Properties

Label 1650.2.c.f.199.1
Level $1650$
Weight $2$
Character 1650.199
Analytic conductor $13.175$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1650,2,Mod(199,1650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1650.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,-2,0,0,-2,0,2,0,0,-6,0,2,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1753163335\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1650.199
Dual form 1650.2.c.f.199.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} -3.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} +1.00000 q^{11} +1.00000i q^{12} -3.00000 q^{14} +1.00000 q^{16} -5.00000i q^{17} +1.00000i q^{18} +1.00000 q^{19} -3.00000 q^{21} -1.00000i q^{22} -3.00000i q^{23} +1.00000 q^{24} +1.00000i q^{27} +3.00000i q^{28} -2.00000 q^{29} -6.00000 q^{31} -1.00000i q^{32} -1.00000i q^{33} -5.00000 q^{34} +1.00000 q^{36} -3.00000i q^{37} -1.00000i q^{38} -1.00000 q^{41} +3.00000i q^{42} +4.00000i q^{43} -1.00000 q^{44} -3.00000 q^{46} -7.00000i q^{47} -1.00000i q^{48} -2.00000 q^{49} -5.00000 q^{51} +8.00000i q^{53} +1.00000 q^{54} +3.00000 q^{56} -1.00000i q^{57} +2.00000i q^{58} -11.0000 q^{59} -8.00000 q^{61} +6.00000i q^{62} +3.00000i q^{63} -1.00000 q^{64} -1.00000 q^{66} -8.00000i q^{67} +5.00000i q^{68} -3.00000 q^{69} +1.00000 q^{71} -1.00000i q^{72} +8.00000i q^{73} -3.00000 q^{74} -1.00000 q^{76} -3.00000i q^{77} +17.0000 q^{79} +1.00000 q^{81} +1.00000i q^{82} +6.00000i q^{83} +3.00000 q^{84} +4.00000 q^{86} +2.00000i q^{87} +1.00000i q^{88} -12.0000 q^{89} +3.00000i q^{92} +6.00000i q^{93} -7.00000 q^{94} -1.00000 q^{96} +9.00000i q^{97} +2.00000i q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9} + 2 q^{11} - 6 q^{14} + 2 q^{16} + 2 q^{19} - 6 q^{21} + 2 q^{24} - 4 q^{29} - 12 q^{31} - 10 q^{34} + 2 q^{36} - 2 q^{41} - 2 q^{44} - 6 q^{46} - 4 q^{49} - 10 q^{51}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1650\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(727\) \(1201\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) − 1.00000i − 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) − 3.00000i − 1.13389i −0.823754 0.566947i \(-0.808125\pi\)
0.823754 0.566947i \(-0.191875\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 1.00000i 0.288675i
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −3.00000 −0.801784
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 5.00000i − 1.21268i −0.795206 0.606339i \(-0.792637\pi\)
0.795206 0.606339i \(-0.207363\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) − 1.00000i − 0.213201i
\(23\) − 3.00000i − 0.625543i −0.949828 0.312772i \(-0.898743\pi\)
0.949828 0.312772i \(-0.101257\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 3.00000i 0.566947i
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) − 1.00000i − 0.174078i
\(34\) −5.00000 −0.857493
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) − 3.00000i − 0.493197i −0.969118 0.246598i \(-0.920687\pi\)
0.969118 0.246598i \(-0.0793129\pi\)
\(38\) − 1.00000i − 0.162221i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.00000 −0.156174 −0.0780869 0.996947i \(-0.524881\pi\)
−0.0780869 + 0.996947i \(0.524881\pi\)
\(42\) 3.00000i 0.462910i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −3.00000 −0.442326
\(47\) − 7.00000i − 1.02105i −0.859861 0.510527i \(-0.829450\pi\)
0.859861 0.510527i \(-0.170550\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) −5.00000 −0.700140
\(52\) 0 0
\(53\) 8.00000i 1.09888i 0.835532 + 0.549442i \(0.185160\pi\)
−0.835532 + 0.549442i \(0.814840\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 3.00000 0.400892
\(57\) − 1.00000i − 0.132453i
\(58\) 2.00000i 0.262613i
\(59\) −11.0000 −1.43208 −0.716039 0.698060i \(-0.754047\pi\)
−0.716039 + 0.698060i \(0.754047\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 6.00000i 0.762001i
\(63\) 3.00000i 0.377964i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −1.00000 −0.123091
\(67\) − 8.00000i − 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) 5.00000i 0.606339i
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) 1.00000 0.118678 0.0593391 0.998238i \(-0.481101\pi\)
0.0593391 + 0.998238i \(0.481101\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) 8.00000i 0.936329i 0.883641 + 0.468165i \(0.155085\pi\)
−0.883641 + 0.468165i \(0.844915\pi\)
\(74\) −3.00000 −0.348743
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) − 3.00000i − 0.341882i
\(78\) 0 0
\(79\) 17.0000 1.91265 0.956325 0.292306i \(-0.0944227\pi\)
0.956325 + 0.292306i \(0.0944227\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 1.00000i 0.110432i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 3.00000 0.327327
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 2.00000i 0.214423i
\(88\) 1.00000i 0.106600i
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.00000i 0.312772i
\(93\) 6.00000i 0.622171i
\(94\) −7.00000 −0.721995
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 9.00000i 0.913812i 0.889515 + 0.456906i \(0.151042\pi\)
−0.889515 + 0.456906i \(0.848958\pi\)
\(98\) 2.00000i 0.202031i
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) −13.0000 −1.29355 −0.646774 0.762682i \(-0.723882\pi\)
−0.646774 + 0.762682i \(0.723882\pi\)
\(102\) 5.00000i 0.495074i
\(103\) − 2.00000i − 0.197066i −0.995134 0.0985329i \(-0.968585\pi\)
0.995134 0.0985329i \(-0.0314150\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 8.00000 0.777029
\(107\) − 2.00000i − 0.193347i −0.995316 0.0966736i \(-0.969180\pi\)
0.995316 0.0966736i \(-0.0308203\pi\)
\(108\) − 1.00000i − 0.0962250i
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) − 3.00000i − 0.283473i
\(113\) − 16.0000i − 1.50515i −0.658505 0.752577i \(-0.728811\pi\)
0.658505 0.752577i \(-0.271189\pi\)
\(114\) −1.00000 −0.0936586
\(115\) 0 0
\(116\) 2.00000 0.185695
\(117\) 0 0
\(118\) 11.0000i 1.01263i
\(119\) −15.0000 −1.37505
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 8.00000i 0.724286i
\(123\) 1.00000i 0.0901670i
\(124\) 6.00000 0.538816
\(125\) 0 0
\(126\) 3.00000 0.267261
\(127\) − 5.00000i − 0.443678i −0.975083 0.221839i \(-0.928794\pi\)
0.975083 0.221839i \(-0.0712060\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 2.00000 0.174741 0.0873704 0.996176i \(-0.472154\pi\)
0.0873704 + 0.996176i \(0.472154\pi\)
\(132\) 1.00000i 0.0870388i
\(133\) − 3.00000i − 0.260133i
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) 5.00000 0.428746
\(137\) − 6.00000i − 0.512615i −0.966595 0.256307i \(-0.917494\pi\)
0.966595 0.256307i \(-0.0825059\pi\)
\(138\) 3.00000i 0.255377i
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) −7.00000 −0.589506
\(142\) − 1.00000i − 0.0839181i
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 8.00000 0.662085
\(147\) 2.00000i 0.164957i
\(148\) 3.00000i 0.246598i
\(149\) −21.0000 −1.72039 −0.860194 0.509968i \(-0.829657\pi\)
−0.860194 + 0.509968i \(0.829657\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 1.00000i 0.0811107i
\(153\) 5.00000i 0.404226i
\(154\) −3.00000 −0.241747
\(155\) 0 0
\(156\) 0 0
\(157\) − 6.00000i − 0.478852i −0.970915 0.239426i \(-0.923041\pi\)
0.970915 0.239426i \(-0.0769593\pi\)
\(158\) − 17.0000i − 1.35245i
\(159\) 8.00000 0.634441
\(160\) 0 0
\(161\) −9.00000 −0.709299
\(162\) − 1.00000i − 0.0785674i
\(163\) 16.0000i 1.25322i 0.779334 + 0.626608i \(0.215557\pi\)
−0.779334 + 0.626608i \(0.784443\pi\)
\(164\) 1.00000 0.0780869
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) − 3.00000i − 0.231455i
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) − 4.00000i − 0.304997i
\(173\) − 13.0000i − 0.988372i −0.869356 0.494186i \(-0.835466\pi\)
0.869356 0.494186i \(-0.164534\pi\)
\(174\) 2.00000 0.151620
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 11.0000i 0.826811i
\(178\) 12.0000i 0.899438i
\(179\) 9.00000 0.672692 0.336346 0.941739i \(-0.390809\pi\)
0.336346 + 0.941739i \(0.390809\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 0 0
\(183\) 8.00000i 0.591377i
\(184\) 3.00000 0.221163
\(185\) 0 0
\(186\) 6.00000 0.439941
\(187\) − 5.00000i − 0.365636i
\(188\) 7.00000i 0.510527i
\(189\) 3.00000 0.218218
\(190\) 0 0
\(191\) −15.0000 −1.08536 −0.542681 0.839939i \(-0.682591\pi\)
−0.542681 + 0.839939i \(0.682591\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 4.00000i 0.287926i 0.989583 + 0.143963i \(0.0459847\pi\)
−0.989583 + 0.143963i \(0.954015\pi\)
\(194\) 9.00000 0.646162
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) − 15.0000i − 1.06871i −0.845262 0.534353i \(-0.820555\pi\)
0.845262 0.534353i \(-0.179445\pi\)
\(198\) 1.00000i 0.0710669i
\(199\) 28.0000 1.98487 0.992434 0.122782i \(-0.0391815\pi\)
0.992434 + 0.122782i \(0.0391815\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 13.0000i 0.914677i
\(203\) 6.00000i 0.421117i
\(204\) 5.00000 0.350070
\(205\) 0 0
\(206\) −2.00000 −0.139347
\(207\) 3.00000i 0.208514i
\(208\) 0 0
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) − 8.00000i − 0.549442i
\(213\) − 1.00000i − 0.0685189i
\(214\) −2.00000 −0.136717
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 18.0000i 1.22192i
\(218\) 8.00000i 0.541828i
\(219\) 8.00000 0.540590
\(220\) 0 0
\(221\) 0 0
\(222\) 3.00000i 0.201347i
\(223\) − 24.0000i − 1.60716i −0.595198 0.803579i \(-0.702926\pi\)
0.595198 0.803579i \(-0.297074\pi\)
\(224\) −3.00000 −0.200446
\(225\) 0 0
\(226\) −16.0000 −1.06430
\(227\) 14.0000i 0.929213i 0.885517 + 0.464606i \(0.153804\pi\)
−0.885517 + 0.464606i \(0.846196\pi\)
\(228\) 1.00000i 0.0662266i
\(229\) −1.00000 −0.0660819 −0.0330409 0.999454i \(-0.510519\pi\)
−0.0330409 + 0.999454i \(0.510519\pi\)
\(230\) 0 0
\(231\) −3.00000 −0.197386
\(232\) − 2.00000i − 0.131306i
\(233\) − 9.00000i − 0.589610i −0.955557 0.294805i \(-0.904745\pi\)
0.955557 0.294805i \(-0.0952546\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 11.0000 0.716039
\(237\) − 17.0000i − 1.10427i
\(238\) 15.0000i 0.972306i
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) − 1.00000i − 0.0642824i
\(243\) − 1.00000i − 0.0641500i
\(244\) 8.00000 0.512148
\(245\) 0 0
\(246\) 1.00000 0.0637577
\(247\) 0 0
\(248\) − 6.00000i − 0.381000i
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) − 3.00000i − 0.188982i
\(253\) − 3.00000i − 0.188608i
\(254\) −5.00000 −0.313728
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 10.0000i − 0.623783i −0.950118 0.311891i \(-0.899037\pi\)
0.950118 0.311891i \(-0.100963\pi\)
\(258\) − 4.00000i − 0.249029i
\(259\) −9.00000 −0.559233
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) − 2.00000i − 0.123560i
\(263\) − 18.0000i − 1.10993i −0.831875 0.554964i \(-0.812732\pi\)
0.831875 0.554964i \(-0.187268\pi\)
\(264\) 1.00000 0.0615457
\(265\) 0 0
\(266\) −3.00000 −0.183942
\(267\) 12.0000i 0.734388i
\(268\) 8.00000i 0.488678i
\(269\) 2.00000 0.121942 0.0609711 0.998140i \(-0.480580\pi\)
0.0609711 + 0.998140i \(0.480580\pi\)
\(270\) 0 0
\(271\) −5.00000 −0.303728 −0.151864 0.988401i \(-0.548528\pi\)
−0.151864 + 0.988401i \(0.548528\pi\)
\(272\) − 5.00000i − 0.303170i
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 3.00000 0.180579
\(277\) 12.0000i 0.721010i 0.932757 + 0.360505i \(0.117396\pi\)
−0.932757 + 0.360505i \(0.882604\pi\)
\(278\) − 20.0000i − 1.19952i
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) 3.00000 0.178965 0.0894825 0.995988i \(-0.471479\pi\)
0.0894825 + 0.995988i \(0.471479\pi\)
\(282\) 7.00000i 0.416844i
\(283\) − 27.0000i − 1.60498i −0.596663 0.802492i \(-0.703507\pi\)
0.596663 0.802492i \(-0.296493\pi\)
\(284\) −1.00000 −0.0593391
\(285\) 0 0
\(286\) 0 0
\(287\) 3.00000i 0.177084i
\(288\) 1.00000i 0.0589256i
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 9.00000 0.527589
\(292\) − 8.00000i − 0.468165i
\(293\) 9.00000i 0.525786i 0.964825 + 0.262893i \(0.0846766\pi\)
−0.964825 + 0.262893i \(0.915323\pi\)
\(294\) 2.00000 0.116642
\(295\) 0 0
\(296\) 3.00000 0.174371
\(297\) 1.00000i 0.0580259i
\(298\) 21.0000i 1.21650i
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) − 8.00000i − 0.460348i
\(303\) 13.0000i 0.746830i
\(304\) 1.00000 0.0573539
\(305\) 0 0
\(306\) 5.00000 0.285831
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) 3.00000i 0.170941i
\(309\) −2.00000 −0.113776
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) − 33.0000i − 1.86527i −0.360821 0.932635i \(-0.617503\pi\)
0.360821 0.932635i \(-0.382497\pi\)
\(314\) −6.00000 −0.338600
\(315\) 0 0
\(316\) −17.0000 −0.956325
\(317\) − 32.0000i − 1.79730i −0.438667 0.898650i \(-0.644549\pi\)
0.438667 0.898650i \(-0.355451\pi\)
\(318\) − 8.00000i − 0.448618i
\(319\) −2.00000 −0.111979
\(320\) 0 0
\(321\) −2.00000 −0.111629
\(322\) 9.00000i 0.501550i
\(323\) − 5.00000i − 0.278207i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 16.0000 0.886158
\(327\) 8.00000i 0.442401i
\(328\) − 1.00000i − 0.0552158i
\(329\) −21.0000 −1.15777
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) − 6.00000i − 0.329293i
\(333\) 3.00000i 0.164399i
\(334\) 12.0000 0.656611
\(335\) 0 0
\(336\) −3.00000 −0.163663
\(337\) − 28.0000i − 1.52526i −0.646837 0.762629i \(-0.723908\pi\)
0.646837 0.762629i \(-0.276092\pi\)
\(338\) − 13.0000i − 0.707107i
\(339\) −16.0000 −0.869001
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 1.00000i 0.0540738i
\(343\) − 15.0000i − 0.809924i
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) −13.0000 −0.698884
\(347\) − 12.0000i − 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) − 2.00000i − 0.107211i
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 1.00000i − 0.0533002i
\(353\) − 32.0000i − 1.70319i −0.524202 0.851594i \(-0.675636\pi\)
0.524202 0.851594i \(-0.324364\pi\)
\(354\) 11.0000 0.584643
\(355\) 0 0
\(356\) 12.0000 0.635999
\(357\) 15.0000i 0.793884i
\(358\) − 9.00000i − 0.475665i
\(359\) 2.00000 0.105556 0.0527780 0.998606i \(-0.483192\pi\)
0.0527780 + 0.998606i \(0.483192\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) − 5.00000i − 0.262794i
\(363\) − 1.00000i − 0.0524864i
\(364\) 0 0
\(365\) 0 0
\(366\) 8.00000 0.418167
\(367\) 26.0000i 1.35719i 0.734513 + 0.678594i \(0.237411\pi\)
−0.734513 + 0.678594i \(0.762589\pi\)
\(368\) − 3.00000i − 0.156386i
\(369\) 1.00000 0.0520579
\(370\) 0 0
\(371\) 24.0000 1.24602
\(372\) − 6.00000i − 0.311086i
\(373\) − 18.0000i − 0.932005i −0.884783 0.466002i \(-0.845694\pi\)
0.884783 0.466002i \(-0.154306\pi\)
\(374\) −5.00000 −0.258544
\(375\) 0 0
\(376\) 7.00000 0.360997
\(377\) 0 0
\(378\) − 3.00000i − 0.154303i
\(379\) 18.0000 0.924598 0.462299 0.886724i \(-0.347025\pi\)
0.462299 + 0.886724i \(0.347025\pi\)
\(380\) 0 0
\(381\) −5.00000 −0.256158
\(382\) 15.0000i 0.767467i
\(383\) − 8.00000i − 0.408781i −0.978889 0.204390i \(-0.934479\pi\)
0.978889 0.204390i \(-0.0655212\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 4.00000 0.203595
\(387\) − 4.00000i − 0.203331i
\(388\) − 9.00000i − 0.456906i
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −15.0000 −0.758583
\(392\) − 2.00000i − 0.101015i
\(393\) − 2.00000i − 0.100887i
\(394\) −15.0000 −0.755689
\(395\) 0 0
\(396\) 1.00000 0.0502519
\(397\) 2.00000i 0.100377i 0.998740 + 0.0501886i \(0.0159822\pi\)
−0.998740 + 0.0501886i \(0.984018\pi\)
\(398\) − 28.0000i − 1.40351i
\(399\) −3.00000 −0.150188
\(400\) 0 0
\(401\) 32.0000 1.59800 0.799002 0.601329i \(-0.205362\pi\)
0.799002 + 0.601329i \(0.205362\pi\)
\(402\) 8.00000i 0.399004i
\(403\) 0 0
\(404\) 13.0000 0.646774
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) − 3.00000i − 0.148704i
\(408\) − 5.00000i − 0.247537i
\(409\) −16.0000 −0.791149 −0.395575 0.918434i \(-0.629455\pi\)
−0.395575 + 0.918434i \(0.629455\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) 2.00000i 0.0985329i
\(413\) 33.0000i 1.62382i
\(414\) 3.00000 0.147442
\(415\) 0 0
\(416\) 0 0
\(417\) − 20.0000i − 0.979404i
\(418\) − 1.00000i − 0.0489116i
\(419\) −21.0000 −1.02592 −0.512959 0.858413i \(-0.671451\pi\)
−0.512959 + 0.858413i \(0.671451\pi\)
\(420\) 0 0
\(421\) 23.0000 1.12095 0.560476 0.828171i \(-0.310618\pi\)
0.560476 + 0.828171i \(0.310618\pi\)
\(422\) 20.0000i 0.973585i
\(423\) 7.00000i 0.340352i
\(424\) −8.00000 −0.388514
\(425\) 0 0
\(426\) −1.00000 −0.0484502
\(427\) 24.0000i 1.16144i
\(428\) 2.00000i 0.0966736i
\(429\) 0 0
\(430\) 0 0
\(431\) −14.0000 −0.674356 −0.337178 0.941441i \(-0.609472\pi\)
−0.337178 + 0.941441i \(0.609472\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 2.00000i 0.0961139i 0.998845 + 0.0480569i \(0.0153029\pi\)
−0.998845 + 0.0480569i \(0.984697\pi\)
\(434\) 18.0000 0.864028
\(435\) 0 0
\(436\) 8.00000 0.383131
\(437\) − 3.00000i − 0.143509i
\(438\) − 8.00000i − 0.382255i
\(439\) −11.0000 −0.525001 −0.262501 0.964932i \(-0.584547\pi\)
−0.262501 + 0.964932i \(0.584547\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) − 29.0000i − 1.37783i −0.724841 0.688916i \(-0.758087\pi\)
0.724841 0.688916i \(-0.241913\pi\)
\(444\) 3.00000 0.142374
\(445\) 0 0
\(446\) −24.0000 −1.13643
\(447\) 21.0000i 0.993266i
\(448\) 3.00000i 0.141737i
\(449\) −36.0000 −1.69895 −0.849473 0.527633i \(-0.823080\pi\)
−0.849473 + 0.527633i \(0.823080\pi\)
\(450\) 0 0
\(451\) −1.00000 −0.0470882
\(452\) 16.0000i 0.752577i
\(453\) − 8.00000i − 0.375873i
\(454\) 14.0000 0.657053
\(455\) 0 0
\(456\) 1.00000 0.0468293
\(457\) 18.0000i 0.842004i 0.907060 + 0.421002i \(0.138322\pi\)
−0.907060 + 0.421002i \(0.861678\pi\)
\(458\) 1.00000i 0.0467269i
\(459\) 5.00000 0.233380
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 3.00000i 0.139573i
\(463\) 10.0000i 0.464739i 0.972628 + 0.232370i \(0.0746479\pi\)
−0.972628 + 0.232370i \(0.925352\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) −9.00000 −0.416917
\(467\) 4.00000i 0.185098i 0.995708 + 0.0925490i \(0.0295015\pi\)
−0.995708 + 0.0925490i \(0.970499\pi\)
\(468\) 0 0
\(469\) −24.0000 −1.10822
\(470\) 0 0
\(471\) −6.00000 −0.276465
\(472\) − 11.0000i − 0.506316i
\(473\) 4.00000i 0.183920i
\(474\) −17.0000 −0.780836
\(475\) 0 0
\(476\) 15.0000 0.687524
\(477\) − 8.00000i − 0.366295i
\(478\) − 20.0000i − 0.914779i
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) − 18.0000i − 0.819878i
\(483\) 9.00000i 0.409514i
\(484\) −1.00000 −0.0454545
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) − 30.0000i − 1.35943i −0.733476 0.679715i \(-0.762104\pi\)
0.733476 0.679715i \(-0.237896\pi\)
\(488\) − 8.00000i − 0.362143i
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) −30.0000 −1.35388 −0.676941 0.736038i \(-0.736695\pi\)
−0.676941 + 0.736038i \(0.736695\pi\)
\(492\) − 1.00000i − 0.0450835i
\(493\) 10.0000i 0.450377i
\(494\) 0 0
\(495\) 0 0
\(496\) −6.00000 −0.269408
\(497\) − 3.00000i − 0.134568i
\(498\) − 6.00000i − 0.268866i
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) 0 0
\(501\) 12.0000 0.536120
\(502\) − 8.00000i − 0.357057i
\(503\) 12.0000i 0.535054i 0.963550 + 0.267527i \(0.0862064\pi\)
−0.963550 + 0.267527i \(0.913794\pi\)
\(504\) −3.00000 −0.133631
\(505\) 0 0
\(506\) −3.00000 −0.133366
\(507\) − 13.0000i − 0.577350i
\(508\) 5.00000i 0.221839i
\(509\) −8.00000 −0.354594 −0.177297 0.984157i \(-0.556735\pi\)
−0.177297 + 0.984157i \(0.556735\pi\)
\(510\) 0 0
\(511\) 24.0000 1.06170
\(512\) − 1.00000i − 0.0441942i
\(513\) 1.00000i 0.0441511i
\(514\) −10.0000 −0.441081
\(515\) 0 0
\(516\) −4.00000 −0.176090
\(517\) − 7.00000i − 0.307860i
\(518\) 9.00000i 0.395437i
\(519\) −13.0000 −0.570637
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) − 2.00000i − 0.0875376i
\(523\) 35.0000i 1.53044i 0.643767 + 0.765222i \(0.277371\pi\)
−0.643767 + 0.765222i \(0.722629\pi\)
\(524\) −2.00000 −0.0873704
\(525\) 0 0
\(526\) −18.0000 −0.784837
\(527\) 30.0000i 1.30682i
\(528\) − 1.00000i − 0.0435194i
\(529\) 14.0000 0.608696
\(530\) 0 0
\(531\) 11.0000 0.477359
\(532\) 3.00000i 0.130066i
\(533\) 0 0
\(534\) 12.0000 0.519291
\(535\) 0 0
\(536\) 8.00000 0.345547
\(537\) − 9.00000i − 0.388379i
\(538\) − 2.00000i − 0.0862261i
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) 16.0000 0.687894 0.343947 0.938989i \(-0.388236\pi\)
0.343947 + 0.938989i \(0.388236\pi\)
\(542\) 5.00000i 0.214768i
\(543\) − 5.00000i − 0.214571i
\(544\) −5.00000 −0.214373
\(545\) 0 0
\(546\) 0 0
\(547\) 37.0000i 1.58201i 0.611812 + 0.791003i \(0.290441\pi\)
−0.611812 + 0.791003i \(0.709559\pi\)
\(548\) 6.00000i 0.256307i
\(549\) 8.00000 0.341432
\(550\) 0 0
\(551\) −2.00000 −0.0852029
\(552\) − 3.00000i − 0.127688i
\(553\) − 51.0000i − 2.16874i
\(554\) 12.0000 0.509831
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) − 30.0000i − 1.27114i −0.772043 0.635570i \(-0.780765\pi\)
0.772043 0.635570i \(-0.219235\pi\)
\(558\) − 6.00000i − 0.254000i
\(559\) 0 0
\(560\) 0 0
\(561\) −5.00000 −0.211100
\(562\) − 3.00000i − 0.126547i
\(563\) 42.0000i 1.77009i 0.465506 + 0.885044i \(0.345872\pi\)
−0.465506 + 0.885044i \(0.654128\pi\)
\(564\) 7.00000 0.294753
\(565\) 0 0
\(566\) −27.0000 −1.13489
\(567\) − 3.00000i − 0.125988i
\(568\) 1.00000i 0.0419591i
\(569\) 15.0000 0.628833 0.314416 0.949285i \(-0.398191\pi\)
0.314416 + 0.949285i \(0.398191\pi\)
\(570\) 0 0
\(571\) 24.0000 1.00437 0.502184 0.864761i \(-0.332530\pi\)
0.502184 + 0.864761i \(0.332530\pi\)
\(572\) 0 0
\(573\) 15.0000i 0.626634i
\(574\) 3.00000 0.125218
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 43.0000i 1.79011i 0.445952 + 0.895057i \(0.352865\pi\)
−0.445952 + 0.895057i \(0.647135\pi\)
\(578\) 8.00000i 0.332756i
\(579\) 4.00000 0.166234
\(580\) 0 0
\(581\) 18.0000 0.746766
\(582\) − 9.00000i − 0.373062i
\(583\) 8.00000i 0.331326i
\(584\) −8.00000 −0.331042
\(585\) 0 0
\(586\) 9.00000 0.371787
\(587\) 9.00000i 0.371470i 0.982600 + 0.185735i \(0.0594666\pi\)
−0.982600 + 0.185735i \(0.940533\pi\)
\(588\) − 2.00000i − 0.0824786i
\(589\) −6.00000 −0.247226
\(590\) 0 0
\(591\) −15.0000 −0.617018
\(592\) − 3.00000i − 0.123299i
\(593\) − 10.0000i − 0.410651i −0.978694 0.205325i \(-0.934175\pi\)
0.978694 0.205325i \(-0.0658253\pi\)
\(594\) 1.00000 0.0410305
\(595\) 0 0
\(596\) 21.0000 0.860194
\(597\) − 28.0000i − 1.14596i
\(598\) 0 0
\(599\) 21.0000 0.858037 0.429018 0.903296i \(-0.358860\pi\)
0.429018 + 0.903296i \(0.358860\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) − 12.0000i − 0.489083i
\(603\) 8.00000i 0.325785i
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) 13.0000 0.528089
\(607\) − 16.0000i − 0.649420i −0.945814 0.324710i \(-0.894733\pi\)
0.945814 0.324710i \(-0.105267\pi\)
\(608\) − 1.00000i − 0.0405554i
\(609\) 6.00000 0.243132
\(610\) 0 0
\(611\) 0 0
\(612\) − 5.00000i − 0.202113i
\(613\) 4.00000i 0.161558i 0.996732 + 0.0807792i \(0.0257409\pi\)
−0.996732 + 0.0807792i \(0.974259\pi\)
\(614\) 20.0000 0.807134
\(615\) 0 0
\(616\) 3.00000 0.120873
\(617\) 10.0000i 0.402585i 0.979531 + 0.201292i \(0.0645141\pi\)
−0.979531 + 0.201292i \(0.935486\pi\)
\(618\) 2.00000i 0.0804518i
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) 0 0
\(621\) 3.00000 0.120386
\(622\) 0 0
\(623\) 36.0000i 1.44231i
\(624\) 0 0
\(625\) 0 0
\(626\) −33.0000 −1.31895
\(627\) − 1.00000i − 0.0399362i
\(628\) 6.00000i 0.239426i
\(629\) −15.0000 −0.598089
\(630\) 0 0
\(631\) 18.0000 0.716569 0.358284 0.933613i \(-0.383362\pi\)
0.358284 + 0.933613i \(0.383362\pi\)
\(632\) 17.0000i 0.676224i
\(633\) 20.0000i 0.794929i
\(634\) −32.0000 −1.27088
\(635\) 0 0
\(636\) −8.00000 −0.317221
\(637\) 0 0
\(638\) 2.00000i 0.0791808i
\(639\) −1.00000 −0.0395594
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 2.00000i 0.0789337i
\(643\) − 14.0000i − 0.552106i −0.961142 0.276053i \(-0.910973\pi\)
0.961142 0.276053i \(-0.0890266\pi\)
\(644\) 9.00000 0.354650
\(645\) 0 0
\(646\) −5.00000 −0.196722
\(647\) − 27.0000i − 1.06148i −0.847535 0.530740i \(-0.821914\pi\)
0.847535 0.530740i \(-0.178086\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −11.0000 −0.431788
\(650\) 0 0
\(651\) 18.0000 0.705476
\(652\) − 16.0000i − 0.626608i
\(653\) 14.0000i 0.547862i 0.961749 + 0.273931i \(0.0883240\pi\)
−0.961749 + 0.273931i \(0.911676\pi\)
\(654\) 8.00000 0.312825
\(655\) 0 0
\(656\) −1.00000 −0.0390434
\(657\) − 8.00000i − 0.312110i
\(658\) 21.0000i 0.818665i
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) −43.0000 −1.67251 −0.836253 0.548344i \(-0.815259\pi\)
−0.836253 + 0.548344i \(0.815259\pi\)
\(662\) − 20.0000i − 0.777322i
\(663\) 0 0
\(664\) −6.00000 −0.232845
\(665\) 0 0
\(666\) 3.00000 0.116248
\(667\) 6.00000i 0.232321i
\(668\) − 12.0000i − 0.464294i
\(669\) −24.0000 −0.927894
\(670\) 0 0
\(671\) −8.00000 −0.308837
\(672\) 3.00000i 0.115728i
\(673\) 8.00000i 0.308377i 0.988041 + 0.154189i \(0.0492764\pi\)
−0.988041 + 0.154189i \(0.950724\pi\)
\(674\) −28.0000 −1.07852
\(675\) 0 0
\(676\) −13.0000 −0.500000
\(677\) 26.0000i 0.999261i 0.866239 + 0.499631i \(0.166531\pi\)
−0.866239 + 0.499631i \(0.833469\pi\)
\(678\) 16.0000i 0.614476i
\(679\) 27.0000 1.03616
\(680\) 0 0
\(681\) 14.0000 0.536481
\(682\) 6.00000i 0.229752i
\(683\) 5.00000i 0.191320i 0.995414 + 0.0956598i \(0.0304961\pi\)
−0.995414 + 0.0956598i \(0.969504\pi\)
\(684\) 1.00000 0.0382360
\(685\) 0 0
\(686\) −15.0000 −0.572703
\(687\) 1.00000i 0.0381524i
\(688\) 4.00000i 0.152499i
\(689\) 0 0
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 13.0000i 0.494186i
\(693\) 3.00000i 0.113961i
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) −2.00000 −0.0758098
\(697\) 5.00000i 0.189389i
\(698\) − 6.00000i − 0.227103i
\(699\) −9.00000 −0.340411
\(700\) 0 0
\(701\) 13.0000 0.491003 0.245502 0.969396i \(-0.421047\pi\)
0.245502 + 0.969396i \(0.421047\pi\)
\(702\) 0 0
\(703\) − 3.00000i − 0.113147i
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −32.0000 −1.20434
\(707\) 39.0000i 1.46675i
\(708\) − 11.0000i − 0.413405i
\(709\) −41.0000 −1.53979 −0.769894 0.638172i \(-0.779691\pi\)
−0.769894 + 0.638172i \(0.779691\pi\)
\(710\) 0 0
\(711\) −17.0000 −0.637550
\(712\) − 12.0000i − 0.449719i
\(713\) 18.0000i 0.674105i
\(714\) 15.0000 0.561361
\(715\) 0 0
\(716\) −9.00000 −0.336346
\(717\) − 20.0000i − 0.746914i
\(718\) − 2.00000i − 0.0746393i
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) −6.00000 −0.223452
\(722\) 18.0000i 0.669891i
\(723\) − 18.0000i − 0.669427i
\(724\) −5.00000 −0.185824
\(725\) 0 0
\(726\) −1.00000 −0.0371135
\(727\) − 32.0000i − 1.18681i −0.804902 0.593407i \(-0.797782\pi\)
0.804902 0.593407i \(-0.202218\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 20.0000 0.739727
\(732\) − 8.00000i − 0.295689i
\(733\) − 36.0000i − 1.32969i −0.746981 0.664845i \(-0.768498\pi\)
0.746981 0.664845i \(-0.231502\pi\)
\(734\) 26.0000 0.959678
\(735\) 0 0
\(736\) −3.00000 −0.110581
\(737\) − 8.00000i − 0.294684i
\(738\) − 1.00000i − 0.0368105i
\(739\) 35.0000 1.28750 0.643748 0.765238i \(-0.277379\pi\)
0.643748 + 0.765238i \(0.277379\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 24.0000i − 0.881068i
\(743\) 48.0000i 1.76095i 0.474093 + 0.880475i \(0.342776\pi\)
−0.474093 + 0.880475i \(0.657224\pi\)
\(744\) −6.00000 −0.219971
\(745\) 0 0
\(746\) −18.0000 −0.659027
\(747\) − 6.00000i − 0.219529i
\(748\) 5.00000i 0.182818i
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) − 7.00000i − 0.255264i
\(753\) − 8.00000i − 0.291536i
\(754\) 0 0
\(755\) 0 0
\(756\) −3.00000 −0.109109
\(757\) − 2.00000i − 0.0726912i −0.999339 0.0363456i \(-0.988428\pi\)
0.999339 0.0363456i \(-0.0115717\pi\)
\(758\) − 18.0000i − 0.653789i
\(759\) −3.00000 −0.108893
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 5.00000i 0.181131i
\(763\) 24.0000i 0.868858i
\(764\) 15.0000 0.542681
\(765\) 0 0
\(766\) −8.00000 −0.289052
\(767\) 0 0
\(768\) − 1.00000i − 0.0360844i
\(769\) −32.0000 −1.15395 −0.576975 0.816762i \(-0.695767\pi\)
−0.576975 + 0.816762i \(0.695767\pi\)
\(770\) 0 0
\(771\) −10.0000 −0.360141
\(772\) − 4.00000i − 0.143963i
\(773\) − 8.00000i − 0.287740i −0.989597 0.143870i \(-0.954045\pi\)
0.989597 0.143870i \(-0.0459547\pi\)
\(774\) −4.00000 −0.143777
\(775\) 0 0
\(776\) −9.00000 −0.323081
\(777\) 9.00000i 0.322873i
\(778\) − 30.0000i − 1.07555i
\(779\) −1.00000 −0.0358287
\(780\) 0 0
\(781\) 1.00000 0.0357828
\(782\) 15.0000i 0.536399i
\(783\) − 2.00000i − 0.0714742i
\(784\) −2.00000 −0.0714286
\(785\) 0 0
\(786\) −2.00000 −0.0713376
\(787\) − 19.0000i − 0.677277i −0.940917 0.338638i \(-0.890034\pi\)
0.940917 0.338638i \(-0.109966\pi\)
\(788\) 15.0000i 0.534353i
\(789\) −18.0000 −0.640817
\(790\) 0 0
\(791\) −48.0000 −1.70668
\(792\) − 1.00000i − 0.0355335i
\(793\) 0 0
\(794\) 2.00000 0.0709773
\(795\) 0 0
\(796\) −28.0000 −0.992434
\(797\) 18.0000i 0.637593i 0.947823 + 0.318796i \(0.103279\pi\)
−0.947823 + 0.318796i \(0.896721\pi\)
\(798\) 3.00000i 0.106199i
\(799\) −35.0000 −1.23821
\(800\) 0 0
\(801\) 12.0000 0.423999
\(802\) − 32.0000i − 1.12996i
\(803\) 8.00000i 0.282314i
\(804\) 8.00000 0.282138
\(805\) 0 0
\(806\) 0 0
\(807\) − 2.00000i − 0.0704033i
\(808\) − 13.0000i − 0.457338i
\(809\) −9.00000 −0.316423 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(810\) 0 0
\(811\) 7.00000 0.245803 0.122902 0.992419i \(-0.460780\pi\)
0.122902 + 0.992419i \(0.460780\pi\)
\(812\) − 6.00000i − 0.210559i
\(813\) 5.00000i 0.175358i
\(814\) −3.00000 −0.105150
\(815\) 0 0
\(816\) −5.00000 −0.175035
\(817\) 4.00000i 0.139942i
\(818\) 16.0000i 0.559427i
\(819\) 0 0
\(820\) 0 0
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 6.00000i 0.209274i
\(823\) 44.0000i 1.53374i 0.641800 + 0.766872i \(0.278188\pi\)
−0.641800 + 0.766872i \(0.721812\pi\)
\(824\) 2.00000 0.0696733
\(825\) 0 0
\(826\) 33.0000 1.14822
\(827\) 16.0000i 0.556375i 0.960527 + 0.278187i \(0.0897336\pi\)
−0.960527 + 0.278187i \(0.910266\pi\)
\(828\) − 3.00000i − 0.104257i
\(829\) 38.0000 1.31979 0.659897 0.751356i \(-0.270600\pi\)
0.659897 + 0.751356i \(0.270600\pi\)
\(830\) 0 0
\(831\) 12.0000 0.416275
\(832\) 0 0
\(833\) 10.0000i 0.346479i
\(834\) −20.0000 −0.692543
\(835\) 0 0
\(836\) −1.00000 −0.0345857
\(837\) − 6.00000i − 0.207390i
\(838\) 21.0000i 0.725433i
\(839\) 48.0000 1.65714 0.828572 0.559883i \(-0.189154\pi\)
0.828572 + 0.559883i \(0.189154\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) − 23.0000i − 0.792632i
\(843\) − 3.00000i − 0.103325i
\(844\) 20.0000 0.688428
\(845\) 0 0
\(846\) 7.00000 0.240665
\(847\) − 3.00000i − 0.103081i
\(848\) 8.00000i 0.274721i
\(849\) −27.0000 −0.926638
\(850\) 0 0
\(851\) −9.00000 −0.308516
\(852\) 1.00000i 0.0342594i
\(853\) 46.0000i 1.57501i 0.616308 + 0.787505i \(0.288628\pi\)
−0.616308 + 0.787505i \(0.711372\pi\)
\(854\) 24.0000 0.821263
\(855\) 0 0
\(856\) 2.00000 0.0683586
\(857\) 43.0000i 1.46885i 0.678689 + 0.734426i \(0.262549\pi\)
−0.678689 + 0.734426i \(0.737451\pi\)
\(858\) 0 0
\(859\) 36.0000 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(860\) 0 0
\(861\) 3.00000 0.102240
\(862\) 14.0000i 0.476842i
\(863\) 24.0000i 0.816970i 0.912765 + 0.408485i \(0.133943\pi\)
−0.912765 + 0.408485i \(0.866057\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) 2.00000 0.0679628
\(867\) 8.00000i 0.271694i
\(868\) − 18.0000i − 0.610960i
\(869\) 17.0000 0.576686
\(870\) 0 0
\(871\) 0 0
\(872\) − 8.00000i − 0.270914i
\(873\) − 9.00000i − 0.304604i
\(874\) −3.00000 −0.101477
\(875\) 0 0
\(876\) −8.00000 −0.270295
\(877\) 22.0000i 0.742887i 0.928456 + 0.371444i \(0.121137\pi\)
−0.928456 + 0.371444i \(0.878863\pi\)
\(878\) 11.0000i 0.371232i
\(879\) 9.00000 0.303562
\(880\) 0 0
\(881\) −28.0000 −0.943344 −0.471672 0.881774i \(-0.656349\pi\)
−0.471672 + 0.881774i \(0.656349\pi\)
\(882\) − 2.00000i − 0.0673435i
\(883\) 6.00000i 0.201916i 0.994891 + 0.100958i \(0.0321908\pi\)
−0.994891 + 0.100958i \(0.967809\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −29.0000 −0.974274
\(887\) 4.00000i 0.134307i 0.997743 + 0.0671534i \(0.0213917\pi\)
−0.997743 + 0.0671534i \(0.978608\pi\)
\(888\) − 3.00000i − 0.100673i
\(889\) −15.0000 −0.503084
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 24.0000i 0.803579i
\(893\) − 7.00000i − 0.234246i
\(894\) 21.0000 0.702345
\(895\) 0 0
\(896\) 3.00000 0.100223
\(897\) 0 0
\(898\) 36.0000i 1.20134i
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 40.0000 1.33259
\(902\) 1.00000i 0.0332964i
\(903\) − 12.0000i − 0.399335i
\(904\) 16.0000 0.532152
\(905\) 0 0
\(906\) −8.00000 −0.265782
\(907\) − 30.0000i − 0.996134i −0.867139 0.498067i \(-0.834043\pi\)
0.867139 0.498067i \(-0.165957\pi\)
\(908\) − 14.0000i − 0.464606i
\(909\) 13.0000 0.431183
\(910\) 0 0
\(911\) −39.0000 −1.29213 −0.646064 0.763283i \(-0.723586\pi\)
−0.646064 + 0.763283i \(0.723586\pi\)
\(912\) − 1.00000i − 0.0331133i
\(913\) 6.00000i 0.198571i
\(914\) 18.0000 0.595387
\(915\) 0 0
\(916\) 1.00000 0.0330409
\(917\) − 6.00000i − 0.198137i
\(918\) − 5.00000i − 0.165025i
\(919\) −31.0000 −1.02260 −0.511298 0.859404i \(-0.670835\pi\)
−0.511298 + 0.859404i \(0.670835\pi\)
\(920\) 0 0
\(921\) 20.0000 0.659022
\(922\) − 30.0000i − 0.987997i
\(923\) 0 0
\(924\) 3.00000 0.0986928
\(925\) 0 0
\(926\) 10.0000 0.328620
\(927\) 2.00000i 0.0656886i
\(928\) 2.00000i 0.0656532i
\(929\) 4.00000 0.131236 0.0656179 0.997845i \(-0.479098\pi\)
0.0656179 + 0.997845i \(0.479098\pi\)
\(930\) 0 0
\(931\) −2.00000 −0.0655474
\(932\) 9.00000i 0.294805i
\(933\) 0 0
\(934\) 4.00000 0.130884
\(935\) 0 0
\(936\) 0 0
\(937\) 34.0000i 1.11073i 0.831606 + 0.555366i \(0.187422\pi\)
−0.831606 + 0.555366i \(0.812578\pi\)
\(938\) 24.0000i 0.783628i
\(939\) −33.0000 −1.07691
\(940\) 0 0
\(941\) −49.0000 −1.59735 −0.798677 0.601760i \(-0.794466\pi\)
−0.798677 + 0.601760i \(0.794466\pi\)
\(942\) 6.00000i 0.195491i
\(943\) 3.00000i 0.0976934i
\(944\) −11.0000 −0.358020
\(945\) 0 0
\(946\) 4.00000 0.130051
\(947\) − 27.0000i − 0.877382i −0.898638 0.438691i \(-0.855442\pi\)
0.898638 0.438691i \(-0.144558\pi\)
\(948\) 17.0000i 0.552134i
\(949\) 0 0
\(950\) 0 0
\(951\) −32.0000 −1.03767
\(952\) − 15.0000i − 0.486153i
\(953\) 45.0000i 1.45769i 0.684677 + 0.728846i \(0.259943\pi\)
−0.684677 + 0.728846i \(0.740057\pi\)
\(954\) −8.00000 −0.259010
\(955\) 0 0
\(956\) −20.0000 −0.646846
\(957\) 2.00000i 0.0646508i
\(958\) − 12.0000i − 0.387702i
\(959\) −18.0000 −0.581250
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) 2.00000i 0.0644491i
\(964\) −18.0000 −0.579741
\(965\) 0 0
\(966\) 9.00000 0.289570
\(967\) − 24.0000i − 0.771788i −0.922543 0.385894i \(-0.873893\pi\)
0.922543 0.385894i \(-0.126107\pi\)
\(968\) 1.00000i 0.0321412i
\(969\) −5.00000 −0.160623
\(970\) 0 0
\(971\) 45.0000 1.44412 0.722059 0.691831i \(-0.243196\pi\)
0.722059 + 0.691831i \(0.243196\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) − 60.0000i − 1.92351i
\(974\) −30.0000 −0.961262
\(975\) 0 0
\(976\) −8.00000 −0.256074
\(977\) − 30.0000i − 0.959785i −0.877327 0.479893i \(-0.840676\pi\)
0.877327 0.479893i \(-0.159324\pi\)
\(978\) − 16.0000i − 0.511624i
\(979\) −12.0000 −0.383522
\(980\) 0 0
\(981\) 8.00000 0.255420
\(982\) 30.0000i 0.957338i
\(983\) − 45.0000i − 1.43528i −0.696416 0.717639i \(-0.745223\pi\)
0.696416 0.717639i \(-0.254777\pi\)
\(984\) −1.00000 −0.0318788
\(985\) 0 0
\(986\) 10.0000 0.318465
\(987\) 21.0000i 0.668437i
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) −44.0000 −1.39771 −0.698853 0.715265i \(-0.746306\pi\)
−0.698853 + 0.715265i \(0.746306\pi\)
\(992\) 6.00000i 0.190500i
\(993\) − 20.0000i − 0.634681i
\(994\) −3.00000 −0.0951542
\(995\) 0 0
\(996\) −6.00000 −0.190117
\(997\) 14.0000i 0.443384i 0.975117 + 0.221692i \(0.0711580\pi\)
−0.975117 + 0.221692i \(0.928842\pi\)
\(998\) − 28.0000i − 0.886325i
\(999\) 3.00000 0.0949158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1650.2.c.f.199.1 2
3.2 odd 2 4950.2.c.n.199.2 2
5.2 odd 4 1650.2.a.p.1.1 yes 1
5.3 odd 4 1650.2.a.f.1.1 1
5.4 even 2 inner 1650.2.c.f.199.2 2
15.2 even 4 4950.2.a.p.1.1 1
15.8 even 4 4950.2.a.bb.1.1 1
15.14 odd 2 4950.2.c.n.199.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1650.2.a.f.1.1 1 5.3 odd 4
1650.2.a.p.1.1 yes 1 5.2 odd 4
1650.2.c.f.199.1 2 1.1 even 1 trivial
1650.2.c.f.199.2 2 5.4 even 2 inner
4950.2.a.p.1.1 1 15.2 even 4
4950.2.a.bb.1.1 1 15.8 even 4
4950.2.c.n.199.1 2 15.14 odd 2
4950.2.c.n.199.2 2 3.2 odd 2