Properties

Label 330.2.d.b.131.4
Level $330$
Weight $2$
Character 330.131
Analytic conductor $2.635$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [330,2,Mod(131,330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("330.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 330.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.63506326670\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2051727616.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 37x^{4} + 36x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.4
Root \(-2.25619i\) of defining polynomial
Character \(\chi\) \(=\) 330.131
Dual form 330.2.d.b.131.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.0828988 + 1.73007i) q^{3} +1.00000 q^{4} -1.00000i q^{5} +(0.0828988 + 1.73007i) q^{6} +4.34658i q^{7} +1.00000 q^{8} +(-2.98626 + 0.286841i) q^{9} -1.00000i q^{10} +(1.20394 - 3.09039i) q^{11} +(0.0828988 + 1.73007i) q^{12} +4.51238i q^{13} +4.34658i q^{14} +(1.73007 - 0.0828988i) q^{15} +1.00000 q^{16} +2.72065 q^{17} +(-2.98626 + 0.286841i) q^{18} -3.97251i q^{19} -1.00000i q^{20} +(-7.51987 + 0.360326i) q^{21} +(1.20394 - 3.09039i) q^{22} -1.66840i q^{23} +(0.0828988 + 1.73007i) q^{24} -1.00000 q^{25} +4.51238i q^{26} +(-0.743810 - 5.14264i) q^{27} +4.34658i q^{28} -5.08606 q^{29} +(1.73007 - 0.0828988i) q^{30} +9.74541 q^{31} +1.00000 q^{32} +(5.44639 + 1.82671i) q^{33} +2.72065 q^{34} +4.34658 q^{35} +(-2.98626 + 0.286841i) q^{36} -5.60710 q^{37} -3.97251i q^{38} +(-7.80671 + 0.374071i) q^{39} -1.00000i q^{40} +2.92026 q^{41} +(-7.51987 + 0.360326i) q^{42} -3.25186i q^{43} +(1.20394 - 3.09039i) q^{44} +(0.286841 + 2.98626i) q^{45} -1.66840i q^{46} -9.25186i q^{47} +(0.0828988 + 1.73007i) q^{48} -11.8928 q^{49} -1.00000 q^{50} +(0.225539 + 4.70691i) q^{51} +4.51238i q^{52} +3.05225i q^{53} +(-0.743810 - 5.14264i) q^{54} +(-3.09039 - 1.20394i) q^{55} +4.34658i q^{56} +(6.87271 - 0.329316i) q^{57} -5.08606 q^{58} -5.43264i q^{59} +(1.73007 - 0.0828988i) q^{60} -11.5646i q^{61} +9.74541 q^{62} +(-1.24678 - 12.9800i) q^{63} +1.00000 q^{64} +4.51238 q^{65} +(5.44639 + 1.82671i) q^{66} +12.3529 q^{67} +2.72065 q^{68} +(2.88645 - 0.138309i) q^{69} +4.34658 q^{70} +3.60710i q^{71} +(-2.98626 + 0.286841i) q^{72} -1.36502i q^{73} -5.60710 q^{74} +(-0.0828988 - 1.73007i) q^{75} -3.97251i q^{76} +(13.4326 + 5.23303i) q^{77} +(-7.80671 + 0.374071i) q^{78} +1.07107i q^{79} -1.00000i q^{80} +(8.83544 - 1.71316i) q^{81} +2.92026 q^{82} -14.5887 q^{83} +(-7.51987 + 0.360326i) q^{84} -2.72065i q^{85} -3.25186i q^{86} +(-0.421628 - 8.79922i) q^{87} +(1.20394 - 3.09039i) q^{88} +3.75791i q^{89} +(0.286841 + 2.98626i) q^{90} -19.6134 q^{91} -1.66840i q^{92} +(0.807883 + 16.8602i) q^{93} -9.25186i q^{94} -3.97251 q^{95} +(0.0828988 + 1.73007i) q^{96} -12.7977 q^{97} -11.8928 q^{98} +(-2.70883 + 9.57404i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 2 q^{3} + 8 q^{4} + 2 q^{6} + 8 q^{8} + 2 q^{9} + 6 q^{11} + 2 q^{12} + 4 q^{15} + 8 q^{16} + 4 q^{17} + 2 q^{18} - 8 q^{21} + 6 q^{22} + 2 q^{24} - 8 q^{25} - 22 q^{27} - 4 q^{29} + 4 q^{30}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/330\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(211\) \(221\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.0828988 + 1.73007i 0.0478616 + 0.998854i
\(4\) 1.00000 0.500000
\(5\) 1.00000i 0.447214i
\(6\) 0.0828988 + 1.73007i 0.0338433 + 0.706296i
\(7\) 4.34658i 1.64285i 0.570314 + 0.821427i \(0.306822\pi\)
−0.570314 + 0.821427i \(0.693178\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.98626 + 0.286841i −0.995419 + 0.0956136i
\(10\) 1.00000i 0.316228i
\(11\) 1.20394 3.09039i 0.363002 0.931788i
\(12\) 0.0828988 + 1.73007i 0.0239308 + 0.499427i
\(13\) 4.51238i 1.25151i 0.780020 + 0.625754i \(0.215209\pi\)
−0.780020 + 0.625754i \(0.784791\pi\)
\(14\) 4.34658i 1.16167i
\(15\) 1.73007 0.0828988i 0.446701 0.0214044i
\(16\) 1.00000 0.250000
\(17\) 2.72065 0.659855 0.329928 0.944006i \(-0.392976\pi\)
0.329928 + 0.944006i \(0.392976\pi\)
\(18\) −2.98626 + 0.286841i −0.703867 + 0.0676090i
\(19\) 3.97251i 0.911357i −0.890145 0.455678i \(-0.849397\pi\)
0.890145 0.455678i \(-0.150603\pi\)
\(20\) 1.00000i 0.223607i
\(21\) −7.51987 + 0.360326i −1.64097 + 0.0786297i
\(22\) 1.20394 3.09039i 0.256681 0.658874i
\(23\) 1.66840i 0.347886i −0.984756 0.173943i \(-0.944349\pi\)
0.984756 0.173943i \(-0.0556509\pi\)
\(24\) 0.0828988 + 1.73007i 0.0169216 + 0.353148i
\(25\) −1.00000 −0.200000
\(26\) 4.51238i 0.884950i
\(27\) −0.743810 5.14264i −0.143146 0.989702i
\(28\) 4.34658i 0.821427i
\(29\) −5.08606 −0.944458 −0.472229 0.881476i \(-0.656550\pi\)
−0.472229 + 0.881476i \(0.656550\pi\)
\(30\) 1.73007 0.0828988i 0.315865 0.0151352i
\(31\) 9.74541 1.75033 0.875164 0.483827i \(-0.160754\pi\)
0.875164 + 0.483827i \(0.160754\pi\)
\(32\) 1.00000 0.176777
\(33\) 5.44639 + 1.82671i 0.948094 + 0.317989i
\(34\) 2.72065 0.466588
\(35\) 4.34658 0.734706
\(36\) −2.98626 + 0.286841i −0.497709 + 0.0478068i
\(37\) −5.60710 −0.921802 −0.460901 0.887452i \(-0.652474\pi\)
−0.460901 + 0.887452i \(0.652474\pi\)
\(38\) 3.97251i 0.644426i
\(39\) −7.80671 + 0.374071i −1.25007 + 0.0598993i
\(40\) 1.00000i 0.158114i
\(41\) 2.92026 0.456069 0.228034 0.973653i \(-0.426770\pi\)
0.228034 + 0.973653i \(0.426770\pi\)
\(42\) −7.51987 + 0.360326i −1.16034 + 0.0555996i
\(43\) 3.25186i 0.495904i −0.968772 0.247952i \(-0.920243\pi\)
0.968772 0.247952i \(-0.0797575\pi\)
\(44\) 1.20394 3.09039i 0.181501 0.465894i
\(45\) 0.286841 + 2.98626i 0.0427597 + 0.445165i
\(46\) 1.66840i 0.245993i
\(47\) 9.25186i 1.34952i −0.738036 0.674761i \(-0.764247\pi\)
0.738036 0.674761i \(-0.235753\pi\)
\(48\) 0.0828988 + 1.73007i 0.0119654 + 0.249713i
\(49\) −11.8928 −1.69897
\(50\) −1.00000 −0.141421
\(51\) 0.225539 + 4.70691i 0.0315817 + 0.659099i
\(52\) 4.51238i 0.625754i
\(53\) 3.05225i 0.419258i 0.977781 + 0.209629i \(0.0672257\pi\)
−0.977781 + 0.209629i \(0.932774\pi\)
\(54\) −0.743810 5.14264i −0.101220 0.699825i
\(55\) −3.09039 1.20394i −0.416708 0.162339i
\(56\) 4.34658i 0.580836i
\(57\) 6.87271 0.329316i 0.910312 0.0436190i
\(58\) −5.08606 −0.667833
\(59\) 5.43264i 0.707270i −0.935384 0.353635i \(-0.884946\pi\)
0.935384 0.353635i \(-0.115054\pi\)
\(60\) 1.73007 0.0828988i 0.223351 0.0107022i
\(61\) 11.5646i 1.48070i −0.672222 0.740349i \(-0.734660\pi\)
0.672222 0.740349i \(-0.265340\pi\)
\(62\) 9.74541 1.23767
\(63\) −1.24678 12.9800i −0.157079 1.63533i
\(64\) 1.00000 0.125000
\(65\) 4.51238 0.559692
\(66\) 5.44639 + 1.82671i 0.670404 + 0.224852i
\(67\) 12.3529 1.50915 0.754574 0.656215i \(-0.227844\pi\)
0.754574 + 0.656215i \(0.227844\pi\)
\(68\) 2.72065 0.329928
\(69\) 2.88645 0.138309i 0.347488 0.0166504i
\(70\) 4.34658 0.519516
\(71\) 3.60710i 0.428084i 0.976824 + 0.214042i \(0.0686630\pi\)
−0.976824 + 0.214042i \(0.931337\pi\)
\(72\) −2.98626 + 0.286841i −0.351934 + 0.0338045i
\(73\) 1.36502i 0.159763i −0.996804 0.0798816i \(-0.974546\pi\)
0.996804 0.0798816i \(-0.0254542\pi\)
\(74\) −5.60710 −0.651812
\(75\) −0.0828988 1.73007i −0.00957233 0.199771i
\(76\) 3.97251i 0.455678i
\(77\) 13.4326 + 5.23303i 1.53079 + 0.596359i
\(78\) −7.80671 + 0.374071i −0.883936 + 0.0423552i
\(79\) 1.07107i 0.120505i 0.998183 + 0.0602526i \(0.0191906\pi\)
−0.998183 + 0.0602526i \(0.980809\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 8.83544 1.71316i 0.981716 0.190351i
\(82\) 2.92026 0.322489
\(83\) −14.5887 −1.60131 −0.800657 0.599123i \(-0.795516\pi\)
−0.800657 + 0.599123i \(0.795516\pi\)
\(84\) −7.51987 + 0.360326i −0.820485 + 0.0393148i
\(85\) 2.72065i 0.295096i
\(86\) 3.25186i 0.350657i
\(87\) −0.421628 8.79922i −0.0452033 0.943375i
\(88\) 1.20394 3.09039i 0.128341 0.329437i
\(89\) 3.75791i 0.398338i 0.979965 + 0.199169i \(0.0638243\pi\)
−0.979965 + 0.199169i \(0.936176\pi\)
\(90\) 0.286841 + 2.98626i 0.0302357 + 0.314779i
\(91\) −19.6134 −2.05605
\(92\) 1.66840i 0.173943i
\(93\) 0.807883 + 16.8602i 0.0837735 + 1.74832i
\(94\) 9.25186i 0.954256i
\(95\) −3.97251 −0.407571
\(96\) 0.0828988 + 1.73007i 0.00846082 + 0.176574i
\(97\) −12.7977 −1.29941 −0.649703 0.760188i \(-0.725107\pi\)
−0.649703 + 0.760188i \(0.725107\pi\)
\(98\) −11.8928 −1.20135
\(99\) −2.70883 + 9.57404i −0.272247 + 0.962227i
\(100\) −1.00000 −0.100000
\(101\) 6.73948 0.670603 0.335302 0.942111i \(-0.391162\pi\)
0.335302 + 0.942111i \(0.391162\pi\)
\(102\) 0.225539 + 4.70691i 0.0223317 + 0.466053i
\(103\) −5.25186 −0.517481 −0.258740 0.965947i \(-0.583307\pi\)
−0.258740 + 0.965947i \(0.583307\pi\)
\(104\) 4.51238i 0.442475i
\(105\) 0.360326 + 7.51987i 0.0351643 + 0.733864i
\(106\) 3.05225i 0.296461i
\(107\) 6.25707 0.604894 0.302447 0.953166i \(-0.402196\pi\)
0.302447 + 0.953166i \(0.402196\pi\)
\(108\) −0.743810 5.14264i −0.0715732 0.494851i
\(109\) 17.9168i 1.71612i 0.513550 + 0.858060i \(0.328330\pi\)
−0.513550 + 0.858060i \(0.671670\pi\)
\(110\) −3.09039 1.20394i −0.294657 0.114791i
\(111\) −0.464822 9.70066i −0.0441190 0.920746i
\(112\) 4.34658i 0.410713i
\(113\) 8.51238i 0.800777i −0.916345 0.400389i \(-0.868875\pi\)
0.916345 0.400389i \(-0.131125\pi\)
\(114\) 6.87271 0.329316i 0.643688 0.0308433i
\(115\) −1.66840 −0.155580
\(116\) −5.08606 −0.472229
\(117\) −1.29433 13.4751i −0.119661 1.24578i
\(118\) 5.43264i 0.500115i
\(119\) 11.8255i 1.08405i
\(120\) 1.73007 0.0828988i 0.157933 0.00756759i
\(121\) −8.10105 7.44131i −0.736459 0.676482i
\(122\) 11.5646i 1.04701i
\(123\) 0.242086 + 5.05225i 0.0218282 + 0.455546i
\(124\) 9.74541 0.875164
\(125\) 1.00000i 0.0894427i
\(126\) −1.24678 12.9800i −0.111072 1.15635i
\(127\) 8.95024i 0.794205i 0.917774 + 0.397103i \(0.129984\pi\)
−0.917774 + 0.397103i \(0.870016\pi\)
\(128\) 1.00000 0.0883883
\(129\) 5.62593 0.269575i 0.495335 0.0237348i
\(130\) 4.51238 0.395762
\(131\) −12.3379 −1.07797 −0.538985 0.842316i \(-0.681192\pi\)
−0.538985 + 0.842316i \(0.681192\pi\)
\(132\) 5.44639 + 1.82671i 0.474047 + 0.158995i
\(133\) 17.2668 1.49723
\(134\) 12.3529 1.06713
\(135\) −5.14264 + 0.743810i −0.442608 + 0.0640170i
\(136\) 2.72065 0.233294
\(137\) 20.9416i 1.78916i 0.446908 + 0.894580i \(0.352525\pi\)
−0.446908 + 0.894580i \(0.647475\pi\)
\(138\) 2.88645 0.138309i 0.245711 0.0117736i
\(139\) 15.5458i 1.31858i 0.751890 + 0.659289i \(0.229143\pi\)
−0.751890 + 0.659289i \(0.770857\pi\)
\(140\) 4.34658 0.367353
\(141\) 16.0063 0.766968i 1.34798 0.0645903i
\(142\) 3.60710i 0.302701i
\(143\) 13.9450 + 5.43264i 1.16614 + 0.454300i
\(144\) −2.98626 + 0.286841i −0.248855 + 0.0239034i
\(145\) 5.08606i 0.422374i
\(146\) 1.36502i 0.112970i
\(147\) −0.985897 20.5753i −0.0813154 1.69702i
\(148\) −5.60710 −0.460901
\(149\) −23.2882 −1.90784 −0.953920 0.300061i \(-0.902993\pi\)
−0.953920 + 0.300061i \(0.902993\pi\)
\(150\) −0.0828988 1.73007i −0.00676866 0.141259i
\(151\) 10.8440i 0.882470i 0.897392 + 0.441235i \(0.145460\pi\)
−0.897392 + 0.441235i \(0.854540\pi\)
\(152\) 3.97251i 0.322213i
\(153\) −8.12456 + 0.780394i −0.656832 + 0.0630911i
\(154\) 13.4326 + 5.23303i 1.08243 + 0.421690i
\(155\) 9.74541i 0.782770i
\(156\) −7.80671 + 0.374071i −0.625037 + 0.0299496i
\(157\) 11.0861 0.884764 0.442382 0.896827i \(-0.354134\pi\)
0.442382 + 0.896827i \(0.354134\pi\)
\(158\) 1.07107i 0.0852101i
\(159\) −5.28059 + 0.253028i −0.418778 + 0.0200664i
\(160\) 1.00000i 0.0790569i
\(161\) 7.25186 0.571527
\(162\) 8.83544 1.71316i 0.694178 0.134599i
\(163\) 4.16580 0.326290 0.163145 0.986602i \(-0.447836\pi\)
0.163145 + 0.986602i \(0.447836\pi\)
\(164\) 2.92026 0.228034
\(165\) 1.82671 5.44639i 0.142209 0.424001i
\(166\) −14.5887 −1.13230
\(167\) 8.78828 0.680057 0.340029 0.940415i \(-0.389563\pi\)
0.340029 + 0.940415i \(0.389563\pi\)
\(168\) −7.51987 + 0.360326i −0.580171 + 0.0277998i
\(169\) −7.36157 −0.566275
\(170\) 2.72065i 0.208665i
\(171\) 1.13948 + 11.8629i 0.0871381 + 0.907181i
\(172\) 3.25186i 0.247952i
\(173\) 2.66319 0.202479 0.101239 0.994862i \(-0.467719\pi\)
0.101239 + 0.994862i \(0.467719\pi\)
\(174\) −0.421628 8.79922i −0.0319636 0.667067i
\(175\) 4.34658i 0.328571i
\(176\) 1.20394 3.09039i 0.0907505 0.232947i
\(177\) 9.39883 0.450359i 0.706459 0.0338511i
\(178\) 3.75791i 0.281668i
\(179\) 11.2605i 0.841651i −0.907142 0.420825i \(-0.861740\pi\)
0.907142 0.420825i \(-0.138260\pi\)
\(180\) 0.286841 + 2.98626i 0.0213798 + 0.222582i
\(181\) −0.711272 −0.0528684 −0.0264342 0.999651i \(-0.508415\pi\)
−0.0264342 + 0.999651i \(0.508415\pi\)
\(182\) −19.6134 −1.45384
\(183\) 20.0076 0.958694i 1.47900 0.0708687i
\(184\) 1.66840i 0.122996i
\(185\) 5.60710i 0.412242i
\(186\) 0.807883 + 16.8602i 0.0592368 + 1.23625i
\(187\) 3.27551 8.40788i 0.239529 0.614845i
\(188\) 9.25186i 0.674761i
\(189\) 22.3529 3.23303i 1.62593 0.235168i
\(190\) −3.97251 −0.288196
\(191\) 19.5852i 1.41714i 0.705642 + 0.708568i \(0.250659\pi\)
−0.705642 + 0.708568i \(0.749341\pi\)
\(192\) 0.0828988 + 1.73007i 0.00598270 + 0.124857i
\(193\) 8.82899i 0.635524i −0.948170 0.317762i \(-0.897069\pi\)
0.948170 0.317762i \(-0.102931\pi\)
\(194\) −12.7977 −0.918818
\(195\) 0.374071 + 7.80671i 0.0267878 + 0.559050i
\(196\) −11.8928 −0.849484
\(197\) −12.9502 −0.922666 −0.461333 0.887227i \(-0.652629\pi\)
−0.461333 + 0.887227i \(0.652629\pi\)
\(198\) −2.70883 + 9.57404i −0.192508 + 0.680397i
\(199\) 1.17485 0.0832830 0.0416415 0.999133i \(-0.486741\pi\)
0.0416415 + 0.999133i \(0.486741\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 1.02404 + 21.3713i 0.0722303 + 1.50742i
\(202\) 6.73948 0.474188
\(203\) 22.1070i 1.55161i
\(204\) 0.225539 + 4.70691i 0.0157909 + 0.329549i
\(205\) 2.92026i 0.203960i
\(206\) −5.25186 −0.365914
\(207\) 0.478566 + 4.98228i 0.0332627 + 0.346293i
\(208\) 4.51238i 0.312877i
\(209\) −12.2766 4.78267i −0.849191 0.330824i
\(210\) 0.360326 + 7.51987i 0.0248649 + 0.518921i
\(211\) 21.1498i 1.45602i −0.685569 0.728008i \(-0.740446\pi\)
0.685569 0.728008i \(-0.259554\pi\)
\(212\) 3.05225i 0.209629i
\(213\) −6.24053 + 0.299024i −0.427594 + 0.0204888i
\(214\) 6.25707 0.427725
\(215\) −3.25186 −0.221775
\(216\) −0.743810 5.14264i −0.0506099 0.349912i
\(217\) 42.3592i 2.87553i
\(218\) 17.9168i 1.21348i
\(219\) 2.36157 0.113158i 0.159580 0.00764652i
\(220\) −3.09039 1.20394i −0.208354 0.0811697i
\(221\) 12.2766i 0.825815i
\(222\) −0.464822 9.70066i −0.0311968 0.651065i
\(223\) 22.6382 1.51597 0.757983 0.652275i \(-0.226185\pi\)
0.757983 + 0.652275i \(0.226185\pi\)
\(224\) 4.34658i 0.290418i
\(225\) 2.98626 0.286841i 0.199084 0.0191227i
\(226\) 8.51238i 0.566235i
\(227\) −23.5758 −1.56478 −0.782390 0.622789i \(-0.785999\pi\)
−0.782390 + 0.622789i \(0.785999\pi\)
\(228\) 6.87271 0.329316i 0.455156 0.0218095i
\(229\) 3.50893 0.231877 0.115938 0.993256i \(-0.463012\pi\)
0.115938 + 0.993256i \(0.463012\pi\)
\(230\) −1.66840 −0.110011
\(231\) −7.93994 + 23.6732i −0.522410 + 1.55758i
\(232\) −5.08606 −0.333916
\(233\) −9.84991 −0.645289 −0.322644 0.946520i \(-0.604572\pi\)
−0.322644 + 0.946520i \(0.604572\pi\)
\(234\) −1.29433 13.4751i −0.0846133 0.880896i
\(235\) −9.25186 −0.603525
\(236\) 5.43264i 0.353635i
\(237\) −1.85303 + 0.0887907i −0.120367 + 0.00576758i
\(238\) 11.8255i 0.766536i
\(239\) 24.1540 1.56239 0.781197 0.624285i \(-0.214610\pi\)
0.781197 + 0.624285i \(0.214610\pi\)
\(240\) 1.73007 0.0828988i 0.111675 0.00535109i
\(241\) 4.69316i 0.302313i 0.988510 + 0.151157i \(0.0482998\pi\)
−0.988510 + 0.151157i \(0.951700\pi\)
\(242\) −8.10105 7.44131i −0.520755 0.478345i
\(243\) 3.69633 + 15.1439i 0.237119 + 0.971481i
\(244\) 11.5646i 0.740349i
\(245\) 11.8928i 0.759801i
\(246\) 0.242086 + 5.05225i 0.0154349 + 0.322120i
\(247\) 17.9255 1.14057
\(248\) 9.74541 0.618834
\(249\) −1.20938 25.2394i −0.0766415 1.59948i
\(250\) 1.00000i 0.0632456i
\(251\) 10.5424i 0.665427i −0.943028 0.332714i \(-0.892036\pi\)
0.943028 0.332714i \(-0.107964\pi\)
\(252\) −1.24678 12.9800i −0.0785395 0.817663i
\(253\) −5.15603 2.00866i −0.324157 0.126284i
\(254\) 8.95024i 0.561588i
\(255\) 4.70691 0.225539i 0.294758 0.0141238i
\(256\) 1.00000 0.0625000
\(257\) 11.0334i 0.688246i 0.938925 + 0.344123i \(0.111824\pi\)
−0.938925 + 0.344123i \(0.888176\pi\)
\(258\) 5.62593 0.269575i 0.350255 0.0167830i
\(259\) 24.3717i 1.51439i
\(260\) 4.51238 0.279846
\(261\) 15.1883 1.45889i 0.940131 0.0903030i
\(262\) −12.3379 −0.762239
\(263\) −30.8378 −1.90154 −0.950770 0.309897i \(-0.899705\pi\)
−0.950770 + 0.309897i \(0.899705\pi\)
\(264\) 5.44639 + 1.82671i 0.335202 + 0.112426i
\(265\) 3.05225 0.187498
\(266\) 17.2668 1.05870
\(267\) −6.50144 + 0.311526i −0.397882 + 0.0190651i
\(268\) 12.3529 0.754574
\(269\) 9.58345i 0.584313i −0.956370 0.292157i \(-0.905627\pi\)
0.956370 0.292157i \(-0.0943729\pi\)
\(270\) −5.14264 + 0.743810i −0.312971 + 0.0452669i
\(271\) 21.3400i 1.29631i −0.761507 0.648157i \(-0.775540\pi\)
0.761507 0.648157i \(-0.224460\pi\)
\(272\) 2.72065 0.164964
\(273\) −1.62593 33.9325i −0.0984057 2.05369i
\(274\) 20.9416i 1.26513i
\(275\) −1.20394 + 3.09039i −0.0726004 + 0.186358i
\(276\) 2.88645 0.138309i 0.173744 0.00832521i
\(277\) 7.43264i 0.446584i −0.974752 0.223292i \(-0.928320\pi\)
0.974752 0.223292i \(-0.0716804\pi\)
\(278\) 15.5458i 0.932375i
\(279\) −29.1023 + 2.79538i −1.74231 + 0.167355i
\(280\) 4.34658 0.259758
\(281\) −20.0300 −1.19489 −0.597444 0.801911i \(-0.703817\pi\)
−0.597444 + 0.801911i \(0.703817\pi\)
\(282\) 16.0063 0.766968i 0.953163 0.0456723i
\(283\) 5.98189i 0.355587i 0.984068 + 0.177793i \(0.0568958\pi\)
−0.984068 + 0.177793i \(0.943104\pi\)
\(284\) 3.60710i 0.214042i
\(285\) −0.329316 6.87271i −0.0195070 0.407104i
\(286\) 13.9450 + 5.43264i 0.824586 + 0.321239i
\(287\) 12.6932i 0.749254i
\(288\) −2.98626 + 0.286841i −0.175967 + 0.0169023i
\(289\) −9.59805 −0.564591
\(290\) 5.08606i 0.298664i
\(291\) −1.06091 22.1408i −0.0621917 1.29792i
\(292\) 1.36502i 0.0798816i
\(293\) 22.9998 1.34366 0.671830 0.740705i \(-0.265509\pi\)
0.671830 + 0.740705i \(0.265509\pi\)
\(294\) −0.985897 20.5753i −0.0574987 1.19997i
\(295\) −5.43264 −0.316301
\(296\) −5.60710 −0.325906
\(297\) −16.7883 3.89277i −0.974155 0.225882i
\(298\) −23.2882 −1.34905
\(299\) 7.52848 0.435383
\(300\) −0.0828988 1.73007i −0.00478616 0.0998854i
\(301\) 14.1345 0.814697
\(302\) 10.8440i 0.624001i
\(303\) 0.558695 + 11.6597i 0.0320962 + 0.669835i
\(304\) 3.97251i 0.227839i
\(305\) −11.5646 −0.662189
\(306\) −8.12456 + 0.780394i −0.464450 + 0.0446122i
\(307\) 27.2645i 1.55607i −0.628222 0.778034i \(-0.716217\pi\)
0.628222 0.778034i \(-0.283783\pi\)
\(308\) 13.4326 + 5.23303i 0.765396 + 0.298180i
\(309\) −0.435373 9.08606i −0.0247675 0.516888i
\(310\) 9.74541i 0.553502i
\(311\) 0.0613019i 0.00347611i −0.999998 0.00173806i \(-0.999447\pi\)
0.999998 0.00173806i \(-0.000553241\pi\)
\(312\) −7.80671 + 0.374071i −0.441968 + 0.0211776i
\(313\) −22.2766 −1.25915 −0.629574 0.776940i \(-0.716771\pi\)
−0.629574 + 0.776940i \(0.716771\pi\)
\(314\) 11.0861 0.625623
\(315\) −12.9800 + 1.24678i −0.731340 + 0.0702479i
\(316\) 1.07107i 0.0602526i
\(317\) 2.48169i 0.139385i 0.997569 + 0.0696927i \(0.0222019\pi\)
−0.997569 + 0.0696927i \(0.977798\pi\)
\(318\) −5.28059 + 0.253028i −0.296121 + 0.0141891i
\(319\) −6.12332 + 15.7179i −0.342840 + 0.880035i
\(320\) 1.00000i 0.0559017i
\(321\) 0.518704 + 10.8251i 0.0289512 + 0.604201i
\(322\) 7.25186 0.404130
\(323\) 10.8078i 0.601363i
\(324\) 8.83544 1.71316i 0.490858 0.0951755i
\(325\) 4.51238i 0.250302i
\(326\) 4.16580 0.230722
\(327\) −30.9973 + 1.48528i −1.71415 + 0.0821363i
\(328\) 2.92026 0.161245
\(329\) 40.2140 2.21707
\(330\) 1.82671 5.44639i 0.100557 0.299814i
\(331\) −11.2519 −0.618458 −0.309229 0.950988i \(-0.600071\pi\)
−0.309229 + 0.950988i \(0.600071\pi\)
\(332\) −14.5887 −0.800657
\(333\) 16.7442 1.60835i 0.917579 0.0881368i
\(334\) 8.78828 0.480873
\(335\) 12.3529i 0.674911i
\(336\) −7.51987 + 0.360326i −0.410243 + 0.0196574i
\(337\) 0.968917i 0.0527803i 0.999652 + 0.0263901i \(0.00840121\pi\)
−0.999652 + 0.0263901i \(0.991599\pi\)
\(338\) −7.36157 −0.400417
\(339\) 14.7270 0.705666i 0.799860 0.0383265i
\(340\) 2.72065i 0.147548i
\(341\) 11.7329 30.1171i 0.635373 1.63093i
\(342\) 1.13948 + 11.8629i 0.0616159 + 0.641474i
\(343\) 21.2668i 1.14830i
\(344\) 3.25186i 0.175328i
\(345\) −0.138309 2.88645i −0.00744629 0.155401i
\(346\) 2.66319 0.143174
\(347\) 1.59388 0.0855641 0.0427821 0.999084i \(-0.486378\pi\)
0.0427821 + 0.999084i \(0.486378\pi\)
\(348\) −0.421628 8.79922i −0.0226016 0.471688i
\(349\) 18.9416i 1.01392i −0.861970 0.506960i \(-0.830769\pi\)
0.861970 0.506960i \(-0.169231\pi\)
\(350\) 4.34658i 0.232335i
\(351\) 23.2055 3.35635i 1.23862 0.179149i
\(352\) 1.20394 3.09039i 0.0641703 0.164718i
\(353\) 0.806322i 0.0429162i −0.999770 0.0214581i \(-0.993169\pi\)
0.999770 0.0214581i \(-0.00683085\pi\)
\(354\) 9.39883 0.450359i 0.499542 0.0239363i
\(355\) 3.60710 0.191445
\(356\) 3.75791i 0.199169i
\(357\) −20.4590 + 0.980323i −1.08280 + 0.0518842i
\(358\) 11.2605i 0.595137i
\(359\) −6.83531 −0.360754 −0.180377 0.983598i \(-0.557732\pi\)
−0.180377 + 0.983598i \(0.557732\pi\)
\(360\) 0.286841 + 2.98626i 0.0151178 + 0.157389i
\(361\) 3.21916 0.169429
\(362\) −0.711272 −0.0373836
\(363\) 12.2024 14.6322i 0.640459 0.767992i
\(364\) −19.6134 −1.02802
\(365\) −1.36502 −0.0714482
\(366\) 20.0076 0.958694i 1.04581 0.0501117i
\(367\) 3.28873 0.171670 0.0858351 0.996309i \(-0.472644\pi\)
0.0858351 + 0.996309i \(0.472644\pi\)
\(368\) 1.66840i 0.0869716i
\(369\) −8.72065 + 0.837650i −0.453979 + 0.0436063i
\(370\) 5.60710i 0.291499i
\(371\) −13.2668 −0.688780
\(372\) 0.807883 + 16.8602i 0.0418868 + 0.874161i
\(373\) 11.3650i 0.588458i 0.955735 + 0.294229i \(0.0950629\pi\)
−0.955735 + 0.294229i \(0.904937\pi\)
\(374\) 3.27551 8.40788i 0.169372 0.434761i
\(375\) −1.73007 + 0.0828988i −0.0893402 + 0.00428087i
\(376\) 9.25186i 0.477128i
\(377\) 22.9502i 1.18200i
\(378\) 22.3529 3.23303i 1.14971 0.166289i
\(379\) 26.1848 1.34502 0.672511 0.740087i \(-0.265216\pi\)
0.672511 + 0.740087i \(0.265216\pi\)
\(380\) −3.97251 −0.203786
\(381\) −15.4845 + 0.741964i −0.793295 + 0.0380120i
\(382\) 19.5852i 1.00207i
\(383\) 18.7796i 0.959590i 0.877381 + 0.479795i \(0.159289\pi\)
−0.877381 + 0.479795i \(0.840711\pi\)
\(384\) 0.0828988 + 1.73007i 0.00423041 + 0.0882871i
\(385\) 5.23303 13.4326i 0.266700 0.684591i
\(386\) 8.82899i 0.449384i
\(387\) 0.932765 + 9.71088i 0.0474151 + 0.493632i
\(388\) −12.7977 −0.649703
\(389\) 24.4661i 1.24048i −0.784413 0.620239i \(-0.787035\pi\)
0.784413 0.620239i \(-0.212965\pi\)
\(390\) 0.374071 + 7.80671i 0.0189418 + 0.395308i
\(391\) 4.53915i 0.229555i
\(392\) −11.8928 −0.600676
\(393\) −1.02280 21.3454i −0.0515934 1.07673i
\(394\) −12.9502 −0.652424
\(395\) 1.07107 0.0538916
\(396\) −2.70883 + 9.57404i −0.136124 + 0.481114i
\(397\) −34.0708 −1.70997 −0.854983 0.518656i \(-0.826433\pi\)
−0.854983 + 0.518656i \(0.826433\pi\)
\(398\) 1.17485 0.0588900
\(399\) 1.43140 + 29.8728i 0.0716597 + 1.49551i
\(400\) −1.00000 −0.0500000
\(401\) 2.52416i 0.126051i −0.998012 0.0630254i \(-0.979925\pi\)
0.998012 0.0630254i \(-0.0200749\pi\)
\(402\) 1.02404 + 21.3713i 0.0510745 + 1.06591i
\(403\) 43.9750i 2.19055i
\(404\) 6.73948 0.335302
\(405\) −1.71316 8.83544i −0.0851276 0.439037i
\(406\) 22.1070i 1.09715i
\(407\) −6.75063 + 17.3281i −0.334616 + 0.858924i
\(408\) 0.225539 + 4.70691i 0.0111658 + 0.233027i
\(409\) 1.07974i 0.0533895i −0.999644 0.0266948i \(-0.991502\pi\)
0.999644 0.0266948i \(-0.00849822\pi\)
\(410\) 2.92026i 0.144222i
\(411\) −36.2303 + 1.73603i −1.78711 + 0.0856321i
\(412\) −5.25186 −0.258740
\(413\) 23.6134 1.16194
\(414\) 0.478566 + 4.98228i 0.0235203 + 0.244866i
\(415\) 14.5887i 0.716130i
\(416\) 4.51238i 0.221238i
\(417\) −26.8953 + 1.28873i −1.31707 + 0.0631093i
\(418\) −12.2766 4.78267i −0.600469 0.233928i
\(419\) 27.6897i 1.35273i −0.736566 0.676366i \(-0.763554\pi\)
0.736566 0.676366i \(-0.236446\pi\)
\(420\) 0.360326 + 7.51987i 0.0175821 + 0.366932i
\(421\) 31.0847 1.51498 0.757488 0.652849i \(-0.226426\pi\)
0.757488 + 0.652849i \(0.226426\pi\)
\(422\) 21.1498i 1.02956i
\(423\) 2.65381 + 27.6284i 0.129033 + 1.34334i
\(424\) 3.05225i 0.148230i
\(425\) −2.72065 −0.131971
\(426\) −6.24053 + 0.299024i −0.302354 + 0.0144878i
\(427\) 50.2666 2.43257
\(428\) 6.25707 0.302447
\(429\) −8.24280 + 24.5762i −0.397966 + 1.18655i
\(430\) −3.25186 −0.156819
\(431\) −2.86529 −0.138016 −0.0690080 0.997616i \(-0.521983\pi\)
−0.0690080 + 0.997616i \(0.521983\pi\)
\(432\) −0.743810 5.14264i −0.0357866 0.247425i
\(433\) −14.8158 −0.712000 −0.356000 0.934486i \(-0.615860\pi\)
−0.356000 + 0.934486i \(0.615860\pi\)
\(434\) 42.3592i 2.03331i
\(435\) −8.79922 + 0.421628i −0.421890 + 0.0202155i
\(436\) 17.9168i 0.858060i
\(437\) −6.62776 −0.317049
\(438\) 2.36157 0.113158i 0.112840 0.00540691i
\(439\) 11.3108i 0.539836i 0.962883 + 0.269918i \(0.0869966\pi\)
−0.962883 + 0.269918i \(0.913003\pi\)
\(440\) −3.09039 1.20394i −0.147329 0.0573957i
\(441\) 35.5149 3.41133i 1.69118 0.162444i
\(442\) 12.2766i 0.583939i
\(443\) 1.60476i 0.0762447i 0.999273 + 0.0381223i \(0.0121377\pi\)
−0.999273 + 0.0381223i \(0.987862\pi\)
\(444\) −0.464822 9.70066i −0.0220595 0.460373i
\(445\) 3.75791 0.178142
\(446\) 22.6382 1.07195
\(447\) −1.93056 40.2900i −0.0913123 1.90565i
\(448\) 4.34658i 0.205357i
\(449\) 4.00000i 0.188772i 0.995536 + 0.0943858i \(0.0300887\pi\)
−0.995536 + 0.0943858i \(0.969911\pi\)
\(450\) 2.98626 0.286841i 0.140773 0.0135218i
\(451\) 3.51583 9.02476i 0.165554 0.424959i
\(452\) 8.51238i 0.400389i
\(453\) −18.7608 + 0.898952i −0.881459 + 0.0422365i
\(454\) −23.5758 −1.10647
\(455\) 19.6134i 0.919492i
\(456\) 6.87271 0.329316i 0.321844 0.0154217i
\(457\) 32.8716i 1.53767i 0.639448 + 0.768835i \(0.279163\pi\)
−0.639448 + 0.768835i \(0.720837\pi\)
\(458\) 3.50893 0.163962
\(459\) −2.02365 13.9913i −0.0944559 0.653060i
\(460\) −1.66840 −0.0777898
\(461\) −15.9387 −0.742339 −0.371170 0.928565i \(-0.621043\pi\)
−0.371170 + 0.928565i \(0.621043\pi\)
\(462\) −7.93994 + 23.6732i −0.369399 + 1.10138i
\(463\) 10.4842 0.487241 0.243620 0.969871i \(-0.421665\pi\)
0.243620 + 0.969871i \(0.421665\pi\)
\(464\) −5.08606 −0.236114
\(465\) 16.8602 0.807883i 0.781873 0.0374647i
\(466\) −9.84991 −0.456288
\(467\) 2.64436i 0.122367i 0.998127 + 0.0611833i \(0.0194874\pi\)
−0.998127 + 0.0611833i \(0.980513\pi\)
\(468\) −1.29433 13.4751i −0.0598306 0.622888i
\(469\) 53.6929i 2.47931i
\(470\) −9.25186 −0.426756
\(471\) 0.919021 + 19.1796i 0.0423463 + 0.883750i
\(472\) 5.43264i 0.250058i
\(473\) −10.0495 3.91505i −0.462077 0.180014i
\(474\) −1.85303 + 0.0887907i −0.0851124 + 0.00407829i
\(475\) 3.97251i 0.182271i
\(476\) 11.8255i 0.542023i
\(477\) −0.875509 9.11479i −0.0400868 0.417338i
\(478\) 24.1540 1.10478
\(479\) 28.6082 1.30714 0.653571 0.756865i \(-0.273270\pi\)
0.653571 + 0.756865i \(0.273270\pi\)
\(480\) 1.73007 0.0828988i 0.0789663 0.00378379i
\(481\) 25.3014i 1.15364i
\(482\) 4.69316i 0.213768i
\(483\) 0.601170 + 12.5462i 0.0273542 + 0.570872i
\(484\) −8.10105 7.44131i −0.368229 0.338241i
\(485\) 12.7977i 0.581112i
\(486\) 3.69633 + 15.1439i 0.167669 + 0.686940i
\(487\) −25.5584 −1.15816 −0.579082 0.815269i \(-0.696589\pi\)
−0.579082 + 0.815269i \(0.696589\pi\)
\(488\) 11.5646i 0.523506i
\(489\) 0.345340 + 7.20710i 0.0156168 + 0.325917i
\(490\) 11.8928i 0.537261i
\(491\) 30.0732 1.35718 0.678592 0.734516i \(-0.262591\pi\)
0.678592 + 0.734516i \(0.262591\pi\)
\(492\) 0.242086 + 5.05225i 0.0109141 + 0.227773i
\(493\) −13.8374 −0.623205
\(494\) 17.9255 0.806505
\(495\) 9.57404 + 2.70883i 0.430321 + 0.121753i
\(496\) 9.74541 0.437582
\(497\) −15.6786 −0.703280
\(498\) −1.20938 25.2394i −0.0541937 1.13100i
\(499\) 13.6503 0.611071 0.305536 0.952181i \(-0.401165\pi\)
0.305536 + 0.952181i \(0.401165\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) 0.728538 + 15.2043i 0.0325487 + 0.679278i
\(502\) 10.5424i 0.470528i
\(503\) 22.0495 0.983139 0.491570 0.870838i \(-0.336423\pi\)
0.491570 + 0.870838i \(0.336423\pi\)
\(504\) −1.24678 12.9800i −0.0555358 0.578175i
\(505\) 6.73948i 0.299903i
\(506\) −5.15603 2.00866i −0.229213 0.0892959i
\(507\) −0.610265 12.7360i −0.0271028 0.565626i
\(508\) 8.95024i 0.397103i
\(509\) 17.7660i 0.787464i −0.919225 0.393732i \(-0.871184\pi\)
0.919225 0.393732i \(-0.128816\pi\)
\(510\) 4.70691 0.225539i 0.208425 0.00998703i
\(511\) 5.93316 0.262467
\(512\) 1.00000 0.0441942
\(513\) −20.4292 + 2.95479i −0.901971 + 0.130457i
\(514\) 11.0334i 0.486663i
\(515\) 5.25186i 0.231425i
\(516\) 5.62593 0.269575i 0.247668 0.0118674i
\(517\) −28.5919 11.1387i −1.25747 0.489879i
\(518\) 24.3717i 1.07083i
\(519\) 0.220775 + 4.60749i 0.00969096 + 0.202247i
\(520\) 4.51238 0.197881
\(521\) 21.0074i 0.920352i 0.887828 + 0.460176i \(0.152214\pi\)
−0.887828 + 0.460176i \(0.847786\pi\)
\(522\) 15.1883 1.45889i 0.664773 0.0638538i
\(523\) 41.7779i 1.82682i −0.407042 0.913409i \(-0.633440\pi\)
0.407042 0.913409i \(-0.366560\pi\)
\(524\) −12.3379 −0.538985
\(525\) 7.51987 0.360326i 0.328194 0.0157259i
\(526\) −30.8378 −1.34459
\(527\) 26.5139 1.15496
\(528\) 5.44639 + 1.82671i 0.237024 + 0.0794973i
\(529\) 20.2164 0.878975
\(530\) 3.05225 0.132581
\(531\) 1.55830 + 16.2233i 0.0676246 + 0.704030i
\(532\) 17.2668 0.748613
\(533\) 13.1773i 0.570774i
\(534\) −6.50144 + 0.311526i −0.281345 + 0.0134811i
\(535\) 6.25707i 0.270517i
\(536\) 12.3529 0.533564
\(537\) 19.4814 0.933483i 0.840686 0.0402828i
\(538\) 9.58345i 0.413172i
\(539\) −14.3182 + 36.7533i −0.616729 + 1.58308i
\(540\) −5.14264 + 0.743810i −0.221304 + 0.0320085i
\(541\) 6.18327i 0.265840i 0.991127 + 0.132920i \(0.0424353\pi\)
−0.991127 + 0.132920i \(0.957565\pi\)
\(542\) 21.3400i 0.916632i
\(543\) −0.0589636 1.23055i −0.00253037 0.0528078i
\(544\) 2.72065 0.116647
\(545\) 17.9168 0.767472
\(546\) −1.62593 33.9325i −0.0695833 1.45218i
\(547\) 21.2999i 0.910720i 0.890307 + 0.455360i \(0.150489\pi\)
−0.890307 + 0.455360i \(0.849511\pi\)
\(548\) 20.9416i 0.894580i
\(549\) 3.31721 + 34.5349i 0.141575 + 1.47392i
\(550\) −1.20394 + 3.09039i −0.0513363 + 0.131775i
\(551\) 20.2044i 0.860738i
\(552\) 2.88645 0.138309i 0.122855 0.00588681i
\(553\) −4.65551 −0.197972
\(554\) 7.43264i 0.315783i
\(555\) −9.70066 + 0.464822i −0.411770 + 0.0197306i
\(556\) 15.5458i 0.659289i
\(557\) 5.87740 0.249033 0.124517 0.992218i \(-0.460262\pi\)
0.124517 + 0.992218i \(0.460262\pi\)
\(558\) −29.1023 + 2.79538i −1.23200 + 0.118338i
\(559\) 14.6736 0.620628
\(560\) 4.34658 0.183677
\(561\) 14.8177 + 4.96984i 0.625605 + 0.209827i
\(562\) −20.0300 −0.844913
\(563\) 21.9442 0.924839 0.462420 0.886661i \(-0.346981\pi\)
0.462420 + 0.886661i \(0.346981\pi\)
\(564\) 16.0063 0.766968i 0.673988 0.0322952i
\(565\) −8.51238 −0.358118
\(566\) 5.98189i 0.251438i
\(567\) 7.44639 + 38.4040i 0.312719 + 1.61282i
\(568\) 3.60710i 0.151351i
\(569\) −15.7284 −0.659367 −0.329683 0.944092i \(-0.606942\pi\)
−0.329683 + 0.944092i \(0.606942\pi\)
\(570\) −0.329316 6.87271i −0.0137935 0.287866i
\(571\) 39.4633i 1.65149i 0.564044 + 0.825745i \(0.309245\pi\)
−0.564044 + 0.825745i \(0.690755\pi\)
\(572\) 13.9450 + 5.43264i 0.583071 + 0.227150i
\(573\) −33.8837 + 1.62359i −1.41551 + 0.0678265i
\(574\) 12.6932i 0.529802i
\(575\) 1.66840i 0.0695773i
\(576\) −2.98626 + 0.286841i −0.124427 + 0.0119517i
\(577\) −12.1721 −0.506732 −0.253366 0.967370i \(-0.581538\pi\)
−0.253366 + 0.967370i \(0.581538\pi\)
\(578\) −9.59805 −0.399226
\(579\) 15.2747 0.731912i 0.634796 0.0304172i
\(580\) 5.08606i 0.211187i
\(581\) 63.4108i 2.63072i
\(582\) −1.06091 22.1408i −0.0439762 0.917765i
\(583\) 9.43264 + 3.67473i 0.390660 + 0.152192i
\(584\) 1.36502i 0.0564848i
\(585\) −13.4751 + 1.29433i −0.557128 + 0.0535141i
\(586\) 22.9998 0.950111
\(587\) 3.76175i 0.155264i −0.996982 0.0776321i \(-0.975264\pi\)
0.996982 0.0776321i \(-0.0247359\pi\)
\(588\) −0.985897 20.5753i −0.0406577 0.848510i
\(589\) 38.7138i 1.59517i
\(590\) −5.43264 −0.223658
\(591\) −1.07356 22.4048i −0.0441603 0.921609i
\(592\) −5.60710 −0.230451
\(593\) 19.5389 0.802367 0.401183 0.915998i \(-0.368599\pi\)
0.401183 + 0.915998i \(0.368599\pi\)
\(594\) −16.7883 3.89277i −0.688831 0.159722i
\(595\) 11.8255 0.484800
\(596\) −23.2882 −0.953920
\(597\) 0.0973938 + 2.03257i 0.00398606 + 0.0831876i
\(598\) 7.52848 0.307862
\(599\) 33.4776i 1.36786i −0.729549 0.683929i \(-0.760270\pi\)
0.729549 0.683929i \(-0.239730\pi\)
\(600\) −0.0828988 1.73007i −0.00338433 0.0706296i
\(601\) 22.9203i 0.934937i 0.884010 + 0.467469i \(0.154834\pi\)
−0.884010 + 0.467469i \(0.845166\pi\)
\(602\) 14.1345 0.576078
\(603\) −36.8889 + 3.54332i −1.50223 + 0.144295i
\(604\) 10.8440i 0.441235i
\(605\) −7.44131 + 8.10105i −0.302532 + 0.329354i
\(606\) 0.558695 + 11.6597i 0.0226954 + 0.473645i
\(607\) 7.21187i 0.292721i 0.989231 + 0.146360i \(0.0467559\pi\)
−0.989231 + 0.146360i \(0.953244\pi\)
\(608\) 3.97251i 0.161107i
\(609\) 38.2465 1.83264i 1.54983 0.0742624i
\(610\) −11.5646 −0.468238
\(611\) 41.7479 1.68894
\(612\) −8.12456 + 0.780394i −0.328416 + 0.0315456i
\(613\) 10.9911i 0.443926i −0.975055 0.221963i \(-0.928754\pi\)
0.975055 0.221963i \(-0.0712464\pi\)
\(614\) 27.2645i 1.10031i
\(615\) 5.05225 0.242086i 0.203726 0.00976186i
\(616\) 13.4326 + 5.23303i 0.541217 + 0.210845i
\(617\) 9.52449i 0.383442i 0.981450 + 0.191721i \(0.0614068\pi\)
−0.981450 + 0.191721i \(0.938593\pi\)
\(618\) −0.435373 9.08606i −0.0175133 0.365495i
\(619\) 20.5329 0.825287 0.412644 0.910893i \(-0.364605\pi\)
0.412644 + 0.910893i \(0.364605\pi\)
\(620\) 9.74541i 0.391385i
\(621\) −8.58001 + 1.24098i −0.344304 + 0.0497987i
\(622\) 0.0613019i 0.00245798i
\(623\) −16.3341 −0.654411
\(624\) −7.80671 + 0.374071i −0.312519 + 0.0149748i
\(625\) 1.00000 0.0400000
\(626\) −22.2766 −0.890353
\(627\) 7.25662 21.6358i 0.289802 0.864052i
\(628\) 11.0861 0.442382
\(629\) −15.2550 −0.608256
\(630\) −12.9800 + 1.24678i −0.517136 + 0.0496728i
\(631\) −29.6731 −1.18127 −0.590634 0.806940i \(-0.701122\pi\)
−0.590634 + 0.806940i \(0.701122\pi\)
\(632\) 1.07107i 0.0426050i
\(633\) 36.5906 1.75330i 1.45435 0.0696873i
\(634\) 2.48169i 0.0985604i
\(635\) 8.95024 0.355179
\(636\) −5.28059 + 0.253028i −0.209389 + 0.0100332i
\(637\) 53.6647i 2.12627i
\(638\) −6.12332 + 15.7179i −0.242425 + 0.622279i
\(639\) −1.03466 10.7717i −0.0409307 0.426123i
\(640\) 1.00000i 0.0395285i
\(641\) 19.0947i 0.754196i −0.926173 0.377098i \(-0.876922\pi\)
0.926173 0.377098i \(-0.123078\pi\)
\(642\) 0.518704 + 10.8251i 0.0204716 + 0.427235i
\(643\) 22.0663 0.870209 0.435104 0.900380i \(-0.356711\pi\)
0.435104 + 0.900380i \(0.356711\pi\)
\(644\) 7.25186 0.285763
\(645\) −0.269575 5.62593i −0.0106145 0.221521i
\(646\) 10.8078i 0.425228i
\(647\) 18.5832i 0.730581i 0.930894 + 0.365291i \(0.119030\pi\)
−0.930894 + 0.365291i \(0.880970\pi\)
\(648\) 8.83544 1.71316i 0.347089 0.0672993i
\(649\) −16.7890 6.54059i −0.659026 0.256740i
\(650\) 4.51238i 0.176990i
\(651\) −73.2843 + 3.51153i −2.87224 + 0.137628i
\(652\) 4.16580 0.163145
\(653\) 31.2063i 1.22120i 0.791941 + 0.610598i \(0.209071\pi\)
−0.791941 + 0.610598i \(0.790929\pi\)
\(654\) −30.9973 + 1.48528i −1.21209 + 0.0580791i
\(655\) 12.3379i 0.482082i
\(656\) 2.92026 0.114017
\(657\) 0.391542 + 4.07629i 0.0152755 + 0.159031i
\(658\) 40.2140 1.56770
\(659\) −26.6138 −1.03672 −0.518362 0.855161i \(-0.673458\pi\)
−0.518362 + 0.855161i \(0.673458\pi\)
\(660\) 1.82671 5.44639i 0.0711046 0.212000i
\(661\) −4.07452 −0.158481 −0.0792403 0.996856i \(-0.525249\pi\)
−0.0792403 + 0.996856i \(0.525249\pi\)
\(662\) −11.2519 −0.437316
\(663\) −21.2394 + 1.01772i −0.824868 + 0.0395248i
\(664\) −14.5887 −0.566150
\(665\) 17.2668i 0.669580i
\(666\) 16.7442 1.60835i 0.648826 0.0623221i
\(667\) 8.48561i 0.328564i
\(668\) 8.78828 0.340029
\(669\) 1.87668 + 39.1656i 0.0725566 + 1.51423i
\(670\) 12.3529i 0.477234i
\(671\) −35.7392 13.9231i −1.37970 0.537497i
\(672\) −7.51987 + 0.360326i −0.290085 + 0.0138999i
\(673\) 0.828988i 0.0319551i −0.999872 0.0159776i \(-0.994914\pi\)
0.999872 0.0159776i \(-0.00508603\pi\)
\(674\) 0.968917i 0.0373213i
\(675\) 0.743810 + 5.14264i 0.0286293 + 0.197940i
\(676\) −7.36157 −0.283137
\(677\) 6.51415 0.250359 0.125179 0.992134i \(-0.460049\pi\)
0.125179 + 0.992134i \(0.460049\pi\)
\(678\) 14.7270 0.705666i 0.565586 0.0271009i
\(679\) 55.6261i 2.13473i
\(680\) 2.72065i 0.104332i
\(681\) −1.95440 40.7876i −0.0748929 1.56299i
\(682\) 11.7329 30.1171i 0.449276 1.15325i
\(683\) 8.99407i 0.344148i 0.985084 + 0.172074i \(0.0550469\pi\)
−0.985084 + 0.172074i \(0.944953\pi\)
\(684\) 1.13948 + 11.8629i 0.0435690 + 0.453591i
\(685\) 20.9416 0.800136
\(686\) 21.2668i 0.811972i
\(687\) 0.290886 + 6.07068i 0.0110980 + 0.231611i
\(688\) 3.25186i 0.123976i
\(689\) −13.7729 −0.524706
\(690\) −0.138309 2.88645i −0.00526532 0.109885i
\(691\) −39.7848 −1.51348 −0.756742 0.653714i \(-0.773210\pi\)
−0.756742 + 0.653714i \(0.773210\pi\)
\(692\) 2.66319 0.101239
\(693\) −41.6144 11.7741i −1.58080 0.447263i
\(694\) 1.59388 0.0605030
\(695\) 15.5458 0.589686
\(696\) −0.421628 8.79922i −0.0159818 0.333534i
\(697\) 7.94502 0.300939
\(698\) 18.9416i 0.716949i
\(699\) −0.816545 17.0410i −0.0308846 0.644549i
\(700\) 4.34658i 0.164285i
\(701\) −40.4528 −1.52788 −0.763941 0.645286i \(-0.776738\pi\)
−0.763941 + 0.645286i \(0.776738\pi\)
\(702\) 23.2055 3.35635i 0.875837 0.126677i
\(703\) 22.2743i 0.840090i
\(704\) 1.20394 3.09039i 0.0453753 0.116474i
\(705\) −0.766968 16.0063i −0.0288857 0.602833i
\(706\) 0.806322i 0.0303463i
\(707\) 29.2937i 1.10170i
\(708\) 9.39883 0.450359i 0.353230 0.0169255i
\(709\) −31.3126 −1.17597 −0.587984 0.808872i \(-0.700078\pi\)
−0.587984 + 0.808872i \(0.700078\pi\)
\(710\) 3.60710 0.135372
\(711\) −0.307228 3.19850i −0.0115219 0.119953i
\(712\) 3.75791i 0.140834i
\(713\) 16.2593i 0.608915i
\(714\) −20.4590 + 0.980323i −0.765657 + 0.0366877i
\(715\) 5.43264 13.9450i 0.203169 0.521514i
\(716\) 11.2605i 0.420825i
\(717\) 2.00234 + 41.7880i 0.0747787 + 1.56060i
\(718\) −6.83531 −0.255092
\(719\) 49.2324i 1.83606i 0.396513 + 0.918029i \(0.370220\pi\)
−0.396513 + 0.918029i \(0.629780\pi\)
\(720\) 0.286841 + 2.98626i 0.0106899 + 0.111291i
\(721\) 22.8276i 0.850145i
\(722\) 3.21916 0.119805
\(723\) −8.11948 + 0.389058i −0.301967 + 0.0144692i
\(724\) −0.711272 −0.0264342
\(725\) 5.08606 0.188892
\(726\) 12.2024 14.6322i 0.452873 0.543053i
\(727\) 22.6682 0.840716 0.420358 0.907358i \(-0.361905\pi\)
0.420358 + 0.907358i \(0.361905\pi\)
\(728\) −19.6134 −0.726922
\(729\) −25.8935 + 7.65030i −0.959018 + 0.283344i
\(730\) −1.36502 −0.0505215
\(731\) 8.84718i 0.327225i
\(732\) 20.0076 0.958694i 0.739501 0.0354343i
\(733\) 0.210758i 0.00778452i −0.999992 0.00389226i \(-0.998761\pi\)
0.999992 0.00389226i \(-0.00123895\pi\)
\(734\) 3.28873 0.121389
\(735\) −20.5753 + 0.985897i −0.758931 + 0.0363653i
\(736\) 1.66840i 0.0614982i
\(737\) 14.8722 38.1753i 0.547824 1.40621i
\(738\) −8.72065 + 0.837650i −0.321012 + 0.0308343i
\(739\) 14.8053i 0.544623i −0.962209 0.272312i \(-0.912212\pi\)
0.962209 0.272312i \(-0.0877881\pi\)
\(740\) 5.60710i 0.206121i
\(741\) 1.48600 + 31.0123i 0.0545896 + 1.13926i
\(742\) −13.2668 −0.487041
\(743\) −19.2717 −0.707009 −0.353504 0.935433i \(-0.615010\pi\)
−0.353504 + 0.935433i \(0.615010\pi\)
\(744\) 0.807883 + 16.8602i 0.0296184 + 0.618125i
\(745\) 23.2882i 0.853212i
\(746\) 11.3650i 0.416103i
\(747\) 43.5655 4.18462i 1.59398 0.153107i
\(748\) 3.27551 8.40788i 0.119764 0.307423i
\(749\) 27.1969i 0.993752i
\(750\) −1.73007 + 0.0828988i −0.0631731 + 0.00302704i
\(751\) −24.6107 −0.898057 −0.449029 0.893517i \(-0.648230\pi\)
−0.449029 + 0.893517i \(0.648230\pi\)
\(752\) 9.25186i 0.337381i
\(753\) 18.2390 0.873948i 0.664665 0.0318484i
\(754\) 22.9502i 0.835798i
\(755\) 10.8440 0.394653
\(756\) 22.3529 3.23303i 0.812967 0.117584i
\(757\) 21.6166 0.785670 0.392835 0.919609i \(-0.371494\pi\)
0.392835 + 0.919609i \(0.371494\pi\)
\(758\) 26.1848 0.951074
\(759\) 3.04769 9.08678i 0.110624 0.329829i
\(760\) −3.97251 −0.144098
\(761\) 34.6751 1.25697 0.628485 0.777822i \(-0.283675\pi\)
0.628485 + 0.777822i \(0.283675\pi\)
\(762\) −15.4845 + 0.741964i −0.560944 + 0.0268785i
\(763\) −77.8769 −2.81933
\(764\) 19.5852i 0.708568i
\(765\) 0.780394 + 8.12456i 0.0282152 + 0.293744i
\(766\) 18.7796i 0.678533i
\(767\) 24.5141 0.885155
\(768\) 0.0828988 + 1.73007i 0.00299135 + 0.0624284i
\(769\) 16.8772i 0.608606i −0.952575 0.304303i \(-0.901577\pi\)
0.952575 0.304303i \(-0.0984235\pi\)
\(770\) 5.23303 13.4326i 0.188585 0.484079i
\(771\) −19.0885 + 0.914657i −0.687457 + 0.0329406i
\(772\) 8.82899i 0.317762i
\(773\) 8.07701i 0.290510i 0.989394 + 0.145255i \(0.0464002\pi\)
−0.989394 + 0.145255i \(0.953600\pi\)
\(774\) 0.932765 + 9.71088i 0.0335276 + 0.349050i
\(775\) −9.74541 −0.350066
\(776\) −12.7977 −0.459409
\(777\) 42.1647 2.02039i 1.51265 0.0724810i
\(778\) 24.4661i 0.877151i
\(779\) 11.6008i 0.415641i
\(780\) 0.374071 + 7.80671i 0.0133939 + 0.279525i
\(781\) 11.1474 + 4.34274i 0.398884 + 0.155396i
\(782\) 4.53915i 0.162320i
\(783\) 3.78306 + 26.1558i 0.135196 + 0.934731i
\(784\) −11.8928 −0.424742
\(785\) 11.0861i 0.395678i
\(786\) −1.02280 21.3454i −0.0364820 0.761366i
\(787\) 15.2992i 0.545356i −0.962105 0.272678i \(-0.912091\pi\)
0.962105 0.272678i \(-0.0879094\pi\)
\(788\) −12.9502 −0.461333
\(789\) −2.55642 53.3514i −0.0910108 1.89936i
\(790\) 1.07107 0.0381071
\(791\) 36.9998 1.31556
\(792\) −2.70883 + 9.57404i −0.0962540 + 0.340199i
\(793\) 52.1840 1.85311
\(794\) −34.0708 −1.20913
\(795\) 0.253028 + 5.28059i 0.00897397 + 0.187283i
\(796\) 1.17485 0.0416415
\(797\) 4.37200i 0.154864i 0.996998 + 0.0774321i \(0.0246721\pi\)
−0.996998 + 0.0774321i \(0.975328\pi\)
\(798\) 1.43140 + 29.8728i 0.0506710 + 1.05748i
\(799\) 25.1711i 0.890489i
\(800\) −1.00000 −0.0353553
\(801\) −1.07792 11.2221i −0.0380865 0.396513i
\(802\) 2.52416i 0.0891313i
\(803\) −4.21844 1.64340i −0.148865 0.0579944i
\(804\) 1.02404 + 21.3713i 0.0361151 + 0.753709i
\(805\) 7.25186i 0.255594i
\(806\) 43.9750i 1.54895i
\(807\) 16.5800 0.794457i 0.583644 0.0279662i
\(808\) 6.73948 0.237094
\(809\) 16.6459 0.585237 0.292619 0.956229i \(-0.405473\pi\)
0.292619 + 0.956229i \(0.405473\pi\)
\(810\) −1.71316 8.83544i −0.0601943 0.310446i
\(811\) 35.1018i 1.23259i 0.787515 + 0.616295i \(0.211367\pi\)
−0.787515 + 0.616295i \(0.788633\pi\)
\(812\) 22.1070i 0.775803i
\(813\) 36.9196 1.76906i 1.29483 0.0620437i
\(814\) −6.75063 + 17.3281i −0.236609 + 0.607351i
\(815\) 4.16580i 0.145922i
\(816\) 0.225539 + 4.70691i 0.00789544 + 0.164775i
\(817\) −12.9180 −0.451945
\(818\) 1.07974i 0.0377521i
\(819\) 58.5707 5.62593i 2.04663 0.196586i
\(820\) 2.92026i 0.101980i
\(821\) −4.78900 −0.167137 −0.0835686 0.996502i \(-0.526632\pi\)
−0.0835686 + 0.996502i \(0.526632\pi\)
\(822\) −36.2303 + 1.73603i −1.26368 + 0.0605510i
\(823\) 19.7053 0.686883 0.343441 0.939174i \(-0.388407\pi\)
0.343441 + 0.939174i \(0.388407\pi\)
\(824\) −5.25186 −0.182957
\(825\) −5.44639 1.82671i −0.189619 0.0635978i
\(826\) 23.6134 0.821616
\(827\) −49.7179 −1.72886 −0.864431 0.502752i \(-0.832321\pi\)
−0.864431 + 0.502752i \(0.832321\pi\)
\(828\) 0.478566 + 4.98228i 0.0166313 + 0.173146i
\(829\) 43.5766 1.51348 0.756738 0.653718i \(-0.226792\pi\)
0.756738 + 0.653718i \(0.226792\pi\)
\(830\) 14.5887i 0.506380i
\(831\) 12.8590 0.616157i 0.446072 0.0213743i
\(832\) 4.51238i 0.156439i
\(833\) −32.3561 −1.12107
\(834\) −26.8953 + 1.28873i −0.931307 + 0.0446250i
\(835\) 8.78828i 0.304131i
\(836\) −12.2766 4.78267i −0.424596 0.165412i
\(837\) −7.24874 50.1171i −0.250553 1.73230i
\(838\) 27.6897i 0.956525i
\(839\) 5.89727i 0.203596i 0.994805 + 0.101798i \(0.0324596\pi\)
−0.994805 + 0.101798i \(0.967540\pi\)
\(840\) 0.360326 + 7.51987i 0.0124324 + 0.259460i
\(841\) −3.13198 −0.107999
\(842\) 31.0847 1.07125
\(843\) −1.66046 34.6532i −0.0571893 1.19352i
\(844\) 21.1498i 0.728008i
\(845\) 7.36157i 0.253246i
\(846\) 2.65381 + 27.6284i 0.0912399 + 0.949884i
\(847\) 32.3442 35.2119i 1.11136 1.20989i
\(848\) 3.05225i 0.104815i
\(849\) −10.3491 + 0.495892i −0.355179 + 0.0170190i
\(850\) −2.72065 −0.0933176
\(851\) 9.35492i 0.320682i
\(852\) −6.24053 + 0.299024i −0.213797 + 0.0102444i
\(853\) 25.2919i 0.865979i 0.901399 + 0.432990i \(0.142541\pi\)
−0.901399 + 0.432990i \(0.857459\pi\)
\(854\) 50.2666 1.72009
\(855\) 11.8629 1.13948i 0.405704 0.0389693i
\(856\) 6.25707 0.213862
\(857\) 25.0718 0.856436 0.428218 0.903675i \(-0.359142\pi\)
0.428218 + 0.903675i \(0.359142\pi\)
\(858\) −8.24280 + 24.5762i −0.281405 + 0.839016i
\(859\) 12.2263 0.417157 0.208578 0.978006i \(-0.433116\pi\)
0.208578 + 0.978006i \(0.433116\pi\)
\(860\) −3.25186 −0.110887
\(861\) −21.9600 + 1.05225i −0.748395 + 0.0358605i
\(862\) −2.86529 −0.0975920
\(863\) 16.5713i 0.564095i 0.959400 + 0.282048i \(0.0910136\pi\)
−0.959400 + 0.282048i \(0.908986\pi\)
\(864\) −0.743810 5.14264i −0.0253049 0.174956i
\(865\) 2.66319i 0.0905512i
\(866\) −14.8158 −0.503460
\(867\) −0.795667 16.6053i −0.0270223 0.563944i
\(868\) 42.3592i 1.43777i
\(869\) 3.31004 + 1.28951i 0.112285 + 0.0437437i
\(870\) −8.79922 + 0.421628i −0.298322 + 0.0142945i
\(871\) 55.7410i 1.88871i
\(872\) 17.9168i 0.606740i
\(873\) 38.2171 3.67089i 1.29345 0.124241i
\(874\) −6.62776 −0.224187
\(875\) −4.34658 −0.146941
\(876\) 2.36157 0.113158i 0.0797900 0.00382326i
\(877\) 41.5248i 1.40219i 0.713067 + 0.701096i \(0.247306\pi\)
−0.713067 + 0.701096i \(0.752694\pi\)
\(878\) 11.3108i 0.381722i
\(879\) 1.90665 + 39.7911i 0.0643098 + 1.34212i
\(880\) −3.09039 1.20394i −0.104177 0.0405849i
\(881\) 18.8053i 0.633568i 0.948498 + 0.316784i \(0.102603\pi\)
−0.948498 + 0.316784i \(0.897397\pi\)
\(882\) 35.5149 3.41133i 1.19585 0.114866i
\(883\) −12.9252 −0.434966 −0.217483 0.976064i \(-0.569785\pi\)
−0.217483 + 0.976064i \(0.569785\pi\)
\(884\) 12.2766i 0.412907i
\(885\) −0.450359 9.39883i −0.0151387 0.315938i
\(886\) 1.60476i 0.0539131i
\(887\) 43.1169 1.44772 0.723862 0.689945i \(-0.242365\pi\)
0.723862 + 0.689945i \(0.242365\pi\)
\(888\) −0.464822 9.70066i −0.0155984 0.325533i
\(889\) −38.9029 −1.30476
\(890\) 3.75791 0.125966
\(891\) 5.34303 29.3675i 0.178998 0.983849i
\(892\) 22.6382 0.757983
\(893\) −36.7531 −1.22990
\(894\) −1.93056 40.2900i −0.0645676 1.34750i
\(895\) −11.2605 −0.376398
\(896\) 4.34658i 0.145209i
\(897\) 0.624101 + 13.0248i 0.0208381 + 0.434884i
\(898\) 4.00000i 0.133482i
\(899\) −49.5658 −1.65311
\(900\) 2.98626 0.286841i 0.0995419 0.00956136i
\(901\) 8.30411i 0.276650i
\(902\) 3.51583 9.02476i 0.117064 0.300492i
\(903\) 1.17173 + 24.4536i 0.0389927 + 0.813764i
\(904\) 8.51238i 0.283118i
\(905\) 0.711272i 0.0236435i
\(906\) −18.7608 + 0.898952i −0.623286 + 0.0298657i
\(907\) −16.4347 −0.545706 −0.272853 0.962056i \(-0.587967\pi\)
−0.272853 + 0.962056i \(0.587967\pi\)
\(908\) −23.5758 −0.782390
\(909\) −20.1258 + 1.93316i −0.667531 + 0.0641188i
\(910\) 19.6134i 0.650179i
\(911\) 48.2030i 1.59704i 0.601971 + 0.798518i \(0.294382\pi\)
−0.601971 + 0.798518i \(0.705618\pi\)
\(912\) 6.87271 0.329316i 0.227578 0.0109048i
\(913\) −17.5639 + 45.0847i −0.581281 + 1.49209i
\(914\) 32.8716i 1.08730i
\(915\) −0.958694 20.0076i −0.0316934 0.661430i
\(916\) 3.50893 0.115938
\(917\) 53.6278i 1.77095i
\(918\) −2.02365 13.9913i −0.0667904 0.461783i
\(919\) 33.3400i 1.09979i 0.835235 + 0.549893i \(0.185331\pi\)
−0.835235 + 0.549893i \(0.814669\pi\)
\(920\) −1.66840 −0.0550057
\(921\) 47.1694 2.26019i 1.55428 0.0744759i
\(922\) −15.9387 −0.524913
\(923\) −16.2766 −0.535751
\(924\) −7.93994 + 23.6732i −0.261205 + 0.778790i
\(925\) 5.60710 0.184360
\(926\) 10.4842 0.344531
\(927\) 15.6834 1.50645i 0.515110 0.0494782i
\(928\) −5.08606 −0.166958
\(929\) 26.4142i 0.866622i −0.901244 0.433311i \(-0.857345\pi\)
0.901244 0.433311i \(-0.142655\pi\)
\(930\) 16.8602 0.807883i 0.552868 0.0264915i
\(931\) 47.2442i 1.54837i
\(932\) −9.84991 −0.322644
\(933\) 0.106056 0.00508185i 0.00347213 0.000166372i
\(934\) 2.64436i 0.0865262i
\(935\) −8.40788 3.27551i −0.274967 0.107121i
\(936\) −1.29433 13.4751i −0.0423066 0.440448i
\(937\) 36.8009i 1.20223i −0.799162 0.601116i \(-0.794723\pi\)
0.799162 0.601116i \(-0.205277\pi\)
\(938\) 53.6929i 1.75314i
\(939\) −1.84670 38.5400i −0.0602649 1.25771i
\(940\) −9.25186 −0.301762
\(941\) −12.9934 −0.423574 −0.211787 0.977316i \(-0.567928\pi\)
−0.211787 + 0.977316i \(0.567928\pi\)
\(942\) 0.919021 + 19.1796i 0.0299433 + 0.624906i
\(943\) 4.87218i 0.158660i
\(944\) 5.43264i 0.176817i
\(945\) −3.23303 22.3529i −0.105171 0.727140i
\(946\) −10.0495 3.91505i −0.326738 0.127289i
\(947\) 6.36307i 0.206772i 0.994641 + 0.103386i \(0.0329677\pi\)
−0.994641 + 0.103386i \(0.967032\pi\)
\(948\) −1.85303 + 0.0887907i −0.0601836 + 0.00288379i
\(949\) 6.15947 0.199945
\(950\) 3.97251i 0.128885i
\(951\) −4.29348 + 0.205729i −0.139226 + 0.00667122i
\(952\) 11.8255i 0.383268i
\(953\) −29.7400 −0.963372 −0.481686 0.876344i \(-0.659975\pi\)
−0.481686 + 0.876344i \(0.659975\pi\)
\(954\) −0.875509 9.11479i −0.0283456 0.295102i
\(955\) 19.5852 0.633763
\(956\) 24.1540 0.781197
\(957\) −27.7007 9.29075i −0.895435 0.300327i
\(958\) 28.6082 0.924289
\(959\) −91.0243 −2.93933
\(960\) 1.73007 0.0828988i 0.0558376 0.00267555i
\(961\) 63.9730 2.06365
\(962\) 25.3014i 0.815749i
\(963\) −18.6852 + 1.79478i −0.602123 + 0.0578361i
\(964\) 4.69316i 0.151157i
\(965\) −8.82899 −0.284215
\(966\) 0.601170 + 12.5462i 0.0193423 + 0.403667i
\(967\) 36.5418i 1.17510i −0.809186 0.587552i \(-0.800092\pi\)
0.809186 0.587552i \(-0.199908\pi\)
\(968\) −8.10105 7.44131i −0.260378 0.239173i
\(969\) 18.6982 0.895955i 0.600674 0.0287822i
\(970\) 12.7977i 0.410908i
\(971\) 22.7040i 0.728607i −0.931280 0.364304i \(-0.881307\pi\)
0.931280 0.364304i \(-0.118693\pi\)
\(972\) 3.69633 + 15.1439i 0.118560 + 0.485740i
\(973\) −67.5711 −2.16623
\(974\) −25.5584 −0.818946
\(975\) 7.80671 0.374071i 0.250015 0.0119799i
\(976\) 11.5646i 0.370175i
\(977\) 2.83708i 0.0907662i 0.998970 + 0.0453831i \(0.0144509\pi\)
−0.998970 + 0.0453831i \(0.985549\pi\)
\(978\) 0.345340 + 7.20710i 0.0110427 + 0.230458i
\(979\) 11.6134 + 4.52431i 0.371167 + 0.144598i
\(980\) 11.8928i 0.379901i
\(981\) −5.13927 53.5042i −0.164084 1.70826i
\(982\) 30.0732 0.959673
\(983\) 35.3487i 1.12745i −0.825963 0.563724i \(-0.809368\pi\)
0.825963 0.563724i \(-0.190632\pi\)
\(984\) 0.242086 + 5.05225i 0.00771743 + 0.161060i
\(985\) 12.9502i 0.412629i
\(986\) −13.8374 −0.440673
\(987\) 3.33369 + 69.5728i 0.106112 + 2.21453i
\(988\) 17.9255 0.570285
\(989\) −5.42542 −0.172518
\(990\) 9.57404 + 2.70883i 0.304283 + 0.0860922i
\(991\) −20.0173 −0.635871 −0.317936 0.948112i \(-0.602990\pi\)
−0.317936 + 0.948112i \(0.602990\pi\)
\(992\) 9.74541 0.309417
\(993\) −0.932765 19.4665i −0.0296004 0.617749i
\(994\) −15.6786 −0.497294
\(995\) 1.17485i 0.0372453i
\(996\) −1.20938 25.2394i −0.0383208 0.799740i
\(997\) 6.80711i 0.215583i −0.994174 0.107792i \(-0.965622\pi\)
0.994174 0.107792i \(-0.0343779\pi\)
\(998\) 13.6503 0.432093
\(999\) 4.17062 + 28.8353i 0.131953 + 0.912309i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 330.2.d.b.131.4 yes 8
3.2 odd 2 330.2.d.a.131.3 8
4.3 odd 2 2640.2.f.a.1121.5 8
5.2 odd 4 1650.2.f.f.1649.8 8
5.3 odd 4 1650.2.f.d.1649.1 8
5.4 even 2 1650.2.d.c.1451.5 8
11.10 odd 2 330.2.d.a.131.4 yes 8
12.11 even 2 2640.2.f.b.1121.6 8
15.2 even 4 1650.2.f.c.1649.1 8
15.8 even 4 1650.2.f.e.1649.8 8
15.14 odd 2 1650.2.d.f.1451.6 8
33.32 even 2 inner 330.2.d.b.131.3 yes 8
44.43 even 2 2640.2.f.b.1121.5 8
55.32 even 4 1650.2.f.e.1649.4 8
55.43 even 4 1650.2.f.c.1649.5 8
55.54 odd 2 1650.2.d.f.1451.5 8
132.131 odd 2 2640.2.f.a.1121.6 8
165.32 odd 4 1650.2.f.d.1649.5 8
165.98 odd 4 1650.2.f.f.1649.4 8
165.164 even 2 1650.2.d.c.1451.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.d.a.131.3 8 3.2 odd 2
330.2.d.a.131.4 yes 8 11.10 odd 2
330.2.d.b.131.3 yes 8 33.32 even 2 inner
330.2.d.b.131.4 yes 8 1.1 even 1 trivial
1650.2.d.c.1451.5 8 5.4 even 2
1650.2.d.c.1451.6 8 165.164 even 2
1650.2.d.f.1451.5 8 55.54 odd 2
1650.2.d.f.1451.6 8 15.14 odd 2
1650.2.f.c.1649.1 8 15.2 even 4
1650.2.f.c.1649.5 8 55.43 even 4
1650.2.f.d.1649.1 8 5.3 odd 4
1650.2.f.d.1649.5 8 165.32 odd 4
1650.2.f.e.1649.4 8 55.32 even 4
1650.2.f.e.1649.8 8 15.8 even 4
1650.2.f.f.1649.4 8 165.98 odd 4
1650.2.f.f.1649.8 8 5.2 odd 4
2640.2.f.a.1121.5 8 4.3 odd 2
2640.2.f.a.1121.6 8 132.131 odd 2
2640.2.f.b.1121.5 8 44.43 even 2
2640.2.f.b.1121.6 8 12.11 even 2