Properties

Label 1674.2.g.b.1369.12
Level $1674$
Weight $2$
Character 1674.1369
Analytic conductor $13.367$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1674,2,Mod(955,1674)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1674, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1674.955"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1674 = 2 \cdot 3^{3} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1674.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3669572984\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 558)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1369.12
Character \(\chi\) \(=\) 1674.1369
Dual form 1674.2.g.b.955.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(1.17303 - 2.03175i) q^{5} +(1.52021 + 2.63308i) q^{7} -1.00000 q^{8} +(-1.17303 - 2.03175i) q^{10} -5.84199 q^{11} +(-2.70313 + 4.68195i) q^{13} +3.04042 q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.83888 + 3.18503i) q^{17} +(-2.58676 + 4.48039i) q^{19} -2.34606 q^{20} +(-2.92100 + 5.05931i) q^{22} +(2.63277 + 4.56010i) q^{23} +(-0.251992 - 0.436463i) q^{25} +(2.70313 + 4.68195i) q^{26} +(1.52021 - 2.63308i) q^{28} +(0.623172 - 1.07937i) q^{29} +(-4.74093 + 2.91951i) q^{31} +(0.500000 + 0.866025i) q^{32} +(1.83888 + 3.18503i) q^{34} +7.13300 q^{35} +(-2.03817 + 3.53022i) q^{37} +(2.58676 + 4.48039i) q^{38} +(-1.17303 + 2.03175i) q^{40} +(-1.47475 + 2.55433i) q^{41} +(-4.91997 - 8.52163i) q^{43} +(2.92100 + 5.05931i) q^{44} +5.26555 q^{46} +(4.27777 - 7.40932i) q^{47} +(-1.12208 + 1.94350i) q^{49} -0.503984 q^{50} +5.40625 q^{52} +(-5.39327 - 9.34142i) q^{53} +(-6.85282 + 11.8694i) q^{55} +(-1.52021 - 2.63308i) q^{56} +(-0.623172 - 1.07937i) q^{58} -4.76336 q^{59} +(7.03656 - 12.1877i) q^{61} +(0.157906 + 5.56552i) q^{62} +1.00000 q^{64} +(6.34169 + 10.9841i) q^{65} +(-5.06714 + 8.77655i) q^{67} +3.67775 q^{68} +(3.56650 - 6.17736i) q^{70} +(3.74130 + 6.48012i) q^{71} +(-2.09806 - 3.63394i) q^{73} +(2.03817 + 3.53022i) q^{74} +5.17351 q^{76} +(-8.88106 - 15.3824i) q^{77} +(-1.33943 - 2.31997i) q^{79} +(1.17303 + 2.03175i) q^{80} +(1.47475 + 2.55433i) q^{82} +8.77082 q^{83} +(4.31411 + 7.47226i) q^{85} -9.83993 q^{86} +5.84199 q^{88} -3.52297 q^{89} -16.4373 q^{91} +(2.63277 - 4.56010i) q^{92} +(-4.27777 - 7.40932i) q^{94} +(6.06868 + 10.5113i) q^{95} +(-1.79211 + 3.10403i) q^{97} +(1.12208 + 1.94350i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{2} - 16 q^{4} + q^{5} + q^{7} - 32 q^{8} - q^{10} - 4 q^{11} - 10 q^{13} + 2 q^{14} - 16 q^{16} + 4 q^{17} + 4 q^{19} - 2 q^{20} - 2 q^{22} + q^{23} - 19 q^{25} + 10 q^{26} + q^{28} + 3 q^{29}+ \cdots + 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1674\mathbb{Z}\right)^\times\).

\(n\) \(1055\) \(1243\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.17303 2.03175i 0.524594 0.908624i −0.474996 0.879988i \(-0.657550\pi\)
0.999590 0.0286358i \(-0.00911632\pi\)
\(6\) 0 0
\(7\) 1.52021 + 2.63308i 0.574586 + 0.995211i 0.996087 + 0.0883835i \(0.0281701\pi\)
−0.421501 + 0.906828i \(0.638497\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.17303 2.03175i −0.370944 0.642494i
\(11\) −5.84199 −1.76143 −0.880714 0.473649i \(-0.842936\pi\)
−0.880714 + 0.473649i \(0.842936\pi\)
\(12\) 0 0
\(13\) −2.70313 + 4.68195i −0.749712 + 1.29854i 0.198248 + 0.980152i \(0.436475\pi\)
−0.947961 + 0.318388i \(0.896859\pi\)
\(14\) 3.04042 0.812587
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.83888 + 3.18503i −0.445993 + 0.772483i −0.998121 0.0612767i \(-0.980483\pi\)
0.552128 + 0.833760i \(0.313816\pi\)
\(18\) 0 0
\(19\) −2.58676 + 4.48039i −0.593442 + 1.02787i 0.400322 + 0.916374i \(0.368898\pi\)
−0.993765 + 0.111498i \(0.964435\pi\)
\(20\) −2.34606 −0.524594
\(21\) 0 0
\(22\) −2.92100 + 5.05931i −0.622759 + 1.07865i
\(23\) 2.63277 + 4.56010i 0.548971 + 0.950846i 0.998345 + 0.0575023i \(0.0183137\pi\)
−0.449374 + 0.893344i \(0.648353\pi\)
\(24\) 0 0
\(25\) −0.251992 0.436463i −0.0503984 0.0872926i
\(26\) 2.70313 + 4.68195i 0.530127 + 0.918206i
\(27\) 0 0
\(28\) 1.52021 2.63308i 0.287293 0.497606i
\(29\) 0.623172 1.07937i 0.115720 0.200433i −0.802347 0.596857i \(-0.796416\pi\)
0.918067 + 0.396424i \(0.129749\pi\)
\(30\) 0 0
\(31\) −4.74093 + 2.91951i −0.851497 + 0.524360i
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1.83888 + 3.18503i 0.315365 + 0.546228i
\(35\) 7.13300 1.20570
\(36\) 0 0
\(37\) −2.03817 + 3.53022i −0.335074 + 0.580365i −0.983499 0.180914i \(-0.942095\pi\)
0.648425 + 0.761278i \(0.275428\pi\)
\(38\) 2.58676 + 4.48039i 0.419627 + 0.726815i
\(39\) 0 0
\(40\) −1.17303 + 2.03175i −0.185472 + 0.321247i
\(41\) −1.47475 + 2.55433i −0.230317 + 0.398920i −0.957901 0.287098i \(-0.907309\pi\)
0.727585 + 0.686018i \(0.240643\pi\)
\(42\) 0 0
\(43\) −4.91997 8.52163i −0.750288 1.29954i −0.947683 0.319213i \(-0.896582\pi\)
0.197395 0.980324i \(-0.436752\pi\)
\(44\) 2.92100 + 5.05931i 0.440357 + 0.762720i
\(45\) 0 0
\(46\) 5.26555 0.776362
\(47\) 4.27777 7.40932i 0.623977 1.08076i −0.364760 0.931101i \(-0.618849\pi\)
0.988738 0.149659i \(-0.0478176\pi\)
\(48\) 0 0
\(49\) −1.12208 + 1.94350i −0.160297 + 0.277643i
\(50\) −0.503984 −0.0712741
\(51\) 0 0
\(52\) 5.40625 0.749712
\(53\) −5.39327 9.34142i −0.740823 1.28314i −0.952121 0.305721i \(-0.901102\pi\)
0.211298 0.977422i \(-0.432231\pi\)
\(54\) 0 0
\(55\) −6.85282 + 11.8694i −0.924035 + 1.60047i
\(56\) −1.52021 2.63308i −0.203147 0.351860i
\(57\) 0 0
\(58\) −0.623172 1.07937i −0.0818265 0.141728i
\(59\) −4.76336 −0.620137 −0.310068 0.950714i \(-0.600352\pi\)
−0.310068 + 0.950714i \(0.600352\pi\)
\(60\) 0 0
\(61\) 7.03656 12.1877i 0.900939 1.56047i 0.0746624 0.997209i \(-0.476212\pi\)
0.826277 0.563264i \(-0.190455\pi\)
\(62\) 0.157906 + 5.56552i 0.0200541 + 0.706822i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.34169 + 10.9841i 0.786589 + 1.36241i
\(66\) 0 0
\(67\) −5.06714 + 8.77655i −0.619050 + 1.07223i 0.370609 + 0.928789i \(0.379149\pi\)
−0.989659 + 0.143438i \(0.954184\pi\)
\(68\) 3.67775 0.445993
\(69\) 0 0
\(70\) 3.56650 6.17736i 0.426278 0.738336i
\(71\) 3.74130 + 6.48012i 0.444010 + 0.769049i 0.997983 0.0634865i \(-0.0202220\pi\)
−0.553972 + 0.832535i \(0.686889\pi\)
\(72\) 0 0
\(73\) −2.09806 3.63394i −0.245559 0.425321i 0.716730 0.697351i \(-0.245638\pi\)
−0.962289 + 0.272030i \(0.912305\pi\)
\(74\) 2.03817 + 3.53022i 0.236933 + 0.410380i
\(75\) 0 0
\(76\) 5.17351 0.593442
\(77\) −8.88106 15.3824i −1.01209 1.75299i
\(78\) 0 0
\(79\) −1.33943 2.31997i −0.150698 0.261017i 0.780786 0.624798i \(-0.214819\pi\)
−0.931484 + 0.363782i \(0.881485\pi\)
\(80\) 1.17303 + 2.03175i 0.131149 + 0.227156i
\(81\) 0 0
\(82\) 1.47475 + 2.55433i 0.162858 + 0.282079i
\(83\) 8.77082 0.962723 0.481362 0.876522i \(-0.340142\pi\)
0.481362 + 0.876522i \(0.340142\pi\)
\(84\) 0 0
\(85\) 4.31411 + 7.47226i 0.467931 + 0.810480i
\(86\) −9.83993 −1.06107
\(87\) 0 0
\(88\) 5.84199 0.622759
\(89\) −3.52297 −0.373434 −0.186717 0.982414i \(-0.559785\pi\)
−0.186717 + 0.982414i \(0.559785\pi\)
\(90\) 0 0
\(91\) −16.4373 −1.72310
\(92\) 2.63277 4.56010i 0.274486 0.475423i
\(93\) 0 0
\(94\) −4.27777 7.40932i −0.441219 0.764213i
\(95\) 6.06868 + 10.5113i 0.622633 + 1.07843i
\(96\) 0 0
\(97\) −1.79211 + 3.10403i −0.181961 + 0.315166i −0.942548 0.334070i \(-0.891578\pi\)
0.760587 + 0.649236i \(0.224911\pi\)
\(98\) 1.12208 + 1.94350i 0.113347 + 0.196323i
\(99\) 0 0
\(100\) −0.251992 + 0.436463i −0.0251992 + 0.0436463i
\(101\) 3.51439 6.08711i 0.349695 0.605690i −0.636500 0.771277i \(-0.719619\pi\)
0.986195 + 0.165587i \(0.0529519\pi\)
\(102\) 0 0
\(103\) −2.18966 + 3.79259i −0.215753 + 0.373695i −0.953505 0.301376i \(-0.902554\pi\)
0.737752 + 0.675072i \(0.235887\pi\)
\(104\) 2.70313 4.68195i 0.265063 0.459103i
\(105\) 0 0
\(106\) −10.7865 −1.04768
\(107\) −1.77681 + 3.07753i −0.171771 + 0.297516i −0.939039 0.343811i \(-0.888282\pi\)
0.767268 + 0.641326i \(0.221616\pi\)
\(108\) 0 0
\(109\) 18.3747 1.75998 0.879989 0.474993i \(-0.157550\pi\)
0.879989 + 0.474993i \(0.157550\pi\)
\(110\) 6.85282 + 11.8694i 0.653391 + 1.13171i
\(111\) 0 0
\(112\) −3.04042 −0.287293
\(113\) −1.84967 + 3.20372i −0.174002 + 0.301380i −0.939815 0.341683i \(-0.889003\pi\)
0.765813 + 0.643063i \(0.222337\pi\)
\(114\) 0 0
\(115\) 12.3533 1.15195
\(116\) −1.24634 −0.115720
\(117\) 0 0
\(118\) −2.38168 + 4.12519i −0.219251 + 0.379755i
\(119\) −11.1819 −1.02505
\(120\) 0 0
\(121\) 23.1289 2.10263
\(122\) −7.03656 12.1877i −0.637060 1.10342i
\(123\) 0 0
\(124\) 4.89884 + 2.64601i 0.439929 + 0.237619i
\(125\) 10.5479 0.943434
\(126\) 0 0
\(127\) −1.95942 + 3.39381i −0.173870 + 0.301152i −0.939770 0.341808i \(-0.888961\pi\)
0.765900 + 0.642960i \(0.222294\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 12.6834 1.11241
\(131\) 10.8084 0.944337 0.472169 0.881508i \(-0.343471\pi\)
0.472169 + 0.881508i \(0.343471\pi\)
\(132\) 0 0
\(133\) −15.7297 −1.36393
\(134\) 5.06714 + 8.77655i 0.437735 + 0.758179i
\(135\) 0 0
\(136\) 1.83888 3.18503i 0.157682 0.273114i
\(137\) −11.7047 −1.00000 −0.500001 0.866025i \(-0.666667\pi\)
−0.500001 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 7.78289 + 13.4804i 0.660136 + 1.14339i 0.980580 + 0.196122i \(0.0628348\pi\)
−0.320443 + 0.947268i \(0.603832\pi\)
\(140\) −3.56650 6.17736i −0.301424 0.522082i
\(141\) 0 0
\(142\) 7.48260 0.627926
\(143\) 15.7916 27.3519i 1.32056 2.28728i
\(144\) 0 0
\(145\) −1.46200 2.53225i −0.121412 0.210292i
\(146\) −4.19611 −0.347273
\(147\) 0 0
\(148\) 4.07635 0.335074
\(149\) 6.88872 0.564346 0.282173 0.959364i \(-0.408945\pi\)
0.282173 + 0.959364i \(0.408945\pi\)
\(150\) 0 0
\(151\) −12.2302 + 21.1834i −0.995283 + 1.72388i −0.413623 + 0.910448i \(0.635737\pi\)
−0.581660 + 0.813432i \(0.697597\pi\)
\(152\) 2.58676 4.48039i 0.209814 0.363408i
\(153\) 0 0
\(154\) −17.7621 −1.43131
\(155\) 0.370457 + 13.0570i 0.0297558 + 1.04877i
\(156\) 0 0
\(157\) 5.18717 + 8.98444i 0.413981 + 0.717036i 0.995321 0.0966246i \(-0.0308046\pi\)
−0.581340 + 0.813661i \(0.697471\pi\)
\(158\) −2.67887 −0.213119
\(159\) 0 0
\(160\) 2.34606 0.185472
\(161\) −8.00474 + 13.8646i −0.630862 + 1.09268i
\(162\) 0 0
\(163\) 13.9787 1.09490 0.547448 0.836840i \(-0.315599\pi\)
0.547448 + 0.836840i \(0.315599\pi\)
\(164\) 2.94949 0.230317
\(165\) 0 0
\(166\) 4.38541 7.59576i 0.340374 0.589545i
\(167\) −17.7304 −1.37202 −0.686011 0.727592i \(-0.740640\pi\)
−0.686011 + 0.727592i \(0.740640\pi\)
\(168\) 0 0
\(169\) −8.11378 14.0535i −0.624137 1.08104i
\(170\) 8.62822 0.661754
\(171\) 0 0
\(172\) −4.91997 + 8.52163i −0.375144 + 0.649768i
\(173\) −5.49877 −0.418064 −0.209032 0.977909i \(-0.567031\pi\)
−0.209032 + 0.977909i \(0.567031\pi\)
\(174\) 0 0
\(175\) 0.766162 1.32703i 0.0579164 0.100314i
\(176\) 2.92100 5.05931i 0.220178 0.381360i
\(177\) 0 0
\(178\) −1.76149 + 3.05098i −0.132029 + 0.228681i
\(179\) −11.6898 + 20.2473i −0.873735 + 1.51335i −0.0156315 + 0.999878i \(0.504976\pi\)
−0.858104 + 0.513476i \(0.828357\pi\)
\(180\) 0 0
\(181\) −0.955580 1.65511i −0.0710277 0.123024i 0.828324 0.560249i \(-0.189295\pi\)
−0.899352 + 0.437225i \(0.855961\pi\)
\(182\) −8.21864 + 14.2351i −0.609206 + 1.05518i
\(183\) 0 0
\(184\) −2.63277 4.56010i −0.194091 0.336175i
\(185\) 4.78167 + 8.28210i 0.351555 + 0.608912i
\(186\) 0 0
\(187\) 10.7427 18.6069i 0.785585 1.36067i
\(188\) −8.55555 −0.623977
\(189\) 0 0
\(190\) 12.1374 0.880536
\(191\) 16.8932 1.22235 0.611174 0.791496i \(-0.290698\pi\)
0.611174 + 0.791496i \(0.290698\pi\)
\(192\) 0 0
\(193\) −12.3273 −0.887338 −0.443669 0.896191i \(-0.646323\pi\)
−0.443669 + 0.896191i \(0.646323\pi\)
\(194\) 1.79211 + 3.10403i 0.128666 + 0.222856i
\(195\) 0 0
\(196\) 2.24416 0.160297
\(197\) −5.62507 9.74291i −0.400770 0.694154i 0.593049 0.805166i \(-0.297924\pi\)
−0.993819 + 0.111012i \(0.964591\pi\)
\(198\) 0 0
\(199\) −3.79423 6.57180i −0.268966 0.465862i 0.699629 0.714506i \(-0.253348\pi\)
−0.968595 + 0.248644i \(0.920015\pi\)
\(200\) 0.251992 + 0.436463i 0.0178185 + 0.0308626i
\(201\) 0 0
\(202\) −3.51439 6.08711i −0.247272 0.428287i
\(203\) 3.78941 0.265964
\(204\) 0 0
\(205\) 3.45984 + 5.99261i 0.241645 + 0.418542i
\(206\) 2.18966 + 3.79259i 0.152561 + 0.264243i
\(207\) 0 0
\(208\) −2.70313 4.68195i −0.187428 0.324635i
\(209\) 15.1118 26.1744i 1.04531 1.81052i
\(210\) 0 0
\(211\) −9.82384 −0.676301 −0.338151 0.941092i \(-0.609801\pi\)
−0.338151 + 0.941092i \(0.609801\pi\)
\(212\) −5.39327 + 9.34142i −0.370411 + 0.641571i
\(213\) 0 0
\(214\) 1.77681 + 3.07753i 0.121460 + 0.210375i
\(215\) −23.0850 −1.57439
\(216\) 0 0
\(217\) −14.8945 8.04499i −1.01111 0.546130i
\(218\) 9.18736 15.9130i 0.622246 1.07776i
\(219\) 0 0
\(220\) 13.7056 0.924035
\(221\) −9.94143 17.2191i −0.668733 1.15828i
\(222\) 0 0
\(223\) −5.12084 8.86956i −0.342917 0.593950i 0.642056 0.766658i \(-0.278082\pi\)
−0.984973 + 0.172708i \(0.944748\pi\)
\(224\) −1.52021 + 2.63308i −0.101573 + 0.175930i
\(225\) 0 0
\(226\) 1.84967 + 3.20372i 0.123038 + 0.213108i
\(227\) −17.2741 −1.14652 −0.573260 0.819374i \(-0.694321\pi\)
−0.573260 + 0.819374i \(0.694321\pi\)
\(228\) 0 0
\(229\) 2.33341 0.154196 0.0770982 0.997024i \(-0.475435\pi\)
0.0770982 + 0.997024i \(0.475435\pi\)
\(230\) 6.17664 10.6982i 0.407275 0.705422i
\(231\) 0 0
\(232\) −0.623172 + 1.07937i −0.0409132 + 0.0708638i
\(233\) 3.49547 0.228996 0.114498 0.993424i \(-0.463474\pi\)
0.114498 + 0.993424i \(0.463474\pi\)
\(234\) 0 0
\(235\) −10.0359 17.3827i −0.654670 1.13392i
\(236\) 2.38168 + 4.12519i 0.155034 + 0.268527i
\(237\) 0 0
\(238\) −5.59096 + 9.68383i −0.362408 + 0.627709i
\(239\) 2.85451 4.94415i 0.184643 0.319810i −0.758813 0.651308i \(-0.774221\pi\)
0.943456 + 0.331498i \(0.107554\pi\)
\(240\) 0 0
\(241\) 8.88226 + 15.3845i 0.572157 + 0.991004i 0.996344 + 0.0854299i \(0.0272264\pi\)
−0.424188 + 0.905574i \(0.639440\pi\)
\(242\) 11.5644 20.0302i 0.743390 1.28759i
\(243\) 0 0
\(244\) −14.0731 −0.900939
\(245\) 2.63247 + 4.55956i 0.168182 + 0.291300i
\(246\) 0 0
\(247\) −13.9846 24.2221i −0.889822 1.54122i
\(248\) 4.74093 2.91951i 0.301050 0.185389i
\(249\) 0 0
\(250\) 5.27396 9.13476i 0.333554 0.577733i
\(251\) −1.50446 + 2.60581i −0.0949609 + 0.164477i −0.909592 0.415502i \(-0.863606\pi\)
0.814631 + 0.579979i \(0.196939\pi\)
\(252\) 0 0
\(253\) −15.3806 26.6401i −0.966973 1.67485i
\(254\) 1.95942 + 3.39381i 0.122945 + 0.212947i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −1.94806 + 3.37414i −0.121517 + 0.210473i −0.920366 0.391058i \(-0.872109\pi\)
0.798849 + 0.601531i \(0.205442\pi\)
\(258\) 0 0
\(259\) −12.3938 −0.770114
\(260\) 6.34169 10.9841i 0.393295 0.681206i
\(261\) 0 0
\(262\) 5.40422 9.36038i 0.333874 0.578286i
\(263\) −7.02078 + 12.1603i −0.432920 + 0.749839i −0.997123 0.0757968i \(-0.975850\pi\)
0.564204 + 0.825636i \(0.309183\pi\)
\(264\) 0 0
\(265\) −25.3058 −1.55453
\(266\) −7.86483 + 13.6223i −0.482223 + 0.835235i
\(267\) 0 0
\(268\) 10.1343 0.619050
\(269\) 2.44252 + 4.23057i 0.148923 + 0.257943i 0.930830 0.365453i \(-0.119086\pi\)
−0.781907 + 0.623396i \(0.785753\pi\)
\(270\) 0 0
\(271\) 13.2408 0.804323 0.402161 0.915569i \(-0.368259\pi\)
0.402161 + 0.915569i \(0.368259\pi\)
\(272\) −1.83888 3.18503i −0.111498 0.193121i
\(273\) 0 0
\(274\) −5.85236 + 10.1366i −0.353554 + 0.612374i
\(275\) 1.47214 + 2.54981i 0.0887731 + 0.153759i
\(276\) 0 0
\(277\) 9.95924 17.2499i 0.598393 1.03645i −0.394666 0.918825i \(-0.629140\pi\)
0.993058 0.117622i \(-0.0375270\pi\)
\(278\) 15.5658 0.933574
\(279\) 0 0
\(280\) −7.13300 −0.426278
\(281\) −9.34766 + 16.1906i −0.557635 + 0.965852i 0.440059 + 0.897969i \(0.354958\pi\)
−0.997693 + 0.0678826i \(0.978376\pi\)
\(282\) 0 0
\(283\) −3.28581 5.69119i −0.195321 0.338306i 0.751685 0.659523i \(-0.229242\pi\)
−0.947006 + 0.321217i \(0.895908\pi\)
\(284\) 3.74130 6.48012i 0.222005 0.384524i
\(285\) 0 0
\(286\) −15.7916 27.3519i −0.933779 1.61735i
\(287\) −8.96769 −0.529346
\(288\) 0 0
\(289\) 1.73706 + 3.00868i 0.102180 + 0.176981i
\(290\) −2.92399 −0.171703
\(291\) 0 0
\(292\) −2.09806 + 3.63394i −0.122780 + 0.212660i
\(293\) 15.4708 0.903812 0.451906 0.892066i \(-0.350744\pi\)
0.451906 + 0.892066i \(0.350744\pi\)
\(294\) 0 0
\(295\) −5.58756 + 9.67793i −0.325320 + 0.563471i
\(296\) 2.03817 3.53022i 0.118466 0.205190i
\(297\) 0 0
\(298\) 3.44436 5.96581i 0.199526 0.345590i
\(299\) −28.4669 −1.64628
\(300\) 0 0
\(301\) 14.9588 25.9093i 0.862209 1.49339i
\(302\) 12.2302 + 21.1834i 0.703771 + 1.21897i
\(303\) 0 0
\(304\) −2.58676 4.48039i −0.148361 0.256968i
\(305\) −16.5082 28.5930i −0.945255 1.63723i
\(306\) 0 0
\(307\) −7.91988 + 13.7176i −0.452011 + 0.782907i −0.998511 0.0545526i \(-0.982627\pi\)
0.546499 + 0.837459i \(0.315960\pi\)
\(308\) −8.88106 + 15.3824i −0.506045 + 0.876496i
\(309\) 0 0
\(310\) 11.4930 + 6.20769i 0.652756 + 0.352573i
\(311\) 2.91350 + 5.04633i 0.165209 + 0.286151i 0.936730 0.350054i \(-0.113837\pi\)
−0.771520 + 0.636205i \(0.780503\pi\)
\(312\) 0 0
\(313\) 1.69697 + 2.93925i 0.0959187 + 0.166136i 0.909992 0.414627i \(-0.136088\pi\)
−0.814073 + 0.580763i \(0.802754\pi\)
\(314\) 10.3743 0.585458
\(315\) 0 0
\(316\) −1.33943 + 2.31997i −0.0753490 + 0.130508i
\(317\) −10.0037 17.3269i −0.561862 0.973174i −0.997334 0.0729714i \(-0.976752\pi\)
0.435472 0.900202i \(-0.356582\pi\)
\(318\) 0 0
\(319\) −3.64056 + 6.30564i −0.203832 + 0.353048i
\(320\) 1.17303 2.03175i 0.0655743 0.113578i
\(321\) 0 0
\(322\) 8.00474 + 13.8646i 0.446087 + 0.772645i
\(323\) −9.51345 16.4778i −0.529343 0.916848i
\(324\) 0 0
\(325\) 2.72466 0.151137
\(326\) 6.98935 12.1059i 0.387104 0.670484i
\(327\) 0 0
\(328\) 1.47475 2.55433i 0.0814292 0.141039i
\(329\) 26.0125 1.43411
\(330\) 0 0
\(331\) 31.8747 1.75199 0.875996 0.482318i \(-0.160205\pi\)
0.875996 + 0.482318i \(0.160205\pi\)
\(332\) −4.38541 7.59576i −0.240681 0.416871i
\(333\) 0 0
\(334\) −8.86521 + 15.3550i −0.485083 + 0.840188i
\(335\) 11.8878 + 20.5903i 0.649500 + 1.12497i
\(336\) 0 0
\(337\) 11.3010 + 19.5740i 0.615606 + 1.06626i 0.990278 + 0.139104i \(0.0444221\pi\)
−0.374672 + 0.927158i \(0.622245\pi\)
\(338\) −16.2276 −0.882662
\(339\) 0 0
\(340\) 4.31411 7.47226i 0.233966 0.405240i
\(341\) 27.6965 17.0558i 1.49985 0.923622i
\(342\) 0 0
\(343\) 14.4598 0.780753
\(344\) 4.91997 + 8.52163i 0.265267 + 0.459456i
\(345\) 0 0
\(346\) −2.74939 + 4.76208i −0.147808 + 0.256011i
\(347\) 13.9730 0.750112 0.375056 0.927002i \(-0.377624\pi\)
0.375056 + 0.927002i \(0.377624\pi\)
\(348\) 0 0
\(349\) 3.41690 5.91825i 0.182903 0.316796i −0.759965 0.649964i \(-0.774784\pi\)
0.942868 + 0.333167i \(0.108117\pi\)
\(350\) −0.766162 1.32703i −0.0409531 0.0709328i
\(351\) 0 0
\(352\) −2.92100 5.05931i −0.155690 0.269662i
\(353\) 0.173175 + 0.299947i 0.00921715 + 0.0159646i 0.870597 0.491996i \(-0.163733\pi\)
−0.861380 + 0.507961i \(0.830399\pi\)
\(354\) 0 0
\(355\) 17.5546 0.931701
\(356\) 1.76149 + 3.05098i 0.0933585 + 0.161702i
\(357\) 0 0
\(358\) 11.6898 + 20.2473i 0.617824 + 1.07010i
\(359\) 10.8440 + 18.7823i 0.572324 + 0.991293i 0.996327 + 0.0856328i \(0.0272912\pi\)
−0.424003 + 0.905661i \(0.639375\pi\)
\(360\) 0 0
\(361\) −3.88261 6.72487i −0.204348 0.353941i
\(362\) −1.91116 −0.100448
\(363\) 0 0
\(364\) 8.21864 + 14.2351i 0.430774 + 0.746122i
\(365\) −9.84432 −0.515275
\(366\) 0 0
\(367\) 26.7415 1.39590 0.697948 0.716149i \(-0.254097\pi\)
0.697948 + 0.716149i \(0.254097\pi\)
\(368\) −5.26555 −0.274486
\(369\) 0 0
\(370\) 9.56334 0.497175
\(371\) 16.3978 28.4019i 0.851332 1.47455i
\(372\) 0 0
\(373\) 1.69124 + 2.92931i 0.0875690 + 0.151674i 0.906483 0.422242i \(-0.138757\pi\)
−0.818914 + 0.573916i \(0.805424\pi\)
\(374\) −10.7427 18.6069i −0.555492 0.962141i
\(375\) 0 0
\(376\) −4.27777 + 7.40932i −0.220609 + 0.382107i
\(377\) 3.36902 + 5.83532i 0.173514 + 0.300534i
\(378\) 0 0
\(379\) −17.4095 + 30.1541i −0.894264 + 1.54891i −0.0595514 + 0.998225i \(0.518967\pi\)
−0.834713 + 0.550686i \(0.814366\pi\)
\(380\) 6.06868 10.5113i 0.311316 0.539216i
\(381\) 0 0
\(382\) 8.44659 14.6299i 0.432165 0.748532i
\(383\) −14.8493 + 25.7198i −0.758764 + 1.31422i 0.184717 + 0.982792i \(0.440863\pi\)
−0.943481 + 0.331426i \(0.892470\pi\)
\(384\) 0 0
\(385\) −41.6709 −2.12375
\(386\) −6.16365 + 10.6758i −0.313721 + 0.543381i
\(387\) 0 0
\(388\) 3.58422 0.181961
\(389\) −8.08558 14.0046i −0.409955 0.710063i 0.584929 0.811084i \(-0.301122\pi\)
−0.994884 + 0.101021i \(0.967789\pi\)
\(390\) 0 0
\(391\) −19.3654 −0.979350
\(392\) 1.12208 1.94350i 0.0566736 0.0981616i
\(393\) 0 0
\(394\) −11.2501 −0.566774
\(395\) −6.28477 −0.316221
\(396\) 0 0
\(397\) 3.08789 5.34838i 0.154977 0.268428i −0.778074 0.628173i \(-0.783803\pi\)
0.933051 + 0.359745i \(0.117136\pi\)
\(398\) −7.58846 −0.380375
\(399\) 0 0
\(400\) 0.503984 0.0251992
\(401\) −8.67231 15.0209i −0.433074 0.750107i 0.564062 0.825732i \(-0.309238\pi\)
−0.997136 + 0.0756258i \(0.975905\pi\)
\(402\) 0 0
\(403\) −0.853680 30.0886i −0.0425248 1.49882i
\(404\) −7.02878 −0.349695
\(405\) 0 0
\(406\) 1.89470 3.28172i 0.0940326 0.162869i
\(407\) 11.9070 20.6235i 0.590208 1.02227i
\(408\) 0 0
\(409\) 24.3718 1.20511 0.602554 0.798078i \(-0.294150\pi\)
0.602554 + 0.798078i \(0.294150\pi\)
\(410\) 6.91967 0.341738
\(411\) 0 0
\(412\) 4.37931 0.215753
\(413\) −7.24131 12.5423i −0.356322 0.617167i
\(414\) 0 0
\(415\) 10.2884 17.8201i 0.505039 0.874753i
\(416\) −5.40625 −0.265063
\(417\) 0 0
\(418\) −15.1118 26.1744i −0.739143 1.28023i
\(419\) −11.3416 19.6442i −0.554072 0.959681i −0.997975 0.0636063i \(-0.979740\pi\)
0.443903 0.896075i \(-0.353594\pi\)
\(420\) 0 0
\(421\) −4.96920 −0.242184 −0.121092 0.992641i \(-0.538640\pi\)
−0.121092 + 0.992641i \(0.538640\pi\)
\(422\) −4.91192 + 8.50770i −0.239109 + 0.414148i
\(423\) 0 0
\(424\) 5.39327 + 9.34142i 0.261920 + 0.453659i
\(425\) 1.85353 0.0899094
\(426\) 0 0
\(427\) 42.7882 2.07067
\(428\) 3.55362 0.171771
\(429\) 0 0
\(430\) −11.5425 + 19.9922i −0.556630 + 0.964111i
\(431\) 19.8668 34.4102i 0.956948 1.65748i 0.227103 0.973871i \(-0.427074\pi\)
0.729845 0.683613i \(-0.239592\pi\)
\(432\) 0 0
\(433\) −26.3343 −1.26555 −0.632773 0.774338i \(-0.718083\pi\)
−0.632773 + 0.774338i \(0.718083\pi\)
\(434\) −14.4144 + 8.87655i −0.691915 + 0.426088i
\(435\) 0 0
\(436\) −9.18736 15.9130i −0.439995 0.762093i
\(437\) −27.2414 −1.30313
\(438\) 0 0
\(439\) 27.0844 1.29267 0.646334 0.763054i \(-0.276301\pi\)
0.646334 + 0.763054i \(0.276301\pi\)
\(440\) 6.85282 11.8694i 0.326696 0.565853i
\(441\) 0 0
\(442\) −19.8829 −0.945731
\(443\) −3.41649 −0.162322 −0.0811611 0.996701i \(-0.525863\pi\)
−0.0811611 + 0.996701i \(0.525863\pi\)
\(444\) 0 0
\(445\) −4.13255 + 7.15778i −0.195901 + 0.339311i
\(446\) −10.2417 −0.484958
\(447\) 0 0
\(448\) 1.52021 + 2.63308i 0.0718232 + 0.124401i
\(449\) −36.5403 −1.72444 −0.862221 0.506532i \(-0.830927\pi\)
−0.862221 + 0.506532i \(0.830927\pi\)
\(450\) 0 0
\(451\) 8.61545 14.9224i 0.405686 0.702668i
\(452\) 3.69933 0.174002
\(453\) 0 0
\(454\) −8.63703 + 14.9598i −0.405356 + 0.702097i
\(455\) −19.2814 + 33.3964i −0.903926 + 1.56565i
\(456\) 0 0
\(457\) −4.40598 + 7.63138i −0.206103 + 0.356981i −0.950484 0.310775i \(-0.899412\pi\)
0.744381 + 0.667756i \(0.232745\pi\)
\(458\) 1.16671 2.02080i 0.0545166 0.0944256i
\(459\) 0 0
\(460\) −6.17664 10.6982i −0.287987 0.498808i
\(461\) 6.69027 11.5879i 0.311597 0.539702i −0.667111 0.744958i \(-0.732469\pi\)
0.978708 + 0.205256i \(0.0658028\pi\)
\(462\) 0 0
\(463\) 13.5432 + 23.4576i 0.629407 + 1.09016i 0.987671 + 0.156544i \(0.0500355\pi\)
−0.358264 + 0.933620i \(0.616631\pi\)
\(464\) 0.623172 + 1.07937i 0.0289300 + 0.0501083i
\(465\) 0 0
\(466\) 1.74773 3.02716i 0.0809622 0.140231i
\(467\) −5.43494 −0.251499 −0.125750 0.992062i \(-0.540134\pi\)
−0.125750 + 0.992062i \(0.540134\pi\)
\(468\) 0 0
\(469\) −30.8125 −1.42279
\(470\) −20.0718 −0.925843
\(471\) 0 0
\(472\) 4.76336 0.219251
\(473\) 28.7424 + 49.7833i 1.32158 + 2.28904i
\(474\) 0 0
\(475\) 2.60737 0.119634
\(476\) 5.59096 + 9.68383i 0.256261 + 0.443858i
\(477\) 0 0
\(478\) −2.85451 4.94415i −0.130562 0.226140i
\(479\) −1.78335 3.08885i −0.0814833 0.141133i 0.822404 0.568904i \(-0.192632\pi\)
−0.903887 + 0.427771i \(0.859299\pi\)
\(480\) 0 0
\(481\) −11.0189 19.0853i −0.502418 0.870213i
\(482\) 17.7645 0.809152
\(483\) 0 0
\(484\) −11.5644 20.0302i −0.525656 0.910463i
\(485\) 4.20439 + 7.28222i 0.190912 + 0.330669i
\(486\) 0 0
\(487\) 5.23602 + 9.06906i 0.237267 + 0.410958i 0.959929 0.280243i \(-0.0904151\pi\)
−0.722662 + 0.691201i \(0.757082\pi\)
\(488\) −7.03656 + 12.1877i −0.318530 + 0.551710i
\(489\) 0 0
\(490\) 5.26493 0.237845
\(491\) 8.32650 14.4219i 0.375770 0.650852i −0.614672 0.788783i \(-0.710712\pi\)
0.990442 + 0.137931i \(0.0440451\pi\)
\(492\) 0 0
\(493\) 2.29187 + 3.96964i 0.103221 + 0.178784i
\(494\) −27.9693 −1.25840
\(495\) 0 0
\(496\) −0.157906 5.56552i −0.00709020 0.249899i
\(497\) −11.3751 + 19.7023i −0.510244 + 0.883769i
\(498\) 0 0
\(499\) −16.3686 −0.732759 −0.366380 0.930465i \(-0.619403\pi\)
−0.366380 + 0.930465i \(0.619403\pi\)
\(500\) −5.27396 9.13476i −0.235858 0.408519i
\(501\) 0 0
\(502\) 1.50446 + 2.60581i 0.0671475 + 0.116303i
\(503\) −3.56017 + 6.16640i −0.158740 + 0.274946i −0.934415 0.356187i \(-0.884077\pi\)
0.775674 + 0.631133i \(0.217410\pi\)
\(504\) 0 0
\(505\) −8.24496 14.2807i −0.366896 0.635483i
\(506\) −30.7613 −1.36751
\(507\) 0 0
\(508\) 3.91883 0.173870
\(509\) −11.5784 + 20.0543i −0.513202 + 0.888892i 0.486680 + 0.873580i \(0.338208\pi\)
−0.999883 + 0.0153124i \(0.995126\pi\)
\(510\) 0 0
\(511\) 6.37898 11.0487i 0.282189 0.488766i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 1.94806 + 3.37414i 0.0859252 + 0.148827i
\(515\) 5.13706 + 8.89764i 0.226366 + 0.392077i
\(516\) 0 0
\(517\) −24.9907 + 43.2852i −1.09909 + 1.90368i
\(518\) −6.19691 + 10.7334i −0.272276 + 0.471597i
\(519\) 0 0
\(520\) −6.34169 10.9841i −0.278101 0.481686i
\(521\) −20.6348 + 35.7404i −0.904025 + 1.56582i −0.0818041 + 0.996648i \(0.526068\pi\)
−0.822221 + 0.569169i \(0.807265\pi\)
\(522\) 0 0
\(523\) 1.65720 0.0724643 0.0362322 0.999343i \(-0.488464\pi\)
0.0362322 + 0.999343i \(0.488464\pi\)
\(524\) −5.40422 9.36038i −0.236084 0.408910i
\(525\) 0 0
\(526\) 7.02078 + 12.1603i 0.306120 + 0.530216i
\(527\) −0.580740 20.4686i −0.0252974 0.891628i
\(528\) 0 0
\(529\) −2.36299 + 4.09282i −0.102739 + 0.177949i
\(530\) −12.6529 + 21.9155i −0.549608 + 0.951949i
\(531\) 0 0
\(532\) 7.86483 + 13.6223i 0.340983 + 0.590601i
\(533\) −7.97284 13.8094i −0.345342 0.598150i
\(534\) 0 0
\(535\) 4.16850 + 7.22006i 0.180220 + 0.312150i
\(536\) 5.06714 8.77655i 0.218867 0.379089i
\(537\) 0 0
\(538\) 4.88504 0.210609
\(539\) 6.55519 11.3539i 0.282352 0.489048i
\(540\) 0 0
\(541\) −5.52047 + 9.56173i −0.237343 + 0.411091i −0.959951 0.280167i \(-0.909610\pi\)
0.722608 + 0.691258i \(0.242943\pi\)
\(542\) 6.62041 11.4669i 0.284371 0.492545i
\(543\) 0 0
\(544\) −3.67775 −0.157682
\(545\) 21.5541 37.3327i 0.923275 1.59916i
\(546\) 0 0
\(547\) 0.715421 0.0305892 0.0152946 0.999883i \(-0.495131\pi\)
0.0152946 + 0.999883i \(0.495131\pi\)
\(548\) 5.85236 + 10.1366i 0.250001 + 0.433014i
\(549\) 0 0
\(550\) 2.94427 0.125544
\(551\) 3.22399 + 5.58411i 0.137346 + 0.237891i
\(552\) 0 0
\(553\) 4.07244 7.05368i 0.173178 0.299953i
\(554\) −9.95924 17.2499i −0.423127 0.732878i
\(555\) 0 0
\(556\) 7.78289 13.4804i 0.330068 0.571695i
\(557\) −46.7111 −1.97921 −0.989607 0.143800i \(-0.954068\pi\)
−0.989607 + 0.143800i \(0.954068\pi\)
\(558\) 0 0
\(559\) 53.1971 2.25000
\(560\) −3.56650 + 6.17736i −0.150712 + 0.261041i
\(561\) 0 0
\(562\) 9.34766 + 16.1906i 0.394307 + 0.682960i
\(563\) 4.35465 7.54247i 0.183526 0.317877i −0.759553 0.650446i \(-0.774582\pi\)
0.943079 + 0.332569i \(0.107915\pi\)
\(564\) 0 0
\(565\) 4.33942 + 7.51610i 0.182561 + 0.316205i
\(566\) −6.57162 −0.276226
\(567\) 0 0
\(568\) −3.74130 6.48012i −0.156981 0.271900i
\(569\) −18.1441 −0.760639 −0.380319 0.924855i \(-0.624186\pi\)
−0.380319 + 0.924855i \(0.624186\pi\)
\(570\) 0 0
\(571\) 20.0206 34.6767i 0.837836 1.45117i −0.0538648 0.998548i \(-0.517154\pi\)
0.891701 0.452626i \(-0.149513\pi\)
\(572\) −31.5833 −1.32056
\(573\) 0 0
\(574\) −4.48385 + 7.76625i −0.187152 + 0.324157i
\(575\) 1.32688 2.29822i 0.0553345 0.0958422i
\(576\) 0 0
\(577\) 18.0167 31.2059i 0.750047 1.29912i −0.197753 0.980252i \(-0.563364\pi\)
0.947799 0.318867i \(-0.103302\pi\)
\(578\) 3.47412 0.144504
\(579\) 0 0
\(580\) −1.46200 + 2.53225i −0.0607061 + 0.105146i
\(581\) 13.3335 + 23.0943i 0.553167 + 0.958113i
\(582\) 0 0
\(583\) 31.5075 + 54.5725i 1.30491 + 2.26016i
\(584\) 2.09806 + 3.63394i 0.0868182 + 0.150374i
\(585\) 0 0
\(586\) 7.73539 13.3981i 0.319546 0.553470i
\(587\) −8.45075 + 14.6371i −0.348800 + 0.604139i −0.986037 0.166529i \(-0.946744\pi\)
0.637237 + 0.770668i \(0.280077\pi\)
\(588\) 0 0
\(589\) −0.816929 28.7933i −0.0336610 1.18641i
\(590\) 5.58756 + 9.67793i 0.230036 + 0.398434i
\(591\) 0 0
\(592\) −2.03817 3.53022i −0.0837684 0.145091i
\(593\) −29.7811 −1.22296 −0.611481 0.791259i \(-0.709426\pi\)
−0.611481 + 0.791259i \(0.709426\pi\)
\(594\) 0 0
\(595\) −13.1167 + 22.7188i −0.537733 + 0.931381i
\(596\) −3.44436 5.96581i −0.141087 0.244369i
\(597\) 0 0
\(598\) −14.2334 + 24.6530i −0.582048 + 1.00814i
\(599\) −15.1054 + 26.1634i −0.617191 + 1.06901i 0.372804 + 0.927910i \(0.378396\pi\)
−0.989996 + 0.141097i \(0.954937\pi\)
\(600\) 0 0
\(601\) −13.4185 23.2415i −0.547350 0.948039i −0.998455 0.0555677i \(-0.982303\pi\)
0.451104 0.892471i \(-0.351030\pi\)
\(602\) −14.9588 25.9093i −0.609674 1.05599i
\(603\) 0 0
\(604\) 24.4605 0.995283
\(605\) 27.1308 46.9920i 1.10303 1.91050i
\(606\) 0 0
\(607\) −11.2221 + 19.4373i −0.455492 + 0.788936i −0.998716 0.0506519i \(-0.983870\pi\)
0.543224 + 0.839588i \(0.317203\pi\)
\(608\) −5.17351 −0.209814
\(609\) 0 0
\(610\) −33.0164 −1.33679
\(611\) 23.1267 + 40.0567i 0.935607 + 1.62052i
\(612\) 0 0
\(613\) −11.6053 + 20.1010i −0.468734 + 0.811871i −0.999361 0.0357343i \(-0.988623\pi\)
0.530627 + 0.847605i \(0.321956\pi\)
\(614\) 7.91988 + 13.7176i 0.319620 + 0.553599i
\(615\) 0 0
\(616\) 8.88106 + 15.3824i 0.357828 + 0.619776i
\(617\) 19.5805 0.788282 0.394141 0.919050i \(-0.371042\pi\)
0.394141 + 0.919050i \(0.371042\pi\)
\(618\) 0 0
\(619\) −21.8791 + 37.8958i −0.879396 + 1.52316i −0.0273920 + 0.999625i \(0.508720\pi\)
−0.852004 + 0.523535i \(0.824613\pi\)
\(620\) 11.1225 6.84934i 0.446690 0.275076i
\(621\) 0 0
\(622\) 5.82700 0.233641
\(623\) −5.35566 9.27627i −0.214570 0.371646i
\(624\) 0 0
\(625\) 13.6330 23.6130i 0.545318 0.944519i
\(626\) 3.39395 0.135649
\(627\) 0 0
\(628\) 5.18717 8.98444i 0.206991 0.358518i
\(629\) −7.49590 12.9833i −0.298881 0.517677i
\(630\) 0 0
\(631\) 2.46804 + 4.27478i 0.0982513 + 0.170176i 0.910961 0.412493i \(-0.135342\pi\)
−0.812710 + 0.582669i \(0.802008\pi\)
\(632\) 1.33943 + 2.31997i 0.0532798 + 0.0922833i
\(633\) 0 0
\(634\) −20.0073 −0.794593
\(635\) 4.59690 + 7.96207i 0.182423 + 0.315965i
\(636\) 0 0
\(637\) −6.06625 10.5071i −0.240354 0.416305i
\(638\) 3.64056 + 6.30564i 0.144131 + 0.249643i
\(639\) 0 0
\(640\) −1.17303 2.03175i −0.0463680 0.0803118i
\(641\) 34.3824 1.35802 0.679012 0.734127i \(-0.262408\pi\)
0.679012 + 0.734127i \(0.262408\pi\)
\(642\) 0 0
\(643\) 10.3052 + 17.8491i 0.406397 + 0.703900i 0.994483 0.104899i \(-0.0334518\pi\)
−0.588086 + 0.808798i \(0.700118\pi\)
\(644\) 16.0095 0.630862
\(645\) 0 0
\(646\) −19.0269 −0.748603
\(647\) 31.8242 1.25114 0.625570 0.780168i \(-0.284866\pi\)
0.625570 + 0.780168i \(0.284866\pi\)
\(648\) 0 0
\(649\) 27.8275 1.09233
\(650\) 1.36233 2.35963i 0.0534350 0.0925522i
\(651\) 0 0
\(652\) −6.98935 12.1059i −0.273724 0.474104i
\(653\) 5.79092 + 10.0302i 0.226616 + 0.392511i 0.956803 0.290737i \(-0.0939004\pi\)
−0.730187 + 0.683247i \(0.760567\pi\)
\(654\) 0 0
\(655\) 12.6786 21.9600i 0.495394 0.858047i
\(656\) −1.47475 2.55433i −0.0575791 0.0997300i
\(657\) 0 0
\(658\) 13.0062 22.5275i 0.507036 0.878212i
\(659\) 15.8445 27.4434i 0.617213 1.06904i −0.372779 0.927920i \(-0.621595\pi\)
0.989992 0.141124i \(-0.0450716\pi\)
\(660\) 0 0
\(661\) 8.71653 15.0975i 0.339034 0.587223i −0.645218 0.763999i \(-0.723233\pi\)
0.984251 + 0.176775i \(0.0565666\pi\)
\(662\) 15.9374 27.6043i 0.619423 1.07287i
\(663\) 0 0
\(664\) −8.77082 −0.340374
\(665\) −18.4513 + 31.9586i −0.715512 + 1.23930i
\(666\) 0 0
\(667\) 6.56268 0.254108
\(668\) 8.86521 + 15.3550i 0.343005 + 0.594103i
\(669\) 0 0
\(670\) 23.7756 0.918532
\(671\) −41.1075 + 71.2004i −1.58694 + 2.74866i
\(672\) 0 0
\(673\) 12.8271 0.494450 0.247225 0.968958i \(-0.420481\pi\)
0.247225 + 0.968958i \(0.420481\pi\)
\(674\) 22.6021 0.870599
\(675\) 0 0
\(676\) −8.11378 + 14.0535i −0.312068 + 0.540518i
\(677\) 20.5857 0.791174 0.395587 0.918429i \(-0.370541\pi\)
0.395587 + 0.918429i \(0.370541\pi\)
\(678\) 0 0
\(679\) −10.8975 −0.418209
\(680\) −4.31411 7.47226i −0.165439 0.286548i
\(681\) 0 0
\(682\) −0.922487 32.5138i −0.0353238 1.24502i
\(683\) 6.13838 0.234879 0.117439 0.993080i \(-0.462531\pi\)
0.117439 + 0.993080i \(0.462531\pi\)
\(684\) 0 0
\(685\) −13.7300 + 23.7810i −0.524596 + 0.908626i
\(686\) 7.22988 12.5225i 0.276038 0.478112i
\(687\) 0 0
\(688\) 9.83993 0.375144
\(689\) 58.3148 2.22162
\(690\) 0 0
\(691\) −20.0938 −0.764404 −0.382202 0.924079i \(-0.624834\pi\)
−0.382202 + 0.924079i \(0.624834\pi\)
\(692\) 2.74939 + 4.76208i 0.104516 + 0.181027i
\(693\) 0 0
\(694\) 6.98652 12.1010i 0.265205 0.459348i
\(695\) 36.5182 1.38521
\(696\) 0 0
\(697\) −5.42375 9.39421i −0.205439 0.355831i
\(698\) −3.41690 5.91825i −0.129332 0.224009i
\(699\) 0 0
\(700\) −1.53232 −0.0579164
\(701\) 5.99187 10.3782i 0.226310 0.391980i −0.730402 0.683018i \(-0.760667\pi\)
0.956712 + 0.291038i \(0.0940005\pi\)
\(702\) 0 0
\(703\) −10.5445 18.2636i −0.397694 0.688826i
\(704\) −5.84199 −0.220178
\(705\) 0 0
\(706\) 0.346349 0.0130350
\(707\) 21.3705 0.803719
\(708\) 0 0
\(709\) −22.1973 + 38.4469i −0.833638 + 1.44390i 0.0614959 + 0.998107i \(0.480413\pi\)
−0.895134 + 0.445797i \(0.852920\pi\)
\(710\) 8.77730 15.2027i 0.329406 0.570548i
\(711\) 0 0
\(712\) 3.52297 0.132029
\(713\) −25.7951 13.9327i −0.966033 0.521784i
\(714\) 0 0
\(715\) −37.0481 64.1692i −1.38552 2.39979i
\(716\) 23.3796 0.873735
\(717\) 0 0
\(718\) 21.6880 0.809388
\(719\) −14.2308 + 24.6485i −0.530720 + 0.919234i 0.468637 + 0.883391i \(0.344745\pi\)
−0.999357 + 0.0358436i \(0.988588\pi\)
\(720\) 0 0
\(721\) −13.3149 −0.495875
\(722\) −7.76521 −0.288991
\(723\) 0 0
\(724\) −0.955580 + 1.65511i −0.0355139 + 0.0615118i
\(725\) −0.628137 −0.0233284
\(726\) 0 0
\(727\) −8.17180 14.1540i −0.303075 0.524942i 0.673756 0.738954i \(-0.264680\pi\)
−0.976831 + 0.214012i \(0.931347\pi\)
\(728\) 16.4373 0.609206
\(729\) 0 0
\(730\) −4.92216 + 8.52543i −0.182177 + 0.315540i
\(731\) 36.1889 1.33849
\(732\) 0 0
\(733\) 3.48532 6.03675i 0.128733 0.222973i −0.794453 0.607326i \(-0.792242\pi\)
0.923186 + 0.384353i \(0.125576\pi\)
\(734\) 13.3708 23.1588i 0.493523 0.854808i
\(735\) 0 0
\(736\) −2.63277 + 4.56010i −0.0970453 + 0.168087i
\(737\) 29.6022 51.2726i 1.09041 1.88865i
\(738\) 0 0
\(739\) −9.65514 16.7232i −0.355170 0.615173i 0.631977 0.774987i \(-0.282244\pi\)
−0.987147 + 0.159814i \(0.948910\pi\)
\(740\) 4.78167 8.28210i 0.175778 0.304456i
\(741\) 0 0
\(742\) −16.3978 28.4019i −0.601983 1.04266i
\(743\) −7.75132 13.4257i −0.284368 0.492540i 0.688088 0.725628i \(-0.258451\pi\)
−0.972456 + 0.233087i \(0.925117\pi\)
\(744\) 0 0
\(745\) 8.08067 13.9961i 0.296053 0.512778i
\(746\) 3.38248 0.123841
\(747\) 0 0
\(748\) −21.4854 −0.785585
\(749\) −10.8045 −0.394788
\(750\) 0 0
\(751\) −33.7537 −1.23169 −0.615844 0.787868i \(-0.711185\pi\)
−0.615844 + 0.787868i \(0.711185\pi\)
\(752\) 4.27777 + 7.40932i 0.155994 + 0.270190i
\(753\) 0 0
\(754\) 6.73805 0.245385
\(755\) 28.6928 + 49.6975i 1.04424 + 1.80868i
\(756\) 0 0
\(757\) −2.29901 3.98200i −0.0835588 0.144728i 0.821217 0.570615i \(-0.193295\pi\)
−0.904776 + 0.425887i \(0.859962\pi\)
\(758\) 17.4095 + 30.1541i 0.632340 + 1.09525i
\(759\) 0 0
\(760\) −6.06868 10.5113i −0.220134 0.381283i
\(761\) −1.95845 −0.0709938 −0.0354969 0.999370i \(-0.511301\pi\)
−0.0354969 + 0.999370i \(0.511301\pi\)
\(762\) 0 0
\(763\) 27.9334 + 48.3821i 1.01126 + 1.75155i
\(764\) −8.44659 14.6299i −0.305587 0.529292i
\(765\) 0 0
\(766\) 14.8493 + 25.7198i 0.536527 + 0.929293i
\(767\) 12.8760 22.3018i 0.464924 0.805272i
\(768\) 0 0
\(769\) 7.03396 0.253651 0.126826 0.991925i \(-0.459521\pi\)
0.126826 + 0.991925i \(0.459521\pi\)
\(770\) −20.8355 + 36.0881i −0.750858 + 1.30052i
\(771\) 0 0
\(772\) 6.16365 + 10.6758i 0.221835 + 0.384229i
\(773\) 15.5206 0.558239 0.279119 0.960256i \(-0.409957\pi\)
0.279119 + 0.960256i \(0.409957\pi\)
\(774\) 0 0
\(775\) 2.46894 + 1.33355i 0.0886868 + 0.0479024i
\(776\) 1.79211 3.10403i 0.0643330 0.111428i
\(777\) 0 0
\(778\) −16.1712 −0.579764
\(779\) −7.62961 13.2149i −0.273359 0.473472i
\(780\) 0 0
\(781\) −21.8566 37.8568i −0.782092 1.35462i
\(782\) −9.68269 + 16.7709i −0.346252 + 0.599727i
\(783\) 0 0
\(784\) −1.12208 1.94350i −0.0400743 0.0694107i
\(785\) 24.3388 0.868688
\(786\) 0 0
\(787\) 18.1468 0.646864 0.323432 0.946251i \(-0.395163\pi\)
0.323432 + 0.946251i \(0.395163\pi\)
\(788\) −5.62507 + 9.74291i −0.200385 + 0.347077i
\(789\) 0 0
\(790\) −3.14239 + 5.44277i −0.111801 + 0.193645i
\(791\) −11.2475 −0.399916
\(792\) 0 0
\(793\) 38.0414 + 65.8897i 1.35089 + 2.33981i
\(794\) −3.08789 5.34838i −0.109585 0.189807i
\(795\) 0 0
\(796\) −3.79423 + 6.57180i −0.134483 + 0.232931i
\(797\) 18.2696 31.6439i 0.647144 1.12089i −0.336658 0.941627i \(-0.609297\pi\)
0.983802 0.179259i \(-0.0573700\pi\)
\(798\) 0 0
\(799\) 15.7326 + 27.2497i 0.556579 + 0.964024i
\(800\) 0.251992 0.436463i 0.00890926 0.0154313i
\(801\) 0 0
\(802\) −17.3446 −0.612459
\(803\) 12.2568 + 21.2295i 0.432534 + 0.749171i
\(804\) 0 0
\(805\) 18.7796 + 32.5272i 0.661893 + 1.14643i
\(806\) −26.4844 14.3050i −0.932872 0.503872i
\(807\) 0 0
\(808\) −3.51439 + 6.08711i −0.123636 + 0.214144i
\(809\) 6.75139 11.6938i 0.237366 0.411130i −0.722591 0.691275i \(-0.757049\pi\)
0.959958 + 0.280145i \(0.0903825\pi\)
\(810\) 0 0
\(811\) −7.93579 13.7452i −0.278663 0.482659i 0.692390 0.721524i \(-0.256558\pi\)
−0.971053 + 0.238865i \(0.923225\pi\)
\(812\) −1.89470 3.28172i −0.0664911 0.115166i
\(813\) 0 0
\(814\) −11.9070 20.6235i −0.417340 0.722854i
\(815\) 16.3974 28.4011i 0.574376 0.994848i
\(816\) 0 0
\(817\) 50.9070 1.78101
\(818\) 12.1859 21.1066i 0.426070 0.737975i
\(819\) 0 0
\(820\) 3.45984 5.99261i 0.120823 0.209271i
\(821\) −8.83187 + 15.2973i −0.308235 + 0.533878i −0.977976 0.208716i \(-0.933071\pi\)
0.669742 + 0.742594i \(0.266405\pi\)
\(822\) 0 0
\(823\) −26.6917 −0.930412 −0.465206 0.885202i \(-0.654020\pi\)
−0.465206 + 0.885202i \(0.654020\pi\)
\(824\) 2.18966 3.79259i 0.0762803 0.132121i
\(825\) 0 0
\(826\) −14.4826 −0.503915
\(827\) 6.36247 + 11.0201i 0.221245 + 0.383207i 0.955186 0.296006i \(-0.0956547\pi\)
−0.733941 + 0.679213i \(0.762321\pi\)
\(828\) 0 0
\(829\) −35.0188 −1.21625 −0.608126 0.793840i \(-0.708079\pi\)
−0.608126 + 0.793840i \(0.708079\pi\)
\(830\) −10.2884 17.8201i −0.357117 0.618544i
\(831\) 0 0
\(832\) −2.70313 + 4.68195i −0.0937140 + 0.162317i
\(833\) −4.12674 7.14772i −0.142983 0.247654i
\(834\) 0 0
\(835\) −20.7983 + 36.0237i −0.719755 + 1.24665i
\(836\) −30.2236 −1.04531
\(837\) 0 0
\(838\) −22.6831 −0.783576
\(839\) 3.33440 5.77534i 0.115116 0.199387i −0.802710 0.596370i \(-0.796609\pi\)
0.917826 + 0.396983i \(0.129943\pi\)
\(840\) 0 0
\(841\) 13.7233 + 23.7695i 0.473218 + 0.819637i
\(842\) −2.48460 + 4.30346i −0.0856250 + 0.148307i
\(843\) 0 0
\(844\) 4.91192 + 8.50770i 0.169075 + 0.292847i
\(845\) −38.0708 −1.30967
\(846\) 0 0
\(847\) 35.1608 + 60.9002i 1.20814 + 2.09256i
\(848\) 10.7865 0.370411
\(849\) 0 0
\(850\) 0.926764 1.60520i 0.0317878 0.0550580i
\(851\) −21.4642 −0.735783
\(852\) 0 0
\(853\) −6.45115 + 11.1737i −0.220883 + 0.382581i −0.955076 0.296360i \(-0.904227\pi\)
0.734193 + 0.678941i \(0.237561\pi\)
\(854\) 21.3941 37.0557i 0.732091 1.26802i
\(855\) 0 0
\(856\) 1.77681 3.07753i 0.0607302 0.105188i
\(857\) 17.3374 0.592236 0.296118 0.955151i \(-0.404308\pi\)
0.296118 + 0.955151i \(0.404308\pi\)
\(858\) 0 0
\(859\) 4.59838 7.96462i 0.156895 0.271749i −0.776853 0.629682i \(-0.783185\pi\)
0.933747 + 0.357933i \(0.116518\pi\)
\(860\) 11.5425 + 19.9922i 0.393597 + 0.681730i
\(861\) 0 0
\(862\) −19.8668 34.4102i −0.676665 1.17202i
\(863\) 23.8716 + 41.3468i 0.812598 + 1.40746i 0.911040 + 0.412317i \(0.135281\pi\)
−0.0984427 + 0.995143i \(0.531386\pi\)
\(864\) 0 0
\(865\) −6.45022 + 11.1721i −0.219314 + 0.379863i
\(866\) −13.1671 + 22.8062i −0.447438 + 0.774985i
\(867\) 0 0
\(868\) 0.480101 + 16.9215i 0.0162957 + 0.574354i
\(869\) 7.82496 + 13.5532i 0.265444 + 0.459762i
\(870\) 0 0
\(871\) −27.3943 47.4482i −0.928219 1.60772i
\(872\) −18.3747 −0.622246
\(873\) 0 0
\(874\) −13.6207 + 23.5917i −0.460726 + 0.798001i
\(875\) 16.0350 + 27.7735i 0.542083 + 0.938916i
\(876\) 0 0
\(877\) 16.6409 28.8229i 0.561923 0.973280i −0.435405 0.900234i \(-0.643395\pi\)
0.997329 0.0730451i \(-0.0232717\pi\)
\(878\) 13.5422 23.4558i 0.457027 0.791595i
\(879\) 0 0
\(880\) −6.85282 11.8694i −0.231009 0.400119i
\(881\) 16.4234 + 28.4461i 0.553317 + 0.958374i 0.998032 + 0.0627018i \(0.0199717\pi\)
−0.444715 + 0.895672i \(0.646695\pi\)
\(882\) 0 0
\(883\) −19.1572 −0.644691 −0.322346 0.946622i \(-0.604471\pi\)
−0.322346 + 0.946622i \(0.604471\pi\)
\(884\) −9.94143 + 17.2191i −0.334367 + 0.579140i
\(885\) 0 0
\(886\) −1.70824 + 2.95877i −0.0573896 + 0.0994017i
\(887\) 4.33508 0.145558 0.0727788 0.997348i \(-0.476813\pi\)
0.0727788 + 0.997348i \(0.476813\pi\)
\(888\) 0 0
\(889\) −11.9149 −0.399613
\(890\) 4.13255 + 7.15778i 0.138523 + 0.239929i
\(891\) 0 0
\(892\) −5.12084 + 8.86956i −0.171459 + 0.296975i
\(893\) 22.1311 + 38.3322i 0.740589 + 1.28274i
\(894\) 0 0
\(895\) 27.4249 + 47.5013i 0.916713 + 1.58779i
\(896\) 3.04042 0.101573
\(897\) 0 0
\(898\) −18.2701 + 31.6448i −0.609683 + 1.05600i
\(899\) 0.196805 + 6.93656i 0.00656382 + 0.231347i
\(900\) 0 0
\(901\) 39.6703 1.32161
\(902\) −8.61545 14.9224i −0.286863 0.496862i
\(903\) 0 0
\(904\) 1.84967 3.20372i 0.0615190 0.106554i
\(905\) −4.48369 −0.149043
\(906\) 0 0
\(907\) 10.7856 18.6812i 0.358131 0.620301i −0.629518 0.776986i \(-0.716748\pi\)
0.987649 + 0.156685i \(0.0500809\pi\)
\(908\) 8.63703 + 14.9598i 0.286630 + 0.496457i
\(909\) 0 0
\(910\) 19.2814 + 33.3964i 0.639172 + 1.10708i
\(911\) 1.35817 + 2.35243i 0.0449983 + 0.0779394i 0.887647 0.460524i \(-0.152338\pi\)
−0.842649 + 0.538463i \(0.819005\pi\)
\(912\) 0 0
\(913\) −51.2391 −1.69577
\(914\) 4.40598 + 7.63138i 0.145737 + 0.252424i
\(915\) 0 0
\(916\) −1.16671 2.02080i −0.0385491 0.0667690i
\(917\) 16.4311 + 28.4595i 0.542602 + 0.939815i
\(918\) 0 0
\(919\) 15.9728 + 27.6657i 0.526894 + 0.912607i 0.999509 + 0.0313382i \(0.00997689\pi\)
−0.472615 + 0.881269i \(0.656690\pi\)
\(920\) −12.3533 −0.407275
\(921\) 0 0
\(922\) −6.69027 11.5879i −0.220332 0.381627i
\(923\) −40.4528 −1.33152
\(924\) 0 0
\(925\) 2.05441 0.0675487
\(926\) 27.0864 0.890116
\(927\) 0 0
\(928\) 1.24634 0.0409132
\(929\) 22.6243 39.1864i 0.742279 1.28567i −0.209176 0.977878i \(-0.567078\pi\)
0.951455 0.307787i \(-0.0995885\pi\)
\(930\) 0 0
\(931\) −5.80510 10.0547i −0.190254 0.329530i
\(932\) −1.74773 3.02716i −0.0572489 0.0991580i
\(933\) 0 0
\(934\) −2.71747 + 4.70680i −0.0889184 + 0.154011i
\(935\) −25.2030 43.6529i −0.824226 1.42760i
\(936\) 0 0
\(937\) 15.7775 27.3274i 0.515427 0.892746i −0.484413 0.874840i \(-0.660967\pi\)
0.999840 0.0179062i \(-0.00570004\pi\)
\(938\) −15.4063 + 26.6844i −0.503032 + 0.871277i
\(939\) 0 0
\(940\) −10.0359 + 17.3827i −0.327335 + 0.566961i
\(941\) 9.28506 16.0822i 0.302684 0.524264i −0.674059 0.738678i \(-0.735451\pi\)
0.976743 + 0.214413i \(0.0687839\pi\)
\(942\) 0 0
\(943\) −15.5307 −0.505749
\(944\) 2.38168 4.12519i 0.0775171 0.134264i
\(945\) 0 0
\(946\) 57.4848 1.86899
\(947\) 20.2488 + 35.0720i 0.657999 + 1.13969i 0.981133 + 0.193334i \(0.0619302\pi\)
−0.323134 + 0.946353i \(0.604736\pi\)
\(948\) 0 0
\(949\) 22.6852 0.736394
\(950\) 1.30368 2.25805i 0.0422971 0.0732607i
\(951\) 0 0
\(952\) 11.1819 0.362408
\(953\) −28.2571 −0.915336 −0.457668 0.889123i \(-0.651315\pi\)
−0.457668 + 0.889123i \(0.651315\pi\)
\(954\) 0 0
\(955\) 19.8162 34.3226i 0.641237 1.11065i
\(956\) −5.70901 −0.184643
\(957\) 0 0
\(958\) −3.56670 −0.115235
\(959\) −17.7937 30.8195i −0.574587 0.995214i
\(960\) 0 0
\(961\) 13.9529 27.6824i 0.450093 0.892982i
\(962\) −22.0378 −0.710526
\(963\) 0 0
\(964\) 8.88226 15.3845i 0.286078 0.495502i
\(965\) −14.4603 + 25.0459i −0.465493 + 0.806257i
\(966\) 0 0
\(967\) 4.86983 0.156603 0.0783016 0.996930i \(-0.475050\pi\)
0.0783016 + 0.996930i \(0.475050\pi\)
\(968\) −23.1289 −0.743390
\(969\) 0 0
\(970\) 8.40879 0.269990
\(971\) −14.1457 24.5011i −0.453957 0.786277i 0.544670 0.838650i \(-0.316655\pi\)
−0.998628 + 0.0523734i \(0.983321\pi\)
\(972\) 0 0
\(973\) −23.6633 + 40.9860i −0.758609 + 1.31395i
\(974\) 10.4720 0.335546
\(975\) 0 0
\(976\) 7.03656 + 12.1877i 0.225235 + 0.390118i
\(977\) 14.5551 + 25.2102i 0.465659 + 0.806545i 0.999231 0.0392095i \(-0.0124840\pi\)
−0.533572 + 0.845755i \(0.679151\pi\)
\(978\) 0 0
\(979\) 20.5812 0.657777
\(980\) 2.63247 4.55956i 0.0840910 0.145650i
\(981\) 0 0
\(982\) −8.32650 14.4219i −0.265709 0.460222i
\(983\) −54.9593 −1.75293 −0.876465 0.481465i \(-0.840105\pi\)
−0.876465 + 0.481465i \(0.840105\pi\)
\(984\) 0 0
\(985\) −26.3935 −0.840966
\(986\) 4.58374 0.145976
\(987\) 0 0
\(988\) −13.9846 + 24.2221i −0.444911 + 0.770608i
\(989\) 25.9063 44.8710i 0.823773 1.42682i
\(990\) 0 0
\(991\) 50.0331 1.58935 0.794677 0.607033i \(-0.207640\pi\)
0.794677 + 0.607033i \(0.207640\pi\)
\(992\) −4.89884 2.64601i −0.155538 0.0840110i
\(993\) 0 0
\(994\) 11.3751 + 19.7023i 0.360797 + 0.624919i
\(995\) −17.8030 −0.564392
\(996\) 0 0
\(997\) −1.30768 −0.0414146 −0.0207073 0.999786i \(-0.506592\pi\)
−0.0207073 + 0.999786i \(0.506592\pi\)
\(998\) −8.18430 + 14.1756i −0.259070 + 0.448722i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1674.2.g.b.1369.12 32
3.2 odd 2 558.2.g.a.439.1 yes 32
9.4 even 3 1674.2.h.b.253.5 32
9.5 odd 6 558.2.h.a.67.11 yes 32
31.25 even 3 1674.2.h.b.397.5 32
93.56 odd 6 558.2.h.a.25.11 yes 32
279.149 odd 6 558.2.g.a.211.1 32
279.211 even 3 inner 1674.2.g.b.955.12 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.g.a.211.1 32 279.149 odd 6
558.2.g.a.439.1 yes 32 3.2 odd 2
558.2.h.a.25.11 yes 32 93.56 odd 6
558.2.h.a.67.11 yes 32 9.5 odd 6
1674.2.g.b.955.12 32 279.211 even 3 inner
1674.2.g.b.1369.12 32 1.1 even 1 trivial
1674.2.h.b.253.5 32 9.4 even 3
1674.2.h.b.397.5 32 31.25 even 3