Properties

Label 1664.2.b.f.833.4
Level $1664$
Weight $2$
Character 1664.833
Analytic conductor $13.287$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1664,2,Mod(833,1664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1664.833"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1664 = 2^{7} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1664.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2871068963\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 833.4
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1664.833
Dual form 1664.2.b.f.833.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843i q^{3} +2.00000i q^{5} +4.24264 q^{7} -5.00000 q^{9} -1.41421i q^{11} +1.00000i q^{13} -5.65685 q^{15} -4.00000 q^{17} +1.41421i q^{19} +12.0000i q^{21} -5.65685 q^{23} +1.00000 q^{25} -5.65685i q^{27} +2.00000i q^{29} -9.89949 q^{31} +4.00000 q^{33} +8.48528i q^{35} +2.00000i q^{37} -2.82843 q^{39} +6.00000 q^{41} +11.3137i q^{43} -10.0000i q^{45} -7.07107 q^{47} +11.0000 q^{49} -11.3137i q^{51} +12.0000i q^{53} +2.82843 q^{55} -4.00000 q^{57} -9.89949i q^{59} +12.0000i q^{61} -21.2132 q^{63} -2.00000 q^{65} -9.89949i q^{67} -16.0000i q^{69} +4.24264 q^{71} +14.0000 q^{73} +2.82843i q^{75} -6.00000i q^{77} +8.48528 q^{79} +1.00000 q^{81} -7.07107i q^{83} -8.00000i q^{85} -5.65685 q^{87} -14.0000 q^{89} +4.24264i q^{91} -28.0000i q^{93} -2.82843 q^{95} -2.00000 q^{97} +7.07107i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{9} - 16 q^{17} + 4 q^{25} + 16 q^{33} + 24 q^{41} + 44 q^{49} - 16 q^{57} - 8 q^{65} + 56 q^{73} + 4 q^{81} - 56 q^{89} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1664\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.82843i 1.63299i 0.577350 + 0.816497i \(0.304087\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0 0
\(5\) 2.00000i 0.894427i 0.894427 + 0.447214i \(0.147584\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 4.24264 1.60357 0.801784 0.597614i \(-0.203885\pi\)
0.801784 + 0.597614i \(0.203885\pi\)
\(8\) 0 0
\(9\) −5.00000 −1.66667
\(10\) 0 0
\(11\) − 1.41421i − 0.426401i −0.977008 0.213201i \(-0.931611\pi\)
0.977008 0.213201i \(-0.0683888\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −5.65685 −1.46059
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 1.41421i 0.324443i 0.986754 + 0.162221i \(0.0518659\pi\)
−0.986754 + 0.162221i \(0.948134\pi\)
\(20\) 0 0
\(21\) 12.0000i 2.61861i
\(22\) 0 0
\(23\) −5.65685 −1.17954 −0.589768 0.807573i \(-0.700781\pi\)
−0.589768 + 0.807573i \(0.700781\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) − 5.65685i − 1.08866i
\(28\) 0 0
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) −9.89949 −1.77800 −0.889001 0.457905i \(-0.848600\pi\)
−0.889001 + 0.457905i \(0.848600\pi\)
\(32\) 0 0
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) 8.48528i 1.43427i
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) −2.82843 −0.452911
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 11.3137i 1.72532i 0.505781 + 0.862662i \(0.331205\pi\)
−0.505781 + 0.862662i \(0.668795\pi\)
\(44\) 0 0
\(45\) − 10.0000i − 1.49071i
\(46\) 0 0
\(47\) −7.07107 −1.03142 −0.515711 0.856763i \(-0.672472\pi\)
−0.515711 + 0.856763i \(0.672472\pi\)
\(48\) 0 0
\(49\) 11.0000 1.57143
\(50\) 0 0
\(51\) − 11.3137i − 1.58424i
\(52\) 0 0
\(53\) 12.0000i 1.64833i 0.566352 + 0.824163i \(0.308354\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(54\) 0 0
\(55\) 2.82843 0.381385
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) − 9.89949i − 1.28880i −0.764687 0.644402i \(-0.777106\pi\)
0.764687 0.644402i \(-0.222894\pi\)
\(60\) 0 0
\(61\) 12.0000i 1.53644i 0.640184 + 0.768221i \(0.278858\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) −21.2132 −2.67261
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) − 9.89949i − 1.20942i −0.796447 0.604708i \(-0.793290\pi\)
0.796447 0.604708i \(-0.206710\pi\)
\(68\) 0 0
\(69\) − 16.0000i − 1.92617i
\(70\) 0 0
\(71\) 4.24264 0.503509 0.251754 0.967791i \(-0.418992\pi\)
0.251754 + 0.967791i \(0.418992\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 0 0
\(75\) 2.82843i 0.326599i
\(76\) 0 0
\(77\) − 6.00000i − 0.683763i
\(78\) 0 0
\(79\) 8.48528 0.954669 0.477334 0.878722i \(-0.341603\pi\)
0.477334 + 0.878722i \(0.341603\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 7.07107i − 0.776151i −0.921628 0.388075i \(-0.873140\pi\)
0.921628 0.388075i \(-0.126860\pi\)
\(84\) 0 0
\(85\) − 8.00000i − 0.867722i
\(86\) 0 0
\(87\) −5.65685 −0.606478
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 4.24264i 0.444750i
\(92\) 0 0
\(93\) − 28.0000i − 2.90346i
\(94\) 0 0
\(95\) −2.82843 −0.290191
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 7.07107i 0.710669i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) −24.0000 −2.34216
\(106\) 0 0
\(107\) − 2.82843i − 0.273434i −0.990610 0.136717i \(-0.956345\pi\)
0.990610 0.136717i \(-0.0436552\pi\)
\(108\) 0 0
\(109\) − 2.00000i − 0.191565i −0.995402 0.0957826i \(-0.969465\pi\)
0.995402 0.0957826i \(-0.0305354\pi\)
\(110\) 0 0
\(111\) −5.65685 −0.536925
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) − 11.3137i − 1.05501i
\(116\) 0 0
\(117\) − 5.00000i − 0.462250i
\(118\) 0 0
\(119\) −16.9706 −1.55569
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 16.9706i 1.53018i
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) 16.9706 1.50589 0.752947 0.658081i \(-0.228632\pi\)
0.752947 + 0.658081i \(0.228632\pi\)
\(128\) 0 0
\(129\) −32.0000 −2.81744
\(130\) 0 0
\(131\) 2.82843i 0.247121i 0.992337 + 0.123560i \(0.0394313\pi\)
−0.992337 + 0.123560i \(0.960569\pi\)
\(132\) 0 0
\(133\) 6.00000i 0.520266i
\(134\) 0 0
\(135\) 11.3137 0.973729
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) 2.82843i 0.239904i 0.992780 + 0.119952i \(0.0382741\pi\)
−0.992780 + 0.119952i \(0.961726\pi\)
\(140\) 0 0
\(141\) − 20.0000i − 1.68430i
\(142\) 0 0
\(143\) 1.41421 0.118262
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 0 0
\(147\) 31.1127i 2.56613i
\(148\) 0 0
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 0 0
\(151\) −12.7279 −1.03578 −0.517892 0.855446i \(-0.673283\pi\)
−0.517892 + 0.855446i \(0.673283\pi\)
\(152\) 0 0
\(153\) 20.0000 1.61690
\(154\) 0 0
\(155\) − 19.7990i − 1.59029i
\(156\) 0 0
\(157\) − 22.0000i − 1.75579i −0.478852 0.877896i \(-0.658947\pi\)
0.478852 0.877896i \(-0.341053\pi\)
\(158\) 0 0
\(159\) −33.9411 −2.69171
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) 1.41421i 0.110770i 0.998465 + 0.0553849i \(0.0176386\pi\)
−0.998465 + 0.0553849i \(0.982361\pi\)
\(164\) 0 0
\(165\) 8.00000i 0.622799i
\(166\) 0 0
\(167\) 18.3848 1.42266 0.711328 0.702860i \(-0.248094\pi\)
0.711328 + 0.702860i \(0.248094\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) − 7.07107i − 0.540738i
\(172\) 0 0
\(173\) − 16.0000i − 1.21646i −0.793762 0.608229i \(-0.791880\pi\)
0.793762 0.608229i \(-0.208120\pi\)
\(174\) 0 0
\(175\) 4.24264 0.320713
\(176\) 0 0
\(177\) 28.0000 2.10461
\(178\) 0 0
\(179\) − 22.6274i − 1.69125i −0.533775 0.845626i \(-0.679227\pi\)
0.533775 0.845626i \(-0.320773\pi\)
\(180\) 0 0
\(181\) 26.0000i 1.93256i 0.257485 + 0.966282i \(0.417106\pi\)
−0.257485 + 0.966282i \(0.582894\pi\)
\(182\) 0 0
\(183\) −33.9411 −2.50900
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 5.65685i 0.413670i
\(188\) 0 0
\(189\) − 24.0000i − 1.74574i
\(190\) 0 0
\(191\) 14.1421 1.02329 0.511645 0.859197i \(-0.329036\pi\)
0.511645 + 0.859197i \(0.329036\pi\)
\(192\) 0 0
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) 0 0
\(195\) − 5.65685i − 0.405096i
\(196\) 0 0
\(197\) 2.00000i 0.142494i 0.997459 + 0.0712470i \(0.0226979\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 0 0
\(199\) −5.65685 −0.401004 −0.200502 0.979693i \(-0.564257\pi\)
−0.200502 + 0.979693i \(0.564257\pi\)
\(200\) 0 0
\(201\) 28.0000 1.97497
\(202\) 0 0
\(203\) 8.48528i 0.595550i
\(204\) 0 0
\(205\) 12.0000i 0.838116i
\(206\) 0 0
\(207\) 28.2843 1.96589
\(208\) 0 0
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 14.1421i 0.973585i 0.873518 + 0.486792i \(0.161833\pi\)
−0.873518 + 0.486792i \(0.838167\pi\)
\(212\) 0 0
\(213\) 12.0000i 0.822226i
\(214\) 0 0
\(215\) −22.6274 −1.54318
\(216\) 0 0
\(217\) −42.0000 −2.85115
\(218\) 0 0
\(219\) 39.5980i 2.67578i
\(220\) 0 0
\(221\) − 4.00000i − 0.269069i
\(222\) 0 0
\(223\) 15.5563 1.04173 0.520865 0.853639i \(-0.325609\pi\)
0.520865 + 0.853639i \(0.325609\pi\)
\(224\) 0 0
\(225\) −5.00000 −0.333333
\(226\) 0 0
\(227\) 18.3848i 1.22024i 0.792309 + 0.610120i \(0.208879\pi\)
−0.792309 + 0.610120i \(0.791121\pi\)
\(228\) 0 0
\(229\) 2.00000i 0.132164i 0.997814 + 0.0660819i \(0.0210498\pi\)
−0.997814 + 0.0660819i \(0.978950\pi\)
\(230\) 0 0
\(231\) 16.9706 1.11658
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) − 14.1421i − 0.922531i
\(236\) 0 0
\(237\) 24.0000i 1.55897i
\(238\) 0 0
\(239\) −1.41421 −0.0914779 −0.0457389 0.998953i \(-0.514564\pi\)
−0.0457389 + 0.998953i \(0.514564\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) − 14.1421i − 0.907218i
\(244\) 0 0
\(245\) 22.0000i 1.40553i
\(246\) 0 0
\(247\) −1.41421 −0.0899843
\(248\) 0 0
\(249\) 20.0000 1.26745
\(250\) 0 0
\(251\) − 5.65685i − 0.357057i −0.983935 0.178529i \(-0.942866\pi\)
0.983935 0.178529i \(-0.0571337\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 0 0
\(255\) 22.6274 1.41698
\(256\) 0 0
\(257\) 30.0000 1.87135 0.935674 0.352865i \(-0.114792\pi\)
0.935674 + 0.352865i \(0.114792\pi\)
\(258\) 0 0
\(259\) 8.48528i 0.527250i
\(260\) 0 0
\(261\) − 10.0000i − 0.618984i
\(262\) 0 0
\(263\) −8.48528 −0.523225 −0.261612 0.965173i \(-0.584254\pi\)
−0.261612 + 0.965173i \(0.584254\pi\)
\(264\) 0 0
\(265\) −24.0000 −1.47431
\(266\) 0 0
\(267\) − 39.5980i − 2.42336i
\(268\) 0 0
\(269\) 14.0000i 0.853595i 0.904347 + 0.426798i \(0.140358\pi\)
−0.904347 + 0.426798i \(0.859642\pi\)
\(270\) 0 0
\(271\) 26.8701 1.63224 0.816120 0.577883i \(-0.196121\pi\)
0.816120 + 0.577883i \(0.196121\pi\)
\(272\) 0 0
\(273\) −12.0000 −0.726273
\(274\) 0 0
\(275\) − 1.41421i − 0.0852803i
\(276\) 0 0
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 0 0
\(279\) 49.4975 2.96334
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) − 8.00000i − 0.473879i
\(286\) 0 0
\(287\) 25.4558 1.50261
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) − 5.65685i − 0.331611i
\(292\) 0 0
\(293\) 14.0000i 0.817889i 0.912559 + 0.408944i \(0.134103\pi\)
−0.912559 + 0.408944i \(0.865897\pi\)
\(294\) 0 0
\(295\) 19.7990 1.15274
\(296\) 0 0
\(297\) −8.00000 −0.464207
\(298\) 0 0
\(299\) − 5.65685i − 0.327144i
\(300\) 0 0
\(301\) 48.0000i 2.76667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −24.0000 −1.37424
\(306\) 0 0
\(307\) 7.07107i 0.403567i 0.979430 + 0.201784i \(0.0646738\pi\)
−0.979430 + 0.201784i \(0.935326\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −22.6274 −1.28308 −0.641542 0.767088i \(-0.721705\pi\)
−0.641542 + 0.767088i \(0.721705\pi\)
\(312\) 0 0
\(313\) −16.0000 −0.904373 −0.452187 0.891923i \(-0.649356\pi\)
−0.452187 + 0.891923i \(0.649356\pi\)
\(314\) 0 0
\(315\) − 42.4264i − 2.39046i
\(316\) 0 0
\(317\) − 22.0000i − 1.23564i −0.786318 0.617822i \(-0.788015\pi\)
0.786318 0.617822i \(-0.211985\pi\)
\(318\) 0 0
\(319\) 2.82843 0.158362
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) − 5.65685i − 0.314756i
\(324\) 0 0
\(325\) 1.00000i 0.0554700i
\(326\) 0 0
\(327\) 5.65685 0.312825
\(328\) 0 0
\(329\) −30.0000 −1.65395
\(330\) 0 0
\(331\) − 9.89949i − 0.544125i −0.962280 0.272063i \(-0.912294\pi\)
0.962280 0.272063i \(-0.0877058\pi\)
\(332\) 0 0
\(333\) − 10.0000i − 0.547997i
\(334\) 0 0
\(335\) 19.7990 1.08173
\(336\) 0 0
\(337\) −12.0000 −0.653682 −0.326841 0.945079i \(-0.605984\pi\)
−0.326841 + 0.945079i \(0.605984\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 14.0000i 0.758143i
\(342\) 0 0
\(343\) 16.9706 0.916324
\(344\) 0 0
\(345\) 32.0000 1.72282
\(346\) 0 0
\(347\) − 2.82843i − 0.151838i −0.997114 0.0759190i \(-0.975811\pi\)
0.997114 0.0759190i \(-0.0241890\pi\)
\(348\) 0 0
\(349\) 22.0000i 1.17763i 0.808267 + 0.588817i \(0.200406\pi\)
−0.808267 + 0.588817i \(0.799594\pi\)
\(350\) 0 0
\(351\) 5.65685 0.301941
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) 8.48528i 0.450352i
\(356\) 0 0
\(357\) − 48.0000i − 2.54043i
\(358\) 0 0
\(359\) −18.3848 −0.970311 −0.485156 0.874428i \(-0.661237\pi\)
−0.485156 + 0.874428i \(0.661237\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 25.4558i 1.33609i
\(364\) 0 0
\(365\) 28.0000i 1.46559i
\(366\) 0 0
\(367\) 8.48528 0.442928 0.221464 0.975169i \(-0.428916\pi\)
0.221464 + 0.975169i \(0.428916\pi\)
\(368\) 0 0
\(369\) −30.0000 −1.56174
\(370\) 0 0
\(371\) 50.9117i 2.64320i
\(372\) 0 0
\(373\) 2.00000i 0.103556i 0.998659 + 0.0517780i \(0.0164888\pi\)
−0.998659 + 0.0517780i \(0.983511\pi\)
\(374\) 0 0
\(375\) −33.9411 −1.75271
\(376\) 0 0
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) − 9.89949i − 0.508503i −0.967138 0.254251i \(-0.918171\pi\)
0.967138 0.254251i \(-0.0818291\pi\)
\(380\) 0 0
\(381\) 48.0000i 2.45911i
\(382\) 0 0
\(383\) −24.0416 −1.22847 −0.614235 0.789123i \(-0.710535\pi\)
−0.614235 + 0.789123i \(0.710535\pi\)
\(384\) 0 0
\(385\) 12.0000 0.611577
\(386\) 0 0
\(387\) − 56.5685i − 2.87554i
\(388\) 0 0
\(389\) 10.0000i 0.507020i 0.967333 + 0.253510i \(0.0815851\pi\)
−0.967333 + 0.253510i \(0.918415\pi\)
\(390\) 0 0
\(391\) 22.6274 1.14432
\(392\) 0 0
\(393\) −8.00000 −0.403547
\(394\) 0 0
\(395\) 16.9706i 0.853882i
\(396\) 0 0
\(397\) − 22.0000i − 1.10415i −0.833795 0.552074i \(-0.813837\pi\)
0.833795 0.552074i \(-0.186163\pi\)
\(398\) 0 0
\(399\) −16.9706 −0.849591
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) − 9.89949i − 0.493129i
\(404\) 0 0
\(405\) 2.00000i 0.0993808i
\(406\) 0 0
\(407\) 2.82843 0.140200
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) 50.9117i 2.51129i
\(412\) 0 0
\(413\) − 42.0000i − 2.06668i
\(414\) 0 0
\(415\) 14.1421 0.694210
\(416\) 0 0
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) − 14.1421i − 0.690889i −0.938439 0.345444i \(-0.887728\pi\)
0.938439 0.345444i \(-0.112272\pi\)
\(420\) 0 0
\(421\) − 18.0000i − 0.877266i −0.898666 0.438633i \(-0.855463\pi\)
0.898666 0.438633i \(-0.144537\pi\)
\(422\) 0 0
\(423\) 35.3553 1.71904
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) 50.9117i 2.46379i
\(428\) 0 0
\(429\) 4.00000i 0.193122i
\(430\) 0 0
\(431\) −15.5563 −0.749323 −0.374661 0.927162i \(-0.622241\pi\)
−0.374661 + 0.927162i \(0.622241\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) 0 0
\(435\) − 11.3137i − 0.542451i
\(436\) 0 0
\(437\) − 8.00000i − 0.382692i
\(438\) 0 0
\(439\) 16.9706 0.809961 0.404980 0.914325i \(-0.367278\pi\)
0.404980 + 0.914325i \(0.367278\pi\)
\(440\) 0 0
\(441\) −55.0000 −2.61905
\(442\) 0 0
\(443\) − 19.7990i − 0.940678i −0.882486 0.470339i \(-0.844132\pi\)
0.882486 0.470339i \(-0.155868\pi\)
\(444\) 0 0
\(445\) − 28.0000i − 1.32733i
\(446\) 0 0
\(447\) −16.9706 −0.802680
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) − 8.48528i − 0.399556i
\(452\) 0 0
\(453\) − 36.0000i − 1.69143i
\(454\) 0 0
\(455\) −8.48528 −0.397796
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 0 0
\(459\) 22.6274i 1.05616i
\(460\) 0 0
\(461\) 34.0000i 1.58354i 0.610821 + 0.791769i \(0.290840\pi\)
−0.610821 + 0.791769i \(0.709160\pi\)
\(462\) 0 0
\(463\) 9.89949 0.460069 0.230034 0.973183i \(-0.426116\pi\)
0.230034 + 0.973183i \(0.426116\pi\)
\(464\) 0 0
\(465\) 56.0000 2.59694
\(466\) 0 0
\(467\) 16.9706i 0.785304i 0.919687 + 0.392652i \(0.128442\pi\)
−0.919687 + 0.392652i \(0.871558\pi\)
\(468\) 0 0
\(469\) − 42.0000i − 1.93938i
\(470\) 0 0
\(471\) 62.2254 2.86719
\(472\) 0 0
\(473\) 16.0000 0.735681
\(474\) 0 0
\(475\) 1.41421i 0.0648886i
\(476\) 0 0
\(477\) − 60.0000i − 2.74721i
\(478\) 0 0
\(479\) −21.2132 −0.969256 −0.484628 0.874720i \(-0.661045\pi\)
−0.484628 + 0.874720i \(0.661045\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) − 67.8823i − 3.08875i
\(484\) 0 0
\(485\) − 4.00000i − 0.181631i
\(486\) 0 0
\(487\) −15.5563 −0.704925 −0.352463 0.935826i \(-0.614656\pi\)
−0.352463 + 0.935826i \(0.614656\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 11.3137i 0.510581i 0.966864 + 0.255290i \(0.0821710\pi\)
−0.966864 + 0.255290i \(0.917829\pi\)
\(492\) 0 0
\(493\) − 8.00000i − 0.360302i
\(494\) 0 0
\(495\) −14.1421 −0.635642
\(496\) 0 0
\(497\) 18.0000 0.807410
\(498\) 0 0
\(499\) − 4.24264i − 0.189927i −0.995481 0.0949633i \(-0.969727\pi\)
0.995481 0.0949633i \(-0.0302734\pi\)
\(500\) 0 0
\(501\) 52.0000i 2.32319i
\(502\) 0 0
\(503\) −2.82843 −0.126113 −0.0630567 0.998010i \(-0.520085\pi\)
−0.0630567 + 0.998010i \(0.520085\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2.82843i − 0.125615i
\(508\) 0 0
\(509\) − 6.00000i − 0.265945i −0.991120 0.132973i \(-0.957548\pi\)
0.991120 0.132973i \(-0.0424523\pi\)
\(510\) 0 0
\(511\) 59.3970 2.62757
\(512\) 0 0
\(513\) 8.00000 0.353209
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 10.0000i 0.439799i
\(518\) 0 0
\(519\) 45.2548 1.98647
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) − 42.4264i − 1.85518i −0.373603 0.927589i \(-0.621878\pi\)
0.373603 0.927589i \(-0.378122\pi\)
\(524\) 0 0
\(525\) 12.0000i 0.523723i
\(526\) 0 0
\(527\) 39.5980 1.72492
\(528\) 0 0
\(529\) 9.00000 0.391304
\(530\) 0 0
\(531\) 49.4975i 2.14801i
\(532\) 0 0
\(533\) 6.00000i 0.259889i
\(534\) 0 0
\(535\) 5.65685 0.244567
\(536\) 0 0
\(537\) 64.0000 2.76180
\(538\) 0 0
\(539\) − 15.5563i − 0.670059i
\(540\) 0 0
\(541\) − 6.00000i − 0.257960i −0.991647 0.128980i \(-0.958830\pi\)
0.991647 0.128980i \(-0.0411703\pi\)
\(542\) 0 0
\(543\) −73.5391 −3.15587
\(544\) 0 0
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) 25.4558i 1.08841i 0.838951 + 0.544207i \(0.183169\pi\)
−0.838951 + 0.544207i \(0.816831\pi\)
\(548\) 0 0
\(549\) − 60.0000i − 2.56074i
\(550\) 0 0
\(551\) −2.82843 −0.120495
\(552\) 0 0
\(553\) 36.0000 1.53088
\(554\) 0 0
\(555\) − 11.3137i − 0.480240i
\(556\) 0 0
\(557\) − 38.0000i − 1.61011i −0.593199 0.805056i \(-0.702135\pi\)
0.593199 0.805056i \(-0.297865\pi\)
\(558\) 0 0
\(559\) −11.3137 −0.478519
\(560\) 0 0
\(561\) −16.0000 −0.675521
\(562\) 0 0
\(563\) 16.9706i 0.715224i 0.933870 + 0.357612i \(0.116409\pi\)
−0.933870 + 0.357612i \(0.883591\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4.24264 0.178174
\(568\) 0 0
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) 0 0
\(571\) 5.65685i 0.236732i 0.992970 + 0.118366i \(0.0377656\pi\)
−0.992970 + 0.118366i \(0.962234\pi\)
\(572\) 0 0
\(573\) 40.0000i 1.67102i
\(574\) 0 0
\(575\) −5.65685 −0.235907
\(576\) 0 0
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) 0 0
\(579\) 62.2254i 2.58600i
\(580\) 0 0
\(581\) − 30.0000i − 1.24461i
\(582\) 0 0
\(583\) 16.9706 0.702849
\(584\) 0 0
\(585\) 10.0000 0.413449
\(586\) 0 0
\(587\) 35.3553i 1.45927i 0.683836 + 0.729636i \(0.260310\pi\)
−0.683836 + 0.729636i \(0.739690\pi\)
\(588\) 0 0
\(589\) − 14.0000i − 0.576860i
\(590\) 0 0
\(591\) −5.65685 −0.232692
\(592\) 0 0
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) − 33.9411i − 1.39145i
\(596\) 0 0
\(597\) − 16.0000i − 0.654836i
\(598\) 0 0
\(599\) 31.1127 1.27123 0.635615 0.772006i \(-0.280747\pi\)
0.635615 + 0.772006i \(0.280747\pi\)
\(600\) 0 0
\(601\) −16.0000 −0.652654 −0.326327 0.945257i \(-0.605811\pi\)
−0.326327 + 0.945257i \(0.605811\pi\)
\(602\) 0 0
\(603\) 49.4975i 2.01569i
\(604\) 0 0
\(605\) 18.0000i 0.731804i
\(606\) 0 0
\(607\) 14.1421 0.574012 0.287006 0.957929i \(-0.407340\pi\)
0.287006 + 0.957929i \(0.407340\pi\)
\(608\) 0 0
\(609\) −24.0000 −0.972529
\(610\) 0 0
\(611\) − 7.07107i − 0.286065i
\(612\) 0 0
\(613\) − 14.0000i − 0.565455i −0.959200 0.282727i \(-0.908761\pi\)
0.959200 0.282727i \(-0.0912392\pi\)
\(614\) 0 0
\(615\) −33.9411 −1.36864
\(616\) 0 0
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) − 24.0416i − 0.966315i −0.875534 0.483157i \(-0.839490\pi\)
0.875534 0.483157i \(-0.160510\pi\)
\(620\) 0 0
\(621\) 32.0000i 1.28412i
\(622\) 0 0
\(623\) −59.3970 −2.37969
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 5.65685i 0.225913i
\(628\) 0 0
\(629\) − 8.00000i − 0.318981i
\(630\) 0 0
\(631\) 9.89949 0.394093 0.197046 0.980394i \(-0.436865\pi\)
0.197046 + 0.980394i \(0.436865\pi\)
\(632\) 0 0
\(633\) −40.0000 −1.58986
\(634\) 0 0
\(635\) 33.9411i 1.34691i
\(636\) 0 0
\(637\) 11.0000i 0.435836i
\(638\) 0 0
\(639\) −21.2132 −0.839181
\(640\) 0 0
\(641\) −12.0000 −0.473972 −0.236986 0.971513i \(-0.576159\pi\)
−0.236986 + 0.971513i \(0.576159\pi\)
\(642\) 0 0
\(643\) − 12.7279i − 0.501940i −0.967995 0.250970i \(-0.919250\pi\)
0.967995 0.250970i \(-0.0807496\pi\)
\(644\) 0 0
\(645\) − 64.0000i − 2.52000i
\(646\) 0 0
\(647\) −33.9411 −1.33436 −0.667182 0.744895i \(-0.732500\pi\)
−0.667182 + 0.744895i \(0.732500\pi\)
\(648\) 0 0
\(649\) −14.0000 −0.549548
\(650\) 0 0
\(651\) − 118.794i − 4.65590i
\(652\) 0 0
\(653\) − 22.0000i − 0.860927i −0.902608 0.430463i \(-0.858350\pi\)
0.902608 0.430463i \(-0.141650\pi\)
\(654\) 0 0
\(655\) −5.65685 −0.221032
\(656\) 0 0
\(657\) −70.0000 −2.73096
\(658\) 0 0
\(659\) 2.82843i 0.110180i 0.998481 + 0.0550899i \(0.0175446\pi\)
−0.998481 + 0.0550899i \(0.982455\pi\)
\(660\) 0 0
\(661\) 50.0000i 1.94477i 0.233373 + 0.972387i \(0.425024\pi\)
−0.233373 + 0.972387i \(0.574976\pi\)
\(662\) 0 0
\(663\) 11.3137 0.439388
\(664\) 0 0
\(665\) −12.0000 −0.465340
\(666\) 0 0
\(667\) − 11.3137i − 0.438069i
\(668\) 0 0
\(669\) 44.0000i 1.70114i
\(670\) 0 0
\(671\) 16.9706 0.655141
\(672\) 0 0
\(673\) −44.0000 −1.69608 −0.848038 0.529936i \(-0.822216\pi\)
−0.848038 + 0.529936i \(0.822216\pi\)
\(674\) 0 0
\(675\) − 5.65685i − 0.217732i
\(676\) 0 0
\(677\) 20.0000i 0.768662i 0.923195 + 0.384331i \(0.125568\pi\)
−0.923195 + 0.384331i \(0.874432\pi\)
\(678\) 0 0
\(679\) −8.48528 −0.325635
\(680\) 0 0
\(681\) −52.0000 −1.99264
\(682\) 0 0
\(683\) − 12.7279i − 0.487020i −0.969898 0.243510i \(-0.921701\pi\)
0.969898 0.243510i \(-0.0782989\pi\)
\(684\) 0 0
\(685\) 36.0000i 1.37549i
\(686\) 0 0
\(687\) −5.65685 −0.215822
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) − 38.1838i − 1.45258i −0.687389 0.726289i \(-0.741243\pi\)
0.687389 0.726289i \(-0.258757\pi\)
\(692\) 0 0
\(693\) 30.0000i 1.13961i
\(694\) 0 0
\(695\) −5.65685 −0.214577
\(696\) 0 0
\(697\) −24.0000 −0.909065
\(698\) 0 0
\(699\) − 16.9706i − 0.641886i
\(700\) 0 0
\(701\) − 18.0000i − 0.679851i −0.940452 0.339925i \(-0.889598\pi\)
0.940452 0.339925i \(-0.110402\pi\)
\(702\) 0 0
\(703\) −2.82843 −0.106676
\(704\) 0 0
\(705\) 40.0000 1.50649
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 10.0000i − 0.375558i −0.982211 0.187779i \(-0.939871\pi\)
0.982211 0.187779i \(-0.0601289\pi\)
\(710\) 0 0
\(711\) −42.4264 −1.59111
\(712\) 0 0
\(713\) 56.0000 2.09722
\(714\) 0 0
\(715\) 2.82843i 0.105777i
\(716\) 0 0
\(717\) − 4.00000i − 0.149383i
\(718\) 0 0
\(719\) −33.9411 −1.26579 −0.632895 0.774237i \(-0.718134\pi\)
−0.632895 + 0.774237i \(0.718134\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 28.2843i 1.05190i
\(724\) 0 0
\(725\) 2.00000i 0.0742781i
\(726\) 0 0
\(727\) −22.6274 −0.839204 −0.419602 0.907708i \(-0.637830\pi\)
−0.419602 + 0.907708i \(0.637830\pi\)
\(728\) 0 0
\(729\) 43.0000 1.59259
\(730\) 0 0
\(731\) − 45.2548i − 1.67381i
\(732\) 0 0
\(733\) 30.0000i 1.10808i 0.832492 + 0.554038i \(0.186914\pi\)
−0.832492 + 0.554038i \(0.813086\pi\)
\(734\) 0 0
\(735\) −62.2254 −2.29522
\(736\) 0 0
\(737\) −14.0000 −0.515697
\(738\) 0 0
\(739\) 4.24264i 0.156068i 0.996951 + 0.0780340i \(0.0248643\pi\)
−0.996951 + 0.0780340i \(0.975136\pi\)
\(740\) 0 0
\(741\) − 4.00000i − 0.146944i
\(742\) 0 0
\(743\) 9.89949 0.363177 0.181589 0.983375i \(-0.441876\pi\)
0.181589 + 0.983375i \(0.441876\pi\)
\(744\) 0 0
\(745\) −12.0000 −0.439646
\(746\) 0 0
\(747\) 35.3553i 1.29358i
\(748\) 0 0
\(749\) − 12.0000i − 0.438470i
\(750\) 0 0
\(751\) −22.6274 −0.825686 −0.412843 0.910802i \(-0.635464\pi\)
−0.412843 + 0.910802i \(0.635464\pi\)
\(752\) 0 0
\(753\) 16.0000 0.583072
\(754\) 0 0
\(755\) − 25.4558i − 0.926433i
\(756\) 0 0
\(757\) − 44.0000i − 1.59921i −0.600528 0.799604i \(-0.705043\pi\)
0.600528 0.799604i \(-0.294957\pi\)
\(758\) 0 0
\(759\) −22.6274 −0.821323
\(760\) 0 0
\(761\) −14.0000 −0.507500 −0.253750 0.967270i \(-0.581664\pi\)
−0.253750 + 0.967270i \(0.581664\pi\)
\(762\) 0 0
\(763\) − 8.48528i − 0.307188i
\(764\) 0 0
\(765\) 40.0000i 1.44620i
\(766\) 0 0
\(767\) 9.89949 0.357450
\(768\) 0 0
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 0 0
\(771\) 84.8528i 3.05590i
\(772\) 0 0
\(773\) 42.0000i 1.51064i 0.655359 + 0.755318i \(0.272517\pi\)
−0.655359 + 0.755318i \(0.727483\pi\)
\(774\) 0 0
\(775\) −9.89949 −0.355600
\(776\) 0 0
\(777\) −24.0000 −0.860995
\(778\) 0 0
\(779\) 8.48528i 0.304017i
\(780\) 0 0
\(781\) − 6.00000i − 0.214697i
\(782\) 0 0
\(783\) 11.3137 0.404319
\(784\) 0 0
\(785\) 44.0000 1.57043
\(786\) 0 0
\(787\) − 21.2132i − 0.756169i −0.925771 0.378085i \(-0.876583\pi\)
0.925771 0.378085i \(-0.123417\pi\)
\(788\) 0 0
\(789\) − 24.0000i − 0.854423i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 0 0
\(795\) − 67.8823i − 2.40754i
\(796\) 0 0
\(797\) 18.0000i 0.637593i 0.947823 + 0.318796i \(0.103279\pi\)
−0.947823 + 0.318796i \(0.896721\pi\)
\(798\) 0 0
\(799\) 28.2843 1.00063
\(800\) 0 0
\(801\) 70.0000 2.47333
\(802\) 0 0
\(803\) − 19.7990i − 0.698691i
\(804\) 0 0
\(805\) − 48.0000i − 1.69178i
\(806\) 0 0
\(807\) −39.5980 −1.39391
\(808\) 0 0
\(809\) −48.0000 −1.68759 −0.843795 0.536666i \(-0.819684\pi\)
−0.843795 + 0.536666i \(0.819684\pi\)
\(810\) 0 0
\(811\) − 18.3848i − 0.645577i −0.946471 0.322788i \(-0.895380\pi\)
0.946471 0.322788i \(-0.104620\pi\)
\(812\) 0 0
\(813\) 76.0000i 2.66544i
\(814\) 0 0
\(815\) −2.82843 −0.0990755
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 0 0
\(819\) − 21.2132i − 0.741249i
\(820\) 0 0
\(821\) − 6.00000i − 0.209401i −0.994504 0.104701i \(-0.966612\pi\)
0.994504 0.104701i \(-0.0333885\pi\)
\(822\) 0 0
\(823\) 5.65685 0.197186 0.0985928 0.995128i \(-0.468566\pi\)
0.0985928 + 0.995128i \(0.468566\pi\)
\(824\) 0 0
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) 35.3553i 1.22943i 0.788751 + 0.614713i \(0.210728\pi\)
−0.788751 + 0.614713i \(0.789272\pi\)
\(828\) 0 0
\(829\) 40.0000i 1.38926i 0.719368 + 0.694629i \(0.244431\pi\)
−0.719368 + 0.694629i \(0.755569\pi\)
\(830\) 0 0
\(831\) −22.6274 −0.784936
\(832\) 0 0
\(833\) −44.0000 −1.52451
\(834\) 0 0
\(835\) 36.7696i 1.27246i
\(836\) 0 0
\(837\) 56.0000i 1.93564i
\(838\) 0 0
\(839\) −12.7279 −0.439417 −0.219708 0.975566i \(-0.570511\pi\)
−0.219708 + 0.975566i \(0.570511\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) 62.2254i 2.14316i
\(844\) 0 0
\(845\) − 2.00000i − 0.0688021i
\(846\) 0 0
\(847\) 38.1838 1.31201
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 11.3137i − 0.387829i
\(852\) 0 0
\(853\) − 2.00000i − 0.0684787i −0.999414 0.0342393i \(-0.989099\pi\)
0.999414 0.0342393i \(-0.0109009\pi\)
\(854\) 0 0
\(855\) 14.1421 0.483651
\(856\) 0 0
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) 36.7696i 1.25456i 0.778793 + 0.627280i \(0.215832\pi\)
−0.778793 + 0.627280i \(0.784168\pi\)
\(860\) 0 0
\(861\) 72.0000i 2.45375i
\(862\) 0 0
\(863\) 7.07107 0.240702 0.120351 0.992731i \(-0.461598\pi\)
0.120351 + 0.992731i \(0.461598\pi\)
\(864\) 0 0
\(865\) 32.0000 1.08803
\(866\) 0 0
\(867\) − 2.82843i − 0.0960584i
\(868\) 0 0
\(869\) − 12.0000i − 0.407072i
\(870\) 0 0
\(871\) 9.89949 0.335432
\(872\) 0 0
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) 50.9117i 1.72113i
\(876\) 0 0
\(877\) − 6.00000i − 0.202606i −0.994856 0.101303i \(-0.967699\pi\)
0.994856 0.101303i \(-0.0323011\pi\)
\(878\) 0 0
\(879\) −39.5980 −1.33561
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 33.9411i 1.14221i 0.820877 + 0.571105i \(0.193485\pi\)
−0.820877 + 0.571105i \(0.806515\pi\)
\(884\) 0 0
\(885\) 56.0000i 1.88242i
\(886\) 0 0
\(887\) −31.1127 −1.04466 −0.522331 0.852743i \(-0.674937\pi\)
−0.522331 + 0.852743i \(0.674937\pi\)
\(888\) 0 0
\(889\) 72.0000 2.41480
\(890\) 0 0
\(891\) − 1.41421i − 0.0473779i
\(892\) 0 0
\(893\) − 10.0000i − 0.334637i
\(894\) 0 0
\(895\) 45.2548 1.51270
\(896\) 0 0
\(897\) 16.0000 0.534224
\(898\) 0 0
\(899\) − 19.7990i − 0.660333i
\(900\) 0 0
\(901\) − 48.0000i − 1.59911i
\(902\) 0 0
\(903\) −135.765 −4.51796
\(904\) 0 0
\(905\) −52.0000 −1.72854
\(906\) 0 0
\(907\) − 28.2843i − 0.939164i −0.882889 0.469582i \(-0.844405\pi\)
0.882889 0.469582i \(-0.155595\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −48.0833 −1.59307 −0.796535 0.604593i \(-0.793336\pi\)
−0.796535 + 0.604593i \(0.793336\pi\)
\(912\) 0 0
\(913\) −10.0000 −0.330952
\(914\) 0 0
\(915\) − 67.8823i − 2.24412i
\(916\) 0 0
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) 36.7696 1.21292 0.606458 0.795116i \(-0.292590\pi\)
0.606458 + 0.795116i \(0.292590\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) 0 0
\(923\) 4.24264i 0.139648i
\(924\) 0 0
\(925\) 2.00000i 0.0657596i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22.0000 −0.721797 −0.360898 0.932605i \(-0.617530\pi\)
−0.360898 + 0.932605i \(0.617530\pi\)
\(930\) 0 0
\(931\) 15.5563i 0.509839i
\(932\) 0 0
\(933\) − 64.0000i − 2.09527i
\(934\) 0 0
\(935\) −11.3137 −0.369998
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) − 45.2548i − 1.47684i
\(940\) 0 0
\(941\) 14.0000i 0.456387i 0.973616 + 0.228193i \(0.0732819\pi\)
−0.973616 + 0.228193i \(0.926718\pi\)
\(942\) 0 0
\(943\) −33.9411 −1.10528
\(944\) 0 0
\(945\) 48.0000 1.56144
\(946\) 0 0
\(947\) − 41.0122i − 1.33272i −0.745631 0.666359i \(-0.767852\pi\)
0.745631 0.666359i \(-0.232148\pi\)
\(948\) 0 0
\(949\) 14.0000i 0.454459i
\(950\) 0 0
\(951\) 62.2254 2.01780
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 28.2843i 0.915258i
\(956\) 0 0
\(957\) 8.00000i 0.258603i
\(958\) 0 0
\(959\) 76.3675 2.46604
\(960\) 0 0
\(961\) 67.0000 2.16129
\(962\) 0 0
\(963\) 14.1421i 0.455724i
\(964\) 0 0
\(965\) 44.0000i 1.41641i
\(966\) 0 0
\(967\) 9.89949 0.318346 0.159173 0.987251i \(-0.449117\pi\)
0.159173 + 0.987251i \(0.449117\pi\)
\(968\) 0 0
\(969\) 16.0000 0.513994
\(970\) 0 0
\(971\) 48.0833i 1.54307i 0.636190 + 0.771533i \(0.280510\pi\)
−0.636190 + 0.771533i \(0.719490\pi\)
\(972\) 0 0
\(973\) 12.0000i 0.384702i
\(974\) 0 0
\(975\) −2.82843 −0.0905822
\(976\) 0 0
\(977\) −58.0000 −1.85558 −0.927792 0.373097i \(-0.878296\pi\)
−0.927792 + 0.373097i \(0.878296\pi\)
\(978\) 0 0
\(979\) 19.7990i 0.632778i
\(980\) 0 0
\(981\) 10.0000i 0.319275i
\(982\) 0 0
\(983\) 35.3553 1.12766 0.563830 0.825891i \(-0.309327\pi\)
0.563830 + 0.825891i \(0.309327\pi\)
\(984\) 0 0
\(985\) −4.00000 −0.127451
\(986\) 0 0
\(987\) − 84.8528i − 2.70089i
\(988\) 0 0
\(989\) − 64.0000i − 2.03508i
\(990\) 0 0
\(991\) 25.4558 0.808632 0.404316 0.914619i \(-0.367510\pi\)
0.404316 + 0.914619i \(0.367510\pi\)
\(992\) 0 0
\(993\) 28.0000 0.888553
\(994\) 0 0
\(995\) − 11.3137i − 0.358669i
\(996\) 0 0
\(997\) − 52.0000i − 1.64686i −0.567420 0.823428i \(-0.692059\pi\)
0.567420 0.823428i \(-0.307941\pi\)
\(998\) 0 0
\(999\) 11.3137 0.357950
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1664.2.b.f.833.4 yes 4
4.3 odd 2 inner 1664.2.b.f.833.2 yes 4
8.3 odd 2 inner 1664.2.b.f.833.3 yes 4
8.5 even 2 inner 1664.2.b.f.833.1 4
16.3 odd 4 3328.2.a.x.1.2 2
16.5 even 4 3328.2.a.t.1.2 2
16.11 odd 4 3328.2.a.t.1.1 2
16.13 even 4 3328.2.a.x.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1664.2.b.f.833.1 4 8.5 even 2 inner
1664.2.b.f.833.2 yes 4 4.3 odd 2 inner
1664.2.b.f.833.3 yes 4 8.3 odd 2 inner
1664.2.b.f.833.4 yes 4 1.1 even 1 trivial
3328.2.a.t.1.1 2 16.11 odd 4
3328.2.a.t.1.2 2 16.5 even 4
3328.2.a.x.1.1 2 16.13 even 4
3328.2.a.x.1.2 2 16.3 odd 4