Properties

Label 1656.2.m
Level $1656$
Weight $2$
Character orbit 1656.m
Rep. character $\chi_{1656}(1241,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $1$
Sturm bound $576$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1656 = 2^{3} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1656.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 69 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(576\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1656, [\chi])\).

Total New Old
Modular forms 304 24 280
Cusp forms 272 24 248
Eisenstein series 32 0 32

Trace form

\( 24 q + 40 q^{25} - 16 q^{31} - 40 q^{49} - 64 q^{55} + 48 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1656, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1656.2.m.a 1656.m 69.c $24$ $13.223$ None 1656.2.m.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1656, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1656, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(138, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(276, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(414, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(552, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(828, [\chi])\)\(^{\oplus 2}\)