Properties

Label 1665.2.g
Level $1665$
Weight $2$
Character orbit 1665.g
Rep. character $\chi_{1665}(739,\cdot)$
Character field $\Q$
Dimension $92$
Newform subspaces $5$
Sturm bound $456$
Trace bound $10$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1665 = 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1665.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(456\)
Trace bound: \(10\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1665, [\chi])\).

Total New Old
Modular forms 236 96 140
Cusp forms 220 92 128
Eisenstein series 16 4 12

Trace form

\( 92 q + 84 q^{4} - 8 q^{10} - 8 q^{11} + 68 q^{16} - 24 q^{25} + 16 q^{26} + 16 q^{34} - 28 q^{40} - 8 q^{41} - 16 q^{44} - 104 q^{46} - 92 q^{49} + 132 q^{64} + 36 q^{65} + 52 q^{70} + 20 q^{74} - 4 q^{85}+ \cdots - 44 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1665, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1665.2.g.a 1665.g 185.d $4$ $13.295$ \(\Q(\sqrt{-5}, \sqrt{37})\) \(\Q(\sqrt{-555}) \) 1665.2.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{4}-\beta _{1}q^{5}+\beta _{3}q^{13}+4q^{16}+\cdots\)
1665.2.g.b 1665.g 185.d $16$ $13.295$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 185.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{7}q^{2}+(1-\beta _{2})q^{4}-\beta _{14}q^{5}+\beta _{3}q^{7}+\cdots\)
1665.2.g.c 1665.g 185.d $16$ $13.295$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1665.2.g.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{8}q^{2}+(1+\beta _{5})q^{4}+(-\beta _{6}+\beta _{7}+\cdots)q^{5}+\cdots\)
1665.2.g.d 1665.g 185.d $16$ $13.295$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) \(\Q(\sqrt{-111}) \) 1665.2.g.d \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{12}q^{2}+(2+\beta _{15})q^{4}+\beta _{6}q^{5}+(\beta _{3}+\cdots)q^{7}+\cdots\)
1665.2.g.e 1665.g 185.d $40$ $13.295$ None 555.2.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1665, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1665, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(555, [\chi])\)\(^{\oplus 2}\)