Properties

Label 165.3.l.f.98.1
Level $165$
Weight $3$
Character 165.98
Analytic conductor $4.496$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [165,3,Mod(32,165)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("165.32"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(165, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 165.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,12,0,0,0,0,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.49592436194\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 98.1
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 165.98
Dual form 165.3.l.f.32.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 1.22474i) q^{2} +3.00000 q^{3} +1.00000i q^{4} +5.00000i q^{5} +(-3.67423 + 3.67423i) q^{6} +(4.89898 + 4.89898i) q^{7} +(-6.12372 - 6.12372i) q^{8} +9.00000 q^{9} +(-6.12372 - 6.12372i) q^{10} +(-9.79796 - 5.00000i) q^{11} +3.00000i q^{12} +(-4.89898 + 4.89898i) q^{13} -12.0000 q^{14} +15.0000i q^{15} +11.0000 q^{16} +(4.89898 - 4.89898i) q^{17} +(-11.0227 + 11.0227i) q^{18} +19.5959 q^{19} -5.00000 q^{20} +(14.6969 + 14.6969i) q^{21} +(18.1237 - 5.87628i) q^{22} +(-7.00000 + 7.00000i) q^{23} +(-18.3712 - 18.3712i) q^{24} -25.0000 q^{25} -12.0000i q^{26} +27.0000 q^{27} +(-4.89898 + 4.89898i) q^{28} +48.9898i q^{29} +(-18.3712 - 18.3712i) q^{30} -48.0000 q^{31} +(11.0227 - 11.0227i) q^{32} +(-29.3939 - 15.0000i) q^{33} +12.0000i q^{34} +(-24.4949 + 24.4949i) q^{35} +9.00000i q^{36} +(37.0000 - 37.0000i) q^{37} +(-24.0000 + 24.0000i) q^{38} +(-14.6969 + 14.6969i) q^{39} +(30.6186 - 30.6186i) q^{40} +29.3939 q^{41} -36.0000 q^{42} +(44.0908 - 44.0908i) q^{43} +(5.00000 - 9.79796i) q^{44} +45.0000i q^{45} -17.1464i q^{46} +(17.0000 + 17.0000i) q^{47} +33.0000 q^{48} -1.00000i q^{49} +(30.6186 - 30.6186i) q^{50} +(14.6969 - 14.6969i) q^{51} +(-4.89898 - 4.89898i) q^{52} +(43.0000 - 43.0000i) q^{53} +(-33.0681 + 33.0681i) q^{54} +(25.0000 - 48.9898i) q^{55} -60.0000i q^{56} +58.7878 q^{57} +(-60.0000 - 60.0000i) q^{58} +38.0000 q^{59} -15.0000 q^{60} +48.9898i q^{61} +(58.7878 - 58.7878i) q^{62} +(44.0908 + 44.0908i) q^{63} +71.0000i q^{64} +(-24.4949 - 24.4949i) q^{65} +(54.3712 - 17.6288i) q^{66} +(-13.0000 + 13.0000i) q^{67} +(4.89898 + 4.89898i) q^{68} +(-21.0000 + 21.0000i) q^{69} -60.0000i q^{70} +(-55.1135 - 55.1135i) q^{72} +(93.0806 - 93.0806i) q^{73} +90.6311i q^{74} -75.0000 q^{75} +19.5959i q^{76} +(-23.5051 - 72.4949i) q^{77} -36.0000i q^{78} -29.3939 q^{79} +55.0000i q^{80} +81.0000 q^{81} +(-36.0000 + 36.0000i) q^{82} +(-102.879 - 102.879i) q^{83} +(-14.6969 + 14.6969i) q^{84} +(24.4949 + 24.4949i) q^{85} +108.000i q^{86} +146.969i q^{87} +(29.3814 + 90.6186i) q^{88} +48.0000 q^{89} +(-55.1135 - 55.1135i) q^{90} -48.0000 q^{91} +(-7.00000 - 7.00000i) q^{92} -144.000 q^{93} -41.6413 q^{94} +97.9796i q^{95} +(33.0681 - 33.0681i) q^{96} +(47.0000 - 47.0000i) q^{97} +(1.22474 + 1.22474i) q^{98} +(-88.1816 - 45.0000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{3} + 36 q^{9} - 48 q^{14} + 44 q^{16} - 20 q^{20} + 48 q^{22} - 28 q^{23} - 100 q^{25} + 108 q^{27} - 192 q^{31} + 148 q^{37} - 96 q^{38} - 144 q^{42} + 20 q^{44} + 68 q^{47} + 132 q^{48} + 172 q^{53}+ \cdots + 188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/165\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(67\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 1.22474i −0.612372 + 0.612372i −0.943564 0.331191i \(-0.892549\pi\)
0.331191 + 0.943564i \(0.392549\pi\)
\(3\) 3.00000 1.00000
\(4\) 1.00000i 0.250000i
\(5\) 5.00000i 1.00000i
\(6\) −3.67423 + 3.67423i −0.612372 + 0.612372i
\(7\) 4.89898 + 4.89898i 0.699854 + 0.699854i 0.964379 0.264525i \(-0.0852151\pi\)
−0.264525 + 0.964379i \(0.585215\pi\)
\(8\) −6.12372 6.12372i −0.765466 0.765466i
\(9\) 9.00000 1.00000
\(10\) −6.12372 6.12372i −0.612372 0.612372i
\(11\) −9.79796 5.00000i −0.890724 0.454545i
\(12\) 3.00000i 0.250000i
\(13\) −4.89898 + 4.89898i −0.376845 + 0.376845i −0.869962 0.493118i \(-0.835857\pi\)
0.493118 + 0.869962i \(0.335857\pi\)
\(14\) −12.0000 −0.857143
\(15\) 15.0000i 1.00000i
\(16\) 11.0000 0.687500
\(17\) 4.89898 4.89898i 0.288175 0.288175i −0.548183 0.836358i \(-0.684680\pi\)
0.836358 + 0.548183i \(0.184680\pi\)
\(18\) −11.0227 + 11.0227i −0.612372 + 0.612372i
\(19\) 19.5959 1.03136 0.515682 0.856780i \(-0.327539\pi\)
0.515682 + 0.856780i \(0.327539\pi\)
\(20\) −5.00000 −0.250000
\(21\) 14.6969 + 14.6969i 0.699854 + 0.699854i
\(22\) 18.1237 5.87628i 0.823806 0.267103i
\(23\) −7.00000 + 7.00000i −0.304348 + 0.304348i −0.842712 0.538364i \(-0.819042\pi\)
0.538364 + 0.842712i \(0.319042\pi\)
\(24\) −18.3712 18.3712i −0.765466 0.765466i
\(25\) −25.0000 −1.00000
\(26\) 12.0000i 0.461538i
\(27\) 27.0000 1.00000
\(28\) −4.89898 + 4.89898i −0.174964 + 0.174964i
\(29\) 48.9898i 1.68930i 0.535316 + 0.844652i \(0.320192\pi\)
−0.535316 + 0.844652i \(0.679808\pi\)
\(30\) −18.3712 18.3712i −0.612372 0.612372i
\(31\) −48.0000 −1.54839 −0.774194 0.632949i \(-0.781844\pi\)
−0.774194 + 0.632949i \(0.781844\pi\)
\(32\) 11.0227 11.0227i 0.344459 0.344459i
\(33\) −29.3939 15.0000i −0.890724 0.454545i
\(34\) 12.0000i 0.352941i
\(35\) −24.4949 + 24.4949i −0.699854 + 0.699854i
\(36\) 9.00000i 0.250000i
\(37\) 37.0000 37.0000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(38\) −24.0000 + 24.0000i −0.631579 + 0.631579i
\(39\) −14.6969 + 14.6969i −0.376845 + 0.376845i
\(40\) 30.6186 30.6186i 0.765466 0.765466i
\(41\) 29.3939 0.716924 0.358462 0.933544i \(-0.383301\pi\)
0.358462 + 0.933544i \(0.383301\pi\)
\(42\) −36.0000 −0.857143
\(43\) 44.0908 44.0908i 1.02537 1.02537i 0.0256980 0.999670i \(-0.491819\pi\)
0.999670 0.0256980i \(-0.00818084\pi\)
\(44\) 5.00000 9.79796i 0.113636 0.222681i
\(45\) 45.0000i 1.00000i
\(46\) 17.1464i 0.372748i
\(47\) 17.0000 + 17.0000i 0.361702 + 0.361702i 0.864439 0.502737i \(-0.167674\pi\)
−0.502737 + 0.864439i \(0.667674\pi\)
\(48\) 33.0000 0.687500
\(49\) 1.00000i 0.0204082i
\(50\) 30.6186 30.6186i 0.612372 0.612372i
\(51\) 14.6969 14.6969i 0.288175 0.288175i
\(52\) −4.89898 4.89898i −0.0942111 0.0942111i
\(53\) 43.0000 43.0000i 0.811321 0.811321i −0.173511 0.984832i \(-0.555511\pi\)
0.984832 + 0.173511i \(0.0555113\pi\)
\(54\) −33.0681 + 33.0681i −0.612372 + 0.612372i
\(55\) 25.0000 48.9898i 0.454545 0.890724i
\(56\) 60.0000i 1.07143i
\(57\) 58.7878 1.03136
\(58\) −60.0000 60.0000i −1.03448 1.03448i
\(59\) 38.0000 0.644068 0.322034 0.946728i \(-0.395633\pi\)
0.322034 + 0.946728i \(0.395633\pi\)
\(60\) −15.0000 −0.250000
\(61\) 48.9898i 0.803111i 0.915835 + 0.401556i \(0.131530\pi\)
−0.915835 + 0.401556i \(0.868470\pi\)
\(62\) 58.7878 58.7878i 0.948190 0.948190i
\(63\) 44.0908 + 44.0908i 0.699854 + 0.699854i
\(64\) 71.0000i 1.10938i
\(65\) −24.4949 24.4949i −0.376845 0.376845i
\(66\) 54.3712 17.6288i 0.823806 0.267103i
\(67\) −13.0000 + 13.0000i −0.194030 + 0.194030i −0.797435 0.603405i \(-0.793810\pi\)
0.603405 + 0.797435i \(0.293810\pi\)
\(68\) 4.89898 + 4.89898i 0.0720438 + 0.0720438i
\(69\) −21.0000 + 21.0000i −0.304348 + 0.304348i
\(70\) 60.0000i 0.857143i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −55.1135 55.1135i −0.765466 0.765466i
\(73\) 93.0806 93.0806i 1.27508 1.27508i 0.331688 0.943389i \(-0.392382\pi\)
0.943389 0.331688i \(-0.107618\pi\)
\(74\) 90.6311i 1.22474i
\(75\) −75.0000 −1.00000
\(76\) 19.5959i 0.257841i
\(77\) −23.5051 72.4949i −0.305261 0.941492i
\(78\) 36.0000i 0.461538i
\(79\) −29.3939 −0.372074 −0.186037 0.982543i \(-0.559564\pi\)
−0.186037 + 0.982543i \(0.559564\pi\)
\(80\) 55.0000i 0.687500i
\(81\) 81.0000 1.00000
\(82\) −36.0000 + 36.0000i −0.439024 + 0.439024i
\(83\) −102.879 102.879i −1.23950 1.23950i −0.960205 0.279296i \(-0.909899\pi\)
−0.279296 0.960205i \(-0.590101\pi\)
\(84\) −14.6969 + 14.6969i −0.174964 + 0.174964i
\(85\) 24.4949 + 24.4949i 0.288175 + 0.288175i
\(86\) 108.000i 1.25581i
\(87\) 146.969i 1.68930i
\(88\) 29.3814 + 90.6186i 0.333879 + 1.02976i
\(89\) 48.0000 0.539326 0.269663 0.962955i \(-0.413088\pi\)
0.269663 + 0.962955i \(0.413088\pi\)
\(90\) −55.1135 55.1135i −0.612372 0.612372i
\(91\) −48.0000 −0.527473
\(92\) −7.00000 7.00000i −0.0760870 0.0760870i
\(93\) −144.000 −1.54839
\(94\) −41.6413 −0.442993
\(95\) 97.9796i 1.03136i
\(96\) 33.0681 33.0681i 0.344459 0.344459i
\(97\) 47.0000 47.0000i 0.484536 0.484536i −0.422041 0.906577i \(-0.638686\pi\)
0.906577 + 0.422041i \(0.138686\pi\)
\(98\) 1.22474 + 1.22474i 0.0124974 + 0.0124974i
\(99\) −88.1816 45.0000i −0.890724 0.454545i
\(100\) 25.0000i 0.250000i
\(101\) −19.5959 −0.194019 −0.0970095 0.995283i \(-0.530928\pi\)
−0.0970095 + 0.995283i \(0.530928\pi\)
\(102\) 36.0000i 0.352941i
\(103\) 23.0000 + 23.0000i 0.223301 + 0.223301i 0.809887 0.586586i \(-0.199528\pi\)
−0.586586 + 0.809887i \(0.699528\pi\)
\(104\) 60.0000 0.576923
\(105\) −73.4847 + 73.4847i −0.699854 + 0.699854i
\(106\) 105.328i 0.993661i
\(107\) 4.89898 4.89898i 0.0457849 0.0457849i −0.683844 0.729629i \(-0.739693\pi\)
0.729629 + 0.683844i \(0.239693\pi\)
\(108\) 27.0000i 0.250000i
\(109\) −176.363 −1.61801 −0.809006 0.587801i \(-0.799994\pi\)
−0.809006 + 0.587801i \(0.799994\pi\)
\(110\) 29.3814 + 90.6186i 0.267103 + 0.823806i
\(111\) 111.000 111.000i 1.00000 1.00000i
\(112\) 53.8888 + 53.8888i 0.481150 + 0.481150i
\(113\) −127.000 + 127.000i −1.12389 + 1.12389i −0.132743 + 0.991150i \(0.542379\pi\)
−0.991150 + 0.132743i \(0.957621\pi\)
\(114\) −72.0000 + 72.0000i −0.631579 + 0.631579i
\(115\) −35.0000 35.0000i −0.304348 0.304348i
\(116\) −48.9898 −0.422326
\(117\) −44.0908 + 44.0908i −0.376845 + 0.376845i
\(118\) −46.5403 + 46.5403i −0.394409 + 0.394409i
\(119\) 48.0000 0.403361
\(120\) 91.8559 91.8559i 0.765466 0.765466i
\(121\) 71.0000 + 97.9796i 0.586777 + 0.809749i
\(122\) −60.0000 60.0000i −0.491803 0.491803i
\(123\) 88.1816 0.716924
\(124\) 48.0000i 0.387097i
\(125\) 125.000i 1.00000i
\(126\) −108.000 −0.857143
\(127\) 4.89898 + 4.89898i 0.0385746 + 0.0385746i 0.726131 0.687556i \(-0.241317\pi\)
−0.687556 + 0.726131i \(0.741317\pi\)
\(128\) −42.8661 42.8661i −0.334891 0.334891i
\(129\) 132.272 132.272i 1.02537 1.02537i
\(130\) 60.0000 0.461538
\(131\) 78.3837 0.598349 0.299174 0.954198i \(-0.403289\pi\)
0.299174 + 0.954198i \(0.403289\pi\)
\(132\) 15.0000 29.3939i 0.113636 0.222681i
\(133\) 96.0000 + 96.0000i 0.721805 + 0.721805i
\(134\) 31.8434i 0.237637i
\(135\) 135.000i 1.00000i
\(136\) −60.0000 −0.441176
\(137\) 7.00000 + 7.00000i 0.0510949 + 0.0510949i 0.732193 0.681098i \(-0.238497\pi\)
−0.681098 + 0.732193i \(0.738497\pi\)
\(138\) 51.4393i 0.372748i
\(139\) 19.5959 0.140978 0.0704889 0.997513i \(-0.477544\pi\)
0.0704889 + 0.997513i \(0.477544\pi\)
\(140\) −24.4949 24.4949i −0.174964 0.174964i
\(141\) 51.0000 + 51.0000i 0.361702 + 0.361702i
\(142\) 0 0
\(143\) 72.4949 23.5051i 0.506957 0.164371i
\(144\) 99.0000 0.687500
\(145\) −244.949 −1.68930
\(146\) 228.000i 1.56164i
\(147\) 3.00000i 0.0204082i
\(148\) 37.0000 + 37.0000i 0.250000 + 0.250000i
\(149\) 48.9898i 0.328791i 0.986395 + 0.164395i \(0.0525673\pi\)
−0.986395 + 0.164395i \(0.947433\pi\)
\(150\) 91.8559 91.8559i 0.612372 0.612372i
\(151\) 97.9796i 0.648871i −0.945908 0.324436i \(-0.894826\pi\)
0.945908 0.324436i \(-0.105174\pi\)
\(152\) −120.000 120.000i −0.789474 0.789474i
\(153\) 44.0908 44.0908i 0.288175 0.288175i
\(154\) 117.576 + 60.0000i 0.763477 + 0.389610i
\(155\) 240.000i 1.54839i
\(156\) −14.6969 14.6969i −0.0942111 0.0942111i
\(157\) −83.0000 + 83.0000i −0.528662 + 0.528662i −0.920173 0.391511i \(-0.871952\pi\)
0.391511 + 0.920173i \(0.371952\pi\)
\(158\) 36.0000 36.0000i 0.227848 0.227848i
\(159\) 129.000 129.000i 0.811321 0.811321i
\(160\) 55.1135 + 55.1135i 0.344459 + 0.344459i
\(161\) −68.5857 −0.425998
\(162\) −99.2043 + 99.2043i −0.612372 + 0.612372i
\(163\) 13.0000 + 13.0000i 0.0797546 + 0.0797546i 0.745859 0.666104i \(-0.232039\pi\)
−0.666104 + 0.745859i \(0.732039\pi\)
\(164\) 29.3939i 0.179231i
\(165\) 75.0000 146.969i 0.454545 0.890724i
\(166\) 252.000 1.51807
\(167\) 102.879 102.879i 0.616039 0.616039i −0.328474 0.944513i \(-0.606534\pi\)
0.944513 + 0.328474i \(0.106534\pi\)
\(168\) 180.000i 1.07143i
\(169\) 121.000i 0.715976i
\(170\) −60.0000 −0.352941
\(171\) 176.363 1.03136
\(172\) 44.0908 + 44.0908i 0.256342 + 0.256342i
\(173\) 44.0908 + 44.0908i 0.254860 + 0.254860i 0.822960 0.568100i \(-0.192321\pi\)
−0.568100 + 0.822960i \(0.692321\pi\)
\(174\) −180.000 180.000i −1.03448 1.03448i
\(175\) −122.474 122.474i −0.699854 0.699854i
\(176\) −107.778 55.0000i −0.612372 0.312500i
\(177\) 114.000 0.644068
\(178\) −58.7878 + 58.7878i −0.330268 + 0.330268i
\(179\) −192.000 −1.07263 −0.536313 0.844019i \(-0.680183\pi\)
−0.536313 + 0.844019i \(0.680183\pi\)
\(180\) −45.0000 −0.250000
\(181\) −288.000 −1.59116 −0.795580 0.605848i \(-0.792834\pi\)
−0.795580 + 0.605848i \(0.792834\pi\)
\(182\) 58.7878 58.7878i 0.323010 0.323010i
\(183\) 146.969i 0.803111i
\(184\) 85.7321 0.465936
\(185\) 185.000 + 185.000i 1.00000 + 1.00000i
\(186\) 176.363 176.363i 0.948190 0.948190i
\(187\) −72.4949 + 23.5051i −0.387673 + 0.125696i
\(188\) −17.0000 + 17.0000i −0.0904255 + 0.0904255i
\(189\) 132.272 + 132.272i 0.699854 + 0.699854i
\(190\) −120.000 120.000i −0.631579 0.631579i
\(191\) 110.000i 0.575916i −0.957643 0.287958i \(-0.907024\pi\)
0.957643 0.287958i \(-0.0929764\pi\)
\(192\) 213.000i 1.10938i
\(193\) −53.8888 + 53.8888i −0.279216 + 0.279216i −0.832796 0.553580i \(-0.813261\pi\)
0.553580 + 0.832796i \(0.313261\pi\)
\(194\) 115.126i 0.593433i
\(195\) −73.4847 73.4847i −0.376845 0.376845i
\(196\) 1.00000 0.00510204
\(197\) −93.0806 + 93.0806i −0.472490 + 0.472490i −0.902720 0.430229i \(-0.858433\pi\)
0.430229 + 0.902720i \(0.358433\pi\)
\(198\) 163.114 52.8865i 0.823806 0.267103i
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 153.093 + 153.093i 0.765466 + 0.765466i
\(201\) −39.0000 + 39.0000i −0.194030 + 0.194030i
\(202\) 24.0000 24.0000i 0.118812 0.118812i
\(203\) −240.000 + 240.000i −1.18227 + 1.18227i
\(204\) 14.6969 + 14.6969i 0.0720438 + 0.0720438i
\(205\) 146.969i 0.716924i
\(206\) −56.3383 −0.273487
\(207\) −63.0000 + 63.0000i −0.304348 + 0.304348i
\(208\) −53.8888 + 53.8888i −0.259081 + 0.259081i
\(209\) −192.000 97.9796i −0.918660 0.468802i
\(210\) 180.000i 0.857143i
\(211\) 244.949i 1.16090i −0.814297 0.580448i \(-0.802878\pi\)
0.814297 0.580448i \(-0.197122\pi\)
\(212\) 43.0000 + 43.0000i 0.202830 + 0.202830i
\(213\) 0 0
\(214\) 12.0000i 0.0560748i
\(215\) 220.454 + 220.454i 1.02537 + 1.02537i
\(216\) −165.341 165.341i −0.765466 0.765466i
\(217\) −235.151 235.151i −1.08365 1.08365i
\(218\) 216.000 216.000i 0.990826 0.990826i
\(219\) 279.242 279.242i 1.27508 1.27508i
\(220\) 48.9898 + 25.0000i 0.222681 + 0.113636i
\(221\) 48.0000i 0.217195i
\(222\) 271.893i 1.22474i
\(223\) −47.0000 47.0000i −0.210762 0.210762i 0.593829 0.804591i \(-0.297616\pi\)
−0.804591 + 0.593829i \(0.797616\pi\)
\(224\) 108.000 0.482143
\(225\) −225.000 −1.00000
\(226\) 311.085i 1.37648i
\(227\) 200.858 200.858i 0.884838 0.884838i −0.109184 0.994022i \(-0.534824\pi\)
0.994022 + 0.109184i \(0.0348237\pi\)
\(228\) 58.7878i 0.257841i
\(229\) 240.000i 1.04803i −0.851708 0.524017i \(-0.824433\pi\)
0.851708 0.524017i \(-0.175567\pi\)
\(230\) 85.7321 0.372748
\(231\) −70.5153 217.485i −0.305261 0.941492i
\(232\) 300.000 300.000i 1.29310 1.29310i
\(233\) −200.858 200.858i −0.862052 0.862052i 0.129524 0.991576i \(-0.458655\pi\)
−0.991576 + 0.129524i \(0.958655\pi\)
\(234\) 108.000i 0.461538i
\(235\) −85.0000 + 85.0000i −0.361702 + 0.361702i
\(236\) 38.0000i 0.161017i
\(237\) −88.1816 −0.372074
\(238\) −58.7878 + 58.7878i −0.247007 + 0.247007i
\(239\) 195.959i 0.819913i −0.912105 0.409956i \(-0.865544\pi\)
0.912105 0.409956i \(-0.134456\pi\)
\(240\) 165.000i 0.687500i
\(241\) 391.918i 1.62622i 0.582112 + 0.813109i \(0.302227\pi\)
−0.582112 + 0.813109i \(0.697773\pi\)
\(242\) −206.957 33.0431i −0.855194 0.136542i
\(243\) 243.000 1.00000
\(244\) −48.9898 −0.200778
\(245\) 5.00000 0.0204082
\(246\) −108.000 + 108.000i −0.439024 + 0.439024i
\(247\) −96.0000 + 96.0000i −0.388664 + 0.388664i
\(248\) 293.939 + 293.939i 1.18524 + 1.18524i
\(249\) −308.636 308.636i −1.23950 1.23950i
\(250\) 153.093 + 153.093i 0.612372 + 0.612372i
\(251\) 240.000i 0.956175i −0.878312 0.478088i \(-0.841330\pi\)
0.878312 0.478088i \(-0.158670\pi\)
\(252\) −44.0908 + 44.0908i −0.174964 + 0.174964i
\(253\) 103.586 33.5857i 0.409430 0.132750i
\(254\) −12.0000 −0.0472441
\(255\) 73.4847 + 73.4847i 0.288175 + 0.288175i
\(256\) −179.000 −0.699219
\(257\) 127.000 + 127.000i 0.494163 + 0.494163i 0.909615 0.415452i \(-0.136377\pi\)
−0.415452 + 0.909615i \(0.636377\pi\)
\(258\) 324.000i 1.25581i
\(259\) 362.524 1.39971
\(260\) 24.4949 24.4949i 0.0942111 0.0942111i
\(261\) 440.908i 1.68930i
\(262\) −96.0000 + 96.0000i −0.366412 + 0.366412i
\(263\) 44.0908 + 44.0908i 0.167646 + 0.167646i 0.785944 0.618298i \(-0.212178\pi\)
−0.618298 + 0.785944i \(0.712178\pi\)
\(264\) 88.1441 + 271.856i 0.333879 + 1.02976i
\(265\) 215.000 + 215.000i 0.811321 + 0.811321i
\(266\) −235.151 −0.884026
\(267\) 144.000 0.539326
\(268\) −13.0000 13.0000i −0.0485075 0.0485075i
\(269\) 298.000 1.10781 0.553903 0.832581i \(-0.313138\pi\)
0.553903 + 0.832581i \(0.313138\pi\)
\(270\) −165.341 165.341i −0.612372 0.612372i
\(271\) 97.9796i 0.361548i −0.983525 0.180774i \(-0.942140\pi\)
0.983525 0.180774i \(-0.0578603\pi\)
\(272\) 53.8888 53.8888i 0.198120 0.198120i
\(273\) −144.000 −0.527473
\(274\) −17.1464 −0.0625782
\(275\) 244.949 + 125.000i 0.890724 + 0.454545i
\(276\) −21.0000 21.0000i −0.0760870 0.0760870i
\(277\) −44.0908 44.0908i −0.159173 0.159173i 0.623027 0.782200i \(-0.285903\pi\)
−0.782200 + 0.623027i \(0.785903\pi\)
\(278\) −24.0000 + 24.0000i −0.0863309 + 0.0863309i
\(279\) −432.000 −1.54839
\(280\) 300.000 1.07143
\(281\) −460.504 −1.63880 −0.819402 0.573219i \(-0.805694\pi\)
−0.819402 + 0.573219i \(0.805694\pi\)
\(282\) −124.924 −0.442993
\(283\) −151.868 + 151.868i −0.536637 + 0.536637i −0.922540 0.385902i \(-0.873890\pi\)
0.385902 + 0.922540i \(0.373890\pi\)
\(284\) 0 0
\(285\) 293.939i 1.03136i
\(286\) −60.0000 + 117.576i −0.209790 + 0.411103i
\(287\) 144.000 + 144.000i 0.501742 + 0.501742i
\(288\) 99.2043 99.2043i 0.344459 0.344459i
\(289\) 241.000i 0.833910i
\(290\) 300.000 300.000i 1.03448 1.03448i
\(291\) 141.000 141.000i 0.484536 0.484536i
\(292\) 93.0806 + 93.0806i 0.318769 + 0.318769i
\(293\) −347.828 347.828i −1.18712 1.18712i −0.977859 0.209266i \(-0.932893\pi\)
−0.209266 0.977859i \(-0.567107\pi\)
\(294\) 3.67423 + 3.67423i 0.0124974 + 0.0124974i
\(295\) 190.000i 0.644068i
\(296\) −453.156 −1.53093
\(297\) −264.545 135.000i −0.890724 0.454545i
\(298\) −60.0000 60.0000i −0.201342 0.201342i
\(299\) 68.5857i 0.229384i
\(300\) 75.0000i 0.250000i
\(301\) 432.000 1.43522
\(302\) 120.000 + 120.000i 0.397351 + 0.397351i
\(303\) −58.7878 −0.194019
\(304\) 215.555 0.709063
\(305\) −244.949 −0.803111
\(306\) 108.000i 0.352941i
\(307\) −338.030 338.030i −1.10107 1.10107i −0.994281 0.106792i \(-0.965942\pi\)
−0.106792 0.994281i \(-0.534058\pi\)
\(308\) 72.4949 23.5051i 0.235373 0.0763153i
\(309\) 69.0000 + 69.0000i 0.223301 + 0.223301i
\(310\) 293.939 + 293.939i 0.948190 + 0.948190i
\(311\) 480.000i 1.54341i 0.635982 + 0.771704i \(0.280595\pi\)
−0.635982 + 0.771704i \(0.719405\pi\)
\(312\) 180.000 0.576923
\(313\) −217.000 217.000i −0.693291 0.693291i 0.269664 0.962955i \(-0.413087\pi\)
−0.962955 + 0.269664i \(0.913087\pi\)
\(314\) 203.308i 0.647477i
\(315\) −220.454 + 220.454i −0.699854 + 0.699854i
\(316\) 29.3939i 0.0930186i
\(317\) 67.0000 + 67.0000i 0.211356 + 0.211356i 0.804844 0.593487i \(-0.202249\pi\)
−0.593487 + 0.804844i \(0.702249\pi\)
\(318\) 315.984i 0.993661i
\(319\) 244.949 480.000i 0.767865 1.50470i
\(320\) −355.000 −1.10938
\(321\) 14.6969 14.6969i 0.0457849 0.0457849i
\(322\) 84.0000 84.0000i 0.260870 0.260870i
\(323\) 96.0000 96.0000i 0.297214 0.297214i
\(324\) 81.0000i 0.250000i
\(325\) 122.474 122.474i 0.376845 0.376845i
\(326\) −31.8434 −0.0976790
\(327\) −529.090 −1.61801
\(328\) −180.000 180.000i −0.548780 0.548780i
\(329\) 166.565i 0.506278i
\(330\) 88.1441 + 271.856i 0.267103 + 0.823806i
\(331\) −288.000 −0.870091 −0.435045 0.900409i \(-0.643268\pi\)
−0.435045 + 0.900409i \(0.643268\pi\)
\(332\) 102.879 102.879i 0.309875 0.309875i
\(333\) 333.000 333.000i 1.00000 1.00000i
\(334\) 252.000i 0.754491i
\(335\) −65.0000 65.0000i −0.194030 0.194030i
\(336\) 161.666 + 161.666i 0.481150 + 0.481150i
\(337\) 249.848 + 249.848i 0.741389 + 0.741389i 0.972845 0.231457i \(-0.0743491\pi\)
−0.231457 + 0.972845i \(0.574349\pi\)
\(338\) −148.194 148.194i −0.438444 0.438444i
\(339\) −381.000 + 381.000i −1.12389 + 1.12389i
\(340\) −24.4949 + 24.4949i −0.0720438 + 0.0720438i
\(341\) 470.302 + 240.000i 1.37918 + 0.703812i
\(342\) −216.000 + 216.000i −0.631579 + 0.631579i
\(343\) 244.949 244.949i 0.714137 0.714137i
\(344\) −540.000 −1.56977
\(345\) −105.000 105.000i −0.304348 0.304348i
\(346\) −108.000 −0.312139
\(347\) −142.070 + 142.070i −0.409425 + 0.409425i −0.881538 0.472113i \(-0.843491\pi\)
0.472113 + 0.881538i \(0.343491\pi\)
\(348\) −146.969 −0.422326
\(349\) −274.343 −0.786083 −0.393041 0.919521i \(-0.628577\pi\)
−0.393041 + 0.919521i \(0.628577\pi\)
\(350\) 300.000 0.857143
\(351\) −132.272 + 132.272i −0.376845 + 0.376845i
\(352\) −163.114 + 52.8865i −0.463391 + 0.150246i
\(353\) −257.000 + 257.000i −0.728045 + 0.728045i −0.970230 0.242185i \(-0.922136\pi\)
0.242185 + 0.970230i \(0.422136\pi\)
\(354\) −139.621 + 139.621i −0.394409 + 0.394409i
\(355\) 0 0
\(356\) 48.0000i 0.134831i
\(357\) 144.000 0.403361
\(358\) 235.151 235.151i 0.656846 0.656846i
\(359\) 195.959i 0.545847i 0.962036 + 0.272924i \(0.0879906\pi\)
−0.962036 + 0.272924i \(0.912009\pi\)
\(360\) 275.568 275.568i 0.765466 0.765466i
\(361\) 23.0000 0.0637119
\(362\) 352.727 352.727i 0.974383 0.974383i
\(363\) 213.000 + 293.939i 0.586777 + 0.809749i
\(364\) 48.0000i 0.131868i
\(365\) 465.403 + 465.403i 1.27508 + 1.27508i
\(366\) −180.000 180.000i −0.491803 0.491803i
\(367\) 97.0000 97.0000i 0.264305 0.264305i −0.562495 0.826800i \(-0.690159\pi\)
0.826800 + 0.562495i \(0.190159\pi\)
\(368\) −77.0000 + 77.0000i −0.209239 + 0.209239i
\(369\) 264.545 0.716924
\(370\) −453.156 −1.22474
\(371\) 421.312 1.13561
\(372\) 144.000i 0.387097i
\(373\) −102.879 + 102.879i −0.275814 + 0.275814i −0.831435 0.555621i \(-0.812480\pi\)
0.555621 + 0.831435i \(0.312480\pi\)
\(374\) 60.0000 117.576i 0.160428 0.314373i
\(375\) 375.000i 1.00000i
\(376\) 208.207i 0.553741i
\(377\) −240.000 240.000i −0.636605 0.636605i
\(378\) −324.000 −0.857143
\(379\) 720.000i 1.89974i −0.312651 0.949868i \(-0.601217\pi\)
0.312651 0.949868i \(-0.398783\pi\)
\(380\) −97.9796 −0.257841
\(381\) 14.6969 + 14.6969i 0.0385746 + 0.0385746i
\(382\) 134.722 + 134.722i 0.352675 + 0.352675i
\(383\) 353.000 353.000i 0.921671 0.921671i −0.0754766 0.997148i \(-0.524048\pi\)
0.997148 + 0.0754766i \(0.0240478\pi\)
\(384\) −128.598 128.598i −0.334891 0.334891i
\(385\) 362.474 117.526i 0.941492 0.305261i
\(386\) 132.000i 0.341969i
\(387\) 396.817 396.817i 1.02537 1.02537i
\(388\) 47.0000 + 47.0000i 0.121134 + 0.121134i
\(389\) −422.000 −1.08483 −0.542416 0.840110i \(-0.682490\pi\)
−0.542416 + 0.840110i \(0.682490\pi\)
\(390\) 180.000 0.461538
\(391\) 68.5857i 0.175411i
\(392\) −6.12372 + 6.12372i −0.0156217 + 0.0156217i
\(393\) 235.151 0.598349
\(394\) 228.000i 0.578680i
\(395\) 146.969i 0.372074i
\(396\) 45.0000 88.1816i 0.113636 0.222681i
\(397\) −493.000 + 493.000i −1.24181 + 1.24181i −0.282566 + 0.959248i \(0.591185\pi\)
−0.959248 + 0.282566i \(0.908815\pi\)
\(398\) 0 0
\(399\) 288.000 + 288.000i 0.721805 + 0.721805i
\(400\) −275.000 −0.687500
\(401\) 590.000i 1.47132i −0.677350 0.735661i \(-0.736872\pi\)
0.677350 0.735661i \(-0.263128\pi\)
\(402\) 95.5301i 0.237637i
\(403\) 235.151 235.151i 0.583501 0.583501i
\(404\) 19.5959i 0.0485047i
\(405\) 405.000i 1.00000i
\(406\) 587.878i 1.44797i
\(407\) −547.524 + 177.524i −1.34527 + 0.436178i
\(408\) −180.000 −0.441176
\(409\) −323.333 −0.790544 −0.395272 0.918564i \(-0.629350\pi\)
−0.395272 + 0.918564i \(0.629350\pi\)
\(410\) −180.000 180.000i −0.439024 0.439024i
\(411\) 21.0000 + 21.0000i 0.0510949 + 0.0510949i
\(412\) −23.0000 + 23.0000i −0.0558252 + 0.0558252i
\(413\) 186.161 + 186.161i 0.450754 + 0.450754i
\(414\) 154.318i 0.372748i
\(415\) 514.393 514.393i 1.23950 1.23950i
\(416\) 108.000i 0.259615i
\(417\) 58.7878 0.140978
\(418\) 355.151 115.151i 0.849644 0.275481i
\(419\) 288.000 0.687351 0.343675 0.939088i \(-0.388328\pi\)
0.343675 + 0.939088i \(0.388328\pi\)
\(420\) −73.4847 73.4847i −0.174964 0.174964i
\(421\) 672.000 1.59620 0.798100 0.602525i \(-0.205839\pi\)
0.798100 + 0.602525i \(0.205839\pi\)
\(422\) 300.000 + 300.000i 0.710900 + 0.710900i
\(423\) 153.000 + 153.000i 0.361702 + 0.361702i
\(424\) −526.640 −1.24208
\(425\) −122.474 + 122.474i −0.288175 + 0.288175i
\(426\) 0 0
\(427\) −240.000 + 240.000i −0.562061 + 0.562061i
\(428\) 4.89898 + 4.89898i 0.0114462 + 0.0114462i
\(429\) 217.485 70.5153i 0.506957 0.164371i
\(430\) −540.000 −1.25581
\(431\) 29.3939 0.0681993 0.0340996 0.999418i \(-0.489144\pi\)
0.0340996 + 0.999418i \(0.489144\pi\)
\(432\) 297.000 0.687500
\(433\) −47.0000 47.0000i −0.108545 0.108545i 0.650748 0.759293i \(-0.274455\pi\)
−0.759293 + 0.650748i \(0.774455\pi\)
\(434\) 576.000 1.32719
\(435\) −734.847 −1.68930
\(436\) 176.363i 0.404503i
\(437\) −137.171 + 137.171i −0.313893 + 0.313893i
\(438\) 684.000i 1.56164i
\(439\) 754.443 1.71855 0.859274 0.511515i \(-0.170916\pi\)
0.859274 + 0.511515i \(0.170916\pi\)
\(440\) −453.093 + 146.907i −1.02976 + 0.333879i
\(441\) 9.00000i 0.0204082i
\(442\) −58.7878 58.7878i −0.133004 0.133004i
\(443\) 43.0000 43.0000i 0.0970655 0.0970655i −0.656907 0.753972i \(-0.728135\pi\)
0.753972 + 0.656907i \(0.228135\pi\)
\(444\) 111.000 + 111.000i 0.250000 + 0.250000i
\(445\) 240.000i 0.539326i
\(446\) 115.126 0.258130
\(447\) 146.969i 0.328791i
\(448\) −347.828 + 347.828i −0.776401 + 0.776401i
\(449\) 528.000 1.17595 0.587973 0.808880i \(-0.299926\pi\)
0.587973 + 0.808880i \(0.299926\pi\)
\(450\) 275.568 275.568i 0.612372 0.612372i
\(451\) −288.000 146.969i −0.638581 0.325874i
\(452\) −127.000 127.000i −0.280973 0.280973i
\(453\) 293.939i 0.648871i
\(454\) 492.000i 1.08370i
\(455\) 240.000i 0.527473i
\(456\) −360.000 360.000i −0.789474 0.789474i
\(457\) 543.787 + 543.787i 1.18991 + 1.18991i 0.977093 + 0.212812i \(0.0682622\pi\)
0.212812 + 0.977093i \(0.431738\pi\)
\(458\) 293.939 + 293.939i 0.641788 + 0.641788i
\(459\) 132.272 132.272i 0.288175 0.288175i
\(460\) 35.0000 35.0000i 0.0760870 0.0760870i
\(461\) 274.343 0.595104 0.297552 0.954706i \(-0.403830\pi\)
0.297552 + 0.954706i \(0.403830\pi\)
\(462\) 352.727 + 180.000i 0.763477 + 0.389610i
\(463\) −287.000 287.000i −0.619870 0.619870i 0.325628 0.945498i \(-0.394424\pi\)
−0.945498 + 0.325628i \(0.894424\pi\)
\(464\) 538.888i 1.16140i
\(465\) 720.000i 1.54839i
\(466\) 492.000 1.05579
\(467\) −403.000 403.000i −0.862955 0.862955i 0.128725 0.991680i \(-0.458911\pi\)
−0.991680 + 0.128725i \(0.958911\pi\)
\(468\) −44.0908 44.0908i −0.0942111 0.0942111i
\(469\) −127.373 −0.271585
\(470\) 208.207i 0.442993i
\(471\) −249.000 + 249.000i −0.528662 + 0.528662i
\(472\) −232.702 232.702i −0.493012 0.493012i
\(473\) −652.454 + 211.546i −1.37940 + 0.447243i
\(474\) 108.000 108.000i 0.227848 0.227848i
\(475\) −489.898 −1.03136
\(476\) 48.0000i 0.100840i
\(477\) 387.000 387.000i 0.811321 0.811321i
\(478\) 240.000 + 240.000i 0.502092 + 0.502092i
\(479\) 97.9796i 0.204550i 0.994756 + 0.102275i \(0.0326122\pi\)
−0.994756 + 0.102275i \(0.967388\pi\)
\(480\) 165.341 + 165.341i 0.344459 + 0.344459i
\(481\) 362.524i 0.753689i
\(482\) −480.000 480.000i −0.995851 0.995851i
\(483\) −205.757 −0.425998
\(484\) −97.9796 + 71.0000i −0.202437 + 0.146694i
\(485\) 235.000 + 235.000i 0.484536 + 0.484536i
\(486\) −297.613 + 297.613i −0.612372 + 0.612372i
\(487\) 407.000 407.000i 0.835729 0.835729i −0.152565 0.988294i \(-0.548753\pi\)
0.988294 + 0.152565i \(0.0487532\pi\)
\(488\) 300.000 300.000i 0.614754 0.614754i
\(489\) 39.0000 + 39.0000i 0.0797546 + 0.0797546i
\(490\) −6.12372 + 6.12372i −0.0124974 + 0.0124974i
\(491\) −117.576 −0.239461 −0.119731 0.992806i \(-0.538203\pi\)
−0.119731 + 0.992806i \(0.538203\pi\)
\(492\) 88.1816i 0.179231i
\(493\) 240.000 + 240.000i 0.486815 + 0.486815i
\(494\) 235.151i 0.476014i
\(495\) 225.000 440.908i 0.454545 0.890724i
\(496\) −528.000 −1.06452
\(497\) 0 0
\(498\) 756.000 1.51807
\(499\) 240.000i 0.480962i −0.970654 0.240481i \(-0.922695\pi\)
0.970654 0.240481i \(-0.0773052\pi\)
\(500\) 125.000 0.250000
\(501\) 308.636 308.636i 0.616039 0.616039i
\(502\) 293.939 + 293.939i 0.585535 + 0.585535i
\(503\) 93.0806 + 93.0806i 0.185051 + 0.185051i 0.793553 0.608502i \(-0.208229\pi\)
−0.608502 + 0.793553i \(0.708229\pi\)
\(504\) 540.000i 1.07143i
\(505\) 97.9796i 0.194019i
\(506\) −85.7321 + 168.000i −0.169431 + 0.332016i
\(507\) 363.000i 0.715976i
\(508\) −4.89898 + 4.89898i −0.00964366 + 0.00964366i
\(509\) −202.000 −0.396857 −0.198428 0.980115i \(-0.563584\pi\)
−0.198428 + 0.980115i \(0.563584\pi\)
\(510\) −180.000 −0.352941
\(511\) 912.000 1.78474
\(512\) 390.694 390.694i 0.763073 0.763073i
\(513\) 529.090 1.03136
\(514\) −311.085 −0.605224
\(515\) −115.000 + 115.000i −0.223301 + 0.223301i
\(516\) 132.272 + 132.272i 0.256342 + 0.256342i
\(517\) −81.5653 251.565i −0.157767 0.486587i
\(518\) −444.000 + 444.000i −0.857143 + 0.857143i
\(519\) 132.272 + 132.272i 0.254860 + 0.254860i
\(520\) 300.000i 0.576923i
\(521\) 350.000i 0.671785i 0.941900 + 0.335893i \(0.109038\pi\)
−0.941900 + 0.335893i \(0.890962\pi\)
\(522\) −540.000 540.000i −1.03448 1.03448i
\(523\) −494.797 + 494.797i −0.946074 + 0.946074i −0.998619 0.0525442i \(-0.983267\pi\)
0.0525442 + 0.998619i \(0.483267\pi\)
\(524\) 78.3837i 0.149587i
\(525\) −367.423 367.423i −0.699854 0.699854i
\(526\) −108.000 −0.205323
\(527\) −235.151 + 235.151i −0.446207 + 0.446207i
\(528\) −323.333 165.000i −0.612372 0.312500i
\(529\) 431.000i 0.814745i
\(530\) −526.640 −0.993661
\(531\) 342.000 0.644068
\(532\) −96.0000 + 96.0000i −0.180451 + 0.180451i
\(533\) −144.000 + 144.000i −0.270169 + 0.270169i
\(534\) −176.363 + 176.363i −0.330268 + 0.330268i
\(535\) 24.4949 + 24.4949i 0.0457849 + 0.0457849i
\(536\) 159.217 0.297046
\(537\) −576.000 −1.07263
\(538\) −364.974 + 364.974i −0.678390 + 0.678390i
\(539\) −5.00000 + 9.79796i −0.00927644 + 0.0181780i
\(540\) −135.000 −0.250000
\(541\) 636.867i 1.17720i 0.808423 + 0.588602i \(0.200321\pi\)
−0.808423 + 0.588602i \(0.799679\pi\)
\(542\) 120.000 + 120.000i 0.221402 + 0.221402i
\(543\) −864.000 −1.59116
\(544\) 108.000i 0.198529i
\(545\) 881.816i 1.61801i
\(546\) 176.363 176.363i 0.323010 0.323010i
\(547\) 249.848 + 249.848i 0.456760 + 0.456760i 0.897591 0.440830i \(-0.145316\pi\)
−0.440830 + 0.897591i \(0.645316\pi\)
\(548\) −7.00000 + 7.00000i −0.0127737 + 0.0127737i
\(549\) 440.908i 0.803111i
\(550\) −453.093 + 146.907i −0.823806 + 0.267103i
\(551\) 960.000i 1.74229i
\(552\) 257.196 0.465936
\(553\) −144.000 144.000i −0.260398 0.260398i
\(554\) 108.000 0.194946
\(555\) 555.000 + 555.000i 1.00000 + 1.00000i
\(556\) 19.5959i 0.0352445i
\(557\) 298.838 298.838i 0.536513 0.536513i −0.385990 0.922503i \(-0.626140\pi\)
0.922503 + 0.385990i \(0.126140\pi\)
\(558\) 529.090 529.090i 0.948190 0.948190i
\(559\) 432.000i 0.772809i
\(560\) −269.444 + 269.444i −0.481150 + 0.481150i
\(561\) −217.485 + 70.5153i −0.387673 + 0.125696i
\(562\) 564.000 564.000i 1.00356 1.00356i
\(563\) −543.787 543.787i −0.965873 0.965873i 0.0335632 0.999437i \(-0.489314\pi\)
−0.999437 + 0.0335632i \(0.989314\pi\)
\(564\) −51.0000 + 51.0000i −0.0904255 + 0.0904255i
\(565\) −635.000 635.000i −1.12389 1.12389i
\(566\) 372.000i 0.657244i
\(567\) 396.817 + 396.817i 0.699854 + 0.699854i
\(568\) 0 0
\(569\) 391.918i 0.688784i 0.938826 + 0.344392i \(0.111915\pi\)
−0.938826 + 0.344392i \(0.888085\pi\)
\(570\) −360.000 360.000i −0.631579 0.631579i
\(571\) 734.847i 1.28695i 0.765468 + 0.643474i \(0.222507\pi\)
−0.765468 + 0.643474i \(0.777493\pi\)
\(572\) 23.5051 + 72.4949i 0.0410928 + 0.126739i
\(573\) 330.000i 0.575916i
\(574\) −352.727 −0.614506
\(575\) 175.000 175.000i 0.304348 0.304348i
\(576\) 639.000i 1.10938i
\(577\) −433.000 + 433.000i −0.750433 + 0.750433i −0.974560 0.224127i \(-0.928047\pi\)
0.224127 + 0.974560i \(0.428047\pi\)
\(578\) −295.164 295.164i −0.510664 0.510664i
\(579\) −161.666 + 161.666i −0.279216 + 0.279216i
\(580\) 244.949i 0.422326i
\(581\) 1008.00i 1.73494i
\(582\) 345.378i 0.593433i
\(583\) −636.312 + 206.312i −1.09144 + 0.353880i
\(584\) −1140.00 −1.95205
\(585\) −220.454 220.454i −0.376845 0.376845i
\(586\) 852.000 1.45392
\(587\) 197.000 + 197.000i 0.335605 + 0.335605i 0.854710 0.519105i \(-0.173735\pi\)
−0.519105 + 0.854710i \(0.673735\pi\)
\(588\) 3.00000 0.00510204
\(589\) −940.604 −1.59695
\(590\) −232.702 232.702i −0.394409 0.394409i
\(591\) −279.242 + 279.242i −0.472490 + 0.472490i
\(592\) 407.000 407.000i 0.687500 0.687500i
\(593\) −53.8888 53.8888i −0.0908748 0.0908748i 0.660208 0.751083i \(-0.270468\pi\)
−0.751083 + 0.660208i \(0.770468\pi\)
\(594\) 489.341 158.659i 0.823806 0.267103i
\(595\) 240.000i 0.403361i
\(596\) −48.9898 −0.0821976
\(597\) 0 0
\(598\) 84.0000 + 84.0000i 0.140468 + 0.140468i
\(599\) 528.000 0.881469 0.440735 0.897637i \(-0.354718\pi\)
0.440735 + 0.897637i \(0.354718\pi\)
\(600\) 459.279 + 459.279i 0.765466 + 0.765466i
\(601\) 587.878i 0.978166i −0.872237 0.489083i \(-0.837332\pi\)
0.872237 0.489083i \(-0.162668\pi\)
\(602\) −529.090 + 529.090i −0.878887 + 0.878887i
\(603\) −117.000 + 117.000i −0.194030 + 0.194030i
\(604\) 97.9796 0.162218
\(605\) −489.898 + 355.000i −0.809749 + 0.586777i
\(606\) 72.0000 72.0000i 0.118812 0.118812i
\(607\) 739.746 + 739.746i 1.21869 + 1.21869i 0.968090 + 0.250601i \(0.0806284\pi\)
0.250601 + 0.968090i \(0.419372\pi\)
\(608\) 216.000 216.000i 0.355263 0.355263i
\(609\) −720.000 + 720.000i −1.18227 + 1.18227i
\(610\) 300.000 300.000i 0.491803 0.491803i
\(611\) −166.565 −0.272611
\(612\) 44.0908 + 44.0908i 0.0720438 + 0.0720438i
\(613\) 191.060 191.060i 0.311681 0.311681i −0.533880 0.845560i \(-0.679267\pi\)
0.845560 + 0.533880i \(0.179267\pi\)
\(614\) 828.000 1.34853
\(615\) 440.908i 0.716924i
\(616\) −300.000 + 587.878i −0.487013 + 0.954347i
\(617\) 487.000 + 487.000i 0.789303 + 0.789303i 0.981380 0.192077i \(-0.0615223\pi\)
−0.192077 + 0.981380i \(0.561522\pi\)
\(618\) −169.015 −0.273487
\(619\) 310.000i 0.500808i 0.968141 + 0.250404i \(0.0805634\pi\)
−0.968141 + 0.250404i \(0.919437\pi\)
\(620\) 240.000 0.387097
\(621\) −189.000 + 189.000i −0.304348 + 0.304348i
\(622\) −587.878 587.878i −0.945141 0.945141i
\(623\) 235.151 + 235.151i 0.377449 + 0.377449i
\(624\) −161.666 + 161.666i −0.259081 + 0.259081i
\(625\) 625.000 1.00000
\(626\) 531.539 0.849104
\(627\) −576.000 293.939i −0.918660 0.468802i
\(628\) −83.0000 83.0000i −0.132166 0.132166i
\(629\) 362.524i 0.576351i
\(630\) 540.000i 0.857143i
\(631\) −338.000 −0.535658 −0.267829 0.963467i \(-0.586306\pi\)
−0.267829 + 0.963467i \(0.586306\pi\)
\(632\) 180.000 + 180.000i 0.284810 + 0.284810i
\(633\) 734.847i 1.16090i
\(634\) −164.116 −0.258858
\(635\) −24.4949 + 24.4949i −0.0385746 + 0.0385746i
\(636\) 129.000 + 129.000i 0.202830 + 0.202830i
\(637\) 4.89898 + 4.89898i 0.00769071 + 0.00769071i
\(638\) 287.878 + 887.878i 0.451219 + 1.39166i
\(639\) 0 0
\(640\) 214.330 214.330i 0.334891 0.334891i
\(641\) 1070.00i 1.66927i −0.550806 0.834633i \(-0.685680\pi\)
0.550806 0.834633i \(-0.314320\pi\)
\(642\) 36.0000i 0.0560748i
\(643\) 803.000 + 803.000i 1.24883 + 1.24883i 0.956236 + 0.292598i \(0.0945198\pi\)
0.292598 + 0.956236i \(0.405480\pi\)
\(644\) 68.5857i 0.106500i
\(645\) 661.362 + 661.362i 1.02537 + 1.02537i
\(646\) 235.151i 0.364011i
\(647\) 617.000 + 617.000i 0.953632 + 0.953632i 0.998972 0.0453395i \(-0.0144370\pi\)
−0.0453395 + 0.998972i \(0.514437\pi\)
\(648\) −496.022 496.022i −0.765466 0.765466i
\(649\) −372.322 190.000i −0.573686 0.292758i
\(650\) 300.000i 0.461538i
\(651\) −705.453 705.453i −1.08365 1.08365i
\(652\) −13.0000 + 13.0000i −0.0199387 + 0.0199387i
\(653\) 653.000 653.000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(654\) 648.000 648.000i 0.990826 0.990826i
\(655\) 391.918i 0.598349i
\(656\) 323.333 0.492885
\(657\) 837.725 837.725i 1.27508 1.27508i
\(658\) −204.000 204.000i −0.310030 0.310030i
\(659\) 342.929i 0.520377i 0.965558 + 0.260189i \(0.0837847\pi\)
−0.965558 + 0.260189i \(0.916215\pi\)
\(660\) 146.969 + 75.0000i 0.222681 + 0.113636i
\(661\) 122.000 0.184569 0.0922844 0.995733i \(-0.470583\pi\)
0.0922844 + 0.995733i \(0.470583\pi\)
\(662\) 352.727 352.727i 0.532820 0.532820i
\(663\) 144.000i 0.217195i
\(664\) 1260.00i 1.89759i
\(665\) −480.000 + 480.000i −0.721805 + 0.721805i
\(666\) 815.680i 1.22474i
\(667\) −342.929 342.929i −0.514136 0.514136i
\(668\) 102.879 + 102.879i 0.154010 + 0.154010i
\(669\) −141.000 141.000i −0.210762 0.210762i
\(670\) 159.217 0.237637
\(671\) 244.949 480.000i 0.365051 0.715350i
\(672\) 324.000 0.482143
\(673\) 191.060 191.060i 0.283893 0.283893i −0.550766 0.834660i \(-0.685664\pi\)
0.834660 + 0.550766i \(0.185664\pi\)
\(674\) −612.000 −0.908012
\(675\) −675.000 −1.00000
\(676\) −121.000 −0.178994
\(677\) 4.89898 4.89898i 0.00723631 0.00723631i −0.703479 0.710716i \(-0.748371\pi\)
0.710716 + 0.703479i \(0.248371\pi\)
\(678\) 933.256i 1.37648i
\(679\) 460.504 0.678209
\(680\) 300.000i 0.441176i
\(681\) 602.574 602.574i 0.884838 0.884838i
\(682\) −869.939 + 282.061i −1.27557 + 0.413580i
\(683\) 53.0000 53.0000i 0.0775988 0.0775988i −0.667242 0.744841i \(-0.732525\pi\)
0.744841 + 0.667242i \(0.232525\pi\)
\(684\) 176.363i 0.257841i
\(685\) −35.0000 + 35.0000i −0.0510949 + 0.0510949i
\(686\) 600.000i 0.874636i
\(687\) 720.000i 1.04803i
\(688\) 484.999 484.999i 0.704940 0.704940i
\(689\) 421.312i 0.611484i
\(690\) 257.196 0.372748
\(691\) −598.000 −0.865412 −0.432706 0.901535i \(-0.642441\pi\)
−0.432706 + 0.901535i \(0.642441\pi\)
\(692\) −44.0908 + 44.0908i −0.0637151 + 0.0637151i
\(693\) −211.546 652.454i −0.305261 0.941492i
\(694\) 348.000i 0.501441i
\(695\) 97.9796i 0.140978i
\(696\) 900.000 900.000i 1.29310 1.29310i
\(697\) 144.000 144.000i 0.206600 0.206600i
\(698\) 336.000 336.000i 0.481375 0.481375i
\(699\) −602.574 602.574i −0.862052 0.862052i
\(700\) 122.474 122.474i 0.174964 0.174964i
\(701\) 862.220 1.22999 0.614993 0.788532i \(-0.289159\pi\)
0.614993 + 0.788532i \(0.289159\pi\)
\(702\) 324.000i 0.461538i
\(703\) 725.049 725.049i 1.03136 1.03136i
\(704\) 355.000 695.655i 0.504261 0.988146i
\(705\) −255.000 + 255.000i −0.361702 + 0.361702i
\(706\) 629.519i 0.891670i
\(707\) −96.0000 96.0000i −0.135785 0.135785i
\(708\) 114.000i 0.161017i
\(709\) 170.000i 0.239774i 0.992788 + 0.119887i \(0.0382533\pi\)
−0.992788 + 0.119887i \(0.961747\pi\)
\(710\) 0 0
\(711\) −264.545 −0.372074
\(712\) −293.939 293.939i −0.412835 0.412835i
\(713\) 336.000 336.000i 0.471248 0.471248i
\(714\) −176.363 + 176.363i −0.247007 + 0.247007i
\(715\) 117.526 + 362.474i 0.164371 + 0.506957i
\(716\) 192.000i 0.268156i
\(717\) 587.878i 0.819913i
\(718\) −240.000 240.000i −0.334262 0.334262i
\(719\) −912.000 −1.26843 −0.634214 0.773157i \(-0.718676\pi\)
−0.634214 + 0.773157i \(0.718676\pi\)
\(720\) 495.000i 0.687500i
\(721\) 225.353i 0.312556i
\(722\) −28.1691 + 28.1691i −0.0390154 + 0.0390154i
\(723\) 1175.76i 1.62622i
\(724\) 288.000i 0.397790i
\(725\) 1224.74i 1.68930i
\(726\) −620.871 99.1293i −0.855194 0.136542i
\(727\) 457.000 457.000i 0.628611 0.628611i −0.319108 0.947718i \(-0.603383\pi\)
0.947718 + 0.319108i \(0.103383\pi\)
\(728\) 293.939 + 293.939i 0.403762 + 0.403762i
\(729\) 729.000 1.00000
\(730\) −1140.00 −1.56164
\(731\) 432.000i 0.590971i
\(732\) −146.969 −0.200778
\(733\) 142.070 142.070i 0.193820 0.193820i −0.603524 0.797345i \(-0.706237\pi\)
0.797345 + 0.603524i \(0.206237\pi\)
\(734\) 237.601i 0.323706i
\(735\) 15.0000 0.0204082
\(736\) 154.318i 0.209671i
\(737\) 192.373 62.3735i 0.261022 0.0846316i
\(738\) −324.000 + 324.000i −0.439024 + 0.439024i
\(739\) −78.3837 −0.106067 −0.0530336 0.998593i \(-0.516889\pi\)
−0.0530336 + 0.998593i \(0.516889\pi\)
\(740\) −185.000 + 185.000i −0.250000 + 0.250000i
\(741\) −288.000 + 288.000i −0.388664 + 0.388664i
\(742\) −516.000 + 516.000i −0.695418 + 0.695418i
\(743\) −102.879 102.879i −0.138464 0.138464i 0.634478 0.772941i \(-0.281215\pi\)
−0.772941 + 0.634478i \(0.781215\pi\)
\(744\) 881.816 + 881.816i 1.18524 + 1.18524i
\(745\) −244.949 −0.328791
\(746\) 252.000i 0.337802i
\(747\) −925.907 925.907i −1.23950 1.23950i
\(748\) −23.5051 72.4949i −0.0314239 0.0969183i
\(749\) 48.0000 0.0640854
\(750\) 459.279 + 459.279i 0.612372 + 0.612372i
\(751\) −578.000 −0.769640 −0.384820 0.922992i \(-0.625737\pi\)
−0.384820 + 0.922992i \(0.625737\pi\)
\(752\) 187.000 + 187.000i 0.248670 + 0.248670i
\(753\) 720.000i 0.956175i
\(754\) 587.878 0.779678
\(755\) 489.898 0.648871
\(756\) −132.272 + 132.272i −0.174964 + 0.174964i
\(757\) 277.000 277.000i 0.365918 0.365918i −0.500068 0.865986i \(-0.666692\pi\)
0.865986 + 0.500068i \(0.166692\pi\)
\(758\) 881.816 + 881.816i 1.16335 + 1.16335i
\(759\) 310.757 100.757i 0.409430 0.132750i
\(760\) 600.000 600.000i 0.789474 0.789474i
\(761\) 813.231 1.06863 0.534317 0.845284i \(-0.320569\pi\)
0.534317 + 0.845284i \(0.320569\pi\)
\(762\) −36.0000 −0.0472441
\(763\) −864.000 864.000i −1.13237 1.13237i
\(764\) 110.000 0.143979
\(765\) 220.454 + 220.454i 0.288175 + 0.288175i
\(766\) 864.670i 1.12881i
\(767\) −186.161 + 186.161i −0.242713 + 0.242713i
\(768\) −537.000 −0.699219
\(769\) −617.271 −0.802694 −0.401347 0.915926i \(-0.631458\pi\)
−0.401347 + 0.915926i \(0.631458\pi\)
\(770\) −300.000 + 587.878i −0.389610 + 0.763477i
\(771\) 381.000 + 381.000i 0.494163 + 0.494163i
\(772\) −53.8888 53.8888i −0.0698041 0.0698041i
\(773\) −197.000 + 197.000i −0.254851 + 0.254851i −0.822956 0.568105i \(-0.807677\pi\)
0.568105 + 0.822956i \(0.307677\pi\)
\(774\) 972.000i 1.25581i
\(775\) 1200.00 1.54839
\(776\) −575.630 −0.741791
\(777\) 1087.57 1.39971
\(778\) 516.842 516.842i 0.664322 0.664322i
\(779\) 576.000 0.739409
\(780\) 73.4847 73.4847i 0.0942111 0.0942111i
\(781\) 0 0
\(782\) −84.0000 84.0000i −0.107417 0.107417i
\(783\) 1322.72i 1.68930i
\(784\) 11.0000i 0.0140306i
\(785\) −415.000 415.000i −0.528662 0.528662i
\(786\) −288.000 + 288.000i −0.366412 + 0.366412i
\(787\) −436.009 436.009i −0.554014 0.554014i 0.373583 0.927597i \(-0.378129\pi\)
−0.927597 + 0.373583i \(0.878129\pi\)
\(788\) −93.0806 93.0806i −0.118123 0.118123i
\(789\) 132.272 + 132.272i 0.167646 + 0.167646i
\(790\) 180.000 + 180.000i 0.227848 + 0.227848i
\(791\) −1244.34 −1.57312
\(792\) 264.432 + 815.568i 0.333879 + 1.02976i
\(793\) −240.000 240.000i −0.302648 0.302648i
\(794\) 1207.60i 1.52090i
\(795\) 645.000 + 645.000i 0.811321 + 0.811321i
\(796\) 0 0
\(797\) −883.000 883.000i −1.10790 1.10790i −0.993426 0.114479i \(-0.963480\pi\)
−0.114479 0.993426i \(-0.536520\pi\)
\(798\) −705.453 −0.884026
\(799\) 166.565 0.208467
\(800\) −275.568 + 275.568i −0.344459 + 0.344459i
\(801\) 432.000 0.539326
\(802\) 722.599 + 722.599i 0.900997 + 0.900997i
\(803\) −1377.40 + 446.597i −1.71532 + 0.556161i
\(804\) −39.0000 39.0000i −0.0485075 0.0485075i
\(805\) 342.929i 0.425998i
\(806\) 576.000i 0.714640i
\(807\) 894.000 1.10781
\(808\) 120.000 + 120.000i 0.148515 + 0.148515i
\(809\) 979.796i 1.21112i 0.795800 + 0.605560i \(0.207051\pi\)
−0.795800 + 0.605560i \(0.792949\pi\)
\(810\) −496.022 496.022i −0.612372 0.612372i
\(811\) 930.806i 1.14773i −0.818951 0.573863i \(-0.805444\pi\)
0.818951 0.573863i \(-0.194556\pi\)
\(812\) −240.000 240.000i −0.295567 0.295567i
\(813\) 293.939i 0.361548i
\(814\) 453.156 888.000i 0.556702 1.09091i
\(815\) −65.0000 + 65.0000i −0.0797546 + 0.0797546i
\(816\) 161.666 161.666i 0.198120 0.198120i
\(817\) 864.000 864.000i 1.05753 1.05753i
\(818\) 396.000 396.000i 0.484108 0.484108i
\(819\) −432.000 −0.527473
\(820\) −146.969 −0.179231
\(821\) −215.555 −0.262552 −0.131276 0.991346i \(-0.541907\pi\)
−0.131276 + 0.991346i \(0.541907\pi\)
\(822\) −51.4393 −0.0625782
\(823\) 743.000 + 743.000i 0.902795 + 0.902795i 0.995677 0.0928824i \(-0.0296081\pi\)
−0.0928824 + 0.995677i \(0.529608\pi\)
\(824\) 281.691i 0.341858i
\(825\) 734.847 + 375.000i 0.890724 + 0.454545i
\(826\) −456.000 −0.552058
\(827\) −827.928 + 827.928i −1.00112 + 1.00112i −0.00112219 + 0.999999i \(0.500357\pi\)
−0.999999 + 0.00112219i \(0.999643\pi\)
\(828\) −63.0000 63.0000i −0.0760870 0.0760870i
\(829\) 410.000i 0.494572i −0.968943 0.247286i \(-0.920461\pi\)
0.968943 0.247286i \(-0.0795387\pi\)
\(830\) 1260.00i 1.51807i
\(831\) −132.272 132.272i −0.159173 0.159173i
\(832\) −347.828 347.828i −0.418062 0.418062i
\(833\) −4.89898 4.89898i −0.00588113 0.00588113i
\(834\) −72.0000 + 72.0000i −0.0863309 + 0.0863309i
\(835\) 514.393 + 514.393i 0.616039 + 0.616039i
\(836\) 97.9796 192.000i 0.117200 0.229665i
\(837\) −1296.00 −1.54839
\(838\) −352.727 + 352.727i −0.420915 + 0.420915i
\(839\) −1262.00 −1.50417 −0.752086 0.659065i \(-0.770952\pi\)
−0.752086 + 0.659065i \(0.770952\pi\)
\(840\) 900.000 1.07143
\(841\) −1559.00 −1.85375
\(842\) −823.029 + 823.029i −0.977469 + 0.977469i
\(843\) −1381.51 −1.63880
\(844\) 244.949 0.290224
\(845\) −605.000 −0.715976
\(846\) −374.772 −0.442993
\(847\) −132.172 + 827.828i −0.156048 + 0.977364i
\(848\) 473.000 473.000i 0.557783 0.557783i
\(849\) −455.605 + 455.605i −0.536637 + 0.536637i
\(850\) 300.000i 0.352941i
\(851\) 518.000i 0.608696i
\(852\) 0 0
\(853\) −249.848 + 249.848i −0.292905 + 0.292905i −0.838227 0.545322i \(-0.816407\pi\)
0.545322 + 0.838227i \(0.316407\pi\)
\(854\) 587.878i 0.688381i
\(855\) 881.816i 1.03136i
\(856\) −60.0000 −0.0700935
\(857\) −191.060 + 191.060i −0.222941 + 0.222941i −0.809736 0.586795i \(-0.800389\pi\)
0.586795 + 0.809736i \(0.300389\pi\)
\(858\) −180.000 + 352.727i −0.209790 + 0.411103i
\(859\) 310.000i 0.360885i 0.983586 + 0.180442i \(0.0577529\pi\)
−0.983586 + 0.180442i \(0.942247\pi\)
\(860\) −220.454 + 220.454i −0.256342 + 0.256342i
\(861\) 432.000 + 432.000i 0.501742 + 0.501742i
\(862\) −36.0000 + 36.0000i −0.0417633 + 0.0417633i
\(863\) 833.000 833.000i 0.965238 0.965238i −0.0341782 0.999416i \(-0.510881\pi\)
0.999416 + 0.0341782i \(0.0108814\pi\)
\(864\) 297.613 297.613i 0.344459 0.344459i
\(865\) −220.454 + 220.454i −0.254860 + 0.254860i
\(866\) 115.126 0.132940
\(867\) 723.000i 0.833910i
\(868\) 235.151 235.151i 0.270911 0.270911i
\(869\) 288.000 + 146.969i 0.331415 + 0.169125i
\(870\) 900.000 900.000i 1.03448 1.03448i
\(871\) 127.373i 0.146238i
\(872\) 1080.00 + 1080.00i 1.23853 + 1.23853i
\(873\) 423.000 423.000i 0.484536 0.484536i
\(874\) 336.000i 0.384439i
\(875\) 612.372 612.372i 0.699854 0.699854i
\(876\) 279.242 + 279.242i 0.318769 + 0.318769i
\(877\) −44.0908 44.0908i −0.0502746 0.0502746i 0.681523 0.731797i \(-0.261318\pi\)
−0.731797 + 0.681523i \(0.761318\pi\)
\(878\) −924.000 + 924.000i −1.05239 + 1.05239i
\(879\) −1043.48 1043.48i −1.18712 1.18712i
\(880\) 275.000 538.888i 0.312500 0.612372i
\(881\) 480.000i 0.544835i 0.962179 + 0.272418i \(0.0878233\pi\)
−0.962179 + 0.272418i \(0.912177\pi\)
\(882\) 11.0227 + 11.0227i 0.0124974 + 0.0124974i
\(883\) 83.0000 + 83.0000i 0.0939977 + 0.0939977i 0.752542 0.658544i \(-0.228827\pi\)
−0.658544 + 0.752542i \(0.728827\pi\)
\(884\) −48.0000 −0.0542986
\(885\) 570.000i 0.644068i
\(886\) 105.328i 0.118880i
\(887\) −876.917 + 876.917i −0.988633 + 0.988633i −0.999936 0.0113033i \(-0.996402\pi\)
0.0113033 + 0.999936i \(0.496402\pi\)
\(888\) −1359.47 −1.53093
\(889\) 48.0000i 0.0539933i
\(890\) −293.939 293.939i −0.330268 0.330268i
\(891\) −793.635 405.000i −0.890724 0.454545i
\(892\) 47.0000 47.0000i 0.0526906 0.0526906i
\(893\) 333.131 + 333.131i 0.373047 + 0.373047i
\(894\) −180.000 180.000i −0.201342 0.201342i
\(895\) 960.000i 1.07263i
\(896\) 420.000i 0.468750i
\(897\) 205.757i 0.229384i
\(898\) −646.665 + 646.665i −0.720117 + 0.720117i
\(899\) 2351.51i 2.61570i
\(900\) 225.000i 0.250000i
\(901\) 421.312i 0.467605i
\(902\) 532.727 172.727i 0.590606 0.191493i
\(903\) 1296.00 1.43522
\(904\) 1555.43 1.72060
\(905\) 1440.00i 1.59116i
\(906\) 360.000 + 360.000i 0.397351 + 0.397351i
\(907\) 37.0000 37.0000i 0.0407938 0.0407938i −0.686416 0.727209i \(-0.740817\pi\)
0.727209 + 0.686416i \(0.240817\pi\)
\(908\) 200.858 + 200.858i 0.221209 + 0.221209i
\(909\) −176.363 −0.194019
\(910\) 293.939 + 293.939i 0.323010 + 0.323010i
\(911\) 370.000i 0.406147i −0.979163 0.203074i \(-0.934907\pi\)
0.979163 0.203074i \(-0.0650931\pi\)
\(912\) 646.665 0.709063
\(913\) 493.607 + 1522.39i 0.540643 + 1.66746i
\(914\) −1332.00 −1.45733
\(915\) −734.847 −0.803111
\(916\) 240.000 0.262009
\(917\) 384.000 + 384.000i 0.418757 + 0.418757i
\(918\) 324.000i 0.352941i
\(919\) 1538.28 1.67386 0.836931 0.547308i \(-0.184347\pi\)
0.836931 + 0.547308i \(0.184347\pi\)
\(920\) 428.661i 0.465936i
\(921\) −1014.09 1014.09i −1.10107 1.10107i
\(922\) −336.000 + 336.000i −0.364425 + 0.364425i
\(923\) 0 0
\(924\) 217.485 70.5153i 0.235373 0.0763153i
\(925\) −925.000 + 925.000i −1.00000 + 1.00000i
\(926\) 703.004 0.759183
\(927\) 207.000 + 207.000i 0.223301 + 0.223301i
\(928\) 540.000 + 540.000i 0.581897 + 0.581897i
\(929\) 158.000 0.170075 0.0850377 0.996378i \(-0.472899\pi\)
0.0850377 + 0.996378i \(0.472899\pi\)
\(930\) 881.816 + 881.816i 0.948190 + 0.948190i
\(931\) 19.5959i 0.0210482i
\(932\) 200.858 200.858i 0.215513 0.215513i
\(933\) 1440.00i 1.54341i
\(934\) 987.144 1.05690
\(935\) −117.526 362.474i −0.125696 0.387673i
\(936\) 540.000 0.576923
\(937\) 788.736 + 788.736i 0.841767 + 0.841767i 0.989089 0.147322i \(-0.0470652\pi\)
−0.147322 + 0.989089i \(0.547065\pi\)
\(938\) 156.000 156.000i 0.166311 0.166311i
\(939\) −651.000 651.000i −0.693291 0.693291i
\(940\) −85.0000 85.0000i −0.0904255 0.0904255i
\(941\) 176.363 0.187421 0.0937106 0.995599i \(-0.470127\pi\)
0.0937106 + 0.995599i \(0.470127\pi\)
\(942\) 609.923i 0.647477i
\(943\) −205.757 + 205.757i −0.218194 + 0.218194i
\(944\) 418.000 0.442797
\(945\) −661.362 + 661.362i −0.699854 + 0.699854i
\(946\) 540.000 1058.18i 0.570825 1.11858i
\(947\) −413.000 413.000i −0.436114 0.436114i 0.454588 0.890702i \(-0.349787\pi\)
−0.890702 + 0.454588i \(0.849787\pi\)
\(948\) 88.1816i 0.0930186i
\(949\) 912.000i 0.961012i
\(950\) 600.000 600.000i 0.631579 0.631579i
\(951\) 201.000 + 201.000i 0.211356 + 0.211356i
\(952\) −293.939 293.939i −0.308759 0.308759i
\(953\) 240.050 + 240.050i 0.251889 + 0.251889i 0.821745 0.569856i \(-0.193001\pi\)
−0.569856 + 0.821745i \(0.693001\pi\)
\(954\) 947.953i 0.993661i
\(955\) 550.000 0.575916
\(956\) 195.959 0.204978
\(957\) 734.847 1440.00i 0.767865 1.50470i
\(958\) −120.000 120.000i −0.125261 0.125261i
\(959\) 68.5857i 0.0715179i
\(960\) −1065.00 −1.10938
\(961\) 1343.00 1.39750
\(962\) −444.000 444.000i −0.461538 0.461538i
\(963\) 44.0908 44.0908i 0.0457849 0.0457849i
\(964\) −391.918 −0.406554
\(965\) −269.444 269.444i −0.279216 0.279216i
\(966\) 252.000 252.000i 0.260870 0.260870i
\(967\) 592.777 + 592.777i 0.613006 + 0.613006i 0.943728 0.330722i \(-0.107292\pi\)
−0.330722 + 0.943728i \(0.607292\pi\)
\(968\) 165.216 1034.78i 0.170677 1.06899i
\(969\) 288.000 288.000i 0.297214 0.297214i
\(970\) −575.630 −0.593433
\(971\) 1430.00i 1.47271i 0.676596 + 0.736354i \(0.263454\pi\)
−0.676596 + 0.736354i \(0.736546\pi\)
\(972\) 243.000i 0.250000i
\(973\) 96.0000 + 96.0000i 0.0986639 + 0.0986639i
\(974\) 996.942i 1.02355i
\(975\) 367.423 367.423i 0.376845 0.376845i
\(976\) 538.888i 0.552139i
\(977\) 1217.00 + 1217.00i 1.24565 + 1.24565i 0.957622 + 0.288028i \(0.0929996\pi\)
0.288028 + 0.957622i \(0.407000\pi\)
\(978\) −95.5301 −0.0976790
\(979\) −470.302 240.000i −0.480390 0.245148i
\(980\) 5.00000i 0.00510204i
\(981\) −1587.27 −1.61801
\(982\) 144.000 144.000i 0.146640 0.146640i
\(983\) −137.000 + 137.000i −0.139369 + 0.139369i −0.773349 0.633980i \(-0.781420\pi\)
0.633980 + 0.773349i \(0.281420\pi\)
\(984\) −540.000 540.000i −0.548780 0.548780i
\(985\) −465.403 465.403i −0.472490 0.472490i
\(986\) −587.878 −0.596225
\(987\) 499.696i 0.506278i
\(988\) −96.0000 96.0000i −0.0971660 0.0971660i
\(989\) 617.271i 0.624137i
\(990\) 264.432 + 815.568i 0.267103 + 0.823806i
\(991\) −1008.00 −1.01715 −0.508577 0.861016i \(-0.669828\pi\)
−0.508577 + 0.861016i \(0.669828\pi\)
\(992\) −529.090 + 529.090i −0.533357 + 0.533357i
\(993\) −864.000 −0.870091
\(994\) 0 0
\(995\) 0 0
\(996\) 308.636 308.636i 0.309875 0.309875i
\(997\) −1268.84 1268.84i −1.27265 1.27265i −0.944691 0.327963i \(-0.893638\pi\)
−0.327963 0.944691i \(-0.606362\pi\)
\(998\) 293.939 + 293.939i 0.294528 + 0.294528i
\(999\) 999.000 999.000i 1.00000 1.00000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 165.3.l.f.98.1 yes 4
3.2 odd 2 165.3.l.b.98.2 yes 4
5.2 odd 4 165.3.l.b.32.1 4
11.10 odd 2 inner 165.3.l.f.98.2 yes 4
15.2 even 4 inner 165.3.l.f.32.2 yes 4
33.32 even 2 165.3.l.b.98.1 yes 4
55.32 even 4 165.3.l.b.32.2 yes 4
165.32 odd 4 inner 165.3.l.f.32.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.3.l.b.32.1 4 5.2 odd 4
165.3.l.b.32.2 yes 4 55.32 even 4
165.3.l.b.98.1 yes 4 33.32 even 2
165.3.l.b.98.2 yes 4 3.2 odd 2
165.3.l.f.32.1 yes 4 165.32 odd 4 inner
165.3.l.f.32.2 yes 4 15.2 even 4 inner
165.3.l.f.98.1 yes 4 1.1 even 1 trivial
165.3.l.f.98.2 yes 4 11.10 odd 2 inner