Properties

Label 1638.2.x.d.307.1
Level $1638$
Weight $2$
Character 1638.307
Analytic conductor $13.079$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(307,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4,0,0,0,0,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.7442857984.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 26x^{6} + 205x^{4} + 540x^{2} + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.1
Root \(0.916813i\) of defining polynomial
Character \(\chi\) \(=\) 1638.307
Dual form 1638.2.x.d.811.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-2.27220 + 2.27220i) q^{5} +(1.35539 + 2.27220i) q^{7} +(0.707107 - 0.707107i) q^{8} +3.21338 q^{10} +(-0.355392 + 0.355392i) q^{11} +(2.00000 + 3.00000i) q^{13} +(0.648285 - 2.56510i) q^{14} -1.00000 q^{16} +4.32583 q^{17} +(5.98299 - 5.98299i) q^{19} +(-2.27220 - 2.27220i) q^{20} +0.502600 q^{22} +2.38496i q^{23} -5.32583i q^{25} +(0.707107 - 3.53553i) q^{26} +(-2.27220 + 1.35539i) q^{28} -1.09574 q^{29} +(1.08319 - 1.08319i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-3.05882 - 3.05882i) q^{34} +(-8.24264 - 2.08319i) q^{35} +(-5.18902 + 5.18902i) q^{37} -8.46122 q^{38} +3.21338i q^{40} +(-3.53186 + 3.53186i) q^{41} +7.44867i q^{43} +(-0.355392 - 0.355392i) q^{44} +(1.68642 - 1.68642i) q^{46} +(4.71078 + 4.71078i) q^{47} +(-3.32583 + 6.15945i) q^{49} +(-3.76593 + 3.76593i) q^{50} +(-3.00000 + 2.00000i) q^{52} +11.2552 q^{53} -1.61504i q^{55} +(2.56510 + 0.648285i) q^{56} +(0.774804 + 0.774804i) q^{58} +(-3.61504 - 3.61504i) q^{59} +4.32583i q^{61} -1.53186 q^{62} -1.00000i q^{64} +(-11.3610 - 2.27220i) q^{65} +(-0.531858 - 0.531858i) q^{67} +4.32583i q^{68} +(4.35539 + 7.30146i) q^{70} +(-6.38496 - 6.38496i) q^{71} +(-5.18902 - 5.18902i) q^{73} +7.33838 q^{74} +(5.98299 + 5.98299i) q^{76} +(-1.28922 - 0.325828i) q^{77} -11.3143 q^{79} +(2.27220 - 2.27220i) q^{80} +4.99480 q^{82} +(-6.71078 + 6.71078i) q^{83} +(-9.82917 + 9.82917i) q^{85} +(5.26701 - 5.26701i) q^{86} +0.502600i q^{88} +(3.75044 + 3.75044i) q^{89} +(-4.10583 + 8.61058i) q^{91} -2.38496 q^{92} -6.66205i q^{94} +27.1891i q^{95} +(-12.9931 + 12.9931i) q^{97} +(6.70711 - 2.00368i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} + 4 q^{10} + 8 q^{11} + 16 q^{13} - 8 q^{16} + 12 q^{17} + 4 q^{19} + 4 q^{20} + 4 q^{22} + 4 q^{28} + 12 q^{29} + 20 q^{31} - 24 q^{34} - 32 q^{35} - 8 q^{37} - 12 q^{38} - 16 q^{41} + 8 q^{44}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −2.27220 + 2.27220i −1.01616 + 1.01616i −0.0162935 + 0.999867i \(0.505187\pi\)
−0.999867 + 0.0162935i \(0.994813\pi\)
\(6\) 0 0
\(7\) 1.35539 + 2.27220i 0.512290 + 0.858813i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 3.21338 1.01616
\(11\) −0.355392 + 0.355392i −0.107155 + 0.107155i −0.758651 0.651497i \(-0.774141\pi\)
0.651497 + 0.758651i \(0.274141\pi\)
\(12\) 0 0
\(13\) 2.00000 + 3.00000i 0.554700 + 0.832050i
\(14\) 0.648285 2.56510i 0.173261 0.685551i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 4.32583 1.04917 0.524584 0.851359i \(-0.324221\pi\)
0.524584 + 0.851359i \(0.324221\pi\)
\(18\) 0 0
\(19\) 5.98299 5.98299i 1.37259 1.37259i 0.516007 0.856584i \(-0.327418\pi\)
0.856584 0.516007i \(-0.172582\pi\)
\(20\) −2.27220 2.27220i −0.508080 0.508080i
\(21\) 0 0
\(22\) 0.502600 0.107155
\(23\) 2.38496i 0.497298i 0.968594 + 0.248649i \(0.0799865\pi\)
−0.968594 + 0.248649i \(0.920014\pi\)
\(24\) 0 0
\(25\) 5.32583i 1.06517i
\(26\) 0.707107 3.53553i 0.138675 0.693375i
\(27\) 0 0
\(28\) −2.27220 + 1.35539i −0.429406 + 0.256145i
\(29\) −1.09574 −0.203474 −0.101737 0.994811i \(-0.532440\pi\)
−0.101737 + 0.994811i \(0.532440\pi\)
\(30\) 0 0
\(31\) 1.08319 1.08319i 0.194546 0.194546i −0.603111 0.797657i \(-0.706072\pi\)
0.797657 + 0.603111i \(0.206072\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −3.05882 3.05882i −0.524584 0.524584i
\(35\) −8.24264 2.08319i −1.39326 0.352123i
\(36\) 0 0
\(37\) −5.18902 + 5.18902i −0.853069 + 0.853069i −0.990510 0.137441i \(-0.956112\pi\)
0.137441 + 0.990510i \(0.456112\pi\)
\(38\) −8.46122 −1.37259
\(39\) 0 0
\(40\) 3.21338i 0.508080i
\(41\) −3.53186 + 3.53186i −0.551583 + 0.551583i −0.926898 0.375314i \(-0.877535\pi\)
0.375314 + 0.926898i \(0.377535\pi\)
\(42\) 0 0
\(43\) 7.44867i 1.13591i 0.823059 + 0.567956i \(0.192266\pi\)
−0.823059 + 0.567956i \(0.807734\pi\)
\(44\) −0.355392 0.355392i −0.0535773 0.0535773i
\(45\) 0 0
\(46\) 1.68642 1.68642i 0.248649 0.248649i
\(47\) 4.71078 + 4.71078i 0.687138 + 0.687138i 0.961598 0.274460i \(-0.0884991\pi\)
−0.274460 + 0.961598i \(0.588499\pi\)
\(48\) 0 0
\(49\) −3.32583 + 6.15945i −0.475118 + 0.879922i
\(50\) −3.76593 + 3.76593i −0.532583 + 0.532583i
\(51\) 0 0
\(52\) −3.00000 + 2.00000i −0.416025 + 0.277350i
\(53\) 11.2552 1.54602 0.773010 0.634394i \(-0.218750\pi\)
0.773010 + 0.634394i \(0.218750\pi\)
\(54\) 0 0
\(55\) 1.61504i 0.217773i
\(56\) 2.56510 + 0.648285i 0.342776 + 0.0866307i
\(57\) 0 0
\(58\) 0.774804 + 0.774804i 0.101737 + 0.101737i
\(59\) −3.61504 3.61504i −0.470639 0.470639i 0.431483 0.902121i \(-0.357991\pi\)
−0.902121 + 0.431483i \(0.857991\pi\)
\(60\) 0 0
\(61\) 4.32583i 0.553865i 0.960889 + 0.276933i \(0.0893179\pi\)
−0.960889 + 0.276933i \(0.910682\pi\)
\(62\) −1.53186 −0.194546
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −11.3610 2.27220i −1.40916 0.281832i
\(66\) 0 0
\(67\) −0.531858 0.531858i −0.0649768 0.0649768i 0.673872 0.738848i \(-0.264630\pi\)
−0.738848 + 0.673872i \(0.764630\pi\)
\(68\) 4.32583i 0.524584i
\(69\) 0 0
\(70\) 4.35539 + 7.30146i 0.520569 + 0.872692i
\(71\) −6.38496 6.38496i −0.757755 0.757755i 0.218159 0.975913i \(-0.429995\pi\)
−0.975913 + 0.218159i \(0.929995\pi\)
\(72\) 0 0
\(73\) −5.18902 5.18902i −0.607329 0.607329i 0.334919 0.942247i \(-0.391291\pi\)
−0.942247 + 0.334919i \(0.891291\pi\)
\(74\) 7.33838 0.853069
\(75\) 0 0
\(76\) 5.98299 + 5.98299i 0.686296 + 0.686296i
\(77\) −1.28922 0.325828i −0.146920 0.0371315i
\(78\) 0 0
\(79\) −11.3143 −1.27296 −0.636480 0.771293i \(-0.719610\pi\)
−0.636480 + 0.771293i \(0.719610\pi\)
\(80\) 2.27220 2.27220i 0.254040 0.254040i
\(81\) 0 0
\(82\) 4.99480 0.551583
\(83\) −6.71078 + 6.71078i −0.736604 + 0.736604i −0.971919 0.235315i \(-0.924388\pi\)
0.235315 + 0.971919i \(0.424388\pi\)
\(84\) 0 0
\(85\) −9.82917 + 9.82917i −1.06612 + 1.06612i
\(86\) 5.26701 5.26701i 0.567956 0.567956i
\(87\) 0 0
\(88\) 0.502600i 0.0535773i
\(89\) 3.75044 + 3.75044i 0.397546 + 0.397546i 0.877367 0.479821i \(-0.159298\pi\)
−0.479821 + 0.877367i \(0.659298\pi\)
\(90\) 0 0
\(91\) −4.10583 + 8.61058i −0.430408 + 0.902634i
\(92\) −2.38496 −0.248649
\(93\) 0 0
\(94\) 6.66205i 0.687138i
\(95\) 27.1891i 2.78955i
\(96\) 0 0
\(97\) −12.9931 + 12.9931i −1.31925 + 1.31925i −0.404876 + 0.914372i \(0.632685\pi\)
−0.914372 + 0.404876i \(0.867315\pi\)
\(98\) 6.70711 2.00368i 0.677520 0.202402i
\(99\) 0 0
\(100\) 5.32583 0.532583
\(101\) 19.7996 1.97013 0.985067 0.172171i \(-0.0550783\pi\)
0.985067 + 0.172171i \(0.0550783\pi\)
\(102\) 0 0
\(103\) 2.70386 0.266420 0.133210 0.991088i \(-0.457472\pi\)
0.133210 + 0.991088i \(0.457472\pi\)
\(104\) 3.53553 + 0.707107i 0.346688 + 0.0693375i
\(105\) 0 0
\(106\) −7.95862 7.95862i −0.773010 0.773010i
\(107\) 11.6673 1.12792 0.563958 0.825804i \(-0.309278\pi\)
0.563958 + 0.825804i \(0.309278\pi\)
\(108\) 0 0
\(109\) −5.29626 5.29626i −0.507290 0.507290i 0.406404 0.913694i \(-0.366783\pi\)
−0.913694 + 0.406404i \(0.866783\pi\)
\(110\) −1.14201 + 1.14201i −0.108886 + 0.108886i
\(111\) 0 0
\(112\) −1.35539 2.27220i −0.128072 0.214703i
\(113\) −20.3440 −1.91380 −0.956902 0.290412i \(-0.906208\pi\)
−0.956902 + 0.290412i \(0.906208\pi\)
\(114\) 0 0
\(115\) −5.41911 5.41911i −0.505334 0.505334i
\(116\) 1.09574i 0.101737i
\(117\) 0 0
\(118\) 5.11245i 0.470639i
\(119\) 5.86319 + 9.82917i 0.537478 + 0.901038i
\(120\) 0 0
\(121\) 10.7474i 0.977036i
\(122\) 3.05882 3.05882i 0.276933 0.276933i
\(123\) 0 0
\(124\) 1.08319 + 1.08319i 0.0972731 + 0.0972731i
\(125\) 0.740347 + 0.740347i 0.0662186 + 0.0662186i
\(126\) 0 0
\(127\) 7.60812i 0.675112i −0.941305 0.337556i \(-0.890400\pi\)
0.941305 0.337556i \(-0.109600\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 6.42677 + 9.64015i 0.563665 + 0.845497i
\(131\) 6.87024i 0.600255i −0.953899 0.300128i \(-0.902971\pi\)
0.953899 0.300128i \(-0.0970293\pi\)
\(132\) 0 0
\(133\) 21.7039 + 5.48528i 1.88196 + 0.475634i
\(134\) 0.752160i 0.0649768i
\(135\) 0 0
\(136\) 3.05882 3.05882i 0.262292 0.262292i
\(137\) 0.272205 0.272205i 0.0232560 0.0232560i −0.695383 0.718639i \(-0.744765\pi\)
0.718639 + 0.695383i \(0.244765\pi\)
\(138\) 0 0
\(139\) 20.3440i 1.72556i −0.505583 0.862778i \(-0.668722\pi\)
0.505583 0.862778i \(-0.331278\pi\)
\(140\) 2.08319 8.24264i 0.176061 0.696630i
\(141\) 0 0
\(142\) 9.02969i 0.757755i
\(143\) −1.77696 0.355392i −0.148597 0.0297193i
\(144\) 0 0
\(145\) 2.48974 2.48974i 0.206762 0.206762i
\(146\) 7.33838i 0.607329i
\(147\) 0 0
\(148\) −5.18902 5.18902i −0.426535 0.426535i
\(149\) −10.5685 10.5685i −0.865803 0.865803i 0.126202 0.992005i \(-0.459721\pi\)
−0.992005 + 0.126202i \(0.959721\pi\)
\(150\) 0 0
\(151\) −0.149362 + 0.149362i −0.0121549 + 0.0121549i −0.713158 0.701003i \(-0.752736\pi\)
0.701003 + 0.713158i \(0.252736\pi\)
\(152\) 8.46122i 0.686296i
\(153\) 0 0
\(154\) 0.681219 + 1.14201i 0.0548942 + 0.0920257i
\(155\) 4.92244i 0.395380i
\(156\) 0 0
\(157\) 10.7630i 0.858980i 0.903072 + 0.429490i \(0.141307\pi\)
−0.903072 + 0.429490i \(0.858693\pi\)
\(158\) 8.00043 + 8.00043i 0.636480 + 0.636480i
\(159\) 0 0
\(160\) −3.21338 −0.254040
\(161\) −5.41911 + 3.23255i −0.427085 + 0.254761i
\(162\) 0 0
\(163\) −3.40901 + 3.40901i −0.267015 + 0.267015i −0.827896 0.560881i \(-0.810462\pi\)
0.560881 + 0.827896i \(0.310462\pi\)
\(164\) −3.53186 3.53186i −0.275792 0.275792i
\(165\) 0 0
\(166\) 9.49048 0.736604
\(167\) 10.0226 + 10.0226i 0.775575 + 0.775575i 0.979075 0.203500i \(-0.0652316\pi\)
−0.203500 + 0.979075i \(0.565232\pi\)
\(168\) 0 0
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) 13.9005 1.06612
\(171\) 0 0
\(172\) −7.44867 −0.567956
\(173\) 19.7405 1.50084 0.750420 0.660961i \(-0.229851\pi\)
0.750420 + 0.660961i \(0.229851\pi\)
\(174\) 0 0
\(175\) 12.1014 7.21858i 0.914778 0.545673i
\(176\) 0.355392 0.355392i 0.0267886 0.0267886i
\(177\) 0 0
\(178\) 5.30392i 0.397546i
\(179\) 9.79960i 0.732457i 0.930525 + 0.366228i \(0.119351\pi\)
−0.930525 + 0.366228i \(0.880649\pi\)
\(180\) 0 0
\(181\) 10.4372 0.775788 0.387894 0.921704i \(-0.373203\pi\)
0.387894 + 0.921704i \(0.373203\pi\)
\(182\) 8.99186 3.18534i 0.666521 0.236113i
\(183\) 0 0
\(184\) 1.68642 + 1.68642i 0.124324 + 0.124324i
\(185\) 23.5810i 1.73371i
\(186\) 0 0
\(187\) −1.53736 + 1.53736i −0.112423 + 0.112423i
\(188\) −4.71078 + 4.71078i −0.343569 + 0.343569i
\(189\) 0 0
\(190\) 19.2256 19.2256i 1.39477 1.39477i
\(191\) −11.1410 −0.806136 −0.403068 0.915170i \(-0.632056\pi\)
−0.403068 + 0.915170i \(0.632056\pi\)
\(192\) 0 0
\(193\) 4.03661 4.03661i 0.290562 0.290562i −0.546741 0.837302i \(-0.684132\pi\)
0.837302 + 0.546741i \(0.184132\pi\)
\(194\) 18.3750 1.31925
\(195\) 0 0
\(196\) −6.15945 3.32583i −0.439961 0.237559i
\(197\) −0.627596 0.627596i −0.0447144 0.0447144i 0.684396 0.729110i \(-0.260066\pi\)
−0.729110 + 0.684396i \(0.760066\pi\)
\(198\) 0 0
\(199\) 16.5375 1.17231 0.586156 0.810198i \(-0.300641\pi\)
0.586156 + 0.810198i \(0.300641\pi\)
\(200\) −3.76593 3.76593i −0.266291 0.266291i
\(201\) 0 0
\(202\) −14.0004 14.0004i −0.985067 0.985067i
\(203\) −1.48515 2.48974i −0.104237 0.174746i
\(204\) 0 0
\(205\) 16.0502i 1.12100i
\(206\) −1.91192 1.91192i −0.133210 0.133210i
\(207\) 0 0
\(208\) −2.00000 3.00000i −0.138675 0.208013i
\(209\) 4.25261i 0.294159i
\(210\) 0 0
\(211\) −0.551329 −0.0379551 −0.0189775 0.999820i \(-0.506041\pi\)
−0.0189775 + 0.999820i \(0.506041\pi\)
\(212\) 11.2552i 0.773010i
\(213\) 0 0
\(214\) −8.24999 8.24999i −0.563958 0.563958i
\(215\) −16.9249 16.9249i −1.15427 1.15427i
\(216\) 0 0
\(217\) 3.92936 + 0.993080i 0.266743 + 0.0674147i
\(218\) 7.49005i 0.507290i
\(219\) 0 0
\(220\) 1.61504 0.108886
\(221\) 8.65166 + 12.9775i 0.581973 + 0.872960i
\(222\) 0 0
\(223\) −9.89430 + 9.89430i −0.662571 + 0.662571i −0.955985 0.293414i \(-0.905208\pi\)
0.293414 + 0.955985i \(0.405208\pi\)
\(224\) −0.648285 + 2.56510i −0.0433153 + 0.171388i
\(225\) 0 0
\(226\) 14.3854 + 14.3854i 0.956902 + 0.956902i
\(227\) 1.67417 1.67417i 0.111119 0.111119i −0.649361 0.760480i \(-0.724964\pi\)
0.760480 + 0.649361i \(0.224964\pi\)
\(228\) 0 0
\(229\) 1.32583 + 1.32583i 0.0876132 + 0.0876132i 0.749555 0.661942i \(-0.230267\pi\)
−0.661942 + 0.749555i \(0.730267\pi\)
\(230\) 7.66377i 0.505334i
\(231\) 0 0
\(232\) −0.774804 + 0.774804i −0.0508684 + 0.0508684i
\(233\) 10.2117i 0.668988i −0.942398 0.334494i \(-0.891435\pi\)
0.942398 0.334494i \(-0.108565\pi\)
\(234\) 0 0
\(235\) −21.4077 −1.39649
\(236\) 3.61504 3.61504i 0.235319 0.235319i
\(237\) 0 0
\(238\) 2.80437 11.0962i 0.181780 0.719258i
\(239\) 15.2212 + 15.2212i 0.984575 + 0.984575i 0.999883 0.0153074i \(-0.00487267\pi\)
−0.0153074 + 0.999883i \(0.504873\pi\)
\(240\) 0 0
\(241\) −3.38496 3.38496i −0.218044 0.218044i 0.589630 0.807674i \(-0.299274\pi\)
−0.807674 + 0.589630i \(0.799274\pi\)
\(242\) 7.59955 7.59955i 0.488518 0.488518i
\(243\) 0 0
\(244\) −4.32583 −0.276933
\(245\) −6.43858 21.5525i −0.411346 1.37694i
\(246\) 0 0
\(247\) 29.9149 + 5.98299i 1.90344 + 0.380688i
\(248\) 1.53186i 0.0972731i
\(249\) 0 0
\(250\) 1.04701i 0.0662186i
\(251\) −17.2281 −1.08743 −0.543714 0.839271i \(-0.682982\pi\)
−0.543714 + 0.839271i \(0.682982\pi\)
\(252\) 0 0
\(253\) −0.847593 0.847593i −0.0532877 0.0532877i
\(254\) −5.37976 + 5.37976i −0.337556 + 0.337556i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −3.32324 −0.207298 −0.103649 0.994614i \(-0.533052\pi\)
−0.103649 + 0.994614i \(0.533052\pi\)
\(258\) 0 0
\(259\) −18.8237 4.75736i −1.16965 0.295608i
\(260\) 2.27220 11.3610i 0.140916 0.704581i
\(261\) 0 0
\(262\) −4.85799 + 4.85799i −0.300128 + 0.300128i
\(263\) 0.818029 0.0504418 0.0252209 0.999682i \(-0.491971\pi\)
0.0252209 + 0.999682i \(0.491971\pi\)
\(264\) 0 0
\(265\) −25.5741 + 25.5741i −1.57100 + 1.57100i
\(266\) −11.4683 19.2256i −0.703165 1.17880i
\(267\) 0 0
\(268\) 0.531858 0.531858i 0.0324884 0.0324884i
\(269\) 21.6081i 1.31747i 0.752375 + 0.658735i \(0.228908\pi\)
−0.752375 + 0.658735i \(0.771092\pi\)
\(270\) 0 0
\(271\) 15.0422 + 15.0422i 0.913751 + 0.913751i 0.996565 0.0828139i \(-0.0263907\pi\)
−0.0828139 + 0.996565i \(0.526391\pi\)
\(272\) −4.32583 −0.262292
\(273\) 0 0
\(274\) −0.384955 −0.0232560
\(275\) 1.89275 + 1.89275i 0.114137 + 0.114137i
\(276\) 0 0
\(277\) 17.7996i 1.06947i −0.845018 0.534737i \(-0.820411\pi\)
0.845018 0.534737i \(-0.179589\pi\)
\(278\) −14.3854 + 14.3854i −0.862778 + 0.862778i
\(279\) 0 0
\(280\) −7.30146 + 4.35539i −0.436346 + 0.260284i
\(281\) −6.20862 + 6.20862i −0.370375 + 0.370375i −0.867614 0.497239i \(-0.834347\pi\)
0.497239 + 0.867614i \(0.334347\pi\)
\(282\) 0 0
\(283\) 25.1090 1.49258 0.746288 0.665624i \(-0.231834\pi\)
0.746288 + 0.665624i \(0.231834\pi\)
\(284\) 6.38496 6.38496i 0.378877 0.378877i
\(285\) 0 0
\(286\) 1.00520 + 1.50780i 0.0594387 + 0.0891580i
\(287\) −12.8122 3.23805i −0.756277 0.191136i
\(288\) 0 0
\(289\) 1.71278 0.100752
\(290\) −3.52103 −0.206762
\(291\) 0 0
\(292\) 5.18902 5.18902i 0.303664 0.303664i
\(293\) −8.51343 8.51343i −0.497360 0.497360i 0.413255 0.910615i \(-0.364392\pi\)
−0.910615 + 0.413255i \(0.864392\pi\)
\(294\) 0 0
\(295\) 16.4282 0.956489
\(296\) 7.33838i 0.426535i
\(297\) 0 0
\(298\) 14.9461i 0.865803i
\(299\) −7.15487 + 4.76991i −0.413777 + 0.275851i
\(300\) 0 0
\(301\) −16.9249 + 10.0959i −0.975535 + 0.581916i
\(302\) 0.211229 0.0121549
\(303\) 0 0
\(304\) −5.98299 + 5.98299i −0.343148 + 0.343148i
\(305\) −9.82917 9.82917i −0.562816 0.562816i
\(306\) 0 0
\(307\) 10.0397 + 10.0397i 0.572993 + 0.572993i 0.932964 0.359970i \(-0.117213\pi\)
−0.359970 + 0.932964i \(0.617213\pi\)
\(308\) 0.325828 1.28922i 0.0185658 0.0734600i
\(309\) 0 0
\(310\) 3.48069 3.48069i 0.197690 0.197690i
\(311\) −15.7064 −0.890631 −0.445316 0.895374i \(-0.646908\pi\)
−0.445316 + 0.895374i \(0.646908\pi\)
\(312\) 0 0
\(313\) 20.7702i 1.17400i −0.809587 0.587000i \(-0.800309\pi\)
0.809587 0.587000i \(-0.199691\pi\)
\(314\) 7.61058 7.61058i 0.429490 0.429490i
\(315\) 0 0
\(316\) 11.3143i 0.636480i
\(317\) −19.0126 19.0126i −1.06785 1.06785i −0.997524 0.0703273i \(-0.977596\pi\)
−0.0703273 0.997524i \(-0.522404\pi\)
\(318\) 0 0
\(319\) 0.389416 0.389416i 0.0218031 0.0218031i
\(320\) 2.27220 + 2.27220i 0.127020 + 0.127020i
\(321\) 0 0
\(322\) 6.11764 + 1.54613i 0.340923 + 0.0861625i
\(323\) 25.8814 25.8814i 1.44008 1.44008i
\(324\) 0 0
\(325\) 15.9775 10.6517i 0.886271 0.590848i
\(326\) 4.82107 0.267015
\(327\) 0 0
\(328\) 4.99480i 0.275792i
\(329\) −4.31891 + 17.0888i −0.238109 + 0.942137i
\(330\) 0 0
\(331\) −13.9785 13.9785i −0.768329 0.768329i 0.209483 0.977812i \(-0.432822\pi\)
−0.977812 + 0.209483i \(0.932822\pi\)
\(332\) −6.71078 6.71078i −0.368302 0.368302i
\(333\) 0 0
\(334\) 14.1742i 0.775575i
\(335\) 2.41698 0.132054
\(336\) 0 0
\(337\) 1.09574i 0.0596887i −0.999555 0.0298443i \(-0.990499\pi\)
0.999555 0.0298443i \(-0.00950116\pi\)
\(338\) 12.0208 4.94975i 0.653846 0.269231i
\(339\) 0 0
\(340\) −9.82917 9.82917i −0.533061 0.533061i
\(341\) 0.769911i 0.0416930i
\(342\) 0 0
\(343\) −18.5033 + 0.791511i −0.999086 + 0.0427376i
\(344\) 5.26701 + 5.26701i 0.283978 + 0.283978i
\(345\) 0 0
\(346\) −13.9586 13.9586i −0.750420 0.750420i
\(347\) −32.0983 −1.72313 −0.861564 0.507649i \(-0.830515\pi\)
−0.861564 + 0.507649i \(0.830515\pi\)
\(348\) 0 0
\(349\) 18.9660 + 18.9660i 1.01523 + 1.01523i 0.999882 + 0.0153431i \(0.00488405\pi\)
0.0153431 + 0.999882i \(0.495116\pi\)
\(350\) −13.6613 3.45265i −0.730226 0.184552i
\(351\) 0 0
\(352\) −0.502600 −0.0267886
\(353\) −15.5500 + 15.5500i −0.827645 + 0.827645i −0.987191 0.159545i \(-0.948997\pi\)
0.159545 + 0.987191i \(0.448997\pi\)
\(354\) 0 0
\(355\) 29.0159 1.54000
\(356\) −3.75044 + 3.75044i −0.198773 + 0.198773i
\(357\) 0 0
\(358\) 6.92936 6.92936i 0.366228 0.366228i
\(359\) 14.1846 14.1846i 0.748632 0.748632i −0.225590 0.974222i \(-0.572431\pi\)
0.974222 + 0.225590i \(0.0724310\pi\)
\(360\) 0 0
\(361\) 52.5923i 2.76801i
\(362\) −7.38019 7.38019i −0.387894 0.387894i
\(363\) 0 0
\(364\) −8.61058 4.10583i −0.451317 0.215204i
\(365\) 23.5810 1.23429
\(366\) 0 0
\(367\) 11.2552i 0.587516i −0.955880 0.293758i \(-0.905094\pi\)
0.955880 0.293758i \(-0.0949060\pi\)
\(368\) 2.38496i 0.124324i
\(369\) 0 0
\(370\) −16.6743 + 16.6743i −0.866856 + 0.866856i
\(371\) 15.2552 + 25.5741i 0.792010 + 1.32774i
\(372\) 0 0
\(373\) 17.1479 0.887887 0.443944 0.896055i \(-0.353579\pi\)
0.443944 + 0.896055i \(0.353579\pi\)
\(374\) 2.17416 0.112423
\(375\) 0 0
\(376\) 6.66205 0.343569
\(377\) −2.19148 3.28722i −0.112867 0.169300i
\(378\) 0 0
\(379\) 11.5685 + 11.5685i 0.594232 + 0.594232i 0.938772 0.344540i \(-0.111965\pi\)
−0.344540 + 0.938772i \(0.611965\pi\)
\(380\) −27.1891 −1.39477
\(381\) 0 0
\(382\) 7.87790 + 7.87790i 0.403068 + 0.403068i
\(383\) −1.26657 + 1.26657i −0.0647189 + 0.0647189i −0.738725 0.674007i \(-0.764572\pi\)
0.674007 + 0.738725i \(0.264572\pi\)
\(384\) 0 0
\(385\) 3.66971 2.18902i 0.187026 0.111563i
\(386\) −5.70863 −0.290562
\(387\) 0 0
\(388\) −12.9931 12.9931i −0.659624 0.659624i
\(389\) 7.90685i 0.400893i −0.979705 0.200447i \(-0.935761\pi\)
0.979705 0.200447i \(-0.0642393\pi\)
\(390\) 0 0
\(391\) 10.3169i 0.521748i
\(392\) 2.00368 + 6.70711i 0.101201 + 0.338760i
\(393\) 0 0
\(394\) 0.887555i 0.0447144i
\(395\) 25.7085 25.7085i 1.29353 1.29353i
\(396\) 0 0
\(397\) −16.4467 16.4467i −0.825435 0.825435i 0.161447 0.986881i \(-0.448384\pi\)
−0.986881 + 0.161447i \(0.948384\pi\)
\(398\) −11.6938 11.6938i −0.586156 0.586156i
\(399\) 0 0
\(400\) 5.32583i 0.266291i
\(401\) −15.0126 + 15.0126i −0.749691 + 0.749691i −0.974421 0.224730i \(-0.927850\pi\)
0.224730 + 0.974421i \(0.427850\pi\)
\(402\) 0 0
\(403\) 5.41593 + 1.08319i 0.269787 + 0.0539574i
\(404\) 19.7996i 0.985067i
\(405\) 0 0
\(406\) −0.710351 + 2.81068i −0.0352541 + 0.139492i
\(407\) 3.68827i 0.182821i
\(408\) 0 0
\(409\) 19.0477 19.0477i 0.941850 0.941850i −0.0565493 0.998400i \(-0.518010\pi\)
0.998400 + 0.0565493i \(0.0180098\pi\)
\(410\) −11.3492 + 11.3492i −0.560498 + 0.560498i
\(411\) 0 0
\(412\) 2.70386i 0.133210i
\(413\) 3.31432 13.1139i 0.163087 0.645294i
\(414\) 0 0
\(415\) 30.4965i 1.49702i
\(416\) −0.707107 + 3.53553i −0.0346688 + 0.173344i
\(417\) 0 0
\(418\) 3.00705 3.00705i 0.147079 0.147079i
\(419\) 38.8022i 1.89561i 0.318849 + 0.947805i \(0.396704\pi\)
−0.318849 + 0.947805i \(0.603296\pi\)
\(420\) 0 0
\(421\) −19.5375 19.5375i −0.952199 0.952199i 0.0467096 0.998909i \(-0.485126\pi\)
−0.998909 + 0.0467096i \(0.985126\pi\)
\(422\) 0.389849 + 0.389849i 0.0189775 + 0.0189775i
\(423\) 0 0
\(424\) 7.95862 7.95862i 0.386505 0.386505i
\(425\) 23.0386i 1.11754i
\(426\) 0 0
\(427\) −9.82917 + 5.86319i −0.475667 + 0.283740i
\(428\) 11.6673i 0.563958i
\(429\) 0 0
\(430\) 23.9354i 1.15427i
\(431\) −1.45559 1.45559i −0.0701133 0.0701133i 0.671181 0.741294i \(-0.265788\pi\)
−0.741294 + 0.671181i \(0.765788\pi\)
\(432\) 0 0
\(433\) −35.8137 −1.72110 −0.860548 0.509369i \(-0.829879\pi\)
−0.860548 + 0.509369i \(0.829879\pi\)
\(434\) −2.07627 3.48069i −0.0996640 0.167079i
\(435\) 0 0
\(436\) 5.29626 5.29626i 0.253645 0.253645i
\(437\) 14.2692 + 14.2692i 0.682586 + 0.682586i
\(438\) 0 0
\(439\) 14.2667 0.680912 0.340456 0.940260i \(-0.389418\pi\)
0.340456 + 0.940260i \(0.389418\pi\)
\(440\) −1.14201 1.14201i −0.0544431 0.0544431i
\(441\) 0 0
\(442\) 3.05882 15.2941i 0.145493 0.727467i
\(443\) 20.7019 0.983575 0.491788 0.870715i \(-0.336344\pi\)
0.491788 + 0.870715i \(0.336344\pi\)
\(444\) 0 0
\(445\) −17.0435 −0.807941
\(446\) 13.9926 0.662571
\(447\) 0 0
\(448\) 2.27220 1.35539i 0.107352 0.0640362i
\(449\) 20.2382 20.2382i 0.955099 0.955099i −0.0439356 0.999034i \(-0.513990\pi\)
0.999034 + 0.0439356i \(0.0139896\pi\)
\(450\) 0 0
\(451\) 2.51038i 0.118209i
\(452\) 20.3440i 0.956902i
\(453\) 0 0
\(454\) −2.36764 −0.111119
\(455\) −10.2357 28.8943i −0.479858 1.35459i
\(456\) 0 0
\(457\) −18.1891 18.1891i −0.850852 0.850852i 0.139386 0.990238i \(-0.455487\pi\)
−0.990238 + 0.139386i \(0.955487\pi\)
\(458\) 1.87500i 0.0876132i
\(459\) 0 0
\(460\) 5.41911 5.41911i 0.252667 0.252667i
\(461\) 1.18339 1.18339i 0.0551158 0.0551158i −0.679012 0.734127i \(-0.737591\pi\)
0.734127 + 0.679012i \(0.237591\pi\)
\(462\) 0 0
\(463\) 4.93946 4.93946i 0.229556 0.229556i −0.582951 0.812507i \(-0.698102\pi\)
0.812507 + 0.582951i \(0.198102\pi\)
\(464\) 1.09574 0.0508684
\(465\) 0 0
\(466\) −7.22074 + 7.22074i −0.334494 + 0.334494i
\(467\) 26.6900 1.23507 0.617533 0.786545i \(-0.288132\pi\)
0.617533 + 0.786545i \(0.288132\pi\)
\(468\) 0 0
\(469\) 0.487614 1.92936i 0.0225159 0.0890898i
\(470\) 15.1375 + 15.1375i 0.698243 + 0.698243i
\(471\) 0 0
\(472\) −5.11245 −0.235319
\(473\) −2.64719 2.64719i −0.121718 0.121718i
\(474\) 0 0
\(475\) −31.8644 31.8644i −1.46204 1.46204i
\(476\) −9.82917 + 5.86319i −0.450519 + 0.268739i
\(477\) 0 0
\(478\) 21.5260i 0.984575i
\(479\) 7.35998 + 7.35998i 0.336286 + 0.336286i 0.854968 0.518682i \(-0.173577\pi\)
−0.518682 + 0.854968i \(0.673577\pi\)
\(480\) 0 0
\(481\) −25.9451 5.18902i −1.18299 0.236599i
\(482\) 4.78705i 0.218044i
\(483\) 0 0
\(484\) −10.7474 −0.488518
\(485\) 59.0459i 2.68113i
\(486\) 0 0
\(487\) 25.1766 + 25.1766i 1.14086 + 1.14086i 0.988293 + 0.152567i \(0.0487541\pi\)
0.152567 + 0.988293i \(0.451246\pi\)
\(488\) 3.05882 + 3.05882i 0.138466 + 0.138466i
\(489\) 0 0
\(490\) −10.6872 + 19.7927i −0.482797 + 0.894142i
\(491\) 7.77450i 0.350858i −0.984492 0.175429i \(-0.943869\pi\)
0.984492 0.175429i \(-0.0561313\pi\)
\(492\) 0 0
\(493\) −4.73998 −0.213478
\(494\) −16.9224 25.3837i −0.761377 1.14207i
\(495\) 0 0
\(496\) −1.08319 + 1.08319i −0.0486365 + 0.0486365i
\(497\) 5.85381 23.1620i 0.262579 1.03896i
\(498\) 0 0
\(499\) 23.4592 + 23.4592i 1.05018 + 1.05018i 0.998673 + 0.0515063i \(0.0164022\pi\)
0.0515063 + 0.998673i \(0.483598\pi\)
\(500\) −0.740347 + 0.740347i −0.0331093 + 0.0331093i
\(501\) 0 0
\(502\) 12.1821 + 12.1821i 0.543714 + 0.543714i
\(503\) 12.0000i 0.535054i 0.963550 + 0.267527i \(0.0862064\pi\)
−0.963550 + 0.267527i \(0.913794\pi\)
\(504\) 0 0
\(505\) −44.9887 + 44.9887i −2.00197 + 2.00197i
\(506\) 1.19868i 0.0532877i
\(507\) 0 0
\(508\) 7.60812 0.337556
\(509\) −11.0283 + 11.0283i −0.488820 + 0.488820i −0.907934 0.419114i \(-0.862341\pi\)
0.419114 + 0.907934i \(0.362341\pi\)
\(510\) 0 0
\(511\) 4.75736 18.8237i 0.210453 0.832710i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 2.34989 + 2.34989i 0.103649 + 0.103649i
\(515\) −6.14373 + 6.14373i −0.270725 + 0.270725i
\(516\) 0 0
\(517\) −3.34834 −0.147260
\(518\) 9.94638 + 16.6743i 0.437019 + 0.732627i
\(519\) 0 0
\(520\) −9.64015 + 6.42677i −0.422748 + 0.281832i
\(521\) 18.5654i 0.813366i −0.913569 0.406683i \(-0.866685\pi\)
0.913569 0.406683i \(-0.133315\pi\)
\(522\) 0 0
\(523\) 27.5741i 1.20573i −0.797843 0.602866i \(-0.794026\pi\)
0.797843 0.602866i \(-0.205974\pi\)
\(524\) 6.87024 0.300128
\(525\) 0 0
\(526\) −0.578434 0.578434i −0.0252209 0.0252209i
\(527\) 4.68568 4.68568i 0.204111 0.204111i
\(528\) 0 0
\(529\) 17.3120 0.752695
\(530\) 36.1672 1.57100
\(531\) 0 0
\(532\) −5.48528 + 21.7039i −0.237817 + 0.940982i
\(533\) −17.6593 3.53186i −0.764909 0.152982i
\(534\) 0 0
\(535\) −26.5104 + 26.5104i −1.14614 + 1.14614i
\(536\) −0.752160 −0.0324884
\(537\) 0 0
\(538\) 15.2793 15.2793i 0.658735 0.658735i
\(539\) −1.00705 3.37099i −0.0433766 0.145199i
\(540\) 0 0
\(541\) −25.5330 + 25.5330i −1.09775 + 1.09775i −0.103077 + 0.994673i \(0.532869\pi\)
−0.994673 + 0.103077i \(0.967131\pi\)
\(542\) 21.2729i 0.913751i
\(543\) 0 0
\(544\) 3.05882 + 3.05882i 0.131146 + 0.131146i
\(545\) 24.0684 1.03098
\(546\) 0 0
\(547\) 44.1966 1.88971 0.944856 0.327486i \(-0.106201\pi\)
0.944856 + 0.327486i \(0.106201\pi\)
\(548\) 0.272205 + 0.272205i 0.0116280 + 0.0116280i
\(549\) 0 0
\(550\) 2.67676i 0.114137i
\(551\) −6.55579 + 6.55579i −0.279286 + 0.279286i
\(552\) 0 0
\(553\) −15.3353 25.7085i −0.652125 1.09323i
\(554\) −12.5862 + 12.5862i −0.534737 + 0.534737i
\(555\) 0 0
\(556\) 20.3440 0.862778
\(557\) 11.7755 11.7755i 0.498946 0.498946i −0.412164 0.911110i \(-0.635227\pi\)
0.911110 + 0.412164i \(0.135227\pi\)
\(558\) 0 0
\(559\) −22.3460 + 14.8973i −0.945136 + 0.630090i
\(560\) 8.24264 + 2.08319i 0.348315 + 0.0880307i
\(561\) 0 0
\(562\) 8.78031 0.370375
\(563\) 45.7636 1.92870 0.964352 0.264621i \(-0.0852470\pi\)
0.964352 + 0.264621i \(0.0852470\pi\)
\(564\) 0 0
\(565\) 46.2258 46.2258i 1.94473 1.94473i
\(566\) −17.7547 17.7547i −0.746288 0.746288i
\(567\) 0 0
\(568\) −9.02969 −0.378877
\(569\) 39.5061i 1.65618i 0.560595 + 0.828090i \(0.310572\pi\)
−0.560595 + 0.828090i \(0.689428\pi\)
\(570\) 0 0
\(571\) 19.1620i 0.801906i −0.916099 0.400953i \(-0.868679\pi\)
0.916099 0.400953i \(-0.131321\pi\)
\(572\) 0.355392 1.77696i 0.0148597 0.0742983i
\(573\) 0 0
\(574\) 6.76991 + 11.3492i 0.282571 + 0.473707i
\(575\) 12.7019 0.529704
\(576\) 0 0
\(577\) −3.53749 + 3.53749i −0.147268 + 0.147268i −0.776896 0.629629i \(-0.783207\pi\)
0.629629 + 0.776896i \(0.283207\pi\)
\(578\) −1.21112 1.21112i −0.0503760 0.0503760i
\(579\) 0 0
\(580\) 2.48974 + 2.48974i 0.103381 + 0.103381i
\(581\) −24.3440 6.15253i −1.00996 0.255250i
\(582\) 0 0
\(583\) −4.00000 + 4.00000i −0.165663 + 0.165663i
\(584\) −7.33838 −0.303664
\(585\) 0 0
\(586\) 12.0398i 0.497360i
\(587\) 4.98849 4.98849i 0.205897 0.205897i −0.596624 0.802521i \(-0.703492\pi\)
0.802521 + 0.596624i \(0.203492\pi\)
\(588\) 0 0
\(589\) 12.9614i 0.534065i
\(590\) −11.6165 11.6165i −0.478245 0.478245i
\(591\) 0 0
\(592\) 5.18902 5.18902i 0.213267 0.213267i
\(593\) 3.14690 + 3.14690i 0.129228 + 0.129228i 0.768762 0.639535i \(-0.220873\pi\)
−0.639535 + 0.768762i \(0.720873\pi\)
\(594\) 0 0
\(595\) −35.6562 9.01151i −1.46176 0.369436i
\(596\) 10.5685 10.5685i 0.432901 0.432901i
\(597\) 0 0
\(598\) 8.43209 + 1.68642i 0.344814 + 0.0689628i
\(599\) −14.9244 −0.609796 −0.304898 0.952385i \(-0.598622\pi\)
−0.304898 + 0.952385i \(0.598622\pi\)
\(600\) 0 0
\(601\) 14.3189i 0.584080i −0.956406 0.292040i \(-0.905666\pi\)
0.956406 0.292040i \(-0.0943341\pi\)
\(602\) 19.1066 + 4.82886i 0.778726 + 0.196810i
\(603\) 0 0
\(604\) −0.149362 0.149362i −0.00607743 0.00607743i
\(605\) −24.4203 24.4203i −0.992825 0.992825i
\(606\) 0 0
\(607\) 17.3212i 0.703047i 0.936179 + 0.351524i \(0.114336\pi\)
−0.936179 + 0.351524i \(0.885664\pi\)
\(608\) 8.46122 0.343148
\(609\) 0 0
\(610\) 13.9005i 0.562816i
\(611\) −4.71078 + 23.5539i −0.190578 + 0.952889i
\(612\) 0 0
\(613\) 28.6700 + 28.6700i 1.15797 + 1.15797i 0.984912 + 0.173057i \(0.0553646\pi\)
0.173057 + 0.984912i \(0.444635\pi\)
\(614\) 14.1982i 0.572993i
\(615\) 0 0
\(616\) −1.14201 + 0.681219i −0.0460129 + 0.0274471i
\(617\) 9.91435 + 9.91435i 0.399137 + 0.399137i 0.877929 0.478792i \(-0.158925\pi\)
−0.478792 + 0.877929i \(0.658925\pi\)
\(618\) 0 0
\(619\) −3.87574 3.87574i −0.155779 0.155779i 0.624914 0.780693i \(-0.285134\pi\)
−0.780693 + 0.624914i \(0.785134\pi\)
\(620\) −4.92244 −0.197690
\(621\) 0 0
\(622\) 11.1061 + 11.1061i 0.445316 + 0.445316i
\(623\) −3.43845 + 13.6051i −0.137759 + 0.545076i
\(624\) 0 0
\(625\) 23.2647 0.930588
\(626\) −14.6867 + 14.6867i −0.587000 + 0.587000i
\(627\) 0 0
\(628\) −10.7630 −0.429490
\(629\) −22.4468 + 22.4468i −0.895012 + 0.895012i
\(630\) 0 0
\(631\) −21.5709 + 21.5709i −0.858725 + 0.858725i −0.991188 0.132463i \(-0.957711\pi\)
0.132463 + 0.991188i \(0.457711\pi\)
\(632\) −8.00043 + 8.00043i −0.318240 + 0.318240i
\(633\) 0 0
\(634\) 26.8878i 1.06785i
\(635\) 17.2872 + 17.2872i 0.686022 + 0.686022i
\(636\) 0 0
\(637\) −25.1300 + 2.34142i −0.995688 + 0.0927706i
\(638\) −0.550718 −0.0218031
\(639\) 0 0
\(640\) 3.21338i 0.127020i
\(641\) 25.8728i 1.02192i −0.859606 0.510958i \(-0.829291\pi\)
0.859606 0.510958i \(-0.170709\pi\)
\(642\) 0 0
\(643\) −3.32032 + 3.32032i −0.130941 + 0.130941i −0.769540 0.638599i \(-0.779514\pi\)
0.638599 + 0.769540i \(0.279514\pi\)
\(644\) −3.23255 5.41911i −0.127380 0.213543i
\(645\) 0 0
\(646\) −36.6018 −1.44008
\(647\) 28.6969 1.12819 0.564097 0.825709i \(-0.309225\pi\)
0.564097 + 0.825709i \(0.309225\pi\)
\(648\) 0 0
\(649\) 2.56951 0.100862
\(650\) −18.8296 3.76593i −0.738559 0.147712i
\(651\) 0 0
\(652\) −3.40901 3.40901i −0.133507 0.133507i
\(653\) 27.9250 1.09279 0.546395 0.837527i \(-0.316000\pi\)
0.546395 + 0.837527i \(0.316000\pi\)
\(654\) 0 0
\(655\) 15.6106 + 15.6106i 0.609956 + 0.609956i
\(656\) 3.53186 3.53186i 0.137896 0.137896i
\(657\) 0 0
\(658\) 15.1375 9.02969i 0.590123 0.352014i
\(659\) 38.2258 1.48906 0.744532 0.667587i \(-0.232673\pi\)
0.744532 + 0.667587i \(0.232673\pi\)
\(660\) 0 0
\(661\) −4.52189 4.52189i −0.175881 0.175881i 0.613676 0.789558i \(-0.289690\pi\)
−0.789558 + 0.613676i \(0.789690\pi\)
\(662\) 19.7686i 0.768329i
\(663\) 0 0
\(664\) 9.49048i 0.368302i
\(665\) −61.7793 + 36.8519i −2.39570 + 1.42906i
\(666\) 0 0
\(667\) 2.61329i 0.101187i
\(668\) −10.0226 + 10.0226i −0.387788 + 0.387788i
\(669\) 0 0
\(670\) −1.70906 1.70906i −0.0660268 0.0660268i
\(671\) −1.53736 1.53736i −0.0593492 0.0593492i
\(672\) 0 0
\(673\) 16.7180i 0.644430i −0.946667 0.322215i \(-0.895573\pi\)
0.946667 0.322215i \(-0.104427\pi\)
\(674\) −0.774804 + 0.774804i −0.0298443 + 0.0298443i
\(675\) 0 0
\(676\) −12.0000 5.00000i −0.461538 0.192308i
\(677\) 37.8247i 1.45372i −0.686785 0.726861i \(-0.740979\pi\)
0.686785 0.726861i \(-0.259021\pi\)
\(678\) 0 0
\(679\) −47.1336 11.9122i −1.80882 0.457149i
\(680\) 13.9005i 0.533061i
\(681\) 0 0
\(682\) 0.544409 0.544409i 0.0208465 0.0208465i
\(683\) −3.10020 + 3.10020i −0.118626 + 0.118626i −0.763928 0.645302i \(-0.776732\pi\)
0.645302 + 0.763928i \(0.276732\pi\)
\(684\) 0 0
\(685\) 1.23701i 0.0472637i
\(686\) 13.6435 + 12.5242i 0.520912 + 0.478174i
\(687\) 0 0
\(688\) 7.44867i 0.283978i
\(689\) 22.5104 + 33.7656i 0.857577 + 1.28637i
\(690\) 0 0
\(691\) −11.1083 + 11.1083i −0.422579 + 0.422579i −0.886091 0.463512i \(-0.846589\pi\)
0.463512 + 0.886091i \(0.346589\pi\)
\(692\) 19.7405i 0.750420i
\(693\) 0 0
\(694\) 22.6969 + 22.6969i 0.861564 + 0.861564i
\(695\) 46.2258 + 46.2258i 1.75344 + 1.75344i
\(696\) 0 0
\(697\) −15.2782 + 15.2782i −0.578703 + 0.578703i
\(698\) 26.8219i 1.01523i
\(699\) 0 0
\(700\) 7.21858 + 12.1014i 0.272837 + 0.457389i
\(701\) 2.49912i 0.0943905i 0.998886 + 0.0471953i \(0.0150283\pi\)
−0.998886 + 0.0471953i \(0.984972\pi\)
\(702\) 0 0
\(703\) 62.0917i 2.34183i
\(704\) 0.355392 + 0.355392i 0.0133943 + 0.0133943i
\(705\) 0 0
\(706\) 21.9911 0.827645
\(707\) 26.8362 + 44.9887i 1.00928 + 1.69198i
\(708\) 0 0
\(709\) 25.3601 25.3601i 0.952419 0.952419i −0.0464996 0.998918i \(-0.514807\pi\)
0.998918 + 0.0464996i \(0.0148066\pi\)
\(710\) −20.5173 20.5173i −0.770001 0.770001i
\(711\) 0 0
\(712\) 5.30392 0.198773
\(713\) 2.58335 + 2.58335i 0.0967473 + 0.0967473i
\(714\) 0 0
\(715\) 4.84513 3.23009i 0.181198 0.120798i
\(716\) −9.79960 −0.366228
\(717\) 0 0
\(718\) −20.0600 −0.748632
\(719\) −41.5150 −1.54825 −0.774124 0.633034i \(-0.781809\pi\)
−0.774124 + 0.633034i \(0.781809\pi\)
\(720\) 0 0
\(721\) 3.66479 + 6.14373i 0.136484 + 0.228804i
\(722\) −37.1884 + 37.1884i −1.38401 + 1.38401i
\(723\) 0 0
\(724\) 10.4372i 0.387894i
\(725\) 5.83571i 0.216733i
\(726\) 0 0
\(727\) 48.1505 1.78580 0.892902 0.450251i \(-0.148665\pi\)
0.892902 + 0.450251i \(0.148665\pi\)
\(728\) 3.18534 + 8.99186i 0.118057 + 0.333261i
\(729\) 0 0
\(730\) −16.6743 16.6743i −0.617143 0.617143i
\(731\) 32.2217i 1.19176i
\(732\) 0 0
\(733\) 7.58561 7.58561i 0.280181 0.280181i −0.553000 0.833181i \(-0.686517\pi\)
0.833181 + 0.553000i \(0.186517\pi\)
\(734\) −7.95862 + 7.95862i −0.293758 + 0.293758i
\(735\) 0 0
\(736\) −1.68642 + 1.68642i −0.0621622 + 0.0621622i
\(737\) 0.378035 0.0139251
\(738\) 0 0
\(739\) 0.923733 0.923733i 0.0339801 0.0339801i −0.689913 0.723893i \(-0.742351\pi\)
0.723893 + 0.689913i \(0.242351\pi\)
\(740\) 23.5810 0.866856
\(741\) 0 0
\(742\) 7.29657 28.8707i 0.267865 1.05988i
\(743\) 7.95906 + 7.95906i 0.291989 + 0.291989i 0.837866 0.545876i \(-0.183803\pi\)
−0.545876 + 0.837866i \(0.683803\pi\)
\(744\) 0 0
\(745\) 48.0274 1.75959
\(746\) −12.1254 12.1254i −0.443944 0.443944i
\(747\) 0 0
\(748\) −1.53736 1.53736i −0.0562115 0.0562115i
\(749\) 15.8137 + 26.5104i 0.577820 + 0.968668i
\(750\) 0 0
\(751\) 48.2119i 1.75928i 0.475642 + 0.879639i \(0.342216\pi\)
−0.475642 + 0.879639i \(0.657784\pi\)
\(752\) −4.71078 4.71078i −0.171785 0.171785i
\(753\) 0 0
\(754\) −0.774804 + 3.87402i −0.0282167 + 0.141084i
\(755\) 0.678760i 0.0247026i
\(756\) 0 0
\(757\) 47.8137 1.73782 0.868909 0.494972i \(-0.164822\pi\)
0.868909 + 0.494972i \(0.164822\pi\)
\(758\) 16.3603i 0.594232i
\(759\) 0 0
\(760\) 19.2256 + 19.2256i 0.697387 + 0.697387i
\(761\) −14.6867 14.6867i −0.532393 0.532393i 0.388891 0.921284i \(-0.372858\pi\)
−0.921284 + 0.388891i \(0.872858\pi\)
\(762\) 0 0
\(763\) 4.85568 19.2127i 0.175788 0.695547i
\(764\) 11.1410i 0.403068i
\(765\) 0 0
\(766\) 1.79120 0.0647189
\(767\) 3.61504 18.0752i 0.130532 0.652658i
\(768\) 0 0
\(769\) 34.5766 34.5766i 1.24686 1.24686i 0.289765 0.957098i \(-0.406423\pi\)
0.957098 0.289765i \(-0.0935771\pi\)
\(770\) −4.14275 1.04701i −0.149294 0.0377316i
\(771\) 0 0
\(772\) 4.03661 + 4.03661i 0.145281 + 0.145281i
\(773\) 3.88033 3.88033i 0.139566 0.139566i −0.633872 0.773438i \(-0.718535\pi\)
0.773438 + 0.633872i \(0.218535\pi\)
\(774\) 0 0
\(775\) −5.76887 5.76887i −0.207224 0.207224i
\(776\) 18.3750i 0.659624i
\(777\) 0 0
\(778\) −5.59099 + 5.59099i −0.200447 + 0.200447i
\(779\) 42.2621i 1.51420i
\(780\) 0 0
\(781\) 4.53832 0.162394
\(782\) 7.29515 7.29515i 0.260874 0.260874i
\(783\) 0 0
\(784\) 3.32583 6.15945i 0.118780 0.219980i
\(785\) −24.4557 24.4557i −0.872862 0.872862i
\(786\) 0 0
\(787\) 7.06054 + 7.06054i 0.251681 + 0.251681i 0.821660 0.569978i \(-0.193048\pi\)
−0.569978 + 0.821660i \(0.693048\pi\)
\(788\) 0.627596 0.627596i 0.0223572 0.0223572i
\(789\) 0 0
\(790\) −36.3572 −1.29353
\(791\) −27.5741 46.2258i −0.980422 1.64360i
\(792\) 0 0
\(793\) −12.9775 + 8.65166i −0.460844 + 0.307229i
\(794\) 23.2591i 0.825435i
\(795\) 0 0
\(796\) 16.5375i 0.586156i
\(797\) −31.7376 −1.12421 −0.562103 0.827068i \(-0.690007\pi\)
−0.562103 + 0.827068i \(0.690007\pi\)
\(798\) 0 0
\(799\) 20.3780 + 20.3780i 0.720923 + 0.720923i
\(800\) 3.76593 3.76593i 0.133146 0.133146i
\(801\) 0 0
\(802\) 21.2310 0.749691
\(803\) 3.68827 0.130156
\(804\) 0 0
\(805\) 4.96831 19.6583i 0.175110 0.692865i
\(806\) −3.06372 4.59557i −0.107915 0.161872i
\(807\) 0 0
\(808\) 14.0004 14.0004i 0.492533 0.492533i
\(809\) −5.38754 −0.189416 −0.0947079 0.995505i \(-0.530192\pi\)
−0.0947079 + 0.995505i \(0.530192\pi\)
\(810\) 0 0
\(811\) −24.4934 + 24.4934i −0.860079 + 0.860079i −0.991347 0.131268i \(-0.958095\pi\)
0.131268 + 0.991347i \(0.458095\pi\)
\(812\) 2.48974 1.48515i 0.0873728 0.0521187i
\(813\) 0 0
\(814\) −2.60800 + 2.60800i −0.0914103 + 0.0914103i
\(815\) 15.4920i 0.542660i
\(816\) 0 0
\(817\) 44.5653 + 44.5653i 1.55914 + 1.55914i
\(818\) −26.9376 −0.941850
\(819\) 0 0
\(820\) 16.0502 0.560498
\(821\) 14.8664 + 14.8664i 0.518840 + 0.518840i 0.917220 0.398381i \(-0.130428\pi\)
−0.398381 + 0.917220i \(0.630428\pi\)
\(822\) 0 0
\(823\) 46.5078i 1.62116i 0.585628 + 0.810580i \(0.300848\pi\)
−0.585628 + 0.810580i \(0.699152\pi\)
\(824\) 1.91192 1.91192i 0.0666049 0.0666049i
\(825\) 0 0
\(826\) −11.6165 + 6.92936i −0.404190 + 0.241103i
\(827\) 2.43470 2.43470i 0.0846630 0.0846630i −0.663507 0.748170i \(-0.730933\pi\)
0.748170 + 0.663507i \(0.230933\pi\)
\(828\) 0 0
\(829\) −5.61013 −0.194848 −0.0974239 0.995243i \(-0.531060\pi\)
−0.0974239 + 0.995243i \(0.531060\pi\)
\(830\) −21.5643 + 21.5643i −0.748508 + 0.748508i
\(831\) 0 0
\(832\) 3.00000 2.00000i 0.104006 0.0693375i
\(833\) −14.3870 + 26.6447i −0.498479 + 0.923185i
\(834\) 0 0
\(835\) −45.5470 −1.57622
\(836\) −4.25261 −0.147079
\(837\) 0 0
\(838\) 27.4373 27.4373i 0.947805 0.947805i
\(839\) −35.6724 35.6724i −1.23155 1.23155i −0.963369 0.268180i \(-0.913578\pi\)
−0.268180 0.963369i \(-0.586422\pi\)
\(840\) 0 0
\(841\) −27.7994 −0.958599
\(842\) 27.6302i 0.952199i
\(843\) 0 0
\(844\) 0.551329i 0.0189775i
\(845\) −15.9054 38.6275i −0.547164 1.32883i
\(846\) 0 0
\(847\) −24.4203 + 14.5669i −0.839091 + 0.500526i
\(848\) −11.2552 −0.386505
\(849\) 0 0
\(850\) −16.2908 + 16.2908i −0.558768 + 0.558768i
\(851\) −12.3756 12.3756i −0.424229 0.424229i
\(852\) 0 0
\(853\) 9.68368 + 9.68368i 0.331563 + 0.331563i 0.853180 0.521617i \(-0.174671\pi\)
−0.521617 + 0.853180i \(0.674671\pi\)
\(854\) 11.0962 + 2.80437i 0.379703 + 0.0959635i
\(855\) 0 0
\(856\) 8.24999 8.24999i 0.281979 0.281979i
\(857\) −10.6859 −0.365025 −0.182512 0.983204i \(-0.558423\pi\)
−0.182512 + 0.983204i \(0.558423\pi\)
\(858\) 0 0
\(859\) 15.4218i 0.526186i −0.964771 0.263093i \(-0.915257\pi\)
0.964771 0.263093i \(-0.0847426\pi\)
\(860\) 16.9249 16.9249i 0.577134 0.577134i
\(861\) 0 0
\(862\) 2.05852i 0.0701133i
\(863\) 13.8546 + 13.8546i 0.471617 + 0.471617i 0.902438 0.430820i \(-0.141776\pi\)
−0.430820 + 0.902438i \(0.641776\pi\)
\(864\) 0 0
\(865\) −44.8544 + 44.8544i −1.52510 + 1.52510i
\(866\) 25.3241 + 25.3241i 0.860548 + 0.860548i
\(867\) 0 0
\(868\) −0.993080 + 3.92936i −0.0337073 + 0.133371i
\(869\) 4.02101 4.02101i 0.136404 0.136404i
\(870\) 0 0
\(871\) 0.531858 2.65929i 0.0180213 0.0901065i
\(872\) −7.49005 −0.253645
\(873\) 0 0
\(874\) 20.1796i 0.682586i
\(875\) −0.678760 + 2.68568i −0.0229463 + 0.0907926i
\(876\) 0 0
\(877\) 6.59203 + 6.59203i 0.222597 + 0.222597i 0.809591 0.586994i \(-0.199689\pi\)
−0.586994 + 0.809591i \(0.699689\pi\)
\(878\) −10.0881 10.0881i −0.340456 0.340456i
\(879\) 0 0
\(880\) 1.61504i 0.0544431i
\(881\) 4.21366 0.141962 0.0709810 0.997478i \(-0.477387\pi\)
0.0709810 + 0.997478i \(0.477387\pi\)
\(882\) 0 0
\(883\) 22.3169i 0.751024i −0.926818 0.375512i \(-0.877467\pi\)
0.926818 0.375512i \(-0.122533\pi\)
\(884\) −12.9775 + 8.65166i −0.436480 + 0.290987i
\(885\) 0 0
\(886\) −14.6384 14.6384i −0.491788 0.491788i
\(887\) 22.4573i 0.754044i −0.926204 0.377022i \(-0.876948\pi\)
0.926204 0.377022i \(-0.123052\pi\)
\(888\) 0 0
\(889\) 17.2872 10.3120i 0.579795 0.345853i
\(890\) 12.0516 + 12.0516i 0.403970 + 0.403970i
\(891\) 0 0
\(892\) −9.89430 9.89430i −0.331286 0.331286i
\(893\) 56.3691 1.88632
\(894\) 0 0
\(895\) −22.2667 22.2667i −0.744294 0.744294i
\(896\) −2.56510 0.648285i −0.0856939 0.0216577i
\(897\) 0 0
\(898\) −28.6211 −0.955099
\(899\) −1.18689 + 1.18689i −0.0395850 + 0.0395850i
\(900\) 0 0
\(901\) 48.6880 1.62203
\(902\) −1.77511 + 1.77511i −0.0591047 + 0.0591047i
\(903\) 0 0
\(904\) −14.3854 + 14.3854i −0.478451 + 0.478451i
\(905\) −23.7154 + 23.7154i −0.788326 + 0.788326i
\(906\) 0 0
\(907\) 27.5490i 0.914749i 0.889274 + 0.457375i \(0.151210\pi\)
−0.889274 + 0.457375i \(0.848790\pi\)
\(908\) 1.67417 + 1.67417i 0.0555594 + 0.0555594i
\(909\) 0 0
\(910\) −13.1936 + 27.6691i −0.437364 + 0.917222i
\(911\) −50.9409 −1.68775 −0.843873 0.536542i \(-0.819730\pi\)
−0.843873 + 0.536542i \(0.819730\pi\)
\(912\) 0 0
\(913\) 4.76991i 0.157861i
\(914\) 25.7233i 0.850852i
\(915\) 0 0
\(916\) −1.32583 + 1.32583i −0.0438066 + 0.0438066i
\(917\) 15.6106 9.31186i 0.515507 0.307505i
\(918\) 0 0
\(919\) −7.00433 −0.231052 −0.115526 0.993304i \(-0.536855\pi\)
−0.115526 + 0.993304i \(0.536855\pi\)
\(920\) −7.66377 −0.252667
\(921\) 0 0
\(922\) −1.67356 −0.0551158
\(923\) 6.38496 31.9248i 0.210163 1.05082i
\(924\) 0 0
\(925\) 27.6358 + 27.6358i 0.908660 + 0.908660i
\(926\) −6.98545 −0.229556
\(927\) 0 0
\(928\) −0.774804 0.774804i −0.0254342 0.0254342i
\(929\) 7.38650 7.38650i 0.242343 0.242343i −0.575476 0.817819i \(-0.695183\pi\)
0.817819 + 0.575476i \(0.195183\pi\)
\(930\) 0 0
\(931\) 16.9536 + 56.7503i 0.555630 + 1.85992i
\(932\) 10.2117 0.334494
\(933\) 0 0
\(934\) −18.8727 18.8727i −0.617533 0.617533i
\(935\) 6.98640i 0.228480i
\(936\) 0 0
\(937\) 47.1203i 1.53935i 0.638435 + 0.769676i \(0.279582\pi\)
−0.638435 + 0.769676i \(0.720418\pi\)
\(938\) −1.70906 + 1.01947i −0.0558029 + 0.0332869i
\(939\) 0 0
\(940\) 21.4077i 0.698243i
\(941\) 18.1495 18.1495i 0.591656 0.591656i −0.346422 0.938079i \(-0.612604\pi\)
0.938079 + 0.346422i \(0.112604\pi\)
\(942\) 0 0
\(943\) −8.42332 8.42332i −0.274301 0.274301i
\(944\) 3.61504 + 3.61504i 0.117660 + 0.117660i
\(945\) 0 0
\(946\) 3.74370i 0.121718i
\(947\) 2.89980 2.89980i 0.0942309 0.0942309i −0.658420 0.752651i \(-0.728775\pi\)
0.752651 + 0.658420i \(0.228775\pi\)
\(948\) 0 0
\(949\) 5.18902 25.9451i 0.168443 0.842213i
\(950\) 45.0630i 1.46204i
\(951\) 0 0
\(952\) 11.0962 + 2.80437i 0.359629 + 0.0908901i
\(953\) 39.8477i 1.29079i −0.763847 0.645397i \(-0.776692\pi\)
0.763847 0.645397i \(-0.223308\pi\)
\(954\) 0 0
\(955\) 25.3147 25.3147i 0.819164 0.819164i
\(956\) −15.2212 + 15.2212i −0.492288 + 0.492288i
\(957\) 0 0
\(958\) 10.4086i 0.336286i
\(959\) 0.987448 + 0.249561i 0.0318864 + 0.00805874i
\(960\) 0 0
\(961\) 28.6534i 0.924304i
\(962\) 14.6768 + 22.0151i 0.473198 + 0.709797i
\(963\) 0 0
\(964\) 3.38496 3.38496i 0.109022 0.109022i
\(965\) 18.3440i 0.590515i
\(966\) 0 0
\(967\) −19.7373 19.7373i −0.634709 0.634709i 0.314537 0.949245i \(-0.398151\pi\)
−0.949245 + 0.314537i \(0.898151\pi\)
\(968\) 7.59955 + 7.59955i 0.244259 + 0.244259i
\(969\) 0 0
\(970\) −41.7517 + 41.7517i −1.34057 + 1.34057i
\(971\) 12.5416i 0.402478i 0.979542 + 0.201239i \(0.0644969\pi\)
−0.979542 + 0.201239i \(0.935503\pi\)
\(972\) 0 0
\(973\) 46.2258 27.5741i 1.48193 0.883985i
\(974\) 35.6051i 1.14086i
\(975\) 0 0
\(976\) 4.32583i 0.138466i
\(977\) −13.8123 13.8123i −0.441894 0.441894i 0.450754 0.892648i \(-0.351155\pi\)
−0.892648 + 0.450754i \(0.851155\pi\)
\(978\) 0 0
\(979\) −2.66575 −0.0851977
\(980\) 21.5525 6.43858i 0.688469 0.205673i
\(981\) 0 0
\(982\) −5.49740 + 5.49740i −0.175429 + 0.175429i
\(983\) 26.1069 + 26.1069i 0.832680 + 0.832680i 0.987883 0.155203i \(-0.0496031\pi\)
−0.155203 + 0.987883i \(0.549603\pi\)
\(984\) 0 0
\(985\) 2.85205 0.0908740
\(986\) 3.35167 + 3.35167i 0.106739 + 0.106739i
\(987\) 0 0
\(988\) −5.98299 + 29.9149i −0.190344 + 0.951721i
\(989\) −17.7647 −0.564886
\(990\) 0 0
\(991\) 7.35727 0.233711 0.116856 0.993149i \(-0.462719\pi\)
0.116856 + 0.993149i \(0.462719\pi\)
\(992\) 1.53186 0.0486365
\(993\) 0 0
\(994\) −20.5173 + 12.2388i −0.650769 + 0.388190i
\(995\) −37.5766 + 37.5766i −1.19126 + 1.19126i
\(996\) 0 0
\(997\) 14.1274i 0.447420i −0.974656 0.223710i \(-0.928183\pi\)
0.974656 0.223710i \(-0.0718169\pi\)
\(998\) 33.1763i 1.05018i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.x.d.307.1 8
3.2 odd 2 546.2.o.a.307.4 yes 8
7.6 odd 2 1638.2.x.b.307.2 8
13.5 odd 4 1638.2.x.b.811.2 8
21.20 even 2 546.2.o.d.307.3 yes 8
39.5 even 4 546.2.o.d.265.3 yes 8
91.83 even 4 inner 1638.2.x.d.811.1 8
273.83 odd 4 546.2.o.a.265.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.o.a.265.4 8 273.83 odd 4
546.2.o.a.307.4 yes 8 3.2 odd 2
546.2.o.d.265.3 yes 8 39.5 even 4
546.2.o.d.307.3 yes 8 21.20 even 2
1638.2.x.b.307.2 8 7.6 odd 2
1638.2.x.b.811.2 8 13.5 odd 4
1638.2.x.d.307.1 8 1.1 even 1 trivial
1638.2.x.d.811.1 8 91.83 even 4 inner