi\)
\(882\) 0 0
\(883\) 0.842196 0.0283421 0.0141711 0.999900i \(-0.495489\pi\)
0.0141711 + 0.999900i \(0.495489\pi\)
\(884\) 4.24535 + 7.35316i 0.142786 + 0.247313i
\(885\) 0 0
\(886\) −23.0099 −0.773032
\(887\) −27.8755 48.2818i −0.935968 1.62114i −0.772899 0.634529i \(-0.781194\pi\)
−0.163069 0.986615i \(-0.552139\pi\)
\(888\) 0 0
\(889\) −1.36714 + 2.36796i −0.0458524 + 0.0794187i
\(890\) 1.81265 + 3.13961i 0.0607603 + 0.105240i
\(891\) 0 0
\(892\) 7.26363 12.5810i 0.243204 0.421242i
\(893\) 24.4081 0.816785
\(894\) 0 0
\(895\) 3.85922 6.68437i 0.129000 0.223434i
\(896\) −0.502527 0.870402i −0.0167882 0.0290781i
\(897\) 0 0
\(898\) 0.369024 + 0.639169i 0.0123145 + 0.0213293i
\(899\) −0.0398217 1.61667i −0.00132813 0.0539189i
\(900\) 0 0
\(901\) 7.85634 0.261733
\(902\) 0.220558 0.00734379
\(903\) 0 0
\(904\) −6.21456 −0.206693
\(905\) 6.24084 + 10.8095i 0.207453 + 0.359318i
\(906\) 0 0
\(907\) −13.9039 24.0823i −0.461672 0.799640i 0.537372 0.843345i \(-0.319417\pi\)
−0.999044 + 0.0437054i \(0.986084\pi\)
\(908\) 9.41079 + 16.3000i 0.312308 + 0.540933i
\(909\) 0 0
\(910\) 1.33388 + 2.31035i 0.0442177 + 0.0765874i
\(911\) 3.19200 0.105756 0.0528778 0.998601i \(-0.483161\pi\)
0.0528778 + 0.998601i \(0.483161\pi\)
\(912\) 0 0
\(913\) 0.446170 + 0.772789i 0.0147661 + 0.0255756i
\(914\) 18.3750 31.8265i 0.607792 1.05273i
\(915\) 0 0
\(916\) 1.75878 0.0581119
\(917\) 6.33391 + 10.9706i 0.209164 + 0.362283i
\(918\) 0 0
\(919\) −5.31857 9.21203i −0.175443 0.303877i 0.764871 0.644183i \(-0.222803\pi\)
−0.940315 + 0.340306i \(0.889469\pi\)
\(920\) 1.05499 1.82730i 0.0347821 0.0602444i
\(921\) 0 0
\(922\) 12.6047 21.8321i 0.415115 0.719001i
\(923\) 13.8614 + 24.0086i 0.456253 + 0.790254i
\(924\) 0 0
\(925\) −9.16955 + 15.8821i −0.301493 + 0.522201i
\(926\) 2.72262 0.0894710
\(927\) 0 0
\(928\) 0.290450 0.00953450
\(929\) 12.4243 + 21.5195i 0.407628 + 0.706032i 0.994623 0.103558i \(-0.0330227\pi\)
−0.586995 + 0.809590i \(0.699689\pi\)
\(930\) 0 0
\(931\) −7.14388 + 12.3736i −0.234131 + 0.405527i
\(932\) −11.6185 + 20.1239i −0.380577 + 0.659179i
\(933\) 0 0
\(934\) −1.20742 2.09132i −0.0395081 0.0684301i
\(935\) −0.0732022 0.126790i −0.00239397 0.00414647i
\(936\) 0 0
\(937\) −18.2775 + 31.6576i −0.597100 + 1.03421i 0.396147 + 0.918187i \(0.370347\pi\)
−0.993247 + 0.116020i \(0.962986\pi\)
\(938\) 5.90000 + 10.2191i 0.192642 + 0.333666i
\(939\) 0 0
\(940\) −5.75882 −0.187832
\(941\) −8.79709 −0.286777 −0.143389 0.989666i \(-0.545800\pi\)
−0.143389 + 0.989666i \(0.545800\pi\)
\(942\) 0 0
\(943\) 2.86122 4.95578i 0.0931741 0.161382i
\(944\) −0.586070 + 1.01510i −0.0190749 + 0.0330388i
\(945\) 0 0
\(946\) 1.31657 0.0428053
\(947\) 12.1166 0.393737 0.196869 0.980430i \(-0.436923\pi\)
0.196869 + 0.980430i \(0.436923\pi\)
\(948\) 0 0
\(949\) −9.94256 17.2210i −0.322749 0.559018i
\(950\) −11.1711 −0.362438
\(951\) 0 0
\(952\) −0.904672 + 1.56694i −0.0293206 + 0.0507848i
\(953\) 55.8909 1.81048 0.905242 0.424897i \(-0.139690\pi\)
0.905242 + 0.424897i \(0.139690\pi\)
\(954\) 0 0
\(955\) −4.18820 + 7.25417i −0.135527 + 0.234739i
\(956\) 4.44457 7.69823i 0.143748 0.248979i
\(957\) 0 0
\(958\) −16.3308 28.2858i −0.527624 0.913872i
\(959\) −3.20242 + 5.54676i −0.103412 + 0.179114i
\(960\) 0 0
\(961\) 16.8030 + 26.0511i 0.542031 + 0.840358i
\(962\) −18.4689 −0.595460
\(963\) 0 0
\(964\) 7.36589 12.7581i 0.237239 0.410911i
\(965\) 5.26543 + 9.11999i 0.169500 + 0.293583i
\(966\) 0 0
\(967\) −16.2203 28.0944i −0.521611 0.903456i −0.999684 0.0251363i \(-0.991998\pi\)
0.478073 0.878320i \(-0.341335\pi\)
\(968\) −5.48956 9.50820i −0.176441 0.305605i
\(969\) 0 0
\(970\) −1.52645 + 2.64389i −0.0490114 + 0.0848902i
\(971\) −22.2476 38.5340i −0.713960 1.23662i −0.963359 0.268215i \(-0.913566\pi\)
0.249399 0.968401i \(-0.419767\pi\)
\(972\) 0 0
\(973\) −2.27106 + 3.93360i −0.0728070 + 0.126105i
\(974\) 18.4595 31.9728i 0.591481 1.02448i
\(975\) 0 0
\(976\) 1.68911 2.92562i 0.0540671 0.0936470i
\(977\) −16.0697 + 27.8336i −0.514117 + 0.890476i 0.485749 + 0.874098i \(0.338547\pi\)
−0.999866 + 0.0163780i \(0.994786\pi\)
\(978\) 0 0
\(979\) −0.465419 + 0.806129i −0.0148748 + 0.0257640i
\(980\) 1.68552 2.91940i 0.0538419 0.0932569i
\(981\) 0 0
\(982\) −7.05101 12.2127i −0.225007 0.389723i
\(983\) −28.3851 + 49.1645i −0.905345 + 1.56810i −0.0848916 + 0.996390i \(0.527054\pi\)
−0.820453 + 0.571713i \(0.806279\pi\)
\(984\) 0 0
\(985\) 3.98456 + 6.90147i 0.126959 + 0.219899i
\(986\) −0.261441 0.452829i −0.00832598 0.0144210i
\(987\) 0 0
\(988\) −5.62507 9.74291i −0.178957 0.309963i
\(989\) 17.0793 29.5823i 0.543091 0.940661i
\(990\) 0 0
\(991\) −39.3750 −1.25079 −0.625394 0.780309i \(-0.715062\pi\)
−0.625394 + 0.780309i \(0.715062\pi\)
\(992\) −4.75181 + 2.90177i −0.150870 + 0.0921314i
\(993\) 0 0
\(994\) −2.95383 + 5.11618i −0.0936897 + 0.162275i
\(995\) −2.62188 4.54124i −0.0831193 0.143967i
\(996\) 0 0
\(997\) −29.2868 + 50.7263i −0.927524 + 1.60652i −0.140073 + 0.990141i \(0.544734\pi\)
−0.787451 + 0.616377i \(0.788600\pi\)
\(998\) −17.1482 + 29.7016i −0.542817 + 0.940186i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1674.2.h.b.253.10 32
3.2 odd 2 558.2.h.a.67.8 yes 32
9.2 odd 6 558.2.g.a.439.4 yes 32
9.7 even 3 1674.2.g.b.1369.7 32
31.25 even 3 1674.2.g.b.955.7 32
93.56 odd 6 558.2.g.a.211.4 32
279.25 even 3 inner 1674.2.h.b.397.10 32
279.56 odd 6 558.2.h.a.25.8 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.g.a.211.4 32 93.56 odd 6
558.2.g.a.439.4 yes 32 9.2 odd 6
558.2.h.a.25.8 yes 32 279.56 odd 6
558.2.h.a.67.8 yes 32 3.2 odd 2
1674.2.g.b.955.7 32 31.25 even 3
1674.2.g.b.1369.7 32 9.7 even 3
1674.2.h.b.253.10 32 1.1 even 1 trivial
1674.2.h.b.397.10 32 279.25 even 3 inner