Properties

Label 165.3.l.f
Level $165$
Weight $3$
Character orbit 165.l
Analytic conductor $4.496$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [165,3,Mod(32,165)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("165.32"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(165, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 165.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,12,0,0,0,0,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.49592436194\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + 3 q^{3} - \beta_{2} q^{4} - 5 \beta_{2} q^{5} + 3 \beta_1 q^{6} + 4 \beta_{3} q^{7} - 5 \beta_{3} q^{8} + 9 q^{9} - 5 \beta_{3} q^{10} + ( - 4 \beta_{3} + 5 \beta_{2} + 4 \beta_1) q^{11}+ \cdots + ( - 36 \beta_{3} + 45 \beta_{2} + 36 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{3} + 36 q^{9} - 48 q^{14} + 44 q^{16} - 20 q^{20} + 48 q^{22} - 28 q^{23} - 100 q^{25} + 108 q^{27} - 192 q^{31} + 148 q^{37} - 96 q^{38} - 144 q^{42} + 20 q^{44} + 68 q^{47} + 132 q^{48} + 172 q^{53}+ \cdots + 188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/165\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(67\)
\(\chi(n)\) \(-1\) \(-1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
32.1
−1.22474 1.22474i
1.22474 + 1.22474i
−1.22474 + 1.22474i
1.22474 1.22474i
−1.22474 1.22474i 3.00000 1.00000i 5.00000i −3.67423 3.67423i 4.89898 4.89898i −6.12372 + 6.12372i 9.00000 −6.12372 + 6.12372i
32.2 1.22474 + 1.22474i 3.00000 1.00000i 5.00000i 3.67423 + 3.67423i −4.89898 + 4.89898i 6.12372 6.12372i 9.00000 6.12372 6.12372i
98.1 −1.22474 + 1.22474i 3.00000 1.00000i 5.00000i −3.67423 + 3.67423i 4.89898 + 4.89898i −6.12372 6.12372i 9.00000 −6.12372 6.12372i
98.2 1.22474 1.22474i 3.00000 1.00000i 5.00000i 3.67423 3.67423i −4.89898 4.89898i 6.12372 + 6.12372i 9.00000 6.12372 + 6.12372i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner
15.e even 4 1 inner
165.l odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 165.3.l.f yes 4
3.b odd 2 1 165.3.l.b 4
5.c odd 4 1 165.3.l.b 4
11.b odd 2 1 inner 165.3.l.f yes 4
15.e even 4 1 inner 165.3.l.f yes 4
33.d even 2 1 165.3.l.b 4
55.e even 4 1 165.3.l.b 4
165.l odd 4 1 inner 165.3.l.f yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.3.l.b 4 3.b odd 2 1
165.3.l.b 4 5.c odd 4 1
165.3.l.b 4 33.d even 2 1
165.3.l.b 4 55.e even 4 1
165.3.l.f yes 4 1.a even 1 1 trivial
165.3.l.f yes 4 11.b odd 2 1 inner
165.3.l.f yes 4 15.e even 4 1 inner
165.3.l.f yes 4 165.l odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(165, [\chi])\):

\( T_{2}^{4} + 9 \) Copy content Toggle raw display
\( T_{23}^{2} + 14T_{23} + 98 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 9 \) Copy content Toggle raw display
$3$ \( (T - 3)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 2304 \) Copy content Toggle raw display
$11$ \( T^{4} - 142 T^{2} + 14641 \) Copy content Toggle raw display
$13$ \( T^{4} + 2304 \) Copy content Toggle raw display
$17$ \( T^{4} + 2304 \) Copy content Toggle raw display
$19$ \( (T^{2} - 384)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 14 T + 98)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 2400)^{2} \) Copy content Toggle raw display
$31$ \( (T + 48)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 74 T + 2738)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 864)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 15116544 \) Copy content Toggle raw display
$47$ \( (T^{2} - 34 T + 578)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 86 T + 3698)^{2} \) Copy content Toggle raw display
$59$ \( (T - 38)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 2400)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 26 T + 338)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 300259584 \) Copy content Toggle raw display
$79$ \( (T^{2} - 864)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 448084224 \) Copy content Toggle raw display
$89$ \( (T - 48)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 94 T + 4418)^{2} \) Copy content Toggle raw display
show more
show less