Properties

Label 1664.2.b.i.833.1
Level $1664$
Weight $2$
Character 1664.833
Analytic conductor $13.287$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1664,2,Mod(833,1664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1664.833"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1664 = 2^{7} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1664.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2871068963\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 833.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1664.833
Dual form 1664.2.b.i.833.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -1.82843i q^{5} -1.82843 q^{7} +2.00000 q^{9} +0.828427i q^{11} +1.00000i q^{13} -1.82843 q^{15} -4.65685 q^{17} -4.00000i q^{19} +1.82843i q^{21} -8.82843 q^{23} +1.65685 q^{25} -5.00000i q^{27} -8.82843i q^{29} +0.828427 q^{33} +3.34315i q^{35} -1.82843i q^{37} +1.00000 q^{39} +2.82843 q^{41} +3.00000i q^{43} -3.65685i q^{45} -5.48528 q^{47} -3.65685 q^{49} +4.65685i q^{51} +8.82843i q^{53} +1.51472 q^{55} -4.00000 q^{57} +10.8284i q^{59} -5.17157i q^{61} -3.65685 q^{63} +1.82843 q^{65} -7.65685i q^{67} +8.82843i q^{69} -15.8284 q^{71} -10.8284 q^{73} -1.65685i q^{75} -1.51472i q^{77} -3.65685 q^{79} +1.00000 q^{81} +6.00000i q^{83} +8.51472i q^{85} -8.82843 q^{87} +6.34315 q^{89} -1.82843i q^{91} -7.31371 q^{95} +2.48528 q^{97} +1.65685i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} + 8 q^{9} + 4 q^{15} + 4 q^{17} - 24 q^{23} - 16 q^{25} - 8 q^{33} + 4 q^{39} + 12 q^{47} + 8 q^{49} + 40 q^{55} - 16 q^{57} + 8 q^{63} - 4 q^{65} - 52 q^{71} - 32 q^{73} + 8 q^{79} + 4 q^{81}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1664\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i −0.957427 0.288675i \(-0.906785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) 0 0
\(5\) − 1.82843i − 0.817697i −0.912602 0.408849i \(-0.865930\pi\)
0.912602 0.408849i \(-0.134070\pi\)
\(6\) 0 0
\(7\) −1.82843 −0.691080 −0.345540 0.938404i \(-0.612304\pi\)
−0.345540 + 0.938404i \(0.612304\pi\)
\(8\) 0 0
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) 0.828427i 0.249780i 0.992171 + 0.124890i \(0.0398578\pi\)
−0.992171 + 0.124890i \(0.960142\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −1.82843 −0.472098
\(16\) 0 0
\(17\) −4.65685 −1.12945 −0.564727 0.825278i \(-0.691018\pi\)
−0.564727 + 0.825278i \(0.691018\pi\)
\(18\) 0 0
\(19\) − 4.00000i − 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 1.82843i 0.398996i
\(22\) 0 0
\(23\) −8.82843 −1.84085 −0.920427 0.390914i \(-0.872159\pi\)
−0.920427 + 0.390914i \(0.872159\pi\)
\(24\) 0 0
\(25\) 1.65685 0.331371
\(26\) 0 0
\(27\) − 5.00000i − 0.962250i
\(28\) 0 0
\(29\) − 8.82843i − 1.63940i −0.572795 0.819699i \(-0.694141\pi\)
0.572795 0.819699i \(-0.305859\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0.828427 0.144211
\(34\) 0 0
\(35\) 3.34315i 0.565095i
\(36\) 0 0
\(37\) − 1.82843i − 0.300592i −0.988641 0.150296i \(-0.951977\pi\)
0.988641 0.150296i \(-0.0480226\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 2.82843 0.441726 0.220863 0.975305i \(-0.429113\pi\)
0.220863 + 0.975305i \(0.429113\pi\)
\(42\) 0 0
\(43\) 3.00000i 0.457496i 0.973486 + 0.228748i \(0.0734631\pi\)
−0.973486 + 0.228748i \(0.926537\pi\)
\(44\) 0 0
\(45\) − 3.65685i − 0.545132i
\(46\) 0 0
\(47\) −5.48528 −0.800111 −0.400055 0.916491i \(-0.631009\pi\)
−0.400055 + 0.916491i \(0.631009\pi\)
\(48\) 0 0
\(49\) −3.65685 −0.522408
\(50\) 0 0
\(51\) 4.65685i 0.652090i
\(52\) 0 0
\(53\) 8.82843i 1.21268i 0.795206 + 0.606339i \(0.207362\pi\)
−0.795206 + 0.606339i \(0.792638\pi\)
\(54\) 0 0
\(55\) 1.51472 0.204245
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) 10.8284i 1.40974i 0.709336 + 0.704871i \(0.248995\pi\)
−0.709336 + 0.704871i \(0.751005\pi\)
\(60\) 0 0
\(61\) − 5.17157i − 0.662152i −0.943604 0.331076i \(-0.892588\pi\)
0.943604 0.331076i \(-0.107412\pi\)
\(62\) 0 0
\(63\) −3.65685 −0.460720
\(64\) 0 0
\(65\) 1.82843 0.226788
\(66\) 0 0
\(67\) − 7.65685i − 0.935434i −0.883878 0.467717i \(-0.845077\pi\)
0.883878 0.467717i \(-0.154923\pi\)
\(68\) 0 0
\(69\) 8.82843i 1.06282i
\(70\) 0 0
\(71\) −15.8284 −1.87849 −0.939244 0.343249i \(-0.888472\pi\)
−0.939244 + 0.343249i \(0.888472\pi\)
\(72\) 0 0
\(73\) −10.8284 −1.26737 −0.633686 0.773591i \(-0.718459\pi\)
−0.633686 + 0.773591i \(0.718459\pi\)
\(74\) 0 0
\(75\) − 1.65685i − 0.191317i
\(76\) 0 0
\(77\) − 1.51472i − 0.172618i
\(78\) 0 0
\(79\) −3.65685 −0.411428 −0.205714 0.978612i \(-0.565952\pi\)
−0.205714 + 0.978612i \(0.565952\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 8.51472i 0.923551i
\(86\) 0 0
\(87\) −8.82843 −0.946507
\(88\) 0 0
\(89\) 6.34315 0.672372 0.336186 0.941796i \(-0.390863\pi\)
0.336186 + 0.941796i \(0.390863\pi\)
\(90\) 0 0
\(91\) − 1.82843i − 0.191671i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.31371 −0.750371
\(96\) 0 0
\(97\) 2.48528 0.252342 0.126171 0.992009i \(-0.459731\pi\)
0.126171 + 0.992009i \(0.459731\pi\)
\(98\) 0 0
\(99\) 1.65685i 0.166520i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) 3.34315 0.326258
\(106\) 0 0
\(107\) − 7.31371i − 0.707043i −0.935426 0.353521i \(-0.884984\pi\)
0.935426 0.353521i \(-0.115016\pi\)
\(108\) 0 0
\(109\) 1.82843i 0.175132i 0.996159 + 0.0875658i \(0.0279088\pi\)
−0.996159 + 0.0875658i \(0.972091\pi\)
\(110\) 0 0
\(111\) −1.82843 −0.173547
\(112\) 0 0
\(113\) 7.65685 0.720296 0.360148 0.932895i \(-0.382726\pi\)
0.360148 + 0.932895i \(0.382726\pi\)
\(114\) 0 0
\(115\) 16.1421i 1.50526i
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) 8.51472 0.780543
\(120\) 0 0
\(121\) 10.3137 0.937610
\(122\) 0 0
\(123\) − 2.82843i − 0.255031i
\(124\) 0 0
\(125\) − 12.1716i − 1.08866i
\(126\) 0 0
\(127\) −1.51472 −0.134410 −0.0672048 0.997739i \(-0.521408\pi\)
−0.0672048 + 0.997739i \(0.521408\pi\)
\(128\) 0 0
\(129\) 3.00000 0.264135
\(130\) 0 0
\(131\) − 8.65685i − 0.756353i −0.925734 0.378176i \(-0.876551\pi\)
0.925734 0.378176i \(-0.123449\pi\)
\(132\) 0 0
\(133\) 7.31371i 0.634179i
\(134\) 0 0
\(135\) −9.14214 −0.786830
\(136\) 0 0
\(137\) −8.14214 −0.695630 −0.347815 0.937563i \(-0.613076\pi\)
−0.347815 + 0.937563i \(0.613076\pi\)
\(138\) 0 0
\(139\) − 7.34315i − 0.622837i −0.950273 0.311419i \(-0.899196\pi\)
0.950273 0.311419i \(-0.100804\pi\)
\(140\) 0 0
\(141\) 5.48528i 0.461944i
\(142\) 0 0
\(143\) −0.828427 −0.0692766
\(144\) 0 0
\(145\) −16.1421 −1.34053
\(146\) 0 0
\(147\) 3.65685i 0.301612i
\(148\) 0 0
\(149\) 21.3137i 1.74609i 0.487642 + 0.873044i \(0.337857\pi\)
−0.487642 + 0.873044i \(0.662143\pi\)
\(150\) 0 0
\(151\) 19.4853 1.58569 0.792845 0.609424i \(-0.208599\pi\)
0.792845 + 0.609424i \(0.208599\pi\)
\(152\) 0 0
\(153\) −9.31371 −0.752969
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 12.4853i − 0.996434i −0.867052 0.498217i \(-0.833988\pi\)
0.867052 0.498217i \(-0.166012\pi\)
\(158\) 0 0
\(159\) 8.82843 0.700140
\(160\) 0 0
\(161\) 16.1421 1.27218
\(162\) 0 0
\(163\) − 7.17157i − 0.561721i −0.959749 0.280860i \(-0.909380\pi\)
0.959749 0.280860i \(-0.0906198\pi\)
\(164\) 0 0
\(165\) − 1.51472i − 0.117921i
\(166\) 0 0
\(167\) 10.3431 0.800377 0.400188 0.916433i \(-0.368945\pi\)
0.400188 + 0.916433i \(0.368945\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) − 8.00000i − 0.611775i
\(172\) 0 0
\(173\) − 10.9706i − 0.834076i −0.908889 0.417038i \(-0.863068\pi\)
0.908889 0.417038i \(-0.136932\pi\)
\(174\) 0 0
\(175\) −3.02944 −0.229004
\(176\) 0 0
\(177\) 10.8284 0.813914
\(178\) 0 0
\(179\) − 14.3137i − 1.06986i −0.844897 0.534928i \(-0.820339\pi\)
0.844897 0.534928i \(-0.179661\pi\)
\(180\) 0 0
\(181\) − 10.9706i − 0.815436i −0.913108 0.407718i \(-0.866325\pi\)
0.913108 0.407718i \(-0.133675\pi\)
\(182\) 0 0
\(183\) −5.17157 −0.382294
\(184\) 0 0
\(185\) −3.34315 −0.245793
\(186\) 0 0
\(187\) − 3.85786i − 0.282115i
\(188\) 0 0
\(189\) 9.14214i 0.664993i
\(190\) 0 0
\(191\) −8.82843 −0.638803 −0.319401 0.947620i \(-0.603482\pi\)
−0.319401 + 0.947620i \(0.603482\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 0 0
\(195\) − 1.82843i − 0.130936i
\(196\) 0 0
\(197\) 12.1716i 0.867189i 0.901108 + 0.433594i \(0.142755\pi\)
−0.901108 + 0.433594i \(0.857245\pi\)
\(198\) 0 0
\(199\) 10.9706 0.777683 0.388841 0.921305i \(-0.372875\pi\)
0.388841 + 0.921305i \(0.372875\pi\)
\(200\) 0 0
\(201\) −7.65685 −0.540073
\(202\) 0 0
\(203\) 16.1421i 1.13296i
\(204\) 0 0
\(205\) − 5.17157i − 0.361198i
\(206\) 0 0
\(207\) −17.6569 −1.22724
\(208\) 0 0
\(209\) 3.31371 0.229214
\(210\) 0 0
\(211\) − 12.6569i − 0.871334i −0.900108 0.435667i \(-0.856513\pi\)
0.900108 0.435667i \(-0.143487\pi\)
\(212\) 0 0
\(213\) 15.8284i 1.08455i
\(214\) 0 0
\(215\) 5.48528 0.374093
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 10.8284i 0.731717i
\(220\) 0 0
\(221\) − 4.65685i − 0.313254i
\(222\) 0 0
\(223\) 15.8284 1.05995 0.529975 0.848013i \(-0.322201\pi\)
0.529975 + 0.848013i \(0.322201\pi\)
\(224\) 0 0
\(225\) 3.31371 0.220914
\(226\) 0 0
\(227\) 14.8284i 0.984197i 0.870539 + 0.492099i \(0.163770\pi\)
−0.870539 + 0.492099i \(0.836230\pi\)
\(228\) 0 0
\(229\) − 15.8284i − 1.04597i −0.852341 0.522986i \(-0.824818\pi\)
0.852341 0.522986i \(-0.175182\pi\)
\(230\) 0 0
\(231\) −1.51472 −0.0996612
\(232\) 0 0
\(233\) 2.31371 0.151576 0.0757880 0.997124i \(-0.475853\pi\)
0.0757880 + 0.997124i \(0.475853\pi\)
\(234\) 0 0
\(235\) 10.0294i 0.654248i
\(236\) 0 0
\(237\) 3.65685i 0.237538i
\(238\) 0 0
\(239\) 9.14214 0.591356 0.295678 0.955288i \(-0.404455\pi\)
0.295678 + 0.955288i \(0.404455\pi\)
\(240\) 0 0
\(241\) −19.3137 −1.24411 −0.622053 0.782975i \(-0.713701\pi\)
−0.622053 + 0.782975i \(0.713701\pi\)
\(242\) 0 0
\(243\) − 16.0000i − 1.02640i
\(244\) 0 0
\(245\) 6.68629i 0.427171i
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) 18.6274i 1.17575i 0.808951 + 0.587876i \(0.200036\pi\)
−0.808951 + 0.587876i \(0.799964\pi\)
\(252\) 0 0
\(253\) − 7.31371i − 0.459809i
\(254\) 0 0
\(255\) 8.51472 0.533212
\(256\) 0 0
\(257\) −12.6569 −0.789513 −0.394756 0.918786i \(-0.629171\pi\)
−0.394756 + 0.918786i \(0.629171\pi\)
\(258\) 0 0
\(259\) 3.34315i 0.207733i
\(260\) 0 0
\(261\) − 17.6569i − 1.09293i
\(262\) 0 0
\(263\) −2.14214 −0.132090 −0.0660449 0.997817i \(-0.521038\pi\)
−0.0660449 + 0.997817i \(0.521038\pi\)
\(264\) 0 0
\(265\) 16.1421 0.991604
\(266\) 0 0
\(267\) − 6.34315i − 0.388194i
\(268\) 0 0
\(269\) − 19.7990i − 1.20717i −0.797300 0.603583i \(-0.793739\pi\)
0.797300 0.603583i \(-0.206261\pi\)
\(270\) 0 0
\(271\) 19.4853 1.18365 0.591823 0.806068i \(-0.298408\pi\)
0.591823 + 0.806068i \(0.298408\pi\)
\(272\) 0 0
\(273\) −1.82843 −0.110661
\(274\) 0 0
\(275\) 1.37258i 0.0827699i
\(276\) 0 0
\(277\) 12.4853i 0.750168i 0.926991 + 0.375084i \(0.122386\pi\)
−0.926991 + 0.375084i \(0.877614\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −28.9706 −1.72824 −0.864119 0.503287i \(-0.832124\pi\)
−0.864119 + 0.503287i \(0.832124\pi\)
\(282\) 0 0
\(283\) − 30.6274i − 1.82061i −0.413937 0.910305i \(-0.635847\pi\)
0.413937 0.910305i \(-0.364153\pi\)
\(284\) 0 0
\(285\) 7.31371i 0.433227i
\(286\) 0 0
\(287\) −5.17157 −0.305268
\(288\) 0 0
\(289\) 4.68629 0.275664
\(290\) 0 0
\(291\) − 2.48528i − 0.145690i
\(292\) 0 0
\(293\) − 26.7990i − 1.56561i −0.622265 0.782807i \(-0.713787\pi\)
0.622265 0.782807i \(-0.286213\pi\)
\(294\) 0 0
\(295\) 19.7990 1.15274
\(296\) 0 0
\(297\) 4.14214 0.240351
\(298\) 0 0
\(299\) − 8.82843i − 0.510561i
\(300\) 0 0
\(301\) − 5.48528i − 0.316166i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −9.45584 −0.541440
\(306\) 0 0
\(307\) 18.8284i 1.07460i 0.843393 + 0.537298i \(0.180555\pi\)
−0.843393 + 0.537298i \(0.819445\pi\)
\(308\) 0 0
\(309\) 14.0000i 0.796432i
\(310\) 0 0
\(311\) 32.2843 1.83067 0.915337 0.402690i \(-0.131925\pi\)
0.915337 + 0.402690i \(0.131925\pi\)
\(312\) 0 0
\(313\) 13.9706 0.789663 0.394831 0.918754i \(-0.370803\pi\)
0.394831 + 0.918754i \(0.370803\pi\)
\(314\) 0 0
\(315\) 6.68629i 0.376730i
\(316\) 0 0
\(317\) − 6.68629i − 0.375540i −0.982213 0.187770i \(-0.939874\pi\)
0.982213 0.187770i \(-0.0601259\pi\)
\(318\) 0 0
\(319\) 7.31371 0.409489
\(320\) 0 0
\(321\) −7.31371 −0.408211
\(322\) 0 0
\(323\) 18.6274i 1.03646i
\(324\) 0 0
\(325\) 1.65685i 0.0919057i
\(326\) 0 0
\(327\) 1.82843 0.101112
\(328\) 0 0
\(329\) 10.0294 0.552941
\(330\) 0 0
\(331\) 22.9706i 1.26258i 0.775548 + 0.631288i \(0.217473\pi\)
−0.775548 + 0.631288i \(0.782527\pi\)
\(332\) 0 0
\(333\) − 3.65685i − 0.200394i
\(334\) 0 0
\(335\) −14.0000 −0.764902
\(336\) 0 0
\(337\) 31.9706 1.74155 0.870774 0.491684i \(-0.163618\pi\)
0.870774 + 0.491684i \(0.163618\pi\)
\(338\) 0 0
\(339\) − 7.65685i − 0.415863i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 19.4853 1.05211
\(344\) 0 0
\(345\) 16.1421 0.869063
\(346\) 0 0
\(347\) 15.0000i 0.805242i 0.915367 + 0.402621i \(0.131901\pi\)
−0.915367 + 0.402621i \(0.868099\pi\)
\(348\) 0 0
\(349\) − 8.51472i − 0.455782i −0.973687 0.227891i \(-0.926817\pi\)
0.973687 0.227891i \(-0.0731831\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) 5.31371 0.282820 0.141410 0.989951i \(-0.454836\pi\)
0.141410 + 0.989951i \(0.454836\pi\)
\(354\) 0 0
\(355\) 28.9411i 1.53604i
\(356\) 0 0
\(357\) − 8.51472i − 0.450647i
\(358\) 0 0
\(359\) −10.3431 −0.545890 −0.272945 0.962030i \(-0.587998\pi\)
−0.272945 + 0.962030i \(0.587998\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) − 10.3137i − 0.541329i
\(364\) 0 0
\(365\) 19.7990i 1.03633i
\(366\) 0 0
\(367\) 35.9411 1.87611 0.938056 0.346484i \(-0.112625\pi\)
0.938056 + 0.346484i \(0.112625\pi\)
\(368\) 0 0
\(369\) 5.65685 0.294484
\(370\) 0 0
\(371\) − 16.1421i − 0.838058i
\(372\) 0 0
\(373\) 24.9706i 1.29293i 0.762945 + 0.646463i \(0.223753\pi\)
−0.762945 + 0.646463i \(0.776247\pi\)
\(374\) 0 0
\(375\) −12.1716 −0.628537
\(376\) 0 0
\(377\) 8.82843 0.454687
\(378\) 0 0
\(379\) − 27.4558i − 1.41031i −0.709052 0.705156i \(-0.750877\pi\)
0.709052 0.705156i \(-0.249123\pi\)
\(380\) 0 0
\(381\) 1.51472i 0.0776014i
\(382\) 0 0
\(383\) −12.1716 −0.621938 −0.310969 0.950420i \(-0.600654\pi\)
−0.310969 + 0.950420i \(0.600654\pi\)
\(384\) 0 0
\(385\) −2.76955 −0.141149
\(386\) 0 0
\(387\) 6.00000i 0.304997i
\(388\) 0 0
\(389\) − 2.14214i − 0.108611i −0.998524 0.0543053i \(-0.982706\pi\)
0.998524 0.0543053i \(-0.0172944\pi\)
\(390\) 0 0
\(391\) 41.1127 2.07916
\(392\) 0 0
\(393\) −8.65685 −0.436681
\(394\) 0 0
\(395\) 6.68629i 0.336424i
\(396\) 0 0
\(397\) 21.3137i 1.06970i 0.844946 + 0.534852i \(0.179633\pi\)
−0.844946 + 0.534852i \(0.820367\pi\)
\(398\) 0 0
\(399\) 7.31371 0.366143
\(400\) 0 0
\(401\) −16.8284 −0.840372 −0.420186 0.907438i \(-0.638035\pi\)
−0.420186 + 0.907438i \(0.638035\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 1.82843i − 0.0908553i
\(406\) 0 0
\(407\) 1.51472 0.0750818
\(408\) 0 0
\(409\) 18.4853 0.914038 0.457019 0.889457i \(-0.348917\pi\)
0.457019 + 0.889457i \(0.348917\pi\)
\(410\) 0 0
\(411\) 8.14214i 0.401622i
\(412\) 0 0
\(413\) − 19.7990i − 0.974245i
\(414\) 0 0
\(415\) 10.9706 0.538524
\(416\) 0 0
\(417\) −7.34315 −0.359595
\(418\) 0 0
\(419\) − 30.6569i − 1.49769i −0.662748 0.748843i \(-0.730610\pi\)
0.662748 0.748843i \(-0.269390\pi\)
\(420\) 0 0
\(421\) − 37.1421i − 1.81020i −0.425202 0.905098i \(-0.639797\pi\)
0.425202 0.905098i \(-0.360203\pi\)
\(422\) 0 0
\(423\) −10.9706 −0.533407
\(424\) 0 0
\(425\) −7.71573 −0.374268
\(426\) 0 0
\(427\) 9.45584i 0.457600i
\(428\) 0 0
\(429\) 0.828427i 0.0399968i
\(430\) 0 0
\(431\) 12.1716 0.586284 0.293142 0.956069i \(-0.405299\pi\)
0.293142 + 0.956069i \(0.405299\pi\)
\(432\) 0 0
\(433\) −25.0000 −1.20142 −0.600712 0.799466i \(-0.705116\pi\)
−0.600712 + 0.799466i \(0.705116\pi\)
\(434\) 0 0
\(435\) 16.1421i 0.773956i
\(436\) 0 0
\(437\) 35.3137i 1.68928i
\(438\) 0 0
\(439\) 12.4853 0.595890 0.297945 0.954583i \(-0.403699\pi\)
0.297945 + 0.954583i \(0.403699\pi\)
\(440\) 0 0
\(441\) −7.31371 −0.348272
\(442\) 0 0
\(443\) − 22.3137i − 1.06016i −0.847949 0.530078i \(-0.822163\pi\)
0.847949 0.530078i \(-0.177837\pi\)
\(444\) 0 0
\(445\) − 11.5980i − 0.549797i
\(446\) 0 0
\(447\) 21.3137 1.00810
\(448\) 0 0
\(449\) −16.1421 −0.761794 −0.380897 0.924617i \(-0.624385\pi\)
−0.380897 + 0.924617i \(0.624385\pi\)
\(450\) 0 0
\(451\) 2.34315i 0.110334i
\(452\) 0 0
\(453\) − 19.4853i − 0.915498i
\(454\) 0 0
\(455\) −3.34315 −0.156729
\(456\) 0 0
\(457\) −12.9706 −0.606737 −0.303369 0.952873i \(-0.598111\pi\)
−0.303369 + 0.952873i \(0.598111\pi\)
\(458\) 0 0
\(459\) 23.2843i 1.08682i
\(460\) 0 0
\(461\) − 5.48528i − 0.255475i −0.991808 0.127738i \(-0.959228\pi\)
0.991808 0.127738i \(-0.0407715\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 41.6569i − 1.92765i −0.266537 0.963825i \(-0.585879\pi\)
0.266537 0.963825i \(-0.414121\pi\)
\(468\) 0 0
\(469\) 14.0000i 0.646460i
\(470\) 0 0
\(471\) −12.4853 −0.575291
\(472\) 0 0
\(473\) −2.48528 −0.114273
\(474\) 0 0
\(475\) − 6.62742i − 0.304087i
\(476\) 0 0
\(477\) 17.6569i 0.808452i
\(478\) 0 0
\(479\) 9.14214 0.417715 0.208857 0.977946i \(-0.433026\pi\)
0.208857 + 0.977946i \(0.433026\pi\)
\(480\) 0 0
\(481\) 1.82843 0.0833691
\(482\) 0 0
\(483\) − 16.1421i − 0.734493i
\(484\) 0 0
\(485\) − 4.54416i − 0.206339i
\(486\) 0 0
\(487\) 24.9706 1.13152 0.565762 0.824569i \(-0.308582\pi\)
0.565762 + 0.824569i \(0.308582\pi\)
\(488\) 0 0
\(489\) −7.17157 −0.324310
\(490\) 0 0
\(491\) − 40.3137i − 1.81933i −0.415340 0.909666i \(-0.636338\pi\)
0.415340 0.909666i \(-0.363662\pi\)
\(492\) 0 0
\(493\) 41.1127i 1.85162i
\(494\) 0 0
\(495\) 3.02944 0.136163
\(496\) 0 0
\(497\) 28.9411 1.29819
\(498\) 0 0
\(499\) 10.1421i 0.454024i 0.973892 + 0.227012i \(0.0728957\pi\)
−0.973892 + 0.227012i \(0.927104\pi\)
\(500\) 0 0
\(501\) − 10.3431i − 0.462098i
\(502\) 0 0
\(503\) −7.31371 −0.326102 −0.163051 0.986618i \(-0.552134\pi\)
−0.163051 + 0.986618i \(0.552134\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) 18.2843i 0.810436i 0.914220 + 0.405218i \(0.132804\pi\)
−0.914220 + 0.405218i \(0.867196\pi\)
\(510\) 0 0
\(511\) 19.7990 0.875856
\(512\) 0 0
\(513\) −20.0000 −0.883022
\(514\) 0 0
\(515\) 25.5980i 1.12798i
\(516\) 0 0
\(517\) − 4.54416i − 0.199852i
\(518\) 0 0
\(519\) −10.9706 −0.481554
\(520\) 0 0
\(521\) 8.31371 0.364230 0.182115 0.983277i \(-0.441706\pi\)
0.182115 + 0.983277i \(0.441706\pi\)
\(522\) 0 0
\(523\) 1.65685i 0.0724492i 0.999344 + 0.0362246i \(0.0115332\pi\)
−0.999344 + 0.0362246i \(0.988467\pi\)
\(524\) 0 0
\(525\) 3.02944i 0.132215i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 54.9411 2.38874
\(530\) 0 0
\(531\) 21.6569i 0.939827i
\(532\) 0 0
\(533\) 2.82843i 0.122513i
\(534\) 0 0
\(535\) −13.3726 −0.578147
\(536\) 0 0
\(537\) −14.3137 −0.617682
\(538\) 0 0
\(539\) − 3.02944i − 0.130487i
\(540\) 0 0
\(541\) 33.4853i 1.43964i 0.694158 + 0.719822i \(0.255777\pi\)
−0.694158 + 0.719822i \(0.744223\pi\)
\(542\) 0 0
\(543\) −10.9706 −0.470792
\(544\) 0 0
\(545\) 3.34315 0.143205
\(546\) 0 0
\(547\) − 39.6274i − 1.69435i −0.531317 0.847173i \(-0.678303\pi\)
0.531317 0.847173i \(-0.321697\pi\)
\(548\) 0 0
\(549\) − 10.3431i − 0.441435i
\(550\) 0 0
\(551\) −35.3137 −1.50441
\(552\) 0 0
\(553\) 6.68629 0.284330
\(554\) 0 0
\(555\) 3.34315i 0.141909i
\(556\) 0 0
\(557\) 23.1421i 0.980564i 0.871564 + 0.490282i \(0.163106\pi\)
−0.871564 + 0.490282i \(0.836894\pi\)
\(558\) 0 0
\(559\) −3.00000 −0.126886
\(560\) 0 0
\(561\) −3.85786 −0.162879
\(562\) 0 0
\(563\) 40.5980i 1.71100i 0.517802 + 0.855500i \(0.326750\pi\)
−0.517802 + 0.855500i \(0.673250\pi\)
\(564\) 0 0
\(565\) − 14.0000i − 0.588984i
\(566\) 0 0
\(567\) −1.82843 −0.0767867
\(568\) 0 0
\(569\) −31.9706 −1.34028 −0.670138 0.742237i \(-0.733765\pi\)
−0.670138 + 0.742237i \(0.733765\pi\)
\(570\) 0 0
\(571\) 11.3431i 0.474696i 0.971425 + 0.237348i \(0.0762781\pi\)
−0.971425 + 0.237348i \(0.923722\pi\)
\(572\) 0 0
\(573\) 8.82843i 0.368813i
\(574\) 0 0
\(575\) −14.6274 −0.610005
\(576\) 0 0
\(577\) −17.4558 −0.726696 −0.363348 0.931653i \(-0.618366\pi\)
−0.363348 + 0.931653i \(0.618366\pi\)
\(578\) 0 0
\(579\) 6.00000i 0.249351i
\(580\) 0 0
\(581\) − 10.9706i − 0.455136i
\(582\) 0 0
\(583\) −7.31371 −0.302903
\(584\) 0 0
\(585\) 3.65685 0.151192
\(586\) 0 0
\(587\) − 37.1127i − 1.53180i −0.642957 0.765902i \(-0.722293\pi\)
0.642957 0.765902i \(-0.277707\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 12.1716 0.500672
\(592\) 0 0
\(593\) 20.1421 0.827138 0.413569 0.910473i \(-0.364282\pi\)
0.413569 + 0.910473i \(0.364282\pi\)
\(594\) 0 0
\(595\) − 15.5685i − 0.638248i
\(596\) 0 0
\(597\) − 10.9706i − 0.448995i
\(598\) 0 0
\(599\) −30.1421 −1.23157 −0.615787 0.787913i \(-0.711162\pi\)
−0.615787 + 0.787913i \(0.711162\pi\)
\(600\) 0 0
\(601\) −24.3137 −0.991777 −0.495888 0.868386i \(-0.665158\pi\)
−0.495888 + 0.868386i \(0.665158\pi\)
\(602\) 0 0
\(603\) − 15.3137i − 0.623622i
\(604\) 0 0
\(605\) − 18.8579i − 0.766681i
\(606\) 0 0
\(607\) 5.17157 0.209908 0.104954 0.994477i \(-0.466531\pi\)
0.104954 + 0.994477i \(0.466531\pi\)
\(608\) 0 0
\(609\) 16.1421 0.654112
\(610\) 0 0
\(611\) − 5.48528i − 0.221911i
\(612\) 0 0
\(613\) − 42.0000i − 1.69636i −0.529705 0.848182i \(-0.677697\pi\)
0.529705 0.848182i \(-0.322303\pi\)
\(614\) 0 0
\(615\) −5.17157 −0.208538
\(616\) 0 0
\(617\) 23.3137 0.938575 0.469287 0.883046i \(-0.344511\pi\)
0.469287 + 0.883046i \(0.344511\pi\)
\(618\) 0 0
\(619\) 10.1421i 0.407647i 0.979008 + 0.203823i \(0.0653368\pi\)
−0.979008 + 0.203823i \(0.934663\pi\)
\(620\) 0 0
\(621\) 44.1421i 1.77136i
\(622\) 0 0
\(623\) −11.5980 −0.464663
\(624\) 0 0
\(625\) −13.9706 −0.558823
\(626\) 0 0
\(627\) − 3.31371i − 0.132337i
\(628\) 0 0
\(629\) 8.51472i 0.339504i
\(630\) 0 0
\(631\) 26.7990 1.06685 0.533425 0.845847i \(-0.320904\pi\)
0.533425 + 0.845847i \(0.320904\pi\)
\(632\) 0 0
\(633\) −12.6569 −0.503065
\(634\) 0 0
\(635\) 2.76955i 0.109906i
\(636\) 0 0
\(637\) − 3.65685i − 0.144890i
\(638\) 0 0
\(639\) −31.6569 −1.25233
\(640\) 0 0
\(641\) 10.9706 0.433311 0.216656 0.976248i \(-0.430485\pi\)
0.216656 + 0.976248i \(0.430485\pi\)
\(642\) 0 0
\(643\) − 3.37258i − 0.133002i −0.997786 0.0665008i \(-0.978816\pi\)
0.997786 0.0665008i \(-0.0211835\pi\)
\(644\) 0 0
\(645\) − 5.48528i − 0.215983i
\(646\) 0 0
\(647\) 22.8284 0.897478 0.448739 0.893663i \(-0.351873\pi\)
0.448739 + 0.893663i \(0.351873\pi\)
\(648\) 0 0
\(649\) −8.97056 −0.352125
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.31371i 0.286208i 0.989708 + 0.143104i \(0.0457083\pi\)
−0.989708 + 0.143104i \(0.954292\pi\)
\(654\) 0 0
\(655\) −15.8284 −0.618468
\(656\) 0 0
\(657\) −21.6569 −0.844914
\(658\) 0 0
\(659\) 28.9706i 1.12853i 0.825593 + 0.564266i \(0.190841\pi\)
−0.825593 + 0.564266i \(0.809159\pi\)
\(660\) 0 0
\(661\) − 21.3137i − 0.829007i −0.910048 0.414504i \(-0.863955\pi\)
0.910048 0.414504i \(-0.136045\pi\)
\(662\) 0 0
\(663\) −4.65685 −0.180857
\(664\) 0 0
\(665\) 13.3726 0.518567
\(666\) 0 0
\(667\) 77.9411i 3.01789i
\(668\) 0 0
\(669\) − 15.8284i − 0.611962i
\(670\) 0 0
\(671\) 4.28427 0.165392
\(672\) 0 0
\(673\) −10.3137 −0.397564 −0.198782 0.980044i \(-0.563699\pi\)
−0.198782 + 0.980044i \(0.563699\pi\)
\(674\) 0 0
\(675\) − 8.28427i − 0.318862i
\(676\) 0 0
\(677\) − 6.68629i − 0.256975i −0.991711 0.128488i \(-0.958988\pi\)
0.991711 0.128488i \(-0.0410122\pi\)
\(678\) 0 0
\(679\) −4.54416 −0.174389
\(680\) 0 0
\(681\) 14.8284 0.568227
\(682\) 0 0
\(683\) 28.3431i 1.08452i 0.840211 + 0.542260i \(0.182431\pi\)
−0.840211 + 0.542260i \(0.817569\pi\)
\(684\) 0 0
\(685\) 14.8873i 0.568815i
\(686\) 0 0
\(687\) −15.8284 −0.603892
\(688\) 0 0
\(689\) −8.82843 −0.336336
\(690\) 0 0
\(691\) − 40.9706i − 1.55859i −0.626655 0.779297i \(-0.715576\pi\)
0.626655 0.779297i \(-0.284424\pi\)
\(692\) 0 0
\(693\) − 3.02944i − 0.115079i
\(694\) 0 0
\(695\) −13.4264 −0.509293
\(696\) 0 0
\(697\) −13.1716 −0.498909
\(698\) 0 0
\(699\) − 2.31371i − 0.0875125i
\(700\) 0 0
\(701\) − 16.1421i − 0.609680i −0.952404 0.304840i \(-0.901397\pi\)
0.952404 0.304840i \(-0.0986030\pi\)
\(702\) 0 0
\(703\) −7.31371 −0.275842
\(704\) 0 0
\(705\) 10.0294 0.377730
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 3.65685i − 0.137336i −0.997640 0.0686680i \(-0.978125\pi\)
0.997640 0.0686680i \(-0.0218749\pi\)
\(710\) 0 0
\(711\) −7.31371 −0.274285
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 1.51472i 0.0566473i
\(716\) 0 0
\(717\) − 9.14214i − 0.341419i
\(718\) 0 0
\(719\) −10.9706 −0.409133 −0.204566 0.978853i \(-0.565578\pi\)
−0.204566 + 0.978853i \(0.565578\pi\)
\(720\) 0 0
\(721\) 25.5980 0.953319
\(722\) 0 0
\(723\) 19.3137i 0.718285i
\(724\) 0 0
\(725\) − 14.6274i − 0.543249i
\(726\) 0 0
\(727\) −1.51472 −0.0561778 −0.0280889 0.999605i \(-0.508942\pi\)
−0.0280889 + 0.999605i \(0.508942\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) − 13.9706i − 0.516720i
\(732\) 0 0
\(733\) 37.7696i 1.39505i 0.716560 + 0.697525i \(0.245715\pi\)
−0.716560 + 0.697525i \(0.754285\pi\)
\(734\) 0 0
\(735\) 6.68629 0.246628
\(736\) 0 0
\(737\) 6.34315 0.233653
\(738\) 0 0
\(739\) 48.4853i 1.78356i 0.452469 + 0.891780i \(0.350543\pi\)
−0.452469 + 0.891780i \(0.649457\pi\)
\(740\) 0 0
\(741\) − 4.00000i − 0.146944i
\(742\) 0 0
\(743\) 1.20101 0.0440608 0.0220304 0.999757i \(-0.492987\pi\)
0.0220304 + 0.999757i \(0.492987\pi\)
\(744\) 0 0
\(745\) 38.9706 1.42777
\(746\) 0 0
\(747\) 12.0000i 0.439057i
\(748\) 0 0
\(749\) 13.3726i 0.488624i
\(750\) 0 0
\(751\) 40.4853 1.47733 0.738664 0.674073i \(-0.235457\pi\)
0.738664 + 0.674073i \(0.235457\pi\)
\(752\) 0 0
\(753\) 18.6274 0.678821
\(754\) 0 0
\(755\) − 35.6274i − 1.29661i
\(756\) 0 0
\(757\) 36.8284i 1.33855i 0.743014 + 0.669276i \(0.233396\pi\)
−0.743014 + 0.669276i \(0.766604\pi\)
\(758\) 0 0
\(759\) −7.31371 −0.265471
\(760\) 0 0
\(761\) 38.8284 1.40753 0.703765 0.710433i \(-0.251501\pi\)
0.703765 + 0.710433i \(0.251501\pi\)
\(762\) 0 0
\(763\) − 3.34315i − 0.121030i
\(764\) 0 0
\(765\) 17.0294i 0.615701i
\(766\) 0 0
\(767\) −10.8284 −0.390992
\(768\) 0 0
\(769\) −2.34315 −0.0844960 −0.0422480 0.999107i \(-0.513452\pi\)
−0.0422480 + 0.999107i \(0.513452\pi\)
\(770\) 0 0
\(771\) 12.6569i 0.455825i
\(772\) 0 0
\(773\) 12.7990i 0.460348i 0.973150 + 0.230174i \(0.0739295\pi\)
−0.973150 + 0.230174i \(0.926071\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.34315 0.119935
\(778\) 0 0
\(779\) − 11.3137i − 0.405356i
\(780\) 0 0
\(781\) − 13.1127i − 0.469209i
\(782\) 0 0
\(783\) −44.1421 −1.57751
\(784\) 0 0
\(785\) −22.8284 −0.814782
\(786\) 0 0
\(787\) − 28.4853i − 1.01539i −0.861537 0.507695i \(-0.830498\pi\)
0.861537 0.507695i \(-0.169502\pi\)
\(788\) 0 0
\(789\) 2.14214i 0.0762620i
\(790\) 0 0
\(791\) −14.0000 −0.497783
\(792\) 0 0
\(793\) 5.17157 0.183648
\(794\) 0 0
\(795\) − 16.1421i − 0.572503i
\(796\) 0 0
\(797\) − 45.6569i − 1.61725i −0.588325 0.808624i \(-0.700213\pi\)
0.588325 0.808624i \(-0.299787\pi\)
\(798\) 0 0
\(799\) 25.5442 0.903687
\(800\) 0 0
\(801\) 12.6863 0.448248
\(802\) 0 0
\(803\) − 8.97056i − 0.316564i
\(804\) 0 0
\(805\) − 29.5147i − 1.04026i
\(806\) 0 0
\(807\) −19.7990 −0.696957
\(808\) 0 0
\(809\) −27.0000 −0.949269 −0.474635 0.880183i \(-0.657420\pi\)
−0.474635 + 0.880183i \(0.657420\pi\)
\(810\) 0 0
\(811\) 4.97056i 0.174540i 0.996185 + 0.0872700i \(0.0278143\pi\)
−0.996185 + 0.0872700i \(0.972186\pi\)
\(812\) 0 0
\(813\) − 19.4853i − 0.683379i
\(814\) 0 0
\(815\) −13.1127 −0.459318
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) 0 0
\(819\) − 3.65685i − 0.127781i
\(820\) 0 0
\(821\) 5.48528i 0.191438i 0.995408 + 0.0957188i \(0.0305150\pi\)
−0.995408 + 0.0957188i \(0.969485\pi\)
\(822\) 0 0
\(823\) −44.7696 −1.56057 −0.780284 0.625425i \(-0.784926\pi\)
−0.780284 + 0.625425i \(0.784926\pi\)
\(824\) 0 0
\(825\) 1.37258 0.0477872
\(826\) 0 0
\(827\) 14.6274i 0.508645i 0.967119 + 0.254323i \(0.0818525\pi\)
−0.967119 + 0.254323i \(0.918148\pi\)
\(828\) 0 0
\(829\) − 10.9706i − 0.381023i −0.981685 0.190512i \(-0.938985\pi\)
0.981685 0.190512i \(-0.0610147\pi\)
\(830\) 0 0
\(831\) 12.4853 0.433110
\(832\) 0 0
\(833\) 17.0294 0.590035
\(834\) 0 0
\(835\) − 18.9117i − 0.654466i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −35.3137 −1.21916 −0.609582 0.792723i \(-0.708663\pi\)
−0.609582 + 0.792723i \(0.708663\pi\)
\(840\) 0 0
\(841\) −48.9411 −1.68763
\(842\) 0 0
\(843\) 28.9706i 0.997799i
\(844\) 0 0
\(845\) 1.82843i 0.0628998i
\(846\) 0 0
\(847\) −18.8579 −0.647964
\(848\) 0 0
\(849\) −30.6274 −1.05113
\(850\) 0 0
\(851\) 16.1421i 0.553345i
\(852\) 0 0
\(853\) − 37.7696i − 1.29320i −0.762827 0.646602i \(-0.776189\pi\)
0.762827 0.646602i \(-0.223811\pi\)
\(854\) 0 0
\(855\) −14.6274 −0.500247
\(856\) 0 0
\(857\) −18.6863 −0.638312 −0.319156 0.947702i \(-0.603399\pi\)
−0.319156 + 0.947702i \(0.603399\pi\)
\(858\) 0 0
\(859\) − 28.9706i − 0.988463i −0.869330 0.494231i \(-0.835450\pi\)
0.869330 0.494231i \(-0.164550\pi\)
\(860\) 0 0
\(861\) 5.17157i 0.176247i
\(862\) 0 0
\(863\) −48.1127 −1.63778 −0.818888 0.573954i \(-0.805409\pi\)
−0.818888 + 0.573954i \(0.805409\pi\)
\(864\) 0 0
\(865\) −20.0589 −0.682022
\(866\) 0 0
\(867\) − 4.68629i − 0.159155i
\(868\) 0 0
\(869\) − 3.02944i − 0.102767i
\(870\) 0 0
\(871\) 7.65685 0.259443
\(872\) 0 0
\(873\) 4.97056 0.168228
\(874\) 0 0
\(875\) 22.2548i 0.752351i
\(876\) 0 0
\(877\) 33.4853i 1.13072i 0.824845 + 0.565359i \(0.191262\pi\)
−0.824845 + 0.565359i \(0.808738\pi\)
\(878\) 0 0
\(879\) −26.7990 −0.903907
\(880\) 0 0
\(881\) 17.6863 0.595866 0.297933 0.954587i \(-0.403703\pi\)
0.297933 + 0.954587i \(0.403703\pi\)
\(882\) 0 0
\(883\) 31.9706i 1.07590i 0.842978 + 0.537948i \(0.180800\pi\)
−0.842978 + 0.537948i \(0.819200\pi\)
\(884\) 0 0
\(885\) − 19.7990i − 0.665536i
\(886\) 0 0
\(887\) 2.14214 0.0719259 0.0359629 0.999353i \(-0.488550\pi\)
0.0359629 + 0.999353i \(0.488550\pi\)
\(888\) 0 0
\(889\) 2.76955 0.0928878
\(890\) 0 0
\(891\) 0.828427i 0.0277534i
\(892\) 0 0
\(893\) 21.9411i 0.734232i
\(894\) 0 0
\(895\) −26.1716 −0.874819
\(896\) 0 0
\(897\) −8.82843 −0.294773
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) − 41.1127i − 1.36966i
\(902\) 0 0
\(903\) −5.48528 −0.182539
\(904\) 0 0
\(905\) −20.0589 −0.666780
\(906\) 0 0
\(907\) − 42.9411i − 1.42584i −0.701247 0.712918i \(-0.747373\pi\)
0.701247 0.712918i \(-0.252627\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.54416 −0.150555 −0.0752773 0.997163i \(-0.523984\pi\)
−0.0752773 + 0.997163i \(0.523984\pi\)
\(912\) 0 0
\(913\) −4.97056 −0.164502
\(914\) 0 0
\(915\) 9.45584i 0.312601i
\(916\) 0 0
\(917\) 15.8284i 0.522701i
\(918\) 0 0
\(919\) −7.31371 −0.241257 −0.120628 0.992698i \(-0.538491\pi\)
−0.120628 + 0.992698i \(0.538491\pi\)
\(920\) 0 0
\(921\) 18.8284 0.620418
\(922\) 0 0
\(923\) − 15.8284i − 0.520999i
\(924\) 0 0
\(925\) − 3.02944i − 0.0996073i
\(926\) 0 0
\(927\) −28.0000 −0.919641
\(928\) 0 0
\(929\) −51.3137 −1.68355 −0.841774 0.539830i \(-0.818489\pi\)
−0.841774 + 0.539830i \(0.818489\pi\)
\(930\) 0 0
\(931\) 14.6274i 0.479394i
\(932\) 0 0
\(933\) − 32.2843i − 1.05694i
\(934\) 0 0
\(935\) −7.05382 −0.230685
\(936\) 0 0
\(937\) 4.34315 0.141884 0.0709422 0.997480i \(-0.477399\pi\)
0.0709422 + 0.997480i \(0.477399\pi\)
\(938\) 0 0
\(939\) − 13.9706i − 0.455912i
\(940\) 0 0
\(941\) 1.20101i 0.0391518i 0.999808 + 0.0195759i \(0.00623160\pi\)
−0.999808 + 0.0195759i \(0.993768\pi\)
\(942\) 0 0
\(943\) −24.9706 −0.813153
\(944\) 0 0
\(945\) 16.7157 0.543763
\(946\) 0 0
\(947\) 25.1127i 0.816053i 0.912970 + 0.408027i \(0.133783\pi\)
−0.912970 + 0.408027i \(0.866217\pi\)
\(948\) 0 0
\(949\) − 10.8284i − 0.351506i
\(950\) 0 0
\(951\) −6.68629 −0.216818
\(952\) 0 0
\(953\) 28.3137 0.917171 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(954\) 0 0
\(955\) 16.1421i 0.522347i
\(956\) 0 0
\(957\) − 7.31371i − 0.236419i
\(958\) 0 0
\(959\) 14.8873 0.480736
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) − 14.6274i − 0.471362i
\(964\) 0 0
\(965\) 10.9706i 0.353155i
\(966\) 0 0
\(967\) 54.7990 1.76222 0.881108 0.472914i \(-0.156798\pi\)
0.881108 + 0.472914i \(0.156798\pi\)
\(968\) 0 0
\(969\) 18.6274 0.598399
\(970\) 0 0
\(971\) − 42.5980i − 1.36703i −0.729934 0.683517i \(-0.760449\pi\)
0.729934 0.683517i \(-0.239551\pi\)
\(972\) 0 0
\(973\) 13.4264i 0.430431i
\(974\) 0 0
\(975\) 1.65685 0.0530618
\(976\) 0 0
\(977\) −54.2843 −1.73671 −0.868354 0.495945i \(-0.834822\pi\)
−0.868354 + 0.495945i \(0.834822\pi\)
\(978\) 0 0
\(979\) 5.25483i 0.167945i
\(980\) 0 0
\(981\) 3.65685i 0.116754i
\(982\) 0 0
\(983\) −51.7696 −1.65119 −0.825596 0.564261i \(-0.809161\pi\)
−0.825596 + 0.564261i \(0.809161\pi\)
\(984\) 0 0
\(985\) 22.2548 0.709098
\(986\) 0 0
\(987\) − 10.0294i − 0.319241i
\(988\) 0 0
\(989\) − 26.4853i − 0.842183i
\(990\) 0 0
\(991\) −52.9706 −1.68267 −0.841333 0.540518i \(-0.818228\pi\)
−0.841333 + 0.540518i \(0.818228\pi\)
\(992\) 0 0
\(993\) 22.9706 0.728949
\(994\) 0 0
\(995\) − 20.0589i − 0.635909i
\(996\) 0 0
\(997\) − 23.4558i − 0.742854i −0.928462 0.371427i \(-0.878869\pi\)
0.928462 0.371427i \(-0.121131\pi\)
\(998\) 0 0
\(999\) −9.14214 −0.289244
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1664.2.b.i.833.1 yes 4
4.3 odd 2 1664.2.b.e.833.3 yes 4
8.3 odd 2 1664.2.b.e.833.2 4
8.5 even 2 inner 1664.2.b.i.833.4 yes 4
16.3 odd 4 3328.2.a.r.1.1 2
16.5 even 4 3328.2.a.o.1.2 2
16.11 odd 4 3328.2.a.z.1.2 2
16.13 even 4 3328.2.a.ba.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1664.2.b.e.833.2 4 8.3 odd 2
1664.2.b.e.833.3 yes 4 4.3 odd 2
1664.2.b.i.833.1 yes 4 1.1 even 1 trivial
1664.2.b.i.833.4 yes 4 8.5 even 2 inner
3328.2.a.o.1.2 2 16.5 even 4
3328.2.a.r.1.1 2 16.3 odd 4
3328.2.a.z.1.2 2 16.11 odd 4
3328.2.a.ba.1.1 2 16.13 even 4