Defining parameters
| Level: | \( N \) | \(=\) | \( 1665 = 3^{2} \cdot 5 \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1665.g (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 185 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(456\) | ||
| Trace bound: | \(10\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1665, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 236 | 96 | 140 |
| Cusp forms | 220 | 92 | 128 |
| Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1665, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1665.2.g.a | $4$ | $13.295$ | \(\Q(\sqrt{-5}, \sqrt{37})\) | \(\Q(\sqrt{-555}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-2q^{4}-\beta _{1}q^{5}+\beta _{3}q^{13}+4q^{16}+\cdots\) |
| 1665.2.g.b | $16$ | $13.295$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{7}q^{2}+(1-\beta _{2})q^{4}-\beta _{14}q^{5}+\beta _{3}q^{7}+\cdots\) |
| 1665.2.g.c | $16$ | $13.295$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{8}q^{2}+(1+\beta _{5})q^{4}+(-\beta _{6}+\beta _{7}+\cdots)q^{5}+\cdots\) |
| 1665.2.g.d | $16$ | $13.295$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | \(\Q(\sqrt{-111}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{12}q^{2}+(2+\beta _{15})q^{4}+\beta _{6}q^{5}+(\beta _{3}+\cdots)q^{7}+\cdots\) |
| 1665.2.g.e | $40$ | $13.295$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(1665, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1665, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(555, [\chi])\)\(^{\oplus 2}\)