Properties

Label 1638.2.y.c.1331.5
Level $1638$
Weight $2$
Character 1638.1331
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(827,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.827"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 20 x^{14} - 12 x^{13} + 40 x^{12} + 40 x^{11} + 82 x^{10} + 104 x^{9} + 537 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1331.5
Root \(0.213522 - 0.0884436i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1331
Dual form 1638.2.y.c.827.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-1.98814 - 1.98814i) q^{5} +(-0.707107 - 0.707107i) q^{7} +(-0.707107 + 0.707107i) q^{8} -2.81166i q^{10} +(-0.872107 + 0.872107i) q^{11} +(-3.13475 + 1.78139i) q^{13} -1.00000i q^{14} -1.00000 q^{16} +7.84838 q^{17} +(-1.52422 + 1.52422i) q^{19} +(1.98814 - 1.98814i) q^{20} -1.23335 q^{22} +6.35635 q^{23} +2.90541i q^{25} +(-3.47623 - 0.956970i) q^{26} +(0.707107 - 0.707107i) q^{28} +9.83285i q^{29} +(-3.63928 + 3.63928i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(5.54964 + 5.54964i) q^{34} +2.81166i q^{35} +(-0.000971348 - 0.000971348i) q^{37} -2.15557 q^{38} +2.81166 q^{40} +(0.421121 + 0.421121i) q^{41} +5.21759i q^{43} +(-0.872107 - 0.872107i) q^{44} +(4.49462 + 4.49462i) q^{46} +(-5.01980 + 5.01980i) q^{47} +1.00000i q^{49} +(-2.05444 + 2.05444i) q^{50} +(-1.78139 - 3.13475i) q^{52} +13.7225i q^{53} +3.46775 q^{55} +1.00000 q^{56} +(-6.95287 + 6.95287i) q^{58} +(6.45093 - 6.45093i) q^{59} -3.16463 q^{61} -5.14672 q^{62} -1.00000i q^{64} +(9.77398 + 2.69067i) q^{65} +(0.957291 - 0.957291i) q^{67} +7.84838i q^{68} +(-1.98814 + 1.98814i) q^{70} +(-0.476595 - 0.476595i) q^{71} +(-0.580266 - 0.580266i) q^{73} -0.00137369i q^{74} +(-1.52422 - 1.52422i) q^{76} +1.23335 q^{77} +9.53595 q^{79} +(1.98814 + 1.98814i) q^{80} +0.595555i q^{82} +(6.68556 + 6.68556i) q^{83} +(-15.6037 - 15.6037i) q^{85} +(-3.68939 + 3.68939i) q^{86} -1.23335i q^{88} +(4.11587 - 4.11587i) q^{89} +(3.47623 + 0.956970i) q^{91} +6.35635i q^{92} -7.09906 q^{94} +6.06071 q^{95} +(2.58108 - 2.58108i) q^{97} +(-0.707107 + 0.707107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{5} + 8 q^{11} + 4 q^{13} - 16 q^{16} + 8 q^{17} + 16 q^{19} + 4 q^{20} - 8 q^{22} - 24 q^{23} - 8 q^{26} - 8 q^{31} + 4 q^{34} - 4 q^{37} - 16 q^{38} + 16 q^{41} + 8 q^{44} - 4 q^{47} + 16 q^{50}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.98814 1.98814i −0.889124 0.889124i 0.105315 0.994439i \(-0.466415\pi\)
−0.994439 + 0.105315i \(0.966415\pi\)
\(6\) 0 0
\(7\) −0.707107 0.707107i −0.267261 0.267261i
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 2.81166i 0.889124i
\(11\) −0.872107 + 0.872107i −0.262950 + 0.262950i −0.826252 0.563301i \(-0.809531\pi\)
0.563301 + 0.826252i \(0.309531\pi\)
\(12\) 0 0
\(13\) −3.13475 + 1.78139i −0.869423 + 0.494068i
\(14\) 1.00000i 0.267261i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 7.84838 1.90351 0.951756 0.306857i \(-0.0992774\pi\)
0.951756 + 0.306857i \(0.0992774\pi\)
\(18\) 0 0
\(19\) −1.52422 + 1.52422i −0.349679 + 0.349679i −0.859990 0.510311i \(-0.829530\pi\)
0.510311 + 0.859990i \(0.329530\pi\)
\(20\) 1.98814 1.98814i 0.444562 0.444562i
\(21\) 0 0
\(22\) −1.23335 −0.262950
\(23\) 6.35635 1.32539 0.662695 0.748890i \(-0.269413\pi\)
0.662695 + 0.748890i \(0.269413\pi\)
\(24\) 0 0
\(25\) 2.90541i 0.581082i
\(26\) −3.47623 0.956970i −0.681746 0.187677i
\(27\) 0 0
\(28\) 0.707107 0.707107i 0.133631 0.133631i
\(29\) 9.83285i 1.82591i 0.408056 + 0.912957i \(0.366207\pi\)
−0.408056 + 0.912957i \(0.633793\pi\)
\(30\) 0 0
\(31\) −3.63928 + 3.63928i −0.653634 + 0.653634i −0.953866 0.300232i \(-0.902936\pi\)
0.300232 + 0.953866i \(0.402936\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 5.54964 + 5.54964i 0.951756 + 0.951756i
\(35\) 2.81166i 0.475257i
\(36\) 0 0
\(37\) −0.000971348 0 0.000971348i −0.000159689 0 0.000159689i 0.707027 0.707187i \(-0.250036\pi\)
−0.707187 + 0.707027i \(0.750036\pi\)
\(38\) −2.15557 −0.349679
\(39\) 0 0
\(40\) 2.81166 0.444562
\(41\) 0.421121 + 0.421121i 0.0657680 + 0.0657680i 0.739226 0.673458i \(-0.235192\pi\)
−0.673458 + 0.739226i \(0.735192\pi\)
\(42\) 0 0
\(43\) 5.21759i 0.795675i 0.917456 + 0.397837i \(0.130239\pi\)
−0.917456 + 0.397837i \(0.869761\pi\)
\(44\) −0.872107 0.872107i −0.131475 0.131475i
\(45\) 0 0
\(46\) 4.49462 + 4.49462i 0.662695 + 0.662695i
\(47\) −5.01980 + 5.01980i −0.732213 + 0.732213i −0.971058 0.238845i \(-0.923231\pi\)
0.238845 + 0.971058i \(0.423231\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) −2.05444 + 2.05444i −0.290541 + 0.290541i
\(51\) 0 0
\(52\) −1.78139 3.13475i −0.247034 0.434712i
\(53\) 13.7225i 1.88493i 0.334304 + 0.942465i \(0.391499\pi\)
−0.334304 + 0.942465i \(0.608501\pi\)
\(54\) 0 0
\(55\) 3.46775 0.467591
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −6.95287 + 6.95287i −0.912957 + 0.912957i
\(59\) 6.45093 6.45093i 0.839840 0.839840i −0.148997 0.988838i \(-0.547605\pi\)
0.988838 + 0.148997i \(0.0476046\pi\)
\(60\) 0 0
\(61\) −3.16463 −0.405189 −0.202594 0.979263i \(-0.564937\pi\)
−0.202594 + 0.979263i \(0.564937\pi\)
\(62\) −5.14672 −0.653634
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 9.77398 + 2.69067i 1.21231 + 0.333737i
\(66\) 0 0
\(67\) 0.957291 0.957291i 0.116952 0.116952i −0.646209 0.763161i \(-0.723647\pi\)
0.763161 + 0.646209i \(0.223647\pi\)
\(68\) 7.84838i 0.951756i
\(69\) 0 0
\(70\) −1.98814 + 1.98814i −0.237628 + 0.237628i
\(71\) −0.476595 0.476595i −0.0565614 0.0565614i 0.678260 0.734822i \(-0.262734\pi\)
−0.734822 + 0.678260i \(0.762734\pi\)
\(72\) 0 0
\(73\) −0.580266 0.580266i −0.0679150 0.0679150i 0.672333 0.740248i \(-0.265292\pi\)
−0.740248 + 0.672333i \(0.765292\pi\)
\(74\) 0.00137369i 0.000159689i
\(75\) 0 0
\(76\) −1.52422 1.52422i −0.174840 0.174840i
\(77\) 1.23335 0.140553
\(78\) 0 0
\(79\) 9.53595 1.07288 0.536439 0.843939i \(-0.319769\pi\)
0.536439 + 0.843939i \(0.319769\pi\)
\(80\) 1.98814 + 1.98814i 0.222281 + 0.222281i
\(81\) 0 0
\(82\) 0.595555i 0.0657680i
\(83\) 6.68556 + 6.68556i 0.733835 + 0.733835i 0.971377 0.237542i \(-0.0763417\pi\)
−0.237542 + 0.971377i \(0.576342\pi\)
\(84\) 0 0
\(85\) −15.6037 15.6037i −1.69246 1.69246i
\(86\) −3.68939 + 3.68939i −0.397837 + 0.397837i
\(87\) 0 0
\(88\) 1.23335i 0.131475i
\(89\) 4.11587 4.11587i 0.436282 0.436282i −0.454477 0.890759i \(-0.650174\pi\)
0.890759 + 0.454477i \(0.150174\pi\)
\(90\) 0 0
\(91\) 3.47623 + 0.956970i 0.364408 + 0.100318i
\(92\) 6.35635i 0.662695i
\(93\) 0 0
\(94\) −7.09906 −0.732213
\(95\) 6.06071 0.621816
\(96\) 0 0
\(97\) 2.58108 2.58108i 0.262069 0.262069i −0.563825 0.825894i \(-0.690671\pi\)
0.825894 + 0.563825i \(0.190671\pi\)
\(98\) −0.707107 + 0.707107i −0.0714286 + 0.0714286i
\(99\) 0 0
\(100\) −2.90541 −0.290541
\(101\) 2.51133 0.249887 0.124944 0.992164i \(-0.460125\pi\)
0.124944 + 0.992164i \(0.460125\pi\)
\(102\) 0 0
\(103\) 3.63132i 0.357804i −0.983867 0.178902i \(-0.942745\pi\)
0.983867 0.178902i \(-0.0572546\pi\)
\(104\) 0.956970 3.47623i 0.0938386 0.340873i
\(105\) 0 0
\(106\) −9.70327 + 9.70327i −0.942465 + 0.942465i
\(107\) 3.82051i 0.369342i 0.982800 + 0.184671i \(0.0591220\pi\)
−0.982800 + 0.184671i \(0.940878\pi\)
\(108\) 0 0
\(109\) −6.45191 + 6.45191i −0.617981 + 0.617981i −0.945013 0.327033i \(-0.893951\pi\)
0.327033 + 0.945013i \(0.393951\pi\)
\(110\) 2.45207 + 2.45207i 0.233795 + 0.233795i
\(111\) 0 0
\(112\) 0.707107 + 0.707107i 0.0668153 + 0.0668153i
\(113\) 1.74602i 0.164252i 0.996622 + 0.0821260i \(0.0261710\pi\)
−0.996622 + 0.0821260i \(0.973829\pi\)
\(114\) 0 0
\(115\) −12.6373 12.6373i −1.17844 1.17844i
\(116\) −9.83285 −0.912957
\(117\) 0 0
\(118\) 9.12300 0.839840
\(119\) −5.54964 5.54964i −0.508735 0.508735i
\(120\) 0 0
\(121\) 9.47886i 0.861714i
\(122\) −2.23773 2.23773i −0.202594 0.202594i
\(123\) 0 0
\(124\) −3.63928 3.63928i −0.326817 0.326817i
\(125\) −4.16434 + 4.16434i −0.372470 + 0.372470i
\(126\) 0 0
\(127\) 19.2104i 1.70465i 0.523011 + 0.852326i \(0.324809\pi\)
−0.523011 + 0.852326i \(0.675191\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) 5.00865 + 8.81384i 0.439288 + 0.773025i
\(131\) 19.6194i 1.71415i −0.515190 0.857076i \(-0.672279\pi\)
0.515190 0.857076i \(-0.327721\pi\)
\(132\) 0 0
\(133\) 2.15557 0.186911
\(134\) 1.35381 0.116952
\(135\) 0 0
\(136\) −5.54964 + 5.54964i −0.475878 + 0.475878i
\(137\) −8.48067 + 8.48067i −0.724552 + 0.724552i −0.969529 0.244977i \(-0.921220\pi\)
0.244977 + 0.969529i \(0.421220\pi\)
\(138\) 0 0
\(139\) −17.6573 −1.49767 −0.748837 0.662755i \(-0.769387\pi\)
−0.748837 + 0.662755i \(0.769387\pi\)
\(140\) −2.81166 −0.237628
\(141\) 0 0
\(142\) 0.674007i 0.0565614i
\(143\) 1.18028 4.28740i 0.0986996 0.358530i
\(144\) 0 0
\(145\) 19.5491 19.5491i 1.62346 1.62346i
\(146\) 0.820620i 0.0679150i
\(147\) 0 0
\(148\) 0.000971348 0 0.000971348i 7.98443e−5 0 7.98443e-5i
\(149\) −5.19872 5.19872i −0.425896 0.425896i 0.461332 0.887228i \(-0.347372\pi\)
−0.887228 + 0.461332i \(0.847372\pi\)
\(150\) 0 0
\(151\) 1.86969 + 1.86969i 0.152153 + 0.152153i 0.779079 0.626926i \(-0.215687\pi\)
−0.626926 + 0.779079i \(0.715687\pi\)
\(152\) 2.15557i 0.174840i
\(153\) 0 0
\(154\) 0.872107 + 0.872107i 0.0702764 + 0.0702764i
\(155\) 14.4708 1.16232
\(156\) 0 0
\(157\) −12.2084 −0.974335 −0.487167 0.873309i \(-0.661970\pi\)
−0.487167 + 0.873309i \(0.661970\pi\)
\(158\) 6.74294 + 6.74294i 0.536439 + 0.536439i
\(159\) 0 0
\(160\) 2.81166i 0.222281i
\(161\) −4.49462 4.49462i −0.354225 0.354225i
\(162\) 0 0
\(163\) 0.218796 + 0.218796i 0.0171374 + 0.0171374i 0.715624 0.698486i \(-0.246143\pi\)
−0.698486 + 0.715624i \(0.746143\pi\)
\(164\) −0.421121 + 0.421121i −0.0328840 + 0.0328840i
\(165\) 0 0
\(166\) 9.45481i 0.733835i
\(167\) 15.7026 15.7026i 1.21511 1.21511i 0.245780 0.969326i \(-0.420956\pi\)
0.969326 0.245780i \(-0.0790440\pi\)
\(168\) 0 0
\(169\) 6.65331 11.1684i 0.511793 0.859109i
\(170\) 22.0669i 1.69246i
\(171\) 0 0
\(172\) −5.21759 −0.397837
\(173\) 18.2357 1.38643 0.693217 0.720729i \(-0.256193\pi\)
0.693217 + 0.720729i \(0.256193\pi\)
\(174\) 0 0
\(175\) 2.05444 2.05444i 0.155301 0.155301i
\(176\) 0.872107 0.872107i 0.0657376 0.0657376i
\(177\) 0 0
\(178\) 5.82072 0.436282
\(179\) −20.1218 −1.50398 −0.751988 0.659176i \(-0.770905\pi\)
−0.751988 + 0.659176i \(0.770905\pi\)
\(180\) 0 0
\(181\) 4.03633i 0.300018i 0.988685 + 0.150009i \(0.0479303\pi\)
−0.988685 + 0.150009i \(0.952070\pi\)
\(182\) 1.78139 + 3.13475i 0.132045 + 0.232363i
\(183\) 0 0
\(184\) −4.49462 + 4.49462i −0.331347 + 0.331347i
\(185\) 0.00386235i 0.000283966i
\(186\) 0 0
\(187\) −6.84463 + 6.84463i −0.500529 + 0.500529i
\(188\) −5.01980 5.01980i −0.366106 0.366106i
\(189\) 0 0
\(190\) 4.28557 + 4.28557i 0.310908 + 0.310908i
\(191\) 21.2583i 1.53820i −0.639131 0.769098i \(-0.720706\pi\)
0.639131 0.769098i \(-0.279294\pi\)
\(192\) 0 0
\(193\) −11.8435 11.8435i −0.852514 0.852514i 0.137929 0.990442i \(-0.455956\pi\)
−0.990442 + 0.137929i \(0.955956\pi\)
\(194\) 3.65019 0.262069
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) −3.79565 3.79565i −0.270429 0.270429i 0.558844 0.829273i \(-0.311245\pi\)
−0.829273 + 0.558844i \(0.811245\pi\)
\(198\) 0 0
\(199\) 13.7090i 0.971803i −0.874014 0.485902i \(-0.838491\pi\)
0.874014 0.485902i \(-0.161509\pi\)
\(200\) −2.05444 2.05444i −0.145271 0.145271i
\(201\) 0 0
\(202\) 1.77578 + 1.77578i 0.124944 + 0.124944i
\(203\) 6.95287 6.95287i 0.487996 0.487996i
\(204\) 0 0
\(205\) 1.67450i 0.116952i
\(206\) 2.56773 2.56773i 0.178902 0.178902i
\(207\) 0 0
\(208\) 3.13475 1.78139i 0.217356 0.123517i
\(209\) 2.65856i 0.183896i
\(210\) 0 0
\(211\) −4.49184 −0.309231 −0.154616 0.987975i \(-0.549414\pi\)
−0.154616 + 0.987975i \(0.549414\pi\)
\(212\) −13.7225 −0.942465
\(213\) 0 0
\(214\) −2.70151 + 2.70151i −0.184671 + 0.184671i
\(215\) 10.3733 10.3733i 0.707453 0.707453i
\(216\) 0 0
\(217\) 5.14672 0.349382
\(218\) −9.12437 −0.617981
\(219\) 0 0
\(220\) 3.46775i 0.233795i
\(221\) −24.6027 + 13.9810i −1.65496 + 0.940465i
\(222\) 0 0
\(223\) −8.59883 + 8.59883i −0.575820 + 0.575820i −0.933749 0.357929i \(-0.883483\pi\)
0.357929 + 0.933749i \(0.383483\pi\)
\(224\) 1.00000i 0.0668153i
\(225\) 0 0
\(226\) −1.23462 + 1.23462i −0.0821260 + 0.0821260i
\(227\) −1.53435 1.53435i −0.101839 0.101839i 0.654352 0.756190i \(-0.272942\pi\)
−0.756190 + 0.654352i \(0.772942\pi\)
\(228\) 0 0
\(229\) 17.9893 + 17.9893i 1.18877 + 1.18877i 0.977408 + 0.211360i \(0.0677894\pi\)
0.211360 + 0.977408i \(0.432211\pi\)
\(230\) 17.8719i 1.17844i
\(231\) 0 0
\(232\) −6.95287 6.95287i −0.456478 0.456478i
\(233\) 21.6085 1.41562 0.707811 0.706402i \(-0.249683\pi\)
0.707811 + 0.706402i \(0.249683\pi\)
\(234\) 0 0
\(235\) 19.9601 1.30206
\(236\) 6.45093 + 6.45093i 0.419920 + 0.419920i
\(237\) 0 0
\(238\) 7.84838i 0.508735i
\(239\) 11.2064 + 11.2064i 0.724880 + 0.724880i 0.969595 0.244715i \(-0.0786945\pi\)
−0.244715 + 0.969595i \(0.578694\pi\)
\(240\) 0 0
\(241\) −15.7392 15.7392i −1.01385 1.01385i −0.999903 0.0139501i \(-0.995559\pi\)
−0.0139501 0.999903i \(-0.504441\pi\)
\(242\) −6.70256 + 6.70256i −0.430857 + 0.430857i
\(243\) 0 0
\(244\) 3.16463i 0.202594i
\(245\) 1.98814 1.98814i 0.127018 0.127018i
\(246\) 0 0
\(247\) 2.06281 7.49326i 0.131254 0.476785i
\(248\) 5.14672i 0.326817i
\(249\) 0 0
\(250\) −5.88926 −0.372470
\(251\) 27.1452 1.71339 0.856696 0.515822i \(-0.172513\pi\)
0.856696 + 0.515822i \(0.172513\pi\)
\(252\) 0 0
\(253\) −5.54342 + 5.54342i −0.348512 + 0.348512i
\(254\) −13.5838 + 13.5838i −0.852326 + 0.852326i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −28.5286 −1.77957 −0.889784 0.456382i \(-0.849145\pi\)
−0.889784 + 0.456382i \(0.849145\pi\)
\(258\) 0 0
\(259\) 0.00137369i 8.53572e-5i
\(260\) −2.69067 + 9.77398i −0.166868 + 0.606156i
\(261\) 0 0
\(262\) 13.8730 13.8730i 0.857076 0.857076i
\(263\) 0.115982i 0.00715176i 0.999994 + 0.00357588i \(0.00113824\pi\)
−0.999994 + 0.00357588i \(0.998862\pi\)
\(264\) 0 0
\(265\) 27.2823 27.2823i 1.67594 1.67594i
\(266\) 1.52422 + 1.52422i 0.0934557 + 0.0934557i
\(267\) 0 0
\(268\) 0.957291 + 0.957291i 0.0584759 + 0.0584759i
\(269\) 11.1382i 0.679108i 0.940587 + 0.339554i \(0.110276\pi\)
−0.940587 + 0.339554i \(0.889724\pi\)
\(270\) 0 0
\(271\) 14.5757 + 14.5757i 0.885408 + 0.885408i 0.994078 0.108670i \(-0.0346591\pi\)
−0.108670 + 0.994078i \(0.534659\pi\)
\(272\) −7.84838 −0.475878
\(273\) 0 0
\(274\) −11.9935 −0.724552
\(275\) −2.53383 2.53383i −0.152796 0.152796i
\(276\) 0 0
\(277\) 14.5741i 0.875676i 0.899054 + 0.437838i \(0.144256\pi\)
−0.899054 + 0.437838i \(0.855744\pi\)
\(278\) −12.4856 12.4856i −0.748837 0.748837i
\(279\) 0 0
\(280\) −1.98814 1.98814i −0.118814 0.118814i
\(281\) 2.97443 2.97443i 0.177440 0.177440i −0.612799 0.790239i \(-0.709956\pi\)
0.790239 + 0.612799i \(0.209956\pi\)
\(282\) 0 0
\(283\) 6.71560i 0.399201i 0.979877 + 0.199600i \(0.0639644\pi\)
−0.979877 + 0.199600i \(0.936036\pi\)
\(284\) 0.476595 0.476595i 0.0282807 0.0282807i
\(285\) 0 0
\(286\) 3.86623 2.19707i 0.228615 0.129915i
\(287\) 0.595555i 0.0351545i
\(288\) 0 0
\(289\) 44.5970 2.62335
\(290\) 27.6466 1.62346
\(291\) 0 0
\(292\) 0.580266 0.580266i 0.0339575 0.0339575i
\(293\) −9.95137 + 9.95137i −0.581365 + 0.581365i −0.935278 0.353913i \(-0.884851\pi\)
0.353913 + 0.935278i \(0.384851\pi\)
\(294\) 0 0
\(295\) −25.6507 −1.49344
\(296\) 0.00137369 7.98443e−5
\(297\) 0 0
\(298\) 7.35210i 0.425896i
\(299\) −19.9255 + 11.3231i −1.15232 + 0.654833i
\(300\) 0 0
\(301\) 3.68939 3.68939i 0.212653 0.212653i
\(302\) 2.64414i 0.152153i
\(303\) 0 0
\(304\) 1.52422 1.52422i 0.0874198 0.0874198i
\(305\) 6.29172 + 6.29172i 0.360263 + 0.360263i
\(306\) 0 0
\(307\) −21.7725 21.7725i −1.24262 1.24262i −0.958910 0.283710i \(-0.908435\pi\)
−0.283710 0.958910i \(-0.591565\pi\)
\(308\) 1.23335i 0.0702764i
\(309\) 0 0
\(310\) 10.2324 + 10.2324i 0.581161 + 0.581161i
\(311\) −15.8417 −0.898302 −0.449151 0.893456i \(-0.648273\pi\)
−0.449151 + 0.893456i \(0.648273\pi\)
\(312\) 0 0
\(313\) 17.8183 1.00715 0.503575 0.863951i \(-0.332018\pi\)
0.503575 + 0.863951i \(0.332018\pi\)
\(314\) −8.63263 8.63263i −0.487167 0.487167i
\(315\) 0 0
\(316\) 9.53595i 0.536439i
\(317\) 12.0631 + 12.0631i 0.677531 + 0.677531i 0.959441 0.281910i \(-0.0909678\pi\)
−0.281910 + 0.959441i \(0.590968\pi\)
\(318\) 0 0
\(319\) −8.57530 8.57530i −0.480124 0.480124i
\(320\) −1.98814 + 1.98814i −0.111140 + 0.111140i
\(321\) 0 0
\(322\) 6.35635i 0.354225i
\(323\) −11.9626 + 11.9626i −0.665618 + 0.665618i
\(324\) 0 0
\(325\) −5.17567 9.10773i −0.287094 0.505206i
\(326\) 0.309424i 0.0171374i
\(327\) 0 0
\(328\) −0.595555 −0.0328840
\(329\) 7.09906 0.391384
\(330\) 0 0
\(331\) 13.5207 13.5207i 0.743167 0.743167i −0.230019 0.973186i \(-0.573879\pi\)
0.973186 + 0.230019i \(0.0738789\pi\)
\(332\) −6.68556 + 6.68556i −0.366918 + 0.366918i
\(333\) 0 0
\(334\) 22.2069 1.21511
\(335\) −3.80646 −0.207969
\(336\) 0 0
\(337\) 19.0715i 1.03889i −0.854504 0.519446i \(-0.826138\pi\)
0.854504 0.519446i \(-0.173862\pi\)
\(338\) 12.6019 3.19267i 0.685451 0.173658i
\(339\) 0 0
\(340\) 15.6037 15.6037i 0.846229 0.846229i
\(341\) 6.34768i 0.343746i
\(342\) 0 0
\(343\) 0.707107 0.707107i 0.0381802 0.0381802i
\(344\) −3.68939 3.68939i −0.198919 0.198919i
\(345\) 0 0
\(346\) 12.8946 + 12.8946i 0.693217 + 0.693217i
\(347\) 30.0706i 1.61427i −0.590364 0.807137i \(-0.701016\pi\)
0.590364 0.807137i \(-0.298984\pi\)
\(348\) 0 0
\(349\) 22.5711 + 22.5711i 1.20820 + 1.20820i 0.971609 + 0.236593i \(0.0760308\pi\)
0.236593 + 0.971609i \(0.423969\pi\)
\(350\) 2.90541 0.155301
\(351\) 0 0
\(352\) 1.23335 0.0657376
\(353\) 7.04828 + 7.04828i 0.375142 + 0.375142i 0.869346 0.494204i \(-0.164540\pi\)
−0.494204 + 0.869346i \(0.664540\pi\)
\(354\) 0 0
\(355\) 1.89508i 0.100580i
\(356\) 4.11587 + 4.11587i 0.218141 + 0.218141i
\(357\) 0 0
\(358\) −14.2283 14.2283i −0.751988 0.751988i
\(359\) −22.1617 + 22.1617i −1.16965 + 1.16965i −0.187358 + 0.982292i \(0.559992\pi\)
−0.982292 + 0.187358i \(0.940008\pi\)
\(360\) 0 0
\(361\) 14.3535i 0.755449i
\(362\) −2.85412 + 2.85412i −0.150009 + 0.150009i
\(363\) 0 0
\(364\) −0.956970 + 3.47623i −0.0501589 + 0.182204i
\(365\) 2.30730i 0.120770i
\(366\) 0 0
\(367\) −8.61723 −0.449816 −0.224908 0.974380i \(-0.572208\pi\)
−0.224908 + 0.974380i \(0.572208\pi\)
\(368\) −6.35635 −0.331347
\(369\) 0 0
\(370\) −0.00273110 + 0.00273110i −0.000141983 + 0.000141983i
\(371\) 9.70327 9.70327i 0.503769 0.503769i
\(372\) 0 0
\(373\) −9.70903 −0.502715 −0.251357 0.967894i \(-0.580877\pi\)
−0.251357 + 0.967894i \(0.580877\pi\)
\(374\) −9.67977 −0.500529
\(375\) 0 0
\(376\) 7.09906i 0.366106i
\(377\) −17.5161 30.8235i −0.902126 1.58749i
\(378\) 0 0
\(379\) −10.4852 + 10.4852i −0.538588 + 0.538588i −0.923114 0.384526i \(-0.874365\pi\)
0.384526 + 0.923114i \(0.374365\pi\)
\(380\) 6.06071i 0.310908i
\(381\) 0 0
\(382\) 15.0319 15.0319i 0.769098 0.769098i
\(383\) −0.924798 0.924798i −0.0472550 0.0472550i 0.683084 0.730339i \(-0.260638\pi\)
−0.730339 + 0.683084i \(0.760638\pi\)
\(384\) 0 0
\(385\) −2.45207 2.45207i −0.124969 0.124969i
\(386\) 16.7492i 0.852514i
\(387\) 0 0
\(388\) 2.58108 + 2.58108i 0.131034 + 0.131034i
\(389\) 23.2044 1.17651 0.588256 0.808675i \(-0.299815\pi\)
0.588256 + 0.808675i \(0.299815\pi\)
\(390\) 0 0
\(391\) 49.8870 2.52289
\(392\) −0.707107 0.707107i −0.0357143 0.0357143i
\(393\) 0 0
\(394\) 5.36786i 0.270429i
\(395\) −18.9588 18.9588i −0.953922 0.953922i
\(396\) 0 0
\(397\) 6.31775 + 6.31775i 0.317079 + 0.317079i 0.847644 0.530565i \(-0.178020\pi\)
−0.530565 + 0.847644i \(0.678020\pi\)
\(398\) 9.69371 9.69371i 0.485902 0.485902i
\(399\) 0 0
\(400\) 2.90541i 0.145271i
\(401\) −9.17426 + 9.17426i −0.458141 + 0.458141i −0.898045 0.439904i \(-0.855012\pi\)
0.439904 + 0.898045i \(0.355012\pi\)
\(402\) 0 0
\(403\) 4.92525 17.8912i 0.245344 0.891224i
\(404\) 2.51133i 0.124944i
\(405\) 0 0
\(406\) 9.83285 0.487996
\(407\) 0.00169424 8.39803e−5
\(408\) 0 0
\(409\) −7.98549 + 7.98549i −0.394857 + 0.394857i −0.876415 0.481557i \(-0.840071\pi\)
0.481557 + 0.876415i \(0.340071\pi\)
\(410\) 1.18405 1.18405i 0.0584759 0.0584759i
\(411\) 0 0
\(412\) 3.63132 0.178902
\(413\) −9.12300 −0.448913
\(414\) 0 0
\(415\) 26.5837i 1.30494i
\(416\) 3.47623 + 0.956970i 0.170436 + 0.0469193i
\(417\) 0 0
\(418\) 1.87989 1.87989i 0.0919482 0.0919482i
\(419\) 14.2537i 0.696340i 0.937431 + 0.348170i \(0.113197\pi\)
−0.937431 + 0.348170i \(0.886803\pi\)
\(420\) 0 0
\(421\) −1.49790 + 1.49790i −0.0730032 + 0.0730032i −0.742666 0.669662i \(-0.766439\pi\)
0.669662 + 0.742666i \(0.266439\pi\)
\(422\) −3.17621 3.17621i −0.154616 0.154616i
\(423\) 0 0
\(424\) −9.70327 9.70327i −0.471233 0.471233i
\(425\) 22.8028i 1.10610i
\(426\) 0 0
\(427\) 2.23773 + 2.23773i 0.108291 + 0.108291i
\(428\) −3.82051 −0.184671
\(429\) 0 0
\(430\) 14.6701 0.707453
\(431\) 18.9615 + 18.9615i 0.913344 + 0.913344i 0.996534 0.0831894i \(-0.0265106\pi\)
−0.0831894 + 0.996534i \(0.526511\pi\)
\(432\) 0 0
\(433\) 6.53036i 0.313829i −0.987612 0.156914i \(-0.949845\pi\)
0.987612 0.156914i \(-0.0501547\pi\)
\(434\) 3.63928 + 3.63928i 0.174691 + 0.174691i
\(435\) 0 0
\(436\) −6.45191 6.45191i −0.308990 0.308990i
\(437\) −9.68845 + 9.68845i −0.463461 + 0.463461i
\(438\) 0 0
\(439\) 10.8428i 0.517498i −0.965945 0.258749i \(-0.916690\pi\)
0.965945 0.258749i \(-0.0833103\pi\)
\(440\) −2.45207 + 2.45207i −0.116898 + 0.116898i
\(441\) 0 0
\(442\) −27.2828 7.51066i −1.29771 0.357246i
\(443\) 30.1273i 1.43139i −0.698413 0.715695i \(-0.746110\pi\)
0.698413 0.715695i \(-0.253890\pi\)
\(444\) 0 0
\(445\) −16.3659 −0.775817
\(446\) −12.1606 −0.575820
\(447\) 0 0
\(448\) −0.707107 + 0.707107i −0.0334077 + 0.0334077i
\(449\) 0.277909 0.277909i 0.0131153 0.0131153i −0.700519 0.713634i \(-0.747048\pi\)
0.713634 + 0.700519i \(0.247048\pi\)
\(450\) 0 0
\(451\) −0.734525 −0.0345874
\(452\) −1.74602 −0.0821260
\(453\) 0 0
\(454\) 2.16990i 0.101839i
\(455\) −5.00865 8.81384i −0.234809 0.413199i
\(456\) 0 0
\(457\) 0.655206 0.655206i 0.0306493 0.0306493i −0.691616 0.722265i \(-0.743101\pi\)
0.722265 + 0.691616i \(0.243101\pi\)
\(458\) 25.4408i 1.18877i
\(459\) 0 0
\(460\) 12.6373 12.6373i 0.589218 0.589218i
\(461\) 12.7087 + 12.7087i 0.591902 + 0.591902i 0.938145 0.346243i \(-0.112543\pi\)
−0.346243 + 0.938145i \(0.612543\pi\)
\(462\) 0 0
\(463\) −25.9370 25.9370i −1.20540 1.20540i −0.972502 0.232895i \(-0.925180\pi\)
−0.232895 0.972502i \(-0.574820\pi\)
\(464\) 9.83285i 0.456478i
\(465\) 0 0
\(466\) 15.2795 + 15.2795i 0.707811 + 0.707811i
\(467\) 0.685678 0.0317294 0.0158647 0.999874i \(-0.494950\pi\)
0.0158647 + 0.999874i \(0.494950\pi\)
\(468\) 0 0
\(469\) −1.35381 −0.0625133
\(470\) 14.1139 + 14.1139i 0.651028 + 0.651028i
\(471\) 0 0
\(472\) 9.12300i 0.419920i
\(473\) −4.55030 4.55030i −0.209223 0.209223i
\(474\) 0 0
\(475\) −4.42847 4.42847i −0.203192 0.203192i
\(476\) 5.54964 5.54964i 0.254367 0.254367i
\(477\) 0 0
\(478\) 15.8482i 0.724880i
\(479\) −13.6986 + 13.6986i −0.625907 + 0.625907i −0.947035 0.321129i \(-0.895938\pi\)
0.321129 + 0.947035i \(0.395938\pi\)
\(480\) 0 0
\(481\) 0.00477528 + 0.00131458i 0.000217734 + 5.99398e-5i
\(482\) 22.2586i 1.01385i
\(483\) 0 0
\(484\) −9.47886 −0.430857
\(485\) −10.2631 −0.466023
\(486\) 0 0
\(487\) −26.0472 + 26.0472i −1.18031 + 1.18031i −0.200645 + 0.979664i \(0.564304\pi\)
−0.979664 + 0.200645i \(0.935696\pi\)
\(488\) 2.23773 2.23773i 0.101297 0.101297i
\(489\) 0 0
\(490\) 2.81166 0.127018
\(491\) 0.243333 0.0109815 0.00549073 0.999985i \(-0.498252\pi\)
0.00549073 + 0.999985i \(0.498252\pi\)
\(492\) 0 0
\(493\) 77.1719i 3.47565i
\(494\) 6.75716 3.83990i 0.304019 0.172765i
\(495\) 0 0
\(496\) 3.63928 3.63928i 0.163408 0.163408i
\(497\) 0.674007i 0.0302334i
\(498\) 0 0
\(499\) 24.3025 24.3025i 1.08793 1.08793i 0.0921854 0.995742i \(-0.470615\pi\)
0.995742 0.0921854i \(-0.0293853\pi\)
\(500\) −4.16434 4.16434i −0.186235 0.186235i
\(501\) 0 0
\(502\) 19.1946 + 19.1946i 0.856696 + 0.856696i
\(503\) 43.4003i 1.93512i −0.252636 0.967561i \(-0.581298\pi\)
0.252636 0.967561i \(-0.418702\pi\)
\(504\) 0 0
\(505\) −4.99289 4.99289i −0.222181 0.222181i
\(506\) −7.83957 −0.348512
\(507\) 0 0
\(508\) −19.2104 −0.852326
\(509\) −27.5992 27.5992i −1.22331 1.22331i −0.966446 0.256868i \(-0.917309\pi\)
−0.256868 0.966446i \(-0.582691\pi\)
\(510\) 0 0
\(511\) 0.820620i 0.0363021i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −20.1728 20.1728i −0.889784 0.889784i
\(515\) −7.21957 + 7.21957i −0.318132 + 0.318132i
\(516\) 0 0
\(517\) 8.75560i 0.385071i
\(518\) −0.000971348 0 0.000971348i −4.26786e−5 0 4.26786e-5i
\(519\) 0 0
\(520\) −8.81384 + 5.00865i −0.386512 + 0.219644i
\(521\) 24.4167i 1.06972i 0.844942 + 0.534858i \(0.179635\pi\)
−0.844942 + 0.534858i \(0.820365\pi\)
\(522\) 0 0
\(523\) 12.3719 0.540984 0.270492 0.962722i \(-0.412814\pi\)
0.270492 + 0.962722i \(0.412814\pi\)
\(524\) 19.6194 0.857076
\(525\) 0 0
\(526\) −0.0820117 + 0.0820117i −0.00357588 + 0.00357588i
\(527\) −28.5624 + 28.5624i −1.24420 + 1.24420i
\(528\) 0 0
\(529\) 17.4031 0.756658
\(530\) 38.5830 1.67594
\(531\) 0 0
\(532\) 2.15557i 0.0934557i
\(533\) −2.07029 0.569928i −0.0896741 0.0246863i
\(534\) 0 0
\(535\) 7.59571 7.59571i 0.328391 0.328391i
\(536\) 1.35381i 0.0584759i
\(537\) 0 0
\(538\) −7.87590 + 7.87590i −0.339554 + 0.339554i
\(539\) −0.872107 0.872107i −0.0375643 0.0375643i
\(540\) 0 0
\(541\) 18.7832 + 18.7832i 0.807551 + 0.807551i 0.984263 0.176712i \(-0.0565460\pi\)
−0.176712 + 0.984263i \(0.556546\pi\)
\(542\) 20.6131i 0.885408i
\(543\) 0 0
\(544\) −5.54964 5.54964i −0.237939 0.237939i
\(545\) 25.6546 1.09892
\(546\) 0 0
\(547\) −0.0847560 −0.00362391 −0.00181195 0.999998i \(-0.500577\pi\)
−0.00181195 + 0.999998i \(0.500577\pi\)
\(548\) −8.48067 8.48067i −0.362276 0.362276i
\(549\) 0 0
\(550\) 3.58338i 0.152796i
\(551\) −14.9874 14.9874i −0.638484 0.638484i
\(552\) 0 0
\(553\) −6.74294 6.74294i −0.286739 0.286739i
\(554\) −10.3055 + 10.3055i −0.437838 + 0.437838i
\(555\) 0 0
\(556\) 17.6573i 0.748837i
\(557\) 13.6121 13.6121i 0.576762 0.576762i −0.357248 0.934010i \(-0.616285\pi\)
0.934010 + 0.357248i \(0.116285\pi\)
\(558\) 0 0
\(559\) −9.29456 16.3558i −0.393118 0.691778i
\(560\) 2.81166i 0.118814i
\(561\) 0 0
\(562\) 4.20649 0.177440
\(563\) −20.1346 −0.848571 −0.424286 0.905528i \(-0.639475\pi\)
−0.424286 + 0.905528i \(0.639475\pi\)
\(564\) 0 0
\(565\) 3.47134 3.47134i 0.146040 0.146040i
\(566\) −4.74864 + 4.74864i −0.199600 + 0.199600i
\(567\) 0 0
\(568\) 0.674007 0.0282807
\(569\) 18.1813 0.762199 0.381100 0.924534i \(-0.375545\pi\)
0.381100 + 0.924534i \(0.375545\pi\)
\(570\) 0 0
\(571\) 14.9269i 0.624673i 0.949972 + 0.312337i \(0.101112\pi\)
−0.949972 + 0.312337i \(0.898888\pi\)
\(572\) 4.28740 + 1.18028i 0.179265 + 0.0493498i
\(573\) 0 0
\(574\) 0.421121 0.421121i 0.0175772 0.0175772i
\(575\) 18.4678i 0.770160i
\(576\) 0 0
\(577\) −7.12081 + 7.12081i −0.296443 + 0.296443i −0.839619 0.543176i \(-0.817222\pi\)
0.543176 + 0.839619i \(0.317222\pi\)
\(578\) 31.5349 + 31.5349i 1.31168 + 1.31168i
\(579\) 0 0
\(580\) 19.5491 + 19.5491i 0.811732 + 0.811732i
\(581\) 9.45481i 0.392252i
\(582\) 0 0
\(583\) −11.9675 11.9675i −0.495643 0.495643i
\(584\) 0.820620 0.0339575
\(585\) 0 0
\(586\) −14.0734 −0.581365
\(587\) −7.63001 7.63001i −0.314924 0.314924i 0.531890 0.846814i \(-0.321482\pi\)
−0.846814 + 0.531890i \(0.821482\pi\)
\(588\) 0 0
\(589\) 11.0941i 0.457124i
\(590\) −18.1378 18.1378i −0.746722 0.746722i
\(591\) 0 0
\(592\) 0.000971348 0 0.000971348i 3.99222e−5 0 3.99222e-5i
\(593\) 7.01314 7.01314i 0.287995 0.287995i −0.548292 0.836287i \(-0.684722\pi\)
0.836287 + 0.548292i \(0.184722\pi\)
\(594\) 0 0
\(595\) 22.0669i 0.904656i
\(596\) 5.19872 5.19872i 0.212948 0.212948i
\(597\) 0 0
\(598\) −22.0962 6.08283i −0.903579 0.248746i
\(599\) 32.7285i 1.33725i −0.743599 0.668626i \(-0.766883\pi\)
0.743599 0.668626i \(-0.233117\pi\)
\(600\) 0 0
\(601\) 11.3105 0.461365 0.230682 0.973029i \(-0.425904\pi\)
0.230682 + 0.973029i \(0.425904\pi\)
\(602\) 5.21759 0.212653
\(603\) 0 0
\(604\) −1.86969 + 1.86969i −0.0760766 + 0.0760766i
\(605\) 18.8453 18.8453i 0.766171 0.766171i
\(606\) 0 0
\(607\) 2.60099 0.105571 0.0527854 0.998606i \(-0.483190\pi\)
0.0527854 + 0.998606i \(0.483190\pi\)
\(608\) 2.15557 0.0874198
\(609\) 0 0
\(610\) 8.89784i 0.360263i
\(611\) 6.79359 24.6780i 0.274839 0.998365i
\(612\) 0 0
\(613\) 24.6280 24.6280i 0.994715 0.994715i −0.00527094 0.999986i \(-0.501678\pi\)
0.999986 + 0.00527094i \(0.00167780\pi\)
\(614\) 30.7909i 1.24262i
\(615\) 0 0
\(616\) −0.872107 + 0.872107i −0.0351382 + 0.0351382i
\(617\) 21.4682 + 21.4682i 0.864279 + 0.864279i 0.991832 0.127553i \(-0.0407122\pi\)
−0.127553 + 0.991832i \(0.540712\pi\)
\(618\) 0 0
\(619\) −3.05143 3.05143i −0.122647 0.122647i 0.643119 0.765766i \(-0.277640\pi\)
−0.765766 + 0.643119i \(0.777640\pi\)
\(620\) 14.4708i 0.581161i
\(621\) 0 0
\(622\) −11.2018 11.2018i −0.449151 0.449151i
\(623\) −5.82072 −0.233202
\(624\) 0 0
\(625\) 31.0856 1.24343
\(626\) 12.5994 + 12.5994i 0.503575 + 0.503575i
\(627\) 0 0
\(628\) 12.2084i 0.487167i
\(629\) −0.00762351 0.00762351i −0.000303969 0.000303969i
\(630\) 0 0
\(631\) −9.61661 9.61661i −0.382831 0.382831i 0.489290 0.872121i \(-0.337256\pi\)
−0.872121 + 0.489290i \(0.837256\pi\)
\(632\) −6.74294 + 6.74294i −0.268220 + 0.268220i
\(633\) 0 0
\(634\) 17.0598i 0.677531i
\(635\) 38.1931 38.1931i 1.51565 1.51565i
\(636\) 0 0
\(637\) −1.78139 3.13475i −0.0705812 0.124203i
\(638\) 12.1273i 0.480124i
\(639\) 0 0
\(640\) −2.81166 −0.111140
\(641\) −40.2153 −1.58841 −0.794205 0.607650i \(-0.792112\pi\)
−0.794205 + 0.607650i \(0.792112\pi\)
\(642\) 0 0
\(643\) 4.88295 4.88295i 0.192565 0.192565i −0.604239 0.796803i \(-0.706523\pi\)
0.796803 + 0.604239i \(0.206523\pi\)
\(644\) 4.49462 4.49462i 0.177113 0.177113i
\(645\) 0 0
\(646\) −16.9177 −0.665618
\(647\) −13.7605 −0.540980 −0.270490 0.962723i \(-0.587186\pi\)
−0.270490 + 0.962723i \(0.587186\pi\)
\(648\) 0 0
\(649\) 11.2518i 0.441672i
\(650\) 2.78039 10.0999i 0.109056 0.396150i
\(651\) 0 0
\(652\) −0.218796 + 0.218796i −0.00856870 + 0.00856870i
\(653\) 29.6301i 1.15951i 0.814789 + 0.579757i \(0.196853\pi\)
−0.814789 + 0.579757i \(0.803147\pi\)
\(654\) 0 0
\(655\) −39.0061 + 39.0061i −1.52409 + 1.52409i
\(656\) −0.421121 0.421121i −0.0164420 0.0164420i
\(657\) 0 0
\(658\) 5.01980 + 5.01980i 0.195692 + 0.195692i
\(659\) 48.8982i 1.90480i 0.304845 + 0.952402i \(0.401395\pi\)
−0.304845 + 0.952402i \(0.598605\pi\)
\(660\) 0 0
\(661\) 32.8068 + 32.8068i 1.27604 + 1.27604i 0.942868 + 0.333168i \(0.108117\pi\)
0.333168 + 0.942868i \(0.391883\pi\)
\(662\) 19.1212 0.743167
\(663\) 0 0
\(664\) −9.45481 −0.366918
\(665\) −4.28557 4.28557i −0.166187 0.166187i
\(666\) 0 0
\(667\) 62.5010i 2.42005i
\(668\) 15.7026 + 15.7026i 0.607553 + 0.607553i
\(669\) 0 0
\(670\) −2.69157 2.69157i −0.103985 0.103985i
\(671\) 2.75989 2.75989i 0.106545 0.106545i
\(672\) 0 0
\(673\) 2.65844i 0.102475i −0.998686 0.0512377i \(-0.983683\pi\)
0.998686 0.0512377i \(-0.0163166\pi\)
\(674\) 13.4856 13.4856i 0.519446 0.519446i
\(675\) 0 0
\(676\) 11.1684 + 6.65331i 0.429554 + 0.255896i
\(677\) 5.85843i 0.225158i 0.993643 + 0.112579i \(0.0359111\pi\)
−0.993643 + 0.112579i \(0.964089\pi\)
\(678\) 0 0
\(679\) −3.65019 −0.140082
\(680\) 22.0669 0.846229
\(681\) 0 0
\(682\) 4.48849 4.48849i 0.171873 0.171873i
\(683\) −1.64052 + 1.64052i −0.0627729 + 0.0627729i −0.737796 0.675023i \(-0.764134\pi\)
0.675023 + 0.737796i \(0.264134\pi\)
\(684\) 0 0
\(685\) 33.7215 1.28843
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 5.21759i 0.198919i
\(689\) −24.4451 43.0166i −0.931285 1.63880i
\(690\) 0 0
\(691\) −4.12033 + 4.12033i −0.156745 + 0.156745i −0.781122 0.624378i \(-0.785353\pi\)
0.624378 + 0.781122i \(0.285353\pi\)
\(692\) 18.2357i 0.693217i
\(693\) 0 0
\(694\) 21.2631 21.2631i 0.807137 0.807137i
\(695\) 35.1052 + 35.1052i 1.33162 + 1.33162i
\(696\) 0 0
\(697\) 3.30512 + 3.30512i 0.125190 + 0.125190i
\(698\) 31.9203i 1.20820i
\(699\) 0 0
\(700\) 2.05444 + 2.05444i 0.0776504 + 0.0776504i
\(701\) 2.28171 0.0861791 0.0430895 0.999071i \(-0.486280\pi\)
0.0430895 + 0.999071i \(0.486280\pi\)
\(702\) 0 0
\(703\) 0.00296109 0.000111680
\(704\) 0.872107 + 0.872107i 0.0328688 + 0.0328688i
\(705\) 0 0
\(706\) 9.96778i 0.375142i
\(707\) −1.77578 1.77578i −0.0667851 0.0667851i
\(708\) 0 0
\(709\) −13.6589 13.6589i −0.512971 0.512971i 0.402465 0.915436i \(-0.368154\pi\)
−0.915436 + 0.402465i \(0.868154\pi\)
\(710\) −1.34002 + 1.34002i −0.0502901 + 0.0502901i
\(711\) 0 0
\(712\) 5.82072i 0.218141i
\(713\) −23.1325 + 23.1325i −0.866319 + 0.866319i
\(714\) 0 0
\(715\) −10.8705 + 6.17740i −0.406534 + 0.231022i
\(716\) 20.1218i 0.751988i
\(717\) 0 0
\(718\) −31.3414 −1.16965
\(719\) −14.1918 −0.529264 −0.264632 0.964349i \(-0.585251\pi\)
−0.264632 + 0.964349i \(0.585251\pi\)
\(720\) 0 0
\(721\) −2.56773 + 2.56773i −0.0956273 + 0.0956273i
\(722\) −10.1495 + 10.1495i −0.377724 + 0.377724i
\(723\) 0 0
\(724\) −4.03633 −0.150009
\(725\) −28.5685 −1.06101
\(726\) 0 0
\(727\) 1.69747i 0.0629555i 0.999504 + 0.0314778i \(0.0100213\pi\)
−0.999504 + 0.0314778i \(0.989979\pi\)
\(728\) −3.13475 + 1.78139i −0.116182 + 0.0660227i
\(729\) 0 0
\(730\) −1.63151 + 1.63151i −0.0603848 + 0.0603848i
\(731\) 40.9496i 1.51458i
\(732\) 0 0
\(733\) 5.59060 5.59060i 0.206494 0.206494i −0.596282 0.802775i \(-0.703356\pi\)
0.802775 + 0.596282i \(0.203356\pi\)
\(734\) −6.09330 6.09330i −0.224908 0.224908i
\(735\) 0 0
\(736\) −4.49462 4.49462i −0.165674 0.165674i
\(737\) 1.66972i 0.0615050i
\(738\) 0 0
\(739\) −27.2838 27.2838i −1.00365 1.00365i −0.999993 0.00365764i \(-0.998836\pi\)
−0.00365764 0.999993i \(-0.501164\pi\)
\(740\) −0.00386235 −0.000141983
\(741\) 0 0
\(742\) 13.7225 0.503769
\(743\) −24.2136 24.2136i −0.888309 0.888309i 0.106052 0.994361i \(-0.466179\pi\)
−0.994361 + 0.106052i \(0.966179\pi\)
\(744\) 0 0
\(745\) 20.6716i 0.757348i
\(746\) −6.86532 6.86532i −0.251357 0.251357i
\(747\) 0 0
\(748\) −6.84463 6.84463i −0.250264 0.250264i
\(749\) 2.70151 2.70151i 0.0987109 0.0987109i
\(750\) 0 0
\(751\) 35.4494i 1.29357i 0.762674 + 0.646783i \(0.223886\pi\)
−0.762674 + 0.646783i \(0.776114\pi\)
\(752\) 5.01980 5.01980i 0.183053 0.183053i
\(753\) 0 0
\(754\) 9.40974 34.1813i 0.342682 1.24481i
\(755\) 7.43442i 0.270566i
\(756\) 0 0
\(757\) −27.6556 −1.00516 −0.502580 0.864531i \(-0.667616\pi\)
−0.502580 + 0.864531i \(0.667616\pi\)
\(758\) −14.8283 −0.538588
\(759\) 0 0
\(760\) −4.28557 + 4.28557i −0.155454 + 0.155454i
\(761\) −13.3104 + 13.3104i −0.482501 + 0.482501i −0.905929 0.423429i \(-0.860826\pi\)
0.423429 + 0.905929i \(0.360826\pi\)
\(762\) 0 0
\(763\) 9.12437 0.330324
\(764\) 21.2583 0.769098
\(765\) 0 0
\(766\) 1.30786i 0.0472550i
\(767\) −8.73044 + 31.7137i −0.315238 + 1.14511i
\(768\) 0 0
\(769\) −16.4644 + 16.4644i −0.593721 + 0.593721i −0.938635 0.344913i \(-0.887908\pi\)
0.344913 + 0.938635i \(0.387908\pi\)
\(770\) 3.46775i 0.124969i
\(771\) 0 0
\(772\) 11.8435 11.8435i 0.426257 0.426257i
\(773\) 33.8374 + 33.8374i 1.21705 + 1.21705i 0.968661 + 0.248387i \(0.0799004\pi\)
0.248387 + 0.968661i \(0.420100\pi\)
\(774\) 0 0
\(775\) −10.5736 10.5736i −0.379815 0.379815i
\(776\) 3.65019i 0.131034i
\(777\) 0 0
\(778\) 16.4080 + 16.4080i 0.588256 + 0.588256i
\(779\) −1.28376 −0.0459954
\(780\) 0 0
\(781\) 0.831284 0.0297457
\(782\) 35.2754 + 35.2754i 1.26145 + 1.26145i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) 24.2720 + 24.2720i 0.866304 + 0.866304i
\(786\) 0 0
\(787\) −30.6237 30.6237i −1.09162 1.09162i −0.995356 0.0962614i \(-0.969312\pi\)
−0.0962614 0.995356i \(-0.530688\pi\)
\(788\) 3.79565 3.79565i 0.135214 0.135214i
\(789\) 0 0
\(790\) 26.8118i 0.953922i
\(791\) 1.23462 1.23462i 0.0438982 0.0438982i
\(792\) 0 0
\(793\) 9.92031 5.63743i 0.352281 0.200191i
\(794\) 8.93464i 0.317079i
\(795\) 0 0
\(796\) 13.7090 0.485902
\(797\) −37.1725 −1.31672 −0.658358 0.752705i \(-0.728749\pi\)
−0.658358 + 0.752705i \(0.728749\pi\)
\(798\) 0 0
\(799\) −39.3973 + 39.3973i −1.39377 + 1.39377i
\(800\) 2.05444 2.05444i 0.0726353 0.0726353i
\(801\) 0 0
\(802\) −12.9744 −0.458141
\(803\) 1.01211 0.0357165
\(804\) 0 0
\(805\) 17.8719i 0.629900i
\(806\) 16.1337 9.16831i 0.568284 0.322940i
\(807\) 0 0
\(808\) −1.77578 + 1.77578i −0.0624718 + 0.0624718i
\(809\) 18.6444i 0.655501i −0.944764 0.327750i \(-0.893710\pi\)
0.944764 0.327750i \(-0.106290\pi\)
\(810\) 0 0
\(811\) 0.988016 0.988016i 0.0346939 0.0346939i −0.689547 0.724241i \(-0.742190\pi\)
0.724241 + 0.689547i \(0.242190\pi\)
\(812\) 6.95287 + 6.95287i 0.243998 + 0.243998i
\(813\) 0 0
\(814\) 0.00119801 + 0.00119801i 4.19902e−5 + 4.19902e-5i
\(815\) 0.869993i 0.0304745i
\(816\) 0 0
\(817\) −7.95273 7.95273i −0.278231 0.278231i
\(818\) −11.2932 −0.394857
\(819\) 0 0
\(820\) 1.67450 0.0584759
\(821\) 7.85970 + 7.85970i 0.274305 + 0.274305i 0.830831 0.556525i \(-0.187866\pi\)
−0.556525 + 0.830831i \(0.687866\pi\)
\(822\) 0 0
\(823\) 50.3747i 1.75595i 0.478705 + 0.877976i \(0.341106\pi\)
−0.478705 + 0.877976i \(0.658894\pi\)
\(824\) 2.56773 + 2.56773i 0.0894511 + 0.0894511i
\(825\) 0 0
\(826\) −6.45093 6.45093i −0.224457 0.224457i
\(827\) 1.16220 1.16220i 0.0404136 0.0404136i −0.686611 0.727025i \(-0.740903\pi\)
0.727025 + 0.686611i \(0.240903\pi\)
\(828\) 0 0
\(829\) 1.03928i 0.0360956i −0.999837 0.0180478i \(-0.994255\pi\)
0.999837 0.0180478i \(-0.00574510\pi\)
\(830\) 18.7975 18.7975i 0.652471 0.652471i
\(831\) 0 0
\(832\) 1.78139 + 3.13475i 0.0617586 + 0.108678i
\(833\) 7.84838i 0.271930i
\(834\) 0 0
\(835\) −62.4381 −2.16076
\(836\) 2.65856 0.0919482
\(837\) 0 0
\(838\) −10.0789 + 10.0789i −0.348170 + 0.348170i
\(839\) 29.0485 29.0485i 1.00286 1.00286i 0.00286874 0.999996i \(-0.499087\pi\)
0.999996 0.00286874i \(-0.000913149\pi\)
\(840\) 0 0
\(841\) −67.6849 −2.33396
\(842\) −2.11835 −0.0730032
\(843\) 0 0
\(844\) 4.49184i 0.154616i
\(845\) −35.4321 + 8.97668i −1.21890 + 0.308807i
\(846\) 0 0
\(847\) 6.70256 6.70256i 0.230303 0.230303i
\(848\) 13.7225i 0.471233i
\(849\) 0 0
\(850\) −16.1240 + 16.1240i −0.553048 + 0.553048i
\(851\) −0.00617422 0.00617422i −0.000211650 0.000211650i
\(852\) 0 0
\(853\) −33.0645 33.0645i −1.13211 1.13211i −0.989826 0.142281i \(-0.954556\pi\)
−0.142281 0.989826i \(-0.545444\pi\)
\(854\) 3.16463i 0.108291i
\(855\) 0 0
\(856\) −2.70151 2.70151i −0.0923356 0.0923356i
\(857\) 34.9585 1.19416 0.597080 0.802182i \(-0.296328\pi\)
0.597080 + 0.802182i \(0.296328\pi\)
\(858\) 0 0
\(859\) −5.39448 −0.184057 −0.0920286 0.995756i \(-0.529335\pi\)
−0.0920286 + 0.995756i \(0.529335\pi\)
\(860\) 10.3733 + 10.3733i 0.353727 + 0.353727i
\(861\) 0 0
\(862\) 26.8156i 0.913344i
\(863\) −8.33914 8.33914i −0.283868 0.283868i 0.550782 0.834649i \(-0.314330\pi\)
−0.834649 + 0.550782i \(0.814330\pi\)
\(864\) 0 0
\(865\) −36.2551 36.2551i −1.23271 1.23271i
\(866\) 4.61766 4.61766i 0.156914 0.156914i
\(867\) 0 0
\(868\) 5.14672i 0.174691i
\(869\) −8.31637 + 8.31637i −0.282114 + 0.282114i
\(870\) 0 0
\(871\) −1.29556 + 4.70618i −0.0438984 + 0.159463i
\(872\) 9.12437i 0.308990i
\(873\) 0 0
\(874\) −13.7015 −0.463461
\(875\) 5.88926 0.199093
\(876\) 0 0
\(877\) 31.4556 31.4556i 1.06218 1.06218i 0.0642449 0.997934i \(-0.479536\pi\)
0.997934 0.0642449i \(-0.0204639\pi\)
\(878\) 7.66701 7.66701i 0.258749 0.258749i
\(879\) 0 0
\(880\) −3.46775 −0.116898
\(881\) 5.76157 0.194112 0.0970561 0.995279i \(-0.469057\pi\)
0.0970561 + 0.995279i \(0.469057\pi\)
\(882\) 0 0
\(883\) 9.22001i 0.310278i −0.987893 0.155139i \(-0.950417\pi\)
0.987893 0.155139i \(-0.0495826\pi\)
\(884\) −13.9810 24.6027i −0.470232 0.827478i
\(885\) 0 0
\(886\) 21.3032 21.3032i 0.715695 0.715695i
\(887\) 50.9594i 1.71105i −0.517762 0.855525i \(-0.673235\pi\)
0.517762 0.855525i \(-0.326765\pi\)
\(888\) 0 0
\(889\) 13.5838 13.5838i 0.455587 0.455587i
\(890\) −11.5724 11.5724i −0.387908 0.387908i
\(891\) 0 0
\(892\) −8.59883 8.59883i −0.287910 0.287910i
\(893\) 15.3025i 0.512079i
\(894\) 0 0
\(895\) 40.0051 + 40.0051i 1.33722 + 1.33722i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 0.393023 0.0131153
\(899\) −35.7845 35.7845i −1.19348 1.19348i
\(900\) 0 0
\(901\) 107.699i 3.58799i
\(902\) −0.519388 0.519388i −0.0172937 0.0172937i
\(903\) 0 0
\(904\) −1.23462 1.23462i −0.0410630 0.0410630i
\(905\) 8.02480 8.02480i 0.266753 0.266753i
\(906\) 0 0
\(907\) 2.53598i 0.0842057i 0.999113 + 0.0421029i \(0.0134057\pi\)
−0.999113 + 0.0421029i \(0.986594\pi\)
\(908\) 1.53435 1.53435i 0.0509193 0.0509193i
\(909\) 0 0
\(910\) 2.69067 9.77398i 0.0891949 0.324004i
\(911\) 0.347480i 0.0115125i 0.999983 + 0.00575626i \(0.00183229\pi\)
−0.999983 + 0.00575626i \(0.998168\pi\)
\(912\) 0 0
\(913\) −11.6611 −0.385924
\(914\) 0.926602 0.0306493
\(915\) 0 0
\(916\) −17.9893 + 17.9893i −0.594384 + 0.594384i
\(917\) −13.8730 + 13.8730i −0.458127 + 0.458127i
\(918\) 0 0
\(919\) −2.62522 −0.0865982 −0.0432991 0.999062i \(-0.513787\pi\)
−0.0432991 + 0.999062i \(0.513787\pi\)
\(920\) 17.8719 0.589218
\(921\) 0 0
\(922\) 17.9728i 0.591902i
\(923\) 2.34301 + 0.645005i 0.0771210 + 0.0212306i
\(924\) 0 0
\(925\) 0.00282216 0.00282216i 9.27922e−5 9.27922e-5i
\(926\) 36.6805i 1.20540i
\(927\) 0 0
\(928\) 6.95287 6.95287i 0.228239 0.228239i
\(929\) 18.5436 + 18.5436i 0.608396 + 0.608396i 0.942527 0.334131i \(-0.108443\pi\)
−0.334131 + 0.942527i \(0.608443\pi\)
\(930\) 0 0
\(931\) −1.52422 1.52422i −0.0499542 0.0499542i
\(932\) 21.6085i 0.707811i
\(933\) 0 0
\(934\) 0.484847 + 0.484847i 0.0158647 + 0.0158647i
\(935\) 27.2162 0.890064
\(936\) 0 0
\(937\) −25.5510 −0.834713 −0.417357 0.908743i \(-0.637043\pi\)
−0.417357 + 0.908743i \(0.637043\pi\)
\(938\) −0.957291 0.957291i −0.0312567 0.0312567i
\(939\) 0 0
\(940\) 19.9601i 0.651028i
\(941\) −18.7699 18.7699i −0.611881 0.611881i 0.331555 0.943436i \(-0.392427\pi\)
−0.943436 + 0.331555i \(0.892427\pi\)
\(942\) 0 0
\(943\) 2.67679 + 2.67679i 0.0871683 + 0.0871683i
\(944\) −6.45093 + 6.45093i −0.209960 + 0.209960i
\(945\) 0 0
\(946\) 6.43509i 0.209223i
\(947\) 21.5262 21.5262i 0.699507 0.699507i −0.264797 0.964304i \(-0.585305\pi\)
0.964304 + 0.264797i \(0.0853050\pi\)
\(948\) 0 0
\(949\) 2.85267 + 0.785309i 0.0926015 + 0.0254922i
\(950\) 6.26281i 0.203192i
\(951\) 0 0
\(952\) 7.84838 0.254367
\(953\) 8.94992 0.289916 0.144958 0.989438i \(-0.453695\pi\)
0.144958 + 0.989438i \(0.453695\pi\)
\(954\) 0 0
\(955\) −42.2645 + 42.2645i −1.36765 + 1.36765i
\(956\) −11.2064 + 11.2064i −0.362440 + 0.362440i
\(957\) 0 0
\(958\) −19.3728 −0.625907
\(959\) 11.9935 0.387289
\(960\) 0 0
\(961\) 4.51130i 0.145526i
\(962\) 0.00244708 + 0.00430618i 7.88971e−5 + 0.000138837i
\(963\) 0 0
\(964\) 15.7392 15.7392i 0.506926 0.506926i
\(965\) 47.0931i 1.51598i
\(966\) 0 0
\(967\) 24.9789 24.9789i 0.803266 0.803266i −0.180339 0.983605i \(-0.557719\pi\)
0.983605 + 0.180339i \(0.0577194\pi\)
\(968\) −6.70256 6.70256i −0.215429 0.215429i
\(969\) 0 0
\(970\) −7.25710 7.25710i −0.233012 0.233012i
\(971\) 44.9405i 1.44221i −0.692827 0.721104i \(-0.743635\pi\)
0.692827 0.721104i \(-0.256365\pi\)
\(972\) 0 0
\(973\) 12.4856 + 12.4856i 0.400270 + 0.400270i
\(974\) −36.8362 −1.18031
\(975\) 0 0
\(976\) 3.16463 0.101297
\(977\) 38.8342 + 38.8342i 1.24242 + 1.24242i 0.958995 + 0.283422i \(0.0914698\pi\)
0.283422 + 0.958995i \(0.408530\pi\)
\(978\) 0 0
\(979\) 7.17897i 0.229441i
\(980\) 1.98814 + 1.98814i 0.0635088 + 0.0635088i
\(981\) 0 0
\(982\) 0.172062 + 0.172062i 0.00549073 + 0.00549073i
\(983\) 10.9153 10.9153i 0.348145 0.348145i −0.511273 0.859418i \(-0.670826\pi\)
0.859418 + 0.511273i \(0.170826\pi\)
\(984\) 0 0
\(985\) 15.0926i 0.480890i
\(986\) −54.5688 + 54.5688i −1.73782 + 1.73782i
\(987\) 0 0
\(988\) 7.49326 + 2.06281i 0.238392 + 0.0656268i
\(989\) 33.1648i 1.05458i
\(990\) 0 0
\(991\) −10.5793 −0.336064 −0.168032 0.985782i \(-0.553741\pi\)
−0.168032 + 0.985782i \(0.553741\pi\)
\(992\) 5.14672 0.163408
\(993\) 0 0
\(994\) −0.476595 + 0.476595i −0.0151167 + 0.0151167i
\(995\) −27.2554 + 27.2554i −0.864053 + 0.864053i
\(996\) 0 0
\(997\) 5.09165 0.161254 0.0806270 0.996744i \(-0.474308\pi\)
0.0806270 + 0.996744i \(0.474308\pi\)
\(998\) 34.3689 1.08793
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.y.c.1331.5 yes 16
3.2 odd 2 1638.2.y.d.1331.4 yes 16
13.8 odd 4 1638.2.y.d.827.4 yes 16
39.8 even 4 inner 1638.2.y.c.827.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1638.2.y.c.827.5 16 39.8 even 4 inner
1638.2.y.c.1331.5 yes 16 1.1 even 1 trivial
1638.2.y.d.827.4 yes 16 13.8 odd 4
1638.2.y.d.1331.4 yes 16 3.2 odd 2