Properties

Label 185.2.d.a
Level $185$
Weight $2$
Character orbit 185.d
Analytic conductor $1.477$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [185,2,Mod(184,185)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(185, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("185.184");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 6x^{14} + 36x^{12} + 282x^{10} + 1334x^{8} + 7050x^{6} + 22500x^{4} + 93750x^{2} + 390625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{7} q^{2} - \beta_{9} q^{3} + ( - \beta_{2} + 1) q^{4} - \beta_1 q^{5} + \beta_{11} q^{6} - \beta_{3} q^{7} - \beta_{10} q^{8} + ( - \beta_{4} - 1) q^{9} + (\beta_{12} + \beta_{2} - 1) q^{10}+ \cdots + (\beta_{12} - \beta_{6} + 3 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 16 q^{9} - 12 q^{10} - 8 q^{16} + 24 q^{21} - 12 q^{25} - 4 q^{30} + 8 q^{34} - 8 q^{36} - 16 q^{40} + 24 q^{46} - 16 q^{49} - 88 q^{64} + 12 q^{65} + 44 q^{70} - 24 q^{71} + 48 q^{74}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 6x^{14} + 36x^{12} + 282x^{10} + 1334x^{8} + 7050x^{6} + 22500x^{4} + 93750x^{2} + 390625 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 3 \nu^{14} - 18 \nu^{12} - 733 \nu^{10} - 4596 \nu^{8} - 10877 \nu^{6} - 103650 \nu^{4} + \cdots - 875000 ) / 875000 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{14} - 75\nu^{12} - 275\nu^{10} + 687\nu^{8} - 1731\nu^{6} - 36753\nu^{4} - 77025\nu^{2} + 508125 ) / 560000 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 53 \nu^{14} - 668 \nu^{12} - 3383 \nu^{10} - 23796 \nu^{8} - 162527 \nu^{6} - 539300 \nu^{4} + \cdots - 6562500 ) / 3500000 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 323 \nu^{15} + 8513 \nu^{13} + 27953 \nu^{11} + 173411 \nu^{9} + 1280657 \nu^{7} + \cdots + 16765625 \nu ) / 70000000 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 207 \nu^{14} - 733 \nu^{12} + 12477 \nu^{10} + 41649 \nu^{8} + 279813 \nu^{6} + 1192825 \nu^{4} + \cdots + 35421875 ) / 7000000 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 207 \nu^{15} - 733 \nu^{13} + 12477 \nu^{11} + 41649 \nu^{9} + 279813 \nu^{7} + \cdots + 42421875 \nu ) / 35000000 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 443 \nu^{15} - 8633 \nu^{13} - 53673 \nu^{11} - 210651 \nu^{9} - 796537 \nu^{7} + \cdots - 28390625 \nu ) / 70000000 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 623 \nu^{14} + 3013 \nu^{12} + 22453 \nu^{10} + 97711 \nu^{8} + 424757 \nu^{6} + 2049375 \nu^{4} + \cdots + 20828125 ) / 14000000 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 293 \nu^{15} + 767 \nu^{13} - 1023 \nu^{11} - 9851 \nu^{9} + 134313 \nu^{7} + \cdots - 10640625 \nu ) / 35000000 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 599 \nu^{15} - 2131 \nu^{13} - 13411 \nu^{11} + 5943 \nu^{9} - 322259 \nu^{7} + \cdots - 11796875 \nu ) / 70000000 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 419 \nu^{14} - 861 \nu^{12} + 9209 \nu^{10} + 36033 \nu^{8} + 140321 \nu^{6} + 1364825 \nu^{4} + \cdots + 30171875 ) / 7000000 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 21 \nu^{14} + 19 \nu^{12} + 639 \nu^{10} + 3345 \nu^{8} + 18615 \nu^{6} + 97737 \nu^{4} + \cdots + 2011875 ) / 280000 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( -\nu^{15} - 6\nu^{13} - 36\nu^{11} - 282\nu^{9} - 1334\nu^{7} - 7050\nu^{5} - 22500\nu^{3} - 93750\nu ) / 78125 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 17 \nu^{15} + 37 \nu^{13} + 347 \nu^{11} + 79 \nu^{9} + 5723 \nu^{7} + 34015 \nu^{5} + \cdots + 578125 \nu ) / 1000000 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{13} - \beta_{12} + \beta_{4} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{14} - 3\beta_{11} - 3\beta_{10} + \beta_{8} - \beta_{7} - \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{13} + 5\beta_{12} - 6\beta_{9} - 5\beta_{6} - 2\beta_{4} - 6\beta_{3} - 3\beta_{2} - 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{15} - 10\beta_{14} - \beta_{11} + 13\beta_{10} - \beta_{8} - 5\beta_{7} - 12\beta_{5} - 2\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -\beta_{13} - 4\beta_{12} - 12\beta_{9} + 17\beta_{6} - 27\beta_{4} + 4\beta_{3} + 33\beta_{2} - 65 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 12\beta_{15} + 25\beta_{14} + 28\beta_{11} + 64\beta_{10} + 48\beta_{8} + 68\beta_{7} + 68\beta_{5} - 32\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -60\beta_{13} + 4\beta_{12} + 44\beta_{9} - 44\beta_{6} - 48\beta_{4} + 172\beta_{3} - 212\beta_{2} + 113 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -396\beta_{15} - 128\beta_{14} + 284\beta_{11} - 176\beta_{10} - 144\beta_{8} + 44\beta_{7} + 4\beta_{5} - 43\beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -327\beta_{13} - 281\beta_{12} + 660\beta_{9} + 812\beta_{6} + 565\beta_{4} - 284\beta_{3} - 20\beta_{2} - 233 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 316 \beta_{15} + 1147 \beta_{14} - 803 \beta_{11} - 287 \beta_{10} - 1291 \beta_{8} + 1407 \beta_{7} + \cdots - 1117 \beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -314\beta_{13} - 75\beta_{12} + 2094\beta_{9} - 2037\beta_{6} - 930\beta_{4} - 1362\beta_{3} + 573\beta_{2} + 9837 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 3640 \beta_{15} - 1434 \beta_{14} - 193 \beta_{11} + 3193 \beta_{10} - 3197 \beta_{8} + \cdots + 10742 \beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 10935 \beta_{13} + 2024 \beta_{12} + 9576 \beta_{9} - 7655 \beta_{6} + 10769 \beta_{4} + 6856 \beta_{3} + \cdots - 30265 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 34248 \beta_{15} - 15067 \beta_{14} - 12824 \beta_{11} - 68720 \beta_{10} + 26784 \beta_{8} + \cdots - 26576 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/185\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(112\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
184.1
−1.79003 1.34007i
0.122469 + 2.23271i
0.122469 2.23271i
−1.79003 + 1.34007i
1.99266 1.01455i
−1.14459 1.92092i
−1.14459 + 1.92092i
1.99266 + 1.01455i
−1.99266 + 1.01455i
1.14459 + 1.92092i
1.14459 1.92092i
−1.99266 1.01455i
1.79003 + 1.34007i
−0.122469 2.23271i
−0.122469 + 2.23271i
1.79003 1.34007i
−2.13578 2.26867i 2.56155 1.79003 + 1.34007i 4.84539i 3.87589i −1.19935 −2.14688 −3.82312 2.86208i
184.2 −2.13578 1.68912i 2.56155 −0.122469 2.23271i 3.60758i 0.988692i −1.19935 0.146883 0.261567 + 4.76858i
184.3 −2.13578 1.68912i 2.56155 −0.122469 + 2.23271i 3.60758i 0.988692i −1.19935 0.146883 0.261567 4.76858i
184.4 −2.13578 2.26867i 2.56155 1.79003 1.34007i 4.84539i 3.87589i −1.19935 −2.14688 −3.82312 + 2.86208i
184.5 −0.662153 2.77476i −1.56155 −1.99266 + 1.01455i 1.83732i 0.382154i 2.35829 −4.69928 1.31945 0.671786i
184.6 −0.662153 0.548381i −1.56155 1.14459 + 1.92092i 0.363112i 3.98170i 2.35829 2.69928 −0.757894 1.27194i
184.7 −0.662153 0.548381i −1.56155 1.14459 1.92092i 0.363112i 3.98170i 2.35829 2.69928 −0.757894 + 1.27194i
184.8 −0.662153 2.77476i −1.56155 −1.99266 1.01455i 1.83732i 0.382154i 2.35829 −4.69928 1.31945 + 0.671786i
184.9 0.662153 2.77476i −1.56155 1.99266 1.01455i 1.83732i 0.382154i −2.35829 −4.69928 1.31945 0.671786i
184.10 0.662153 0.548381i −1.56155 −1.14459 1.92092i 0.363112i 3.98170i −2.35829 2.69928 −0.757894 1.27194i
184.11 0.662153 0.548381i −1.56155 −1.14459 + 1.92092i 0.363112i 3.98170i −2.35829 2.69928 −0.757894 + 1.27194i
184.12 0.662153 2.77476i −1.56155 1.99266 + 1.01455i 1.83732i 0.382154i −2.35829 −4.69928 1.31945 + 0.671786i
184.13 2.13578 2.26867i 2.56155 −1.79003 1.34007i 4.84539i 3.87589i 1.19935 −2.14688 −3.82312 2.86208i
184.14 2.13578 1.68912i 2.56155 0.122469 + 2.23271i 3.60758i 0.988692i 1.19935 0.146883 0.261567 + 4.76858i
184.15 2.13578 1.68912i 2.56155 0.122469 2.23271i 3.60758i 0.988692i 1.19935 0.146883 0.261567 4.76858i
184.16 2.13578 2.26867i 2.56155 −1.79003 + 1.34007i 4.84539i 3.87589i 1.19935 −2.14688 −3.82312 + 2.86208i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 184.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
37.b even 2 1 inner
185.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 185.2.d.a 16
3.b odd 2 1 1665.2.g.b 16
5.b even 2 1 inner 185.2.d.a 16
5.c odd 4 2 925.2.c.f 16
15.d odd 2 1 1665.2.g.b 16
37.b even 2 1 inner 185.2.d.a 16
111.d odd 2 1 1665.2.g.b 16
185.d even 2 1 inner 185.2.d.a 16
185.h odd 4 2 925.2.c.f 16
555.b odd 2 1 1665.2.g.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
185.2.d.a 16 1.a even 1 1 trivial
185.2.d.a 16 5.b even 2 1 inner
185.2.d.a 16 37.b even 2 1 inner
185.2.d.a 16 185.d even 2 1 inner
925.2.c.f 16 5.c odd 4 2
925.2.c.f 16 185.h odd 4 2
1665.2.g.b 16 3.b odd 2 1
1665.2.g.b 16 15.d odd 2 1
1665.2.g.b 16 111.d odd 2 1
1665.2.g.b 16 555.b odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(185, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 5 T^{2} + 2)^{4} \) Copy content Toggle raw display
$3$ \( (T^{8} + 16 T^{6} + \cdots + 34)^{2} \) Copy content Toggle raw display
$5$ \( T^{16} + 6 T^{14} + \cdots + 390625 \) Copy content Toggle raw display
$7$ \( (T^{8} + 32 T^{6} + \cdots + 34)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 21 T^{2} + 72)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 6)^{8} \) Copy content Toggle raw display
$17$ \( (T^{8} - 70 T^{6} + \cdots + 71824)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} + 54 T^{6} + \cdots + 11016)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} - 34 T^{6} + \cdots + 64)^{2} \) Copy content Toggle raw display
$29$ \( (T^{8} + 82 T^{6} + \cdots + 2176)^{2} \) Copy content Toggle raw display
$31$ \( (T^{8} + 210 T^{6} + \cdots + 3183624)^{2} \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 3512479453921 \) Copy content Toggle raw display
$41$ \( (T^{4} - 69 T^{2} + 1152)^{4} \) Copy content Toggle raw display
$43$ \( (T^{8} - 210 T^{6} + \cdots + 876096)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + 264 T^{6} + \cdots + 2754)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} + 168 T^{6} + \cdots + 176256)^{2} \) Copy content Toggle raw display
$59$ \( (T^{8} + 184 T^{6} + \cdots + 557056)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + 354 T^{6} + \cdots + 2820096)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} + 356 T^{6} + \cdots + 27052576)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 6 T^{3} - 123 T^{2} + \cdots + 72)^{4} \) Copy content Toggle raw display
$73$ \( (T^{8} + 344 T^{6} + \cdots + 17430304)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} + 216 T^{6} + \cdots + 11016)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} + 144 T^{6} + \cdots + 223074)^{2} \) Copy content Toggle raw display
$89$ \( (T^{8} + 352 T^{6} + \cdots + 20898304)^{2} \) Copy content Toggle raw display
$97$ \( (T^{8} - 306 T^{6} + \cdots + 331776)^{2} \) Copy content Toggle raw display
show more
show less