Properties

Label 1650.2.f.c.1649.1
Level $1650$
Weight $2$
Character 1650.1649
Analytic conductor $13.175$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1650,2,Mod(1649,1650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1650.1649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4,-8,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1753163335\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2051727616.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 37x^{4} + 36x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1649.1
Root \(-2.25619i\) of defining polynomial
Character \(\chi\) \(=\) 1650.1649
Dual form 1650.2.f.c.1649.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(-1.73007 - 0.0828988i) q^{3} -1.00000 q^{4} +(-0.0828988 + 1.73007i) q^{6} -4.34658 q^{7} +1.00000i q^{8} +(2.98626 + 0.286841i) q^{9} +(-1.20394 + 3.09039i) q^{11} +(1.73007 + 0.0828988i) q^{12} +4.51238 q^{13} +4.34658i q^{14} +1.00000 q^{16} -2.72065i q^{17} +(0.286841 - 2.98626i) q^{18} +3.97251i q^{19} +(7.51987 + 0.360326i) q^{21} +(3.09039 + 1.20394i) q^{22} +1.66840 q^{23} +(0.0828988 - 1.73007i) q^{24} -4.51238i q^{26} +(-5.14264 - 0.743810i) q^{27} +4.34658 q^{28} -5.08606 q^{29} +9.74541 q^{31} -1.00000i q^{32} +(2.33909 - 5.24678i) q^{33} -2.72065 q^{34} +(-2.98626 - 0.286841i) q^{36} -5.60710i q^{37} +3.97251 q^{38} +(-7.80671 - 0.374071i) q^{39} -2.92026 q^{41} +(0.360326 - 7.51987i) q^{42} -3.25186 q^{43} +(1.20394 - 3.09039i) q^{44} -1.66840i q^{46} -9.25186 q^{47} +(-1.73007 - 0.0828988i) q^{48} +11.8928 q^{49} +(-0.225539 + 4.70691i) q^{51} -4.51238 q^{52} -3.05225 q^{53} +(-0.743810 + 5.14264i) q^{54} -4.34658i q^{56} +(0.329316 - 6.87271i) q^{57} +5.08606i q^{58} -5.43264i q^{59} -11.5646i q^{61} -9.74541i q^{62} +(-12.9800 - 1.24678i) q^{63} -1.00000 q^{64} +(-5.24678 - 2.33909i) q^{66} +12.3529i q^{67} +2.72065i q^{68} +(-2.88645 - 0.138309i) q^{69} -3.60710i q^{71} +(-0.286841 + 2.98626i) q^{72} -1.36502 q^{73} -5.60710 q^{74} -3.97251i q^{76} +(5.23303 - 13.4326i) q^{77} +(-0.374071 + 7.80671i) q^{78} -1.07107i q^{79} +(8.83544 + 1.71316i) q^{81} +2.92026i q^{82} -14.5887i q^{83} +(-7.51987 - 0.360326i) q^{84} +3.25186i q^{86} +(8.79922 + 0.421628i) q^{87} +(-3.09039 - 1.20394i) q^{88} +3.75791i q^{89} -19.6134 q^{91} -1.66840 q^{92} +(-16.8602 - 0.807883i) q^{93} +9.25186i q^{94} +(-0.0828988 + 1.73007i) q^{96} -12.7977i q^{97} -11.8928i q^{98} +(-4.48173 + 8.88336i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 8 q^{4} - 2 q^{6} - 2 q^{9} - 6 q^{11} + 4 q^{12} + 4 q^{13} + 8 q^{16} + 8 q^{21} + 6 q^{22} + 8 q^{23} + 2 q^{24} - 10 q^{27} - 4 q^{29} - 4 q^{31} + 4 q^{33} - 4 q^{34} + 2 q^{36} - 20 q^{38}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1650\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(727\) \(1201\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −1.73007 0.0828988i −0.998854 0.0478616i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −0.0828988 + 1.73007i −0.0338433 + 0.706296i
\(7\) −4.34658 −1.64285 −0.821427 0.570314i \(-0.806822\pi\)
−0.821427 + 0.570314i \(0.806822\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.98626 + 0.286841i 0.995419 + 0.0956136i
\(10\) 0 0
\(11\) −1.20394 + 3.09039i −0.363002 + 0.931788i
\(12\) 1.73007 + 0.0828988i 0.499427 + 0.0239308i
\(13\) 4.51238 1.25151 0.625754 0.780020i \(-0.284791\pi\)
0.625754 + 0.780020i \(0.284791\pi\)
\(14\) 4.34658i 1.16167i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.72065i 0.659855i −0.944006 0.329928i \(-0.892976\pi\)
0.944006 0.329928i \(-0.107024\pi\)
\(18\) 0.286841 2.98626i 0.0676090 0.703867i
\(19\) 3.97251i 0.911357i 0.890145 + 0.455678i \(0.150603\pi\)
−0.890145 + 0.455678i \(0.849397\pi\)
\(20\) 0 0
\(21\) 7.51987 + 0.360326i 1.64097 + 0.0786297i
\(22\) 3.09039 + 1.20394i 0.658874 + 0.256681i
\(23\) 1.66840 0.347886 0.173943 0.984756i \(-0.444349\pi\)
0.173943 + 0.984756i \(0.444349\pi\)
\(24\) 0.0828988 1.73007i 0.0169216 0.353148i
\(25\) 0 0
\(26\) 4.51238i 0.884950i
\(27\) −5.14264 0.743810i −0.989702 0.143146i
\(28\) 4.34658 0.821427
\(29\) −5.08606 −0.944458 −0.472229 0.881476i \(-0.656550\pi\)
−0.472229 + 0.881476i \(0.656550\pi\)
\(30\) 0 0
\(31\) 9.74541 1.75033 0.875164 0.483827i \(-0.160754\pi\)
0.875164 + 0.483827i \(0.160754\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.33909 5.24678i 0.407183 0.913347i
\(34\) −2.72065 −0.466588
\(35\) 0 0
\(36\) −2.98626 0.286841i −0.497709 0.0478068i
\(37\) 5.60710i 0.921802i −0.887452 0.460901i \(-0.847526\pi\)
0.887452 0.460901i \(-0.152474\pi\)
\(38\) 3.97251 0.644426
\(39\) −7.80671 0.374071i −1.25007 0.0598993i
\(40\) 0 0
\(41\) −2.92026 −0.456069 −0.228034 0.973653i \(-0.573230\pi\)
−0.228034 + 0.973653i \(0.573230\pi\)
\(42\) 0.360326 7.51987i 0.0555996 1.16034i
\(43\) −3.25186 −0.495904 −0.247952 0.968772i \(-0.579757\pi\)
−0.247952 + 0.968772i \(0.579757\pi\)
\(44\) 1.20394 3.09039i 0.181501 0.465894i
\(45\) 0 0
\(46\) 1.66840i 0.245993i
\(47\) −9.25186 −1.34952 −0.674761 0.738036i \(-0.735753\pi\)
−0.674761 + 0.738036i \(0.735753\pi\)
\(48\) −1.73007 0.0828988i −0.249713 0.0119654i
\(49\) 11.8928 1.69897
\(50\) 0 0
\(51\) −0.225539 + 4.70691i −0.0315817 + 0.659099i
\(52\) −4.51238 −0.625754
\(53\) −3.05225 −0.419258 −0.209629 0.977781i \(-0.567226\pi\)
−0.209629 + 0.977781i \(0.567226\pi\)
\(54\) −0.743810 + 5.14264i −0.101220 + 0.699825i
\(55\) 0 0
\(56\) 4.34658i 0.580836i
\(57\) 0.329316 6.87271i 0.0436190 0.910312i
\(58\) 5.08606i 0.667833i
\(59\) 5.43264i 0.707270i −0.935384 0.353635i \(-0.884946\pi\)
0.935384 0.353635i \(-0.115054\pi\)
\(60\) 0 0
\(61\) 11.5646i 1.48070i −0.672222 0.740349i \(-0.734660\pi\)
0.672222 0.740349i \(-0.265340\pi\)
\(62\) 9.74541i 1.23767i
\(63\) −12.9800 1.24678i −1.63533 0.157079i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −5.24678 2.33909i −0.645834 0.287922i
\(67\) 12.3529i 1.50915i 0.656215 + 0.754574i \(0.272156\pi\)
−0.656215 + 0.754574i \(0.727844\pi\)
\(68\) 2.72065i 0.329928i
\(69\) −2.88645 0.138309i −0.347488 0.0166504i
\(70\) 0 0
\(71\) 3.60710i 0.428084i −0.976824 0.214042i \(-0.931337\pi\)
0.976824 0.214042i \(-0.0686630\pi\)
\(72\) −0.286841 + 2.98626i −0.0338045 + 0.351934i
\(73\) −1.36502 −0.159763 −0.0798816 0.996804i \(-0.525454\pi\)
−0.0798816 + 0.996804i \(0.525454\pi\)
\(74\) −5.60710 −0.651812
\(75\) 0 0
\(76\) 3.97251i 0.455678i
\(77\) 5.23303 13.4326i 0.596359 1.53079i
\(78\) −0.374071 + 7.80671i −0.0423552 + 0.883936i
\(79\) 1.07107i 0.120505i −0.998183 0.0602526i \(-0.980809\pi\)
0.998183 0.0602526i \(-0.0191906\pi\)
\(80\) 0 0
\(81\) 8.83544 + 1.71316i 0.981716 + 0.190351i
\(82\) 2.92026i 0.322489i
\(83\) 14.5887i 1.60131i −0.599123 0.800657i \(-0.704484\pi\)
0.599123 0.800657i \(-0.295516\pi\)
\(84\) −7.51987 0.360326i −0.820485 0.0393148i
\(85\) 0 0
\(86\) 3.25186i 0.350657i
\(87\) 8.79922 + 0.421628i 0.943375 + 0.0452033i
\(88\) −3.09039 1.20394i −0.329437 0.128341i
\(89\) 3.75791i 0.398338i 0.979965 + 0.199169i \(0.0638243\pi\)
−0.979965 + 0.199169i \(0.936176\pi\)
\(90\) 0 0
\(91\) −19.6134 −2.05605
\(92\) −1.66840 −0.173943
\(93\) −16.8602 0.807883i −1.74832 0.0837735i
\(94\) 9.25186i 0.954256i
\(95\) 0 0
\(96\) −0.0828988 + 1.73007i −0.00846082 + 0.176574i
\(97\) 12.7977i 1.29941i −0.760188 0.649703i \(-0.774893\pi\)
0.760188 0.649703i \(-0.225107\pi\)
\(98\) 11.8928i 1.20135i
\(99\) −4.48173 + 8.88336i −0.450431 + 0.892811i
\(100\) 0 0
\(101\) −6.73948 −0.670603 −0.335302 0.942111i \(-0.608838\pi\)
−0.335302 + 0.942111i \(0.608838\pi\)
\(102\) 4.70691 + 0.225539i 0.466053 + 0.0223317i
\(103\) 5.25186i 0.517481i 0.965947 + 0.258740i \(0.0833074\pi\)
−0.965947 + 0.258740i \(0.916693\pi\)
\(104\) 4.51238i 0.442475i
\(105\) 0 0
\(106\) 3.05225i 0.296461i
\(107\) 6.25707i 0.604894i −0.953166 0.302447i \(-0.902196\pi\)
0.953166 0.302447i \(-0.0978035\pi\)
\(108\) 5.14264 + 0.743810i 0.494851 + 0.0715732i
\(109\) 17.9168i 1.71612i −0.513550 0.858060i \(-0.671670\pi\)
0.513550 0.858060i \(-0.328330\pi\)
\(110\) 0 0
\(111\) −0.464822 + 9.70066i −0.0441190 + 0.920746i
\(112\) −4.34658 −0.410713
\(113\) 8.51238 0.800777 0.400389 0.916345i \(-0.368875\pi\)
0.400389 + 0.916345i \(0.368875\pi\)
\(114\) −6.87271 0.329316i −0.643688 0.0308433i
\(115\) 0 0
\(116\) 5.08606 0.472229
\(117\) 13.4751 + 1.29433i 1.24578 + 0.119661i
\(118\) −5.43264 −0.500115
\(119\) 11.8255i 1.08405i
\(120\) 0 0
\(121\) −8.10105 7.44131i −0.736459 0.676482i
\(122\) −11.5646 −1.04701
\(123\) 5.05225 + 0.242086i 0.455546 + 0.0218282i
\(124\) −9.74541 −0.875164
\(125\) 0 0
\(126\) −1.24678 + 12.9800i −0.111072 + 1.15635i
\(127\) −8.95024 −0.794205 −0.397103 0.917774i \(-0.629984\pi\)
−0.397103 + 0.917774i \(0.629984\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 5.62593 + 0.269575i 0.495335 + 0.0237348i
\(130\) 0 0
\(131\) 12.3379 1.07797 0.538985 0.842316i \(-0.318808\pi\)
0.538985 + 0.842316i \(0.318808\pi\)
\(132\) −2.33909 + 5.24678i −0.203592 + 0.456673i
\(133\) 17.2668i 1.49723i
\(134\) 12.3529 1.06713
\(135\) 0 0
\(136\) 2.72065 0.233294
\(137\) 20.9416 1.78916 0.894580 0.446908i \(-0.147475\pi\)
0.894580 + 0.446908i \(0.147475\pi\)
\(138\) −0.138309 + 2.88645i −0.0117736 + 0.245711i
\(139\) 15.5458i 1.31858i −0.751890 0.659289i \(-0.770857\pi\)
0.751890 0.659289i \(-0.229143\pi\)
\(140\) 0 0
\(141\) 16.0063 + 0.766968i 1.34798 + 0.0645903i
\(142\) −3.60710 −0.302701
\(143\) −5.43264 + 13.9450i −0.454300 + 1.16614i
\(144\) 2.98626 + 0.286841i 0.248855 + 0.0239034i
\(145\) 0 0
\(146\) 1.36502i 0.112970i
\(147\) −20.5753 0.985897i −1.69702 0.0813154i
\(148\) 5.60710i 0.460901i
\(149\) −23.2882 −1.90784 −0.953920 0.300061i \(-0.902993\pi\)
−0.953920 + 0.300061i \(0.902993\pi\)
\(150\) 0 0
\(151\) 10.8440i 0.882470i 0.897392 + 0.441235i \(0.145460\pi\)
−0.897392 + 0.441235i \(0.854540\pi\)
\(152\) −3.97251 −0.322213
\(153\) 0.780394 8.12456i 0.0630911 0.656832i
\(154\) −13.4326 5.23303i −1.08243 0.421690i
\(155\) 0 0
\(156\) 7.80671 + 0.374071i 0.625037 + 0.0299496i
\(157\) 11.0861i 0.884764i 0.896827 + 0.442382i \(0.145866\pi\)
−0.896827 + 0.442382i \(0.854134\pi\)
\(158\) −1.07107 −0.0852101
\(159\) 5.28059 + 0.253028i 0.418778 + 0.0200664i
\(160\) 0 0
\(161\) −7.25186 −0.571527
\(162\) 1.71316 8.83544i 0.134599 0.694178i
\(163\) 4.16580i 0.326290i −0.986602 0.163145i \(-0.947836\pi\)
0.986602 0.163145i \(-0.0521639\pi\)
\(164\) 2.92026 0.228034
\(165\) 0 0
\(166\) −14.5887 −1.13230
\(167\) 8.78828i 0.680057i −0.940415 0.340029i \(-0.889563\pi\)
0.940415 0.340029i \(-0.110437\pi\)
\(168\) −0.360326 + 7.51987i −0.0277998 + 0.580171i
\(169\) 7.36157 0.566275
\(170\) 0 0
\(171\) −1.13948 + 11.8629i −0.0871381 + 0.907181i
\(172\) 3.25186 0.247952
\(173\) 2.66319i 0.202479i 0.994862 + 0.101239i \(0.0322808\pi\)
−0.994862 + 0.101239i \(0.967719\pi\)
\(174\) 0.421628 8.79922i 0.0319636 0.667067i
\(175\) 0 0
\(176\) −1.20394 + 3.09039i −0.0907505 + 0.232947i
\(177\) −0.450359 + 9.39883i −0.0338511 + 0.706459i
\(178\) 3.75791 0.281668
\(179\) 11.2605i 0.841651i −0.907142 0.420825i \(-0.861740\pi\)
0.907142 0.420825i \(-0.138260\pi\)
\(180\) 0 0
\(181\) −0.711272 −0.0528684 −0.0264342 0.999651i \(-0.508415\pi\)
−0.0264342 + 0.999651i \(0.508415\pi\)
\(182\) 19.6134i 1.45384i
\(183\) −0.958694 + 20.0076i −0.0708687 + 1.47900i
\(184\) 1.66840i 0.122996i
\(185\) 0 0
\(186\) −0.807883 + 16.8602i −0.0592368 + 1.23625i
\(187\) 8.40788 + 3.27551i 0.614845 + 0.239529i
\(188\) 9.25186 0.674761
\(189\) 22.3529 + 3.23303i 1.62593 + 0.235168i
\(190\) 0 0
\(191\) 19.5852i 1.41714i −0.705642 0.708568i \(-0.749341\pi\)
0.705642 0.708568i \(-0.250659\pi\)
\(192\) 1.73007 + 0.0828988i 0.124857 + 0.00598270i
\(193\) −8.82899 −0.635524 −0.317762 0.948170i \(-0.602931\pi\)
−0.317762 + 0.948170i \(0.602931\pi\)
\(194\) −12.7977 −0.918818
\(195\) 0 0
\(196\) −11.8928 −0.849484
\(197\) 12.9502i 0.922666i 0.887227 + 0.461333i \(0.152629\pi\)
−0.887227 + 0.461333i \(0.847371\pi\)
\(198\) 8.88336 + 4.48173i 0.631313 + 0.318503i
\(199\) −1.17485 −0.0832830 −0.0416415 0.999133i \(-0.513259\pi\)
−0.0416415 + 0.999133i \(0.513259\pi\)
\(200\) 0 0
\(201\) 1.02404 21.3713i 0.0722303 1.50742i
\(202\) 6.73948i 0.474188i
\(203\) 22.1070 1.55161
\(204\) 0.225539 4.70691i 0.0157909 0.329549i
\(205\) 0 0
\(206\) 5.25186 0.365914
\(207\) 4.98228 + 0.478566i 0.346293 + 0.0332627i
\(208\) 4.51238 0.312877
\(209\) −12.2766 4.78267i −0.849191 0.330824i
\(210\) 0 0
\(211\) 21.1498i 1.45602i −0.685569 0.728008i \(-0.740446\pi\)
0.685569 0.728008i \(-0.259554\pi\)
\(212\) 3.05225 0.209629
\(213\) −0.299024 + 6.24053i −0.0204888 + 0.427594i
\(214\) −6.25707 −0.427725
\(215\) 0 0
\(216\) 0.743810 5.14264i 0.0506099 0.349912i
\(217\) −42.3592 −2.87553
\(218\) −17.9168 −1.21348
\(219\) 2.36157 + 0.113158i 0.159580 + 0.00764652i
\(220\) 0 0
\(221\) 12.2766i 0.825815i
\(222\) 9.70066 + 0.464822i 0.651065 + 0.0311968i
\(223\) 22.6382i 1.51597i −0.652275 0.757983i \(-0.726185\pi\)
0.652275 0.757983i \(-0.273815\pi\)
\(224\) 4.34658i 0.290418i
\(225\) 0 0
\(226\) 8.51238i 0.566235i
\(227\) 23.5758i 1.56478i 0.622789 + 0.782390i \(0.285999\pi\)
−0.622789 + 0.782390i \(0.714001\pi\)
\(228\) −0.329316 + 6.87271i −0.0218095 + 0.455156i
\(229\) −3.50893 −0.231877 −0.115938 0.993256i \(-0.536988\pi\)
−0.115938 + 0.993256i \(0.536988\pi\)
\(230\) 0 0
\(231\) −10.1670 + 22.8055i −0.668942 + 1.50049i
\(232\) 5.08606i 0.333916i
\(233\) 9.84991i 0.645289i −0.946520 0.322644i \(-0.895428\pi\)
0.946520 0.322644i \(-0.104572\pi\)
\(234\) 1.29433 13.4751i 0.0846133 0.880896i
\(235\) 0 0
\(236\) 5.43264i 0.353635i
\(237\) −0.0887907 + 1.85303i −0.00576758 + 0.120367i
\(238\) 11.8255 0.766536
\(239\) 24.1540 1.56239 0.781197 0.624285i \(-0.214610\pi\)
0.781197 + 0.624285i \(0.214610\pi\)
\(240\) 0 0
\(241\) 4.69316i 0.302313i 0.988510 + 0.151157i \(0.0482998\pi\)
−0.988510 + 0.151157i \(0.951700\pi\)
\(242\) −7.44131 + 8.10105i −0.478345 + 0.520755i
\(243\) −15.1439 3.69633i −0.971481 0.237119i
\(244\) 11.5646i 0.740349i
\(245\) 0 0
\(246\) 0.242086 5.05225i 0.0154349 0.322120i
\(247\) 17.9255i 1.14057i
\(248\) 9.74541i 0.618834i
\(249\) −1.20938 + 25.2394i −0.0766415 + 1.59948i
\(250\) 0 0
\(251\) 10.5424i 0.665427i 0.943028 + 0.332714i \(0.107964\pi\)
−0.943028 + 0.332714i \(0.892036\pi\)
\(252\) 12.9800 + 1.24678i 0.817663 + 0.0785395i
\(253\) −2.00866 + 5.15603i −0.126284 + 0.324157i
\(254\) 8.95024i 0.561588i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 11.0334 0.688246 0.344123 0.938925i \(-0.388176\pi\)
0.344123 + 0.938925i \(0.388176\pi\)
\(258\) 0.269575 5.62593i 0.0167830 0.350255i
\(259\) 24.3717i 1.51439i
\(260\) 0 0
\(261\) −15.1883 1.45889i −0.940131 0.0903030i
\(262\) 12.3379i 0.762239i
\(263\) 30.8378i 1.90154i −0.309897 0.950770i \(-0.600295\pi\)
0.309897 0.950770i \(-0.399705\pi\)
\(264\) 5.24678 + 2.33909i 0.322917 + 0.143961i
\(265\) 0 0
\(266\) −17.2668 −1.05870
\(267\) 0.311526 6.50144i 0.0190651 0.397882i
\(268\) 12.3529i 0.754574i
\(269\) 9.58345i 0.584313i −0.956370 0.292157i \(-0.905627\pi\)
0.956370 0.292157i \(-0.0943729\pi\)
\(270\) 0 0
\(271\) 21.3400i 1.29631i −0.761507 0.648157i \(-0.775540\pi\)
0.761507 0.648157i \(-0.224460\pi\)
\(272\) 2.72065i 0.164964i
\(273\) 33.9325 + 1.62593i 2.05369 + 0.0984057i
\(274\) 20.9416i 1.26513i
\(275\) 0 0
\(276\) 2.88645 + 0.138309i 0.173744 + 0.00832521i
\(277\) 7.43264 0.446584 0.223292 0.974752i \(-0.428320\pi\)
0.223292 + 0.974752i \(0.428320\pi\)
\(278\) −15.5458 −0.932375
\(279\) 29.1023 + 2.79538i 1.74231 + 0.167355i
\(280\) 0 0
\(281\) 20.0300 1.19489 0.597444 0.801911i \(-0.296183\pi\)
0.597444 + 0.801911i \(0.296183\pi\)
\(282\) 0.766968 16.0063i 0.0456723 0.953163i
\(283\) 5.98189 0.355587 0.177793 0.984068i \(-0.443104\pi\)
0.177793 + 0.984068i \(0.443104\pi\)
\(284\) 3.60710i 0.214042i
\(285\) 0 0
\(286\) 13.9450 + 5.43264i 0.824586 + 0.321239i
\(287\) 12.6932 0.749254
\(288\) 0.286841 2.98626i 0.0169023 0.175967i
\(289\) 9.59805 0.564591
\(290\) 0 0
\(291\) −1.06091 + 22.1408i −0.0621917 + 1.29792i
\(292\) 1.36502 0.0798816
\(293\) 22.9998i 1.34366i 0.740705 + 0.671830i \(0.234491\pi\)
−0.740705 + 0.671830i \(0.765509\pi\)
\(294\) −0.985897 + 20.5753i −0.0574987 + 1.19997i
\(295\) 0 0
\(296\) 5.60710 0.325906
\(297\) 8.49011 14.9973i 0.492646 0.870230i
\(298\) 23.2882i 1.34905i
\(299\) 7.52848 0.435383
\(300\) 0 0
\(301\) 14.1345 0.814697
\(302\) 10.8440 0.624001
\(303\) 11.6597 + 0.558695i 0.669835 + 0.0320962i
\(304\) 3.97251i 0.227839i
\(305\) 0 0
\(306\) −8.12456 0.780394i −0.464450 0.0446122i
\(307\) 27.2645 1.55607 0.778034 0.628222i \(-0.216217\pi\)
0.778034 + 0.628222i \(0.216217\pi\)
\(308\) −5.23303 + 13.4326i −0.298180 + 0.765396i
\(309\) 0.435373 9.08606i 0.0247675 0.516888i
\(310\) 0 0
\(311\) 0.0613019i 0.00347611i 0.999998 + 0.00173806i \(0.000553241\pi\)
−0.999998 + 0.00173806i \(0.999447\pi\)
\(312\) 0.374071 7.80671i 0.0211776 0.441968i
\(313\) 22.2766i 1.25915i 0.776940 + 0.629574i \(0.216771\pi\)
−0.776940 + 0.629574i \(0.783229\pi\)
\(314\) 11.0861 0.625623
\(315\) 0 0
\(316\) 1.07107i 0.0602526i
\(317\) 2.48169 0.139385 0.0696927 0.997569i \(-0.477798\pi\)
0.0696927 + 0.997569i \(0.477798\pi\)
\(318\) 0.253028 5.28059i 0.0141891 0.296121i
\(319\) 6.12332 15.7179i 0.342840 0.880035i
\(320\) 0 0
\(321\) −0.518704 + 10.8251i −0.0289512 + 0.604201i
\(322\) 7.25186i 0.404130i
\(323\) 10.8078 0.601363
\(324\) −8.83544 1.71316i −0.490858 0.0951755i
\(325\) 0 0
\(326\) −4.16580 −0.230722
\(327\) −1.48528 + 30.9973i −0.0821363 + 1.71415i
\(328\) 2.92026i 0.161245i
\(329\) 40.2140 2.21707
\(330\) 0 0
\(331\) −11.2519 −0.618458 −0.309229 0.950988i \(-0.600071\pi\)
−0.309229 + 0.950988i \(0.600071\pi\)
\(332\) 14.5887i 0.800657i
\(333\) 1.60835 16.7442i 0.0881368 0.917579i
\(334\) −8.78828 −0.480873
\(335\) 0 0
\(336\) 7.51987 + 0.360326i 0.410243 + 0.0196574i
\(337\) −0.968917 −0.0527803 −0.0263901 0.999652i \(-0.508401\pi\)
−0.0263901 + 0.999652i \(0.508401\pi\)
\(338\) 7.36157i 0.400417i
\(339\) −14.7270 0.705666i −0.799860 0.0383265i
\(340\) 0 0
\(341\) −11.7329 + 30.1171i −0.635373 + 1.63093i
\(342\) 11.8629 + 1.13948i 0.641474 + 0.0616159i
\(343\) −21.2668 −1.14830
\(344\) 3.25186i 0.175328i
\(345\) 0 0
\(346\) 2.66319 0.143174
\(347\) 1.59388i 0.0855641i −0.999084 0.0427821i \(-0.986378\pi\)
0.999084 0.0427821i \(-0.0136221\pi\)
\(348\) −8.79922 0.421628i −0.471688 0.0226016i
\(349\) 18.9416i 1.01392i 0.861970 + 0.506960i \(0.169231\pi\)
−0.861970 + 0.506960i \(0.830769\pi\)
\(350\) 0 0
\(351\) −23.2055 3.35635i −1.23862 0.179149i
\(352\) 3.09039 + 1.20394i 0.164718 + 0.0641703i
\(353\) 0.806322 0.0429162 0.0214581 0.999770i \(-0.493169\pi\)
0.0214581 + 0.999770i \(0.493169\pi\)
\(354\) 9.39883 + 0.450359i 0.499542 + 0.0239363i
\(355\) 0 0
\(356\) 3.75791i 0.199169i
\(357\) 0.980323 20.4590i 0.0518842 1.08280i
\(358\) −11.2605 −0.595137
\(359\) −6.83531 −0.360754 −0.180377 0.983598i \(-0.557732\pi\)
−0.180377 + 0.983598i \(0.557732\pi\)
\(360\) 0 0
\(361\) 3.21916 0.169429
\(362\) 0.711272i 0.0373836i
\(363\) 13.3985 + 13.5455i 0.703237 + 0.710955i
\(364\) 19.6134 1.02802
\(365\) 0 0
\(366\) 20.0076 + 0.958694i 1.04581 + 0.0501117i
\(367\) 3.28873i 0.171670i 0.996309 + 0.0858351i \(0.0273558\pi\)
−0.996309 + 0.0858351i \(0.972644\pi\)
\(368\) 1.66840 0.0869716
\(369\) −8.72065 0.837650i −0.453979 0.0436063i
\(370\) 0 0
\(371\) 13.2668 0.688780
\(372\) 16.8602 + 0.807883i 0.874161 + 0.0418868i
\(373\) 11.3650 0.588458 0.294229 0.955735i \(-0.404937\pi\)
0.294229 + 0.955735i \(0.404937\pi\)
\(374\) 3.27551 8.40788i 0.169372 0.434761i
\(375\) 0 0
\(376\) 9.25186i 0.477128i
\(377\) −22.9502 −1.18200
\(378\) 3.23303 22.3529i 0.166289 1.14971i
\(379\) −26.1848 −1.34502 −0.672511 0.740087i \(-0.734784\pi\)
−0.672511 + 0.740087i \(0.734784\pi\)
\(380\) 0 0
\(381\) 15.4845 + 0.741964i 0.793295 + 0.0380120i
\(382\) −19.5852 −1.00207
\(383\) −18.7796 −0.959590 −0.479795 0.877381i \(-0.659289\pi\)
−0.479795 + 0.877381i \(0.659289\pi\)
\(384\) 0.0828988 1.73007i 0.00423041 0.0882871i
\(385\) 0 0
\(386\) 8.82899i 0.449384i
\(387\) −9.71088 0.932765i −0.493632 0.0474151i
\(388\) 12.7977i 0.649703i
\(389\) 24.4661i 1.24048i −0.784413 0.620239i \(-0.787035\pi\)
0.784413 0.620239i \(-0.212965\pi\)
\(390\) 0 0
\(391\) 4.53915i 0.229555i
\(392\) 11.8928i 0.600676i
\(393\) −21.3454 1.02280i −1.07673 0.0515934i
\(394\) 12.9502 0.652424
\(395\) 0 0
\(396\) 4.48173 8.88336i 0.225215 0.446406i
\(397\) 34.0708i 1.70997i −0.518656 0.854983i \(-0.673567\pi\)
0.518656 0.854983i \(-0.326433\pi\)
\(398\) 1.17485i 0.0588900i
\(399\) −1.43140 + 29.8728i −0.0716597 + 1.49551i
\(400\) 0 0
\(401\) 2.52416i 0.126051i 0.998012 + 0.0630254i \(0.0200749\pi\)
−0.998012 + 0.0630254i \(0.979925\pi\)
\(402\) −21.3713 1.02404i −1.06591 0.0510745i
\(403\) 43.9750 2.19055
\(404\) 6.73948 0.335302
\(405\) 0 0
\(406\) 22.1070i 1.09715i
\(407\) 17.3281 + 6.75063i 0.858924 + 0.334616i
\(408\) −4.70691 0.225539i −0.233027 0.0111658i
\(409\) 1.07974i 0.0533895i 0.999644 + 0.0266948i \(0.00849822\pi\)
−0.999644 + 0.0266948i \(0.991502\pi\)
\(410\) 0 0
\(411\) −36.2303 1.73603i −1.78711 0.0856321i
\(412\) 5.25186i 0.258740i
\(413\) 23.6134i 1.16194i
\(414\) 0.478566 4.98228i 0.0235203 0.244866i
\(415\) 0 0
\(416\) 4.51238i 0.221238i
\(417\) −1.28873 + 26.8953i −0.0631093 + 1.31707i
\(418\) −4.78267 + 12.2766i −0.233928 + 0.600469i
\(419\) 27.6897i 1.35273i −0.736566 0.676366i \(-0.763554\pi\)
0.736566 0.676366i \(-0.236446\pi\)
\(420\) 0 0
\(421\) 31.0847 1.51498 0.757488 0.652849i \(-0.226426\pi\)
0.757488 + 0.652849i \(0.226426\pi\)
\(422\) −21.1498 −1.02956
\(423\) −27.6284 2.65381i −1.34334 0.129033i
\(424\) 3.05225i 0.148230i
\(425\) 0 0
\(426\) 6.24053 + 0.299024i 0.302354 + 0.0144878i
\(427\) 50.2666i 2.43257i
\(428\) 6.25707i 0.302447i
\(429\) 10.5549 23.6754i 0.509593 1.14306i
\(430\) 0 0
\(431\) 2.86529 0.138016 0.0690080 0.997616i \(-0.478017\pi\)
0.0690080 + 0.997616i \(0.478017\pi\)
\(432\) −5.14264 0.743810i −0.247425 0.0357866i
\(433\) 14.8158i 0.712000i 0.934486 + 0.356000i \(0.115860\pi\)
−0.934486 + 0.356000i \(0.884140\pi\)
\(434\) 42.3592i 2.03331i
\(435\) 0 0
\(436\) 17.9168i 0.858060i
\(437\) 6.62776i 0.317049i
\(438\) 0.113158 2.36157i 0.00540691 0.112840i
\(439\) 11.3108i 0.539836i −0.962883 0.269918i \(-0.913003\pi\)
0.962883 0.269918i \(-0.0869966\pi\)
\(440\) 0 0
\(441\) 35.5149 + 3.41133i 1.69118 + 0.162444i
\(442\) −12.2766 −0.583939
\(443\) −1.60476 −0.0762447 −0.0381223 0.999273i \(-0.512138\pi\)
−0.0381223 + 0.999273i \(0.512138\pi\)
\(444\) 0.464822 9.70066i 0.0220595 0.460373i
\(445\) 0 0
\(446\) −22.6382 −1.07195
\(447\) 40.2900 + 1.93056i 1.90565 + 0.0913123i
\(448\) 4.34658 0.205357
\(449\) 4.00000i 0.188772i 0.995536 + 0.0943858i \(0.0300887\pi\)
−0.995536 + 0.0943858i \(0.969911\pi\)
\(450\) 0 0
\(451\) 3.51583 9.02476i 0.165554 0.424959i
\(452\) −8.51238 −0.400389
\(453\) 0.898952 18.7608i 0.0422365 0.881459i
\(454\) 23.5758 1.10647
\(455\) 0 0
\(456\) 6.87271 + 0.329316i 0.321844 + 0.0154217i
\(457\) −32.8716 −1.53767 −0.768835 0.639448i \(-0.779163\pi\)
−0.768835 + 0.639448i \(0.779163\pi\)
\(458\) 3.50893i 0.163962i
\(459\) −2.02365 + 13.9913i −0.0944559 + 0.653060i
\(460\) 0 0
\(461\) 15.9387 0.742339 0.371170 0.928565i \(-0.378957\pi\)
0.371170 + 0.928565i \(0.378957\pi\)
\(462\) 22.8055 + 10.1670i 1.06101 + 0.473014i
\(463\) 10.4842i 0.487241i −0.969871 0.243620i \(-0.921665\pi\)
0.969871 0.243620i \(-0.0783351\pi\)
\(464\) −5.08606 −0.236114
\(465\) 0 0
\(466\) −9.84991 −0.456288
\(467\) 2.64436 0.122367 0.0611833 0.998127i \(-0.480513\pi\)
0.0611833 + 0.998127i \(0.480513\pi\)
\(468\) −13.4751 1.29433i −0.622888 0.0598306i
\(469\) 53.6929i 2.47931i
\(470\) 0 0
\(471\) 0.919021 19.1796i 0.0423463 0.883750i
\(472\) 5.43264 0.250058
\(473\) 3.91505 10.0495i 0.180014 0.462077i
\(474\) 1.85303 + 0.0887907i 0.0851124 + 0.00407829i
\(475\) 0 0
\(476\) 11.8255i 0.542023i
\(477\) −9.11479 0.875509i −0.417338 0.0400868i
\(478\) 24.1540i 1.10478i
\(479\) 28.6082 1.30714 0.653571 0.756865i \(-0.273270\pi\)
0.653571 + 0.756865i \(0.273270\pi\)
\(480\) 0 0
\(481\) 25.3014i 1.15364i
\(482\) 4.69316 0.213768
\(483\) 12.5462 + 0.601170i 0.570872 + 0.0273542i
\(484\) 8.10105 + 7.44131i 0.368229 + 0.338241i
\(485\) 0 0
\(486\) −3.69633 + 15.1439i −0.167669 + 0.686940i
\(487\) 25.5584i 1.15816i −0.815269 0.579082i \(-0.803411\pi\)
0.815269 0.579082i \(-0.196589\pi\)
\(488\) 11.5646 0.523506
\(489\) −0.345340 + 7.20710i −0.0156168 + 0.325917i
\(490\) 0 0
\(491\) −30.0732 −1.35718 −0.678592 0.734516i \(-0.737409\pi\)
−0.678592 + 0.734516i \(0.737409\pi\)
\(492\) −5.05225 0.242086i −0.227773 0.0109141i
\(493\) 13.8374i 0.623205i
\(494\) 17.9255 0.806505
\(495\) 0 0
\(496\) 9.74541 0.437582
\(497\) 15.6786i 0.703280i
\(498\) 25.2394 + 1.20938i 1.13100 + 0.0541937i
\(499\) −13.6503 −0.611071 −0.305536 0.952181i \(-0.598835\pi\)
−0.305536 + 0.952181i \(0.598835\pi\)
\(500\) 0 0
\(501\) −0.728538 + 15.2043i −0.0325487 + 0.679278i
\(502\) 10.5424 0.470528
\(503\) 22.0495i 0.983139i 0.870838 + 0.491570i \(0.163577\pi\)
−0.870838 + 0.491570i \(0.836423\pi\)
\(504\) 1.24678 12.9800i 0.0555358 0.578175i
\(505\) 0 0
\(506\) 5.15603 + 2.00866i 0.229213 + 0.0892959i
\(507\) −12.7360 0.610265i −0.565626 0.0271028i
\(508\) 8.95024 0.397103
\(509\) 17.7660i 0.787464i −0.919225 0.393732i \(-0.871184\pi\)
0.919225 0.393732i \(-0.128816\pi\)
\(510\) 0 0
\(511\) 5.93316 0.262467
\(512\) 1.00000i 0.0441942i
\(513\) 2.95479 20.4292i 0.130457 0.901971i
\(514\) 11.0334i 0.486663i
\(515\) 0 0
\(516\) −5.62593 0.269575i −0.247668 0.0118674i
\(517\) 11.1387 28.5919i 0.489879 1.25747i
\(518\) 24.3717 1.07083
\(519\) 0.220775 4.60749i 0.00969096 0.202247i
\(520\) 0 0
\(521\) 21.0074i 0.920352i −0.887828 0.460176i \(-0.847786\pi\)
0.887828 0.460176i \(-0.152214\pi\)
\(522\) −1.45889 + 15.1883i −0.0638538 + 0.664773i
\(523\) −41.7779 −1.82682 −0.913409 0.407042i \(-0.866560\pi\)
−0.913409 + 0.407042i \(0.866560\pi\)
\(524\) −12.3379 −0.538985
\(525\) 0 0
\(526\) −30.8378 −1.34459
\(527\) 26.5139i 1.15496i
\(528\) 2.33909 5.24678i 0.101796 0.228337i
\(529\) −20.2164 −0.878975
\(530\) 0 0
\(531\) 1.55830 16.2233i 0.0676246 0.704030i
\(532\) 17.2668i 0.748613i
\(533\) −13.1773 −0.570774
\(534\) −6.50144 0.311526i −0.281345 0.0134811i
\(535\) 0 0
\(536\) −12.3529 −0.533564
\(537\) −0.933483 + 19.4814i −0.0402828 + 0.840686i
\(538\) −9.58345 −0.413172
\(539\) −14.3182 + 36.7533i −0.616729 + 1.58308i
\(540\) 0 0
\(541\) 6.18327i 0.265840i 0.991127 + 0.132920i \(0.0424353\pi\)
−0.991127 + 0.132920i \(0.957565\pi\)
\(542\) −21.3400 −0.916632
\(543\) 1.23055 + 0.0589636i 0.0528078 + 0.00253037i
\(544\) −2.72065 −0.116647
\(545\) 0 0
\(546\) 1.62593 33.9325i 0.0695833 1.45218i
\(547\) −21.2999 −0.910720 −0.455360 0.890307i \(-0.650489\pi\)
−0.455360 + 0.890307i \(0.650489\pi\)
\(548\) −20.9416 −0.894580
\(549\) 3.31721 34.5349i 0.141575 1.47392i
\(550\) 0 0
\(551\) 20.2044i 0.860738i
\(552\) 0.138309 2.88645i 0.00588681 0.122855i
\(553\) 4.65551i 0.197972i
\(554\) 7.43264i 0.315783i
\(555\) 0 0
\(556\) 15.5458i 0.659289i
\(557\) 5.87740i 0.249033i −0.992218 0.124517i \(-0.960262\pi\)
0.992218 0.124517i \(-0.0397380\pi\)
\(558\) 2.79538 29.1023i 0.118338 1.23200i
\(559\) −14.6736 −0.620628
\(560\) 0 0
\(561\) −14.2747 6.36385i −0.602676 0.268682i
\(562\) 20.0300i 0.844913i
\(563\) 21.9442i 0.924839i 0.886661 + 0.462420i \(0.153019\pi\)
−0.886661 + 0.462420i \(0.846981\pi\)
\(564\) −16.0063 0.766968i −0.673988 0.0322952i
\(565\) 0 0
\(566\) 5.98189i 0.251438i
\(567\) −38.4040 7.44639i −1.61282 0.312719i
\(568\) 3.60710 0.151351
\(569\) −15.7284 −0.659367 −0.329683 0.944092i \(-0.606942\pi\)
−0.329683 + 0.944092i \(0.606942\pi\)
\(570\) 0 0
\(571\) 39.4633i 1.65149i 0.564044 + 0.825745i \(0.309245\pi\)
−0.564044 + 0.825745i \(0.690755\pi\)
\(572\) 5.43264 13.9450i 0.227150 0.583071i
\(573\) −1.62359 + 33.8837i −0.0678265 + 1.41551i
\(574\) 12.6932i 0.529802i
\(575\) 0 0
\(576\) −2.98626 0.286841i −0.124427 0.0119517i
\(577\) 12.1721i 0.506732i −0.967370 0.253366i \(-0.918462\pi\)
0.967370 0.253366i \(-0.0815377\pi\)
\(578\) 9.59805i 0.399226i
\(579\) 15.2747 + 0.731912i 0.634796 + 0.0304172i
\(580\) 0 0
\(581\) 63.4108i 2.63072i
\(582\) 22.1408 + 1.06091i 0.917765 + 0.0439762i
\(583\) 3.67473 9.43264i 0.152192 0.390660i
\(584\) 1.36502i 0.0564848i
\(585\) 0 0
\(586\) 22.9998 0.950111
\(587\) −3.76175 −0.155264 −0.0776321 0.996982i \(-0.524736\pi\)
−0.0776321 + 0.996982i \(0.524736\pi\)
\(588\) 20.5753 + 0.985897i 0.848510 + 0.0406577i
\(589\) 38.7138i 1.59517i
\(590\) 0 0
\(591\) 1.07356 22.4048i 0.0441603 0.921609i
\(592\) 5.60710i 0.230451i
\(593\) 19.5389i 0.802367i 0.915998 + 0.401183i \(0.131401\pi\)
−0.915998 + 0.401183i \(0.868599\pi\)
\(594\) −14.9973 8.49011i −0.615345 0.348353i
\(595\) 0 0
\(596\) 23.2882 0.953920
\(597\) 2.03257 + 0.0973938i 0.0831876 + 0.00398606i
\(598\) 7.52848i 0.307862i
\(599\) 33.4776i 1.36786i −0.729549 0.683929i \(-0.760270\pi\)
0.729549 0.683929i \(-0.239730\pi\)
\(600\) 0 0
\(601\) 22.9203i 0.934937i 0.884010 + 0.467469i \(0.154834\pi\)
−0.884010 + 0.467469i \(0.845166\pi\)
\(602\) 14.1345i 0.576078i
\(603\) −3.54332 + 36.8889i −0.144295 + 1.50223i
\(604\) 10.8440i 0.441235i
\(605\) 0 0
\(606\) 0.558695 11.6597i 0.0226954 0.473645i
\(607\) −7.21187 −0.292721 −0.146360 0.989231i \(-0.546756\pi\)
−0.146360 + 0.989231i \(0.546756\pi\)
\(608\) 3.97251 0.161107
\(609\) −38.2465 1.83264i −1.54983 0.0742624i
\(610\) 0 0
\(611\) −41.7479 −1.68894
\(612\) −0.780394 + 8.12456i −0.0315456 + 0.328416i
\(613\) −10.9911 −0.443926 −0.221963 0.975055i \(-0.571246\pi\)
−0.221963 + 0.975055i \(0.571246\pi\)
\(614\) 27.2645i 1.10031i
\(615\) 0 0
\(616\) 13.4326 + 5.23303i 0.541217 + 0.210845i
\(617\) 9.52449 0.383442 0.191721 0.981450i \(-0.438593\pi\)
0.191721 + 0.981450i \(0.438593\pi\)
\(618\) −9.08606 0.435373i −0.365495 0.0175133i
\(619\) −20.5329 −0.825287 −0.412644 0.910893i \(-0.635395\pi\)
−0.412644 + 0.910893i \(0.635395\pi\)
\(620\) 0 0
\(621\) −8.58001 1.24098i −0.344304 0.0497987i
\(622\) 0.0613019 0.00245798
\(623\) 16.3341i 0.654411i
\(624\) −7.80671 0.374071i −0.312519 0.0149748i
\(625\) 0 0
\(626\) 22.2766 0.890353
\(627\) 20.8429 + 9.29206i 0.832384 + 0.371089i
\(628\) 11.0861i 0.442382i
\(629\) −15.2550 −0.608256
\(630\) 0 0
\(631\) −29.6731 −1.18127 −0.590634 0.806940i \(-0.701122\pi\)
−0.590634 + 0.806940i \(0.701122\pi\)
\(632\) 1.07107 0.0426050
\(633\) −1.75330 + 36.5906i −0.0696873 + 1.45435i
\(634\) 2.48169i 0.0985604i
\(635\) 0 0
\(636\) −5.28059 0.253028i −0.209389 0.0100332i
\(637\) 53.6647 2.12627
\(638\) −15.7179 6.12332i −0.622279 0.242425i
\(639\) 1.03466 10.7717i 0.0409307 0.426123i
\(640\) 0 0
\(641\) 19.0947i 0.754196i 0.926173 + 0.377098i \(0.123078\pi\)
−0.926173 + 0.377098i \(0.876922\pi\)
\(642\) 10.8251 + 0.518704i 0.427235 + 0.0204716i
\(643\) 22.0663i 0.870209i −0.900380 0.435104i \(-0.856711\pi\)
0.900380 0.435104i \(-0.143289\pi\)
\(644\) 7.25186 0.285763
\(645\) 0 0
\(646\) 10.8078i 0.425228i
\(647\) 18.5832 0.730581 0.365291 0.930894i \(-0.380970\pi\)
0.365291 + 0.930894i \(0.380970\pi\)
\(648\) −1.71316 + 8.83544i −0.0672993 + 0.347089i
\(649\) 16.7890 + 6.54059i 0.659026 + 0.256740i
\(650\) 0 0
\(651\) 73.2843 + 3.51153i 2.87224 + 0.137628i
\(652\) 4.16580i 0.163145i
\(653\) −31.2063 −1.22120 −0.610598 0.791941i \(-0.709071\pi\)
−0.610598 + 0.791941i \(0.709071\pi\)
\(654\) 30.9973 + 1.48528i 1.21209 + 0.0580791i
\(655\) 0 0
\(656\) −2.92026 −0.114017
\(657\) −4.07629 0.391542i −0.159031 0.0152755i
\(658\) 40.2140i 1.56770i
\(659\) −26.6138 −1.03672 −0.518362 0.855161i \(-0.673458\pi\)
−0.518362 + 0.855161i \(0.673458\pi\)
\(660\) 0 0
\(661\) −4.07452 −0.158481 −0.0792403 0.996856i \(-0.525249\pi\)
−0.0792403 + 0.996856i \(0.525249\pi\)
\(662\) 11.2519i 0.437316i
\(663\) −1.01772 + 21.2394i −0.0395248 + 0.824868i
\(664\) 14.5887 0.566150
\(665\) 0 0
\(666\) −16.7442 1.60835i −0.648826 0.0623221i
\(667\) −8.48561 −0.328564
\(668\) 8.78828i 0.340029i
\(669\) −1.87668 + 39.1656i −0.0725566 + 1.51423i
\(670\) 0 0
\(671\) 35.7392 + 13.9231i 1.37970 + 0.537497i
\(672\) 0.360326 7.51987i 0.0138999 0.290085i
\(673\) −0.828988 −0.0319551 −0.0159776 0.999872i \(-0.505086\pi\)
−0.0159776 + 0.999872i \(0.505086\pi\)
\(674\) 0.968917i 0.0373213i
\(675\) 0 0
\(676\) −7.36157 −0.283137
\(677\) 6.51415i 0.250359i −0.992134 0.125179i \(-0.960049\pi\)
0.992134 0.125179i \(-0.0399507\pi\)
\(678\) −0.705666 + 14.7270i −0.0271009 + 0.565586i
\(679\) 55.6261i 2.13473i
\(680\) 0 0
\(681\) 1.95440 40.7876i 0.0748929 1.56299i
\(682\) 30.1171 + 11.7329i 1.15325 + 0.449276i
\(683\) −8.99407 −0.344148 −0.172074 0.985084i \(-0.555047\pi\)
−0.172074 + 0.985084i \(0.555047\pi\)
\(684\) 1.13948 11.8629i 0.0435690 0.453591i
\(685\) 0 0
\(686\) 21.2668i 0.811972i
\(687\) 6.07068 + 0.290886i 0.231611 + 0.0110980i
\(688\) −3.25186 −0.123976
\(689\) −13.7729 −0.524706
\(690\) 0 0
\(691\) −39.7848 −1.51348 −0.756742 0.653714i \(-0.773210\pi\)
−0.756742 + 0.653714i \(0.773210\pi\)
\(692\) 2.66319i 0.101239i
\(693\) 19.4802 38.6123i 0.739992 1.46676i
\(694\) −1.59388 −0.0605030
\(695\) 0 0
\(696\) −0.421628 + 8.79922i −0.0159818 + 0.333534i
\(697\) 7.94502i 0.300939i
\(698\) 18.9416 0.716949
\(699\) −0.816545 + 17.0410i −0.0308846 + 0.644549i
\(700\) 0 0
\(701\) 40.4528 1.52788 0.763941 0.645286i \(-0.223262\pi\)
0.763941 + 0.645286i \(0.223262\pi\)
\(702\) −3.35635 + 23.2055i −0.126677 + 0.875837i
\(703\) 22.2743 0.840090
\(704\) 1.20394 3.09039i 0.0453753 0.116474i
\(705\) 0 0
\(706\) 0.806322i 0.0303463i
\(707\) 29.2937 1.10170
\(708\) 0.450359 9.39883i 0.0169255 0.353230i
\(709\) 31.3126 1.17597 0.587984 0.808872i \(-0.299922\pi\)
0.587984 + 0.808872i \(0.299922\pi\)
\(710\) 0 0
\(711\) 0.307228 3.19850i 0.0115219 0.119953i
\(712\) −3.75791 −0.140834
\(713\) 16.2593 0.608915
\(714\) −20.4590 0.980323i −0.765657 0.0366877i
\(715\) 0 0
\(716\) 11.2605i 0.420825i
\(717\) −41.7880 2.00234i −1.56060 0.0747787i
\(718\) 6.83531i 0.255092i
\(719\) 49.2324i 1.83606i 0.396513 + 0.918029i \(0.370220\pi\)
−0.396513 + 0.918029i \(0.629780\pi\)
\(720\) 0 0
\(721\) 22.8276i 0.850145i
\(722\) 3.21916i 0.119805i
\(723\) 0.389058 8.11948i 0.0144692 0.301967i
\(724\) 0.711272 0.0264342
\(725\) 0 0
\(726\) 13.5455 13.3985i 0.502721 0.497264i
\(727\) 22.6682i 0.840716i 0.907358 + 0.420358i \(0.138095\pi\)
−0.907358 + 0.420358i \(0.861905\pi\)
\(728\) 19.6134i 0.726922i
\(729\) 25.8935 + 7.65030i 0.959018 + 0.283344i
\(730\) 0 0
\(731\) 8.84718i 0.327225i
\(732\) 0.958694 20.0076i 0.0354343 0.739501i
\(733\) −0.210758 −0.00778452 −0.00389226 0.999992i \(-0.501239\pi\)
−0.00389226 + 0.999992i \(0.501239\pi\)
\(734\) 3.28873 0.121389
\(735\) 0 0
\(736\) 1.66840i 0.0614982i
\(737\) −38.1753 14.8722i −1.40621 0.547824i
\(738\) −0.837650 + 8.72065i −0.0308343 + 0.321012i
\(739\) 14.8053i 0.544623i 0.962209 + 0.272312i \(0.0877881\pi\)
−0.962209 + 0.272312i \(0.912212\pi\)
\(740\) 0 0
\(741\) 1.48600 31.0123i 0.0545896 1.13926i
\(742\) 13.2668i 0.487041i
\(743\) 19.2717i 0.707009i −0.935433 0.353504i \(-0.884990\pi\)
0.935433 0.353504i \(-0.115010\pi\)
\(744\) 0.807883 16.8602i 0.0296184 0.618125i
\(745\) 0 0
\(746\) 11.3650i 0.416103i
\(747\) 4.18462 43.5655i 0.153107 1.59398i
\(748\) −8.40788 3.27551i −0.307423 0.119764i
\(749\) 27.1969i 0.993752i
\(750\) 0 0
\(751\) −24.6107 −0.898057 −0.449029 0.893517i \(-0.648230\pi\)
−0.449029 + 0.893517i \(0.648230\pi\)
\(752\) −9.25186 −0.337381
\(753\) 0.873948 18.2390i 0.0318484 0.664665i
\(754\) 22.9502i 0.835798i
\(755\) 0 0
\(756\) −22.3529 3.23303i −0.812967 0.117584i
\(757\) 21.6166i 0.785670i 0.919609 + 0.392835i \(0.128506\pi\)
−0.919609 + 0.392835i \(0.871494\pi\)
\(758\) 26.1848i 0.951074i
\(759\) 3.90255 8.75375i 0.141653 0.317741i
\(760\) 0 0
\(761\) −34.6751 −1.25697 −0.628485 0.777822i \(-0.716325\pi\)
−0.628485 + 0.777822i \(0.716325\pi\)
\(762\) 0.741964 15.4845i 0.0268785 0.560944i
\(763\) 77.8769i 2.81933i
\(764\) 19.5852i 0.708568i
\(765\) 0 0
\(766\) 18.7796i 0.678533i
\(767\) 24.5141i 0.885155i
\(768\) −1.73007 0.0828988i −0.0624284 0.00299135i
\(769\) 16.8772i 0.608606i 0.952575 + 0.304303i \(0.0984235\pi\)
−0.952575 + 0.304303i \(0.901577\pi\)
\(770\) 0 0
\(771\) −19.0885 0.914657i −0.687457 0.0329406i
\(772\) 8.82899 0.317762
\(773\) −8.07701 −0.290510 −0.145255 0.989394i \(-0.546400\pi\)
−0.145255 + 0.989394i \(0.546400\pi\)
\(774\) −0.932765 + 9.71088i −0.0335276 + 0.349050i
\(775\) 0 0
\(776\) 12.7977 0.459409
\(777\) 2.02039 42.1647i 0.0724810 1.51265i
\(778\) −24.4661 −0.877151
\(779\) 11.6008i 0.415641i
\(780\) 0 0
\(781\) 11.1474 + 4.34274i 0.398884 + 0.155396i
\(782\) −4.53915 −0.162320
\(783\) 26.1558 + 3.78306i 0.934731 + 0.135196i
\(784\) 11.8928 0.424742
\(785\) 0 0
\(786\) −1.02280 + 21.3454i −0.0364820 + 0.761366i
\(787\) 15.2992 0.545356 0.272678 0.962105i \(-0.412091\pi\)
0.272678 + 0.962105i \(0.412091\pi\)
\(788\) 12.9502i 0.461333i
\(789\) −2.55642 + 53.3514i −0.0910108 + 1.89936i
\(790\) 0 0
\(791\) −36.9998 −1.31556
\(792\) −8.88336 4.48173i −0.315657 0.159251i
\(793\) 52.1840i 1.85311i
\(794\) −34.0708 −1.20913
\(795\) 0 0
\(796\) 1.17485 0.0416415
\(797\) 4.37200 0.154864 0.0774321 0.996998i \(-0.475328\pi\)
0.0774321 + 0.996998i \(0.475328\pi\)
\(798\) 29.8728 + 1.43140i 1.05748 + 0.0506710i
\(799\) 25.1711i 0.890489i
\(800\) 0 0
\(801\) −1.07792 + 11.2221i −0.0380865 + 0.396513i
\(802\) 2.52416 0.0891313
\(803\) 1.64340 4.21844i 0.0579944 0.148865i
\(804\) −1.02404 + 21.3713i −0.0361151 + 0.753709i
\(805\) 0 0
\(806\) 43.9750i 1.54895i
\(807\) −0.794457 + 16.5800i −0.0279662 + 0.583644i
\(808\) 6.73948i 0.237094i
\(809\) 16.6459 0.585237 0.292619 0.956229i \(-0.405473\pi\)
0.292619 + 0.956229i \(0.405473\pi\)
\(810\) 0 0
\(811\) 35.1018i 1.23259i 0.787515 + 0.616295i \(0.211367\pi\)
−0.787515 + 0.616295i \(0.788633\pi\)
\(812\) −22.1070 −0.775803
\(813\) −1.76906 + 36.9196i −0.0620437 + 1.29483i
\(814\) 6.75063 17.3281i 0.236609 0.607351i
\(815\) 0 0
\(816\) −0.225539 + 4.70691i −0.00789544 + 0.164775i
\(817\) 12.9180i 0.451945i
\(818\) 1.07974 0.0377521
\(819\) −58.5707 5.62593i −2.04663 0.196586i
\(820\) 0 0
\(821\) 4.78900 0.167137 0.0835686 0.996502i \(-0.473368\pi\)
0.0835686 + 0.996502i \(0.473368\pi\)
\(822\) −1.73603 + 36.2303i −0.0605510 + 1.26368i
\(823\) 19.7053i 0.686883i −0.939174 0.343441i \(-0.888407\pi\)
0.939174 0.343441i \(-0.111593\pi\)
\(824\) −5.25186 −0.182957
\(825\) 0 0
\(826\) 23.6134 0.821616
\(827\) 49.7179i 1.72886i 0.502752 + 0.864431i \(0.332321\pi\)
−0.502752 + 0.864431i \(0.667679\pi\)
\(828\) −4.98228 0.478566i −0.173146 0.0166313i
\(829\) −43.5766 −1.51348 −0.756738 0.653718i \(-0.773208\pi\)
−0.756738 + 0.653718i \(0.773208\pi\)
\(830\) 0 0
\(831\) −12.8590 0.616157i −0.446072 0.0213743i
\(832\) −4.51238 −0.156439
\(833\) 32.3561i 1.12107i
\(834\) 26.8953 + 1.28873i 0.931307 + 0.0446250i
\(835\) 0 0
\(836\) 12.2766 + 4.78267i 0.424596 + 0.165412i
\(837\) −50.1171 7.24874i −1.73230 0.250553i
\(838\) −27.6897 −0.956525
\(839\) 5.89727i 0.203596i 0.994805 + 0.101798i \(0.0324596\pi\)
−0.994805 + 0.101798i \(0.967540\pi\)
\(840\) 0 0
\(841\) −3.13198 −0.107999
\(842\) 31.0847i 1.07125i
\(843\) −34.6532 1.66046i −1.19352 0.0571893i
\(844\) 21.1498i 0.728008i
\(845\) 0 0
\(846\) −2.65381 + 27.6284i −0.0912399 + 0.949884i
\(847\) 35.2119 + 32.3442i 1.20989 + 1.11136i
\(848\) −3.05225 −0.104815
\(849\) −10.3491 0.495892i −0.355179 0.0170190i
\(850\) 0 0
\(851\) 9.35492i 0.320682i
\(852\) 0.299024 6.24053i 0.0102444 0.213797i
\(853\) 25.2919 0.865979 0.432990 0.901399i \(-0.357459\pi\)
0.432990 + 0.901399i \(0.357459\pi\)
\(854\) 50.2666 1.72009
\(855\) 0 0
\(856\) 6.25707 0.213862
\(857\) 25.0718i 0.856436i −0.903675 0.428218i \(-0.859142\pi\)
0.903675 0.428218i \(-0.140858\pi\)
\(858\) −23.6754 10.5549i −0.808266 0.360337i
\(859\) −12.2263 −0.417157 −0.208578 0.978006i \(-0.566884\pi\)
−0.208578 + 0.978006i \(0.566884\pi\)
\(860\) 0 0
\(861\) −21.9600 1.05225i −0.748395 0.0358605i
\(862\) 2.86529i 0.0975920i
\(863\) −16.5713 −0.564095 −0.282048 0.959400i \(-0.591014\pi\)
−0.282048 + 0.959400i \(0.591014\pi\)
\(864\) −0.743810 + 5.14264i −0.0253049 + 0.174956i
\(865\) 0 0
\(866\) 14.8158 0.503460
\(867\) −16.6053 0.795667i −0.563944 0.0270223i
\(868\) 42.3592 1.43777
\(869\) 3.31004 + 1.28951i 0.112285 + 0.0437437i
\(870\) 0 0
\(871\) 55.7410i 1.88871i
\(872\) 17.9168 0.606740
\(873\) 3.67089 38.2171i 0.124241 1.29345i
\(874\) 6.62776 0.224187
\(875\) 0 0
\(876\) −2.36157 0.113158i −0.0797900 0.00382326i
\(877\) −41.5248 −1.40219 −0.701096 0.713067i \(-0.747306\pi\)
−0.701096 + 0.713067i \(0.747306\pi\)
\(878\) −11.3108 −0.381722
\(879\) 1.90665 39.7911i 0.0643098 1.34212i
\(880\) 0 0
\(881\) 18.8053i 0.633568i −0.948498 0.316784i \(-0.897397\pi\)
0.948498 0.316784i \(-0.102603\pi\)
\(882\) 3.41133 35.5149i 0.114866 1.19585i
\(883\) 12.9252i 0.434966i 0.976064 + 0.217483i \(0.0697847\pi\)
−0.976064 + 0.217483i \(0.930215\pi\)
\(884\) 12.2766i 0.412907i
\(885\) 0 0
\(886\) 1.60476i 0.0539131i
\(887\) 43.1169i 1.44772i −0.689945 0.723862i \(-0.742365\pi\)
0.689945 0.723862i \(-0.257635\pi\)
\(888\) −9.70066 0.464822i −0.325533 0.0155984i
\(889\) 38.9029 1.30476
\(890\) 0 0
\(891\) −15.9317 + 25.2424i −0.533732 + 0.845654i
\(892\) 22.6382i 0.757983i
\(893\) 36.7531i 1.22990i
\(894\) 1.93056 40.2900i 0.0645676 1.34750i
\(895\) 0 0
\(896\) 4.34658i 0.145209i
\(897\) −13.0248 0.624101i −0.434884 0.0208381i
\(898\) 4.00000 0.133482
\(899\) −49.5658 −1.65311
\(900\) 0 0
\(901\) 8.30411i 0.276650i
\(902\) −9.02476 3.51583i −0.300492 0.117064i
\(903\) −24.4536 1.17173i −0.813764 0.0389927i
\(904\) 8.51238i 0.283118i
\(905\) 0 0
\(906\) −18.7608 0.898952i −0.623286 0.0298657i
\(907\) 16.4347i 0.545706i −0.962056 0.272853i \(-0.912033\pi\)
0.962056 0.272853i \(-0.0879673\pi\)
\(908\) 23.5758i 0.782390i
\(909\) −20.1258 1.93316i −0.667531 0.0641188i
\(910\) 0 0
\(911\) 48.2030i 1.59704i −0.601971 0.798518i \(-0.705618\pi\)
0.601971 0.798518i \(-0.294382\pi\)
\(912\) 0.329316 6.87271i 0.0109048 0.227578i
\(913\) 45.0847 + 17.5639i 1.49209 + 0.581281i
\(914\) 32.8716i 1.08730i
\(915\) 0 0
\(916\) 3.50893 0.115938
\(917\) −53.6278 −1.77095
\(918\) 13.9913 + 2.02365i 0.461783 + 0.0667904i
\(919\) 33.3400i 1.09979i −0.835235 0.549893i \(-0.814669\pi\)
0.835235 0.549893i \(-0.185331\pi\)
\(920\) 0 0
\(921\) −47.1694 2.26019i −1.55428 0.0744759i
\(922\) 15.9387i 0.524913i
\(923\) 16.2766i 0.535751i
\(924\) 10.1670 22.8055i 0.334471 0.750247i
\(925\) 0 0
\(926\) −10.4842 −0.344531
\(927\) −1.50645 + 15.6834i −0.0494782 + 0.515110i
\(928\) 5.08606i 0.166958i
\(929\) 26.4142i 0.866622i −0.901244 0.433311i \(-0.857345\pi\)
0.901244 0.433311i \(-0.142655\pi\)
\(930\) 0 0
\(931\) 47.2442i 1.54837i
\(932\) 9.84991i 0.322644i
\(933\) 0.00508185 0.106056i 0.000166372 0.00347213i
\(934\) 2.64436i 0.0865262i
\(935\) 0 0
\(936\) −1.29433 + 13.4751i −0.0423066 + 0.440448i
\(937\) 36.8009 1.20223 0.601116 0.799162i \(-0.294723\pi\)
0.601116 + 0.799162i \(0.294723\pi\)
\(938\) −53.6929 −1.75314
\(939\) 1.84670 38.5400i 0.0602649 1.25771i
\(940\) 0 0
\(941\) 12.9934 0.423574 0.211787 0.977316i \(-0.432072\pi\)
0.211787 + 0.977316i \(0.432072\pi\)
\(942\) −19.1796 0.919021i −0.624906 0.0299433i
\(943\) −4.87218 −0.158660
\(944\) 5.43264i 0.176817i
\(945\) 0 0
\(946\) −10.0495 3.91505i −0.326738 0.127289i
\(947\) 6.36307 0.206772 0.103386 0.994641i \(-0.467032\pi\)
0.103386 + 0.994641i \(0.467032\pi\)
\(948\) 0.0887907 1.85303i 0.00288379 0.0601836i
\(949\) −6.15947 −0.199945
\(950\) 0 0
\(951\) −4.29348 0.205729i −0.139226 0.00667122i
\(952\) −11.8255 −0.383268
\(953\) 29.7400i 0.963372i −0.876344 0.481686i \(-0.840025\pi\)
0.876344 0.481686i \(-0.159975\pi\)
\(954\) −0.875509 + 9.11479i −0.0283456 + 0.295102i
\(955\) 0 0
\(956\) −24.1540 −0.781197
\(957\) −11.8967 + 26.6854i −0.384567 + 0.862617i
\(958\) 28.6082i 0.924289i
\(959\) −91.0243 −2.93933
\(960\) 0 0
\(961\) 63.9730 2.06365
\(962\) −25.3014 −0.815749
\(963\) 1.79478 18.6852i 0.0578361 0.602123i
\(964\) 4.69316i 0.151157i
\(965\) 0 0
\(966\) 0.601170 12.5462i 0.0193423 0.403667i
\(967\) 36.5418 1.17510 0.587552 0.809186i \(-0.300092\pi\)
0.587552 + 0.809186i \(0.300092\pi\)
\(968\) 7.44131 8.10105i 0.239173 0.260378i
\(969\) −18.6982 0.895955i −0.600674 0.0287822i
\(970\) 0 0
\(971\) 22.7040i 0.728607i 0.931280 + 0.364304i \(0.118693\pi\)
−0.931280 + 0.364304i \(0.881307\pi\)
\(972\) 15.1439 + 3.69633i 0.485740 + 0.118560i
\(973\) 67.5711i 2.16623i
\(974\) −25.5584 −0.818946
\(975\) 0 0
\(976\) 11.5646i 0.370175i
\(977\) 2.83708 0.0907662 0.0453831 0.998970i \(-0.485549\pi\)
0.0453831 + 0.998970i \(0.485549\pi\)
\(978\) 7.20710 + 0.345340i 0.230458 + 0.0110427i
\(979\) −11.6134 4.52431i −0.371167 0.144598i
\(980\) 0 0
\(981\) 5.13927 53.5042i 0.164084 1.70826i
\(982\) 30.0732i 0.959673i
\(983\) 35.3487 1.12745 0.563724 0.825963i \(-0.309368\pi\)
0.563724 + 0.825963i \(0.309368\pi\)
\(984\) −0.242086 + 5.05225i −0.00771743 + 0.161060i
\(985\) 0 0
\(986\) 13.8374 0.440673
\(987\) −69.5728 3.33369i −2.21453 0.106112i
\(988\) 17.9255i 0.570285i
\(989\) −5.42542 −0.172518
\(990\) 0 0
\(991\) −20.0173 −0.635871 −0.317936 0.948112i \(-0.602990\pi\)
−0.317936 + 0.948112i \(0.602990\pi\)
\(992\) 9.74541i 0.309417i
\(993\) 19.4665 + 0.932765i 0.617749 + 0.0296004i
\(994\) 15.6786 0.497294
\(995\) 0 0
\(996\) 1.20938 25.2394i 0.0383208 0.799740i
\(997\) 6.80711 0.215583 0.107792 0.994174i \(-0.465622\pi\)
0.107792 + 0.994174i \(0.465622\pi\)
\(998\) 13.6503i 0.432093i
\(999\) −4.17062 + 28.8353i −0.131953 + 0.912309i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1650.2.f.c.1649.1 8
3.2 odd 2 1650.2.f.f.1649.8 8
5.2 odd 4 1650.2.d.f.1451.6 8
5.3 odd 4 330.2.d.a.131.3 8
5.4 even 2 1650.2.f.e.1649.8 8
11.10 odd 2 1650.2.f.d.1649.5 8
15.2 even 4 1650.2.d.c.1451.5 8
15.8 even 4 330.2.d.b.131.4 yes 8
15.14 odd 2 1650.2.f.d.1649.1 8
20.3 even 4 2640.2.f.b.1121.6 8
33.32 even 2 1650.2.f.e.1649.4 8
55.32 even 4 1650.2.d.c.1451.6 8
55.43 even 4 330.2.d.b.131.3 yes 8
55.54 odd 2 1650.2.f.f.1649.4 8
60.23 odd 4 2640.2.f.a.1121.5 8
165.32 odd 4 1650.2.d.f.1451.5 8
165.98 odd 4 330.2.d.a.131.4 yes 8
165.164 even 2 inner 1650.2.f.c.1649.5 8
220.43 odd 4 2640.2.f.a.1121.6 8
660.263 even 4 2640.2.f.b.1121.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.d.a.131.3 8 5.3 odd 4
330.2.d.a.131.4 yes 8 165.98 odd 4
330.2.d.b.131.3 yes 8 55.43 even 4
330.2.d.b.131.4 yes 8 15.8 even 4
1650.2.d.c.1451.5 8 15.2 even 4
1650.2.d.c.1451.6 8 55.32 even 4
1650.2.d.f.1451.5 8 165.32 odd 4
1650.2.d.f.1451.6 8 5.2 odd 4
1650.2.f.c.1649.1 8 1.1 even 1 trivial
1650.2.f.c.1649.5 8 165.164 even 2 inner
1650.2.f.d.1649.1 8 15.14 odd 2
1650.2.f.d.1649.5 8 11.10 odd 2
1650.2.f.e.1649.4 8 33.32 even 2
1650.2.f.e.1649.8 8 5.4 even 2
1650.2.f.f.1649.4 8 55.54 odd 2
1650.2.f.f.1649.8 8 3.2 odd 2
2640.2.f.a.1121.5 8 60.23 odd 4
2640.2.f.a.1121.6 8 220.43 odd 4
2640.2.f.b.1121.5 8 660.263 even 4
2640.2.f.b.1121.6 8 20.3 even 4