Properties

Label 1638.2.m.h.289.4
Level $1638$
Weight $2$
Character 1638.289
Analytic conductor $13.079$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(289,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.m (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,0,8,-2,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.447703281.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2x^{6} + 2x^{5} + 3x^{4} + 4x^{3} - 8x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.4
Root \(1.19003 - 0.764088i\) of defining polynomial
Character \(\chi\) \(=\) 1638.289
Dual form 1638.2.m.h.1621.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(0.924396 - 1.60110i) q^{5} +(2.61442 + 0.405935i) q^{7} -1.00000 q^{8} +(-0.924396 + 1.60110i) q^{10} +(0.357690 - 0.619538i) q^{11} +(-2.81454 + 2.25352i) q^{13} +(-2.61442 - 0.405935i) q^{14} +1.00000 q^{16} -4.31156 q^{17} +(3.43786 + 5.95456i) q^{19} +(0.924396 - 1.60110i) q^{20} +(-0.357690 + 0.619538i) q^{22} +7.16035 q^{23} +(0.790985 + 1.37003i) q^{25} +(2.81454 - 2.25352i) q^{26} +(2.61442 + 0.405935i) q^{28} +(4.63798 + 8.03322i) q^{29} +(1.11104 + 1.92438i) q^{31} -1.00000 q^{32} +4.31156 q^{34} +(3.06671 - 3.81071i) q^{35} +2.13341 q^{37} +(-3.43786 - 5.95456i) q^{38} +(-0.924396 + 1.60110i) q^{40} +(-2.23138 - 3.86487i) q^{41} +(-0.0979721 + 0.169693i) q^{43} +(0.357690 - 0.619538i) q^{44} -7.16035 q^{46} +(-4.60553 + 7.97700i) q^{47} +(6.67043 + 2.12257i) q^{49} +(-0.790985 - 1.37003i) q^{50} +(-2.81454 + 2.25352i) q^{52} +(-3.80147 - 6.58434i) q^{53} +(-0.661295 - 1.14540i) q^{55} +(-2.61442 - 0.405935i) q^{56} +(-4.63798 - 8.03322i) q^{58} +2.48056 q^{59} +(-4.31156 - 7.46783i) q^{61} +(-1.11104 - 1.92438i) q^{62} +1.00000 q^{64} +(1.00637 + 6.58951i) q^{65} +(6.96322 - 12.0606i) q^{67} -4.31156 q^{68} +(-3.06671 + 3.81071i) q^{70} +(-7.50874 + 13.0055i) q^{71} +(-0.989914 - 1.71458i) q^{73} -2.13341 q^{74} +(3.43786 + 5.95456i) q^{76} +(1.18665 - 1.47454i) q^{77} +(7.37533 - 12.7744i) q^{79} +(0.924396 - 1.60110i) q^{80} +(2.23138 + 3.86487i) q^{82} +9.71538 q^{83} +(-3.98558 + 6.90323i) q^{85} +(0.0979721 - 0.169693i) q^{86} +(-0.357690 + 0.619538i) q^{88} +4.46953 q^{89} +(-8.27319 + 4.74914i) q^{91} +7.16035 q^{92} +(4.60553 - 7.97700i) q^{94} +12.7118 q^{95} +(1.39194 - 2.41091i) q^{97} +(-6.67043 - 2.12257i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 2 q^{5} + 3 q^{7} - 8 q^{8} + 2 q^{10} - 4 q^{11} + 3 q^{13} - 3 q^{14} + 8 q^{16} - 4 q^{17} - 4 q^{19} - 2 q^{20} + 4 q^{22} + 8 q^{23} + 2 q^{25} - 3 q^{26} + 3 q^{28} - 2 q^{29}+ \cdots - 5 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.924396 1.60110i 0.413402 0.716034i −0.581857 0.813291i \(-0.697674\pi\)
0.995259 + 0.0972573i \(0.0310070\pi\)
\(6\) 0 0
\(7\) 2.61442 + 0.405935i 0.988160 + 0.153429i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.924396 + 1.60110i −0.292320 + 0.506312i
\(11\) 0.357690 0.619538i 0.107848 0.186798i −0.807050 0.590483i \(-0.798937\pi\)
0.914898 + 0.403685i \(0.132271\pi\)
\(12\) 0 0
\(13\) −2.81454 + 2.25352i −0.780613 + 0.625015i
\(14\) −2.61442 0.405935i −0.698734 0.108491i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.31156 −1.04571 −0.522853 0.852423i \(-0.675132\pi\)
−0.522853 + 0.852423i \(0.675132\pi\)
\(18\) 0 0
\(19\) 3.43786 + 5.95456i 0.788700 + 1.36607i 0.926763 + 0.375645i \(0.122579\pi\)
−0.138063 + 0.990423i \(0.544088\pi\)
\(20\) 0.924396 1.60110i 0.206701 0.358017i
\(21\) 0 0
\(22\) −0.357690 + 0.619538i −0.0762599 + 0.132086i
\(23\) 7.16035 1.49304 0.746518 0.665365i \(-0.231724\pi\)
0.746518 + 0.665365i \(0.231724\pi\)
\(24\) 0 0
\(25\) 0.790985 + 1.37003i 0.158197 + 0.274005i
\(26\) 2.81454 2.25352i 0.551977 0.441952i
\(27\) 0 0
\(28\) 2.61442 + 0.405935i 0.494080 + 0.0767145i
\(29\) 4.63798 + 8.03322i 0.861251 + 1.49173i 0.870722 + 0.491776i \(0.163652\pi\)
−0.00947068 + 0.999955i \(0.503015\pi\)
\(30\) 0 0
\(31\) 1.11104 + 1.92438i 0.199549 + 0.345629i 0.948382 0.317129i \(-0.102719\pi\)
−0.748833 + 0.662759i \(0.769386\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 4.31156 0.739426
\(35\) 3.06671 3.81071i 0.518368 0.644128i
\(36\) 0 0
\(37\) 2.13341 0.350731 0.175365 0.984503i \(-0.443889\pi\)
0.175365 + 0.984503i \(0.443889\pi\)
\(38\) −3.43786 5.95456i −0.557695 0.965956i
\(39\) 0 0
\(40\) −0.924396 + 1.60110i −0.146160 + 0.253156i
\(41\) −2.23138 3.86487i −0.348483 0.603591i 0.637497 0.770453i \(-0.279970\pi\)
−0.985980 + 0.166862i \(0.946637\pi\)
\(42\) 0 0
\(43\) −0.0979721 + 0.169693i −0.0149406 + 0.0258779i −0.873399 0.487005i \(-0.838089\pi\)
0.858458 + 0.512883i \(0.171423\pi\)
\(44\) 0.357690 0.619538i 0.0539239 0.0933989i
\(45\) 0 0
\(46\) −7.16035 −1.05574
\(47\) −4.60553 + 7.97700i −0.671785 + 1.16357i 0.305613 + 0.952156i \(0.401139\pi\)
−0.977398 + 0.211410i \(0.932195\pi\)
\(48\) 0 0
\(49\) 6.67043 + 2.12257i 0.952919 + 0.303225i
\(50\) −0.790985 1.37003i −0.111862 0.193751i
\(51\) 0 0
\(52\) −2.81454 + 2.25352i −0.390307 + 0.312507i
\(53\) −3.80147 6.58434i −0.522172 0.904429i −0.999667 0.0257942i \(-0.991789\pi\)
0.477495 0.878634i \(-0.341545\pi\)
\(54\) 0 0
\(55\) −0.661295 1.14540i −0.0891690 0.154445i
\(56\) −2.61442 0.405935i −0.349367 0.0542453i
\(57\) 0 0
\(58\) −4.63798 8.03322i −0.608997 1.05481i
\(59\) 2.48056 0.322942 0.161471 0.986877i \(-0.448376\pi\)
0.161471 + 0.986877i \(0.448376\pi\)
\(60\) 0 0
\(61\) −4.31156 7.46783i −0.552038 0.956158i −0.998127 0.0611697i \(-0.980517\pi\)
0.446089 0.894989i \(-0.352816\pi\)
\(62\) −1.11104 1.92438i −0.141103 0.244397i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.00637 + 6.58951i 0.124824 + 0.817328i
\(66\) 0 0
\(67\) 6.96322 12.0606i 0.850692 1.47344i −0.0298923 0.999553i \(-0.509516\pi\)
0.880585 0.473889i \(-0.157150\pi\)
\(68\) −4.31156 −0.522853
\(69\) 0 0
\(70\) −3.06671 + 3.81071i −0.366541 + 0.455467i
\(71\) −7.50874 + 13.0055i −0.891124 + 1.54347i −0.0525935 + 0.998616i \(0.516749\pi\)
−0.838530 + 0.544855i \(0.816585\pi\)
\(72\) 0 0
\(73\) −0.989914 1.71458i −0.115861 0.200676i 0.802263 0.596971i \(-0.203629\pi\)
−0.918123 + 0.396294i \(0.870296\pi\)
\(74\) −2.13341 −0.248004
\(75\) 0 0
\(76\) 3.43786 + 5.95456i 0.394350 + 0.683034i
\(77\) 1.18665 1.47454i 0.135231 0.168039i
\(78\) 0 0
\(79\) 7.37533 12.7744i 0.829790 1.43724i −0.0684137 0.997657i \(-0.521794\pi\)
0.898203 0.439581i \(-0.144873\pi\)
\(80\) 0.924396 1.60110i 0.103351 0.179008i
\(81\) 0 0
\(82\) 2.23138 + 3.86487i 0.246415 + 0.426803i
\(83\) 9.71538 1.06640 0.533201 0.845989i \(-0.320989\pi\)
0.533201 + 0.845989i \(0.320989\pi\)
\(84\) 0 0
\(85\) −3.98558 + 6.90323i −0.432297 + 0.748761i
\(86\) 0.0979721 0.169693i 0.0105646 0.0182984i
\(87\) 0 0
\(88\) −0.357690 + 0.619538i −0.0381299 + 0.0660430i
\(89\) 4.46953 0.473769 0.236885 0.971538i \(-0.423874\pi\)
0.236885 + 0.971538i \(0.423874\pi\)
\(90\) 0 0
\(91\) −8.27319 + 4.74914i −0.867266 + 0.497846i
\(92\) 7.16035 0.746518
\(93\) 0 0
\(94\) 4.60553 7.97700i 0.475024 0.822765i
\(95\) 12.7118 1.30420
\(96\) 0 0
\(97\) 1.39194 2.41091i 0.141330 0.244791i −0.786668 0.617377i \(-0.788195\pi\)
0.927998 + 0.372586i \(0.121529\pi\)
\(98\) −6.67043 2.12257i −0.673816 0.214412i
\(99\) 0 0
\(100\) 0.790985 + 1.37003i 0.0790985 + 0.137003i
\(101\) 2.67775 4.63800i 0.266446 0.461498i −0.701496 0.712674i \(-0.747484\pi\)
0.967941 + 0.251176i \(0.0808173\pi\)
\(102\) 0 0
\(103\) 3.26429 5.65391i 0.321640 0.557097i −0.659187 0.751979i \(-0.729099\pi\)
0.980827 + 0.194883i \(0.0624326\pi\)
\(104\) 2.81454 2.25352i 0.275988 0.220976i
\(105\) 0 0
\(106\) 3.80147 + 6.58434i 0.369231 + 0.639528i
\(107\) 4.61994 0.446627 0.223313 0.974747i \(-0.428313\pi\)
0.223313 + 0.974747i \(0.428313\pi\)
\(108\) 0 0
\(109\) 4.95093 + 8.57527i 0.474214 + 0.821362i 0.999564 0.0295240i \(-0.00939913\pi\)
−0.525351 + 0.850886i \(0.676066\pi\)
\(110\) 0.661295 + 1.14540i 0.0630520 + 0.109209i
\(111\) 0 0
\(112\) 2.61442 + 0.405935i 0.247040 + 0.0383572i
\(113\) −1.50417 + 2.60530i −0.141501 + 0.245086i −0.928062 0.372426i \(-0.878526\pi\)
0.786561 + 0.617512i \(0.211859\pi\)
\(114\) 0 0
\(115\) 6.61899 11.4644i 0.617224 1.06906i
\(116\) 4.63798 + 8.03322i 0.430626 + 0.745865i
\(117\) 0 0
\(118\) −2.48056 −0.228354
\(119\) −11.2722 1.75021i −1.03332 0.160442i
\(120\) 0 0
\(121\) 5.24412 + 9.08307i 0.476738 + 0.825734i
\(122\) 4.31156 + 7.46783i 0.390350 + 0.676106i
\(123\) 0 0
\(124\) 1.11104 + 1.92438i 0.0997746 + 0.172815i
\(125\) 12.1687 1.08840
\(126\) 0 0
\(127\) −7.58356 13.1351i −0.672932 1.16555i −0.977069 0.212924i \(-0.931701\pi\)
0.304137 0.952628i \(-0.401632\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −1.00637 6.58951i −0.0882642 0.577938i
\(131\) −9.69444 + 16.7913i −0.847007 + 1.46706i 0.0368595 + 0.999320i \(0.488265\pi\)
−0.883867 + 0.467739i \(0.845069\pi\)
\(132\) 0 0
\(133\) 6.57088 + 16.9633i 0.569767 + 1.47090i
\(134\) −6.96322 + 12.0606i −0.601530 + 1.04188i
\(135\) 0 0
\(136\) 4.31156 0.369713
\(137\) 4.74829 0.405673 0.202837 0.979213i \(-0.434984\pi\)
0.202837 + 0.979213i \(0.434984\pi\)
\(138\) 0 0
\(139\) −7.69027 + 13.3199i −0.652280 + 1.12978i 0.330288 + 0.943880i \(0.392854\pi\)
−0.982568 + 0.185902i \(0.940479\pi\)
\(140\) 3.06671 3.81071i 0.259184 0.322064i
\(141\) 0 0
\(142\) 7.50874 13.0055i 0.630120 1.09140i
\(143\) 0.389409 + 2.54978i 0.0325640 + 0.213223i
\(144\) 0 0
\(145\) 17.1493 1.42417
\(146\) 0.989914 + 1.71458i 0.0819258 + 0.141900i
\(147\) 0 0
\(148\) 2.13341 0.175365
\(149\) −5.82384 10.0872i −0.477107 0.826374i 0.522548 0.852610i \(-0.324981\pi\)
−0.999656 + 0.0262354i \(0.991648\pi\)
\(150\) 0 0
\(151\) −4.09544 7.09351i −0.333282 0.577262i 0.649871 0.760044i \(-0.274823\pi\)
−0.983153 + 0.182783i \(0.941489\pi\)
\(152\) −3.43786 5.95456i −0.278848 0.482978i
\(153\) 0 0
\(154\) −1.18665 + 1.47454i −0.0956227 + 0.118822i
\(155\) 4.10817 0.329976
\(156\) 0 0
\(157\) 11.4353 + 19.8066i 0.912639 + 1.58074i 0.810322 + 0.585985i \(0.199292\pi\)
0.102317 + 0.994752i \(0.467374\pi\)
\(158\) −7.37533 + 12.7744i −0.586750 + 1.01628i
\(159\) 0 0
\(160\) −0.924396 + 1.60110i −0.0730799 + 0.126578i
\(161\) 18.7202 + 2.90663i 1.47536 + 0.229075i
\(162\) 0 0
\(163\) −9.01923 15.6218i −0.706440 1.22359i −0.966169 0.257909i \(-0.916967\pi\)
0.259729 0.965682i \(-0.416367\pi\)
\(164\) −2.23138 3.86487i −0.174242 0.301795i
\(165\) 0 0
\(166\) −9.71538 −0.754060
\(167\) −3.86936 6.70193i −0.299420 0.518611i 0.676583 0.736366i \(-0.263460\pi\)
−0.976003 + 0.217755i \(0.930127\pi\)
\(168\) 0 0
\(169\) 2.84327 12.6853i 0.218713 0.975789i
\(170\) 3.98558 6.90323i 0.305680 0.529454i
\(171\) 0 0
\(172\) −0.0979721 + 0.169693i −0.00747030 + 0.0129389i
\(173\) 6.01212 + 10.4133i 0.457093 + 0.791709i 0.998806 0.0488550i \(-0.0155572\pi\)
−0.541713 + 0.840564i \(0.682224\pi\)
\(174\) 0 0
\(175\) 1.51183 + 3.90292i 0.114284 + 0.295033i
\(176\) 0.357690 0.619538i 0.0269619 0.0466994i
\(177\) 0 0
\(178\) −4.46953 −0.335005
\(179\) 5.65742 9.79893i 0.422855 0.732407i −0.573362 0.819302i \(-0.694361\pi\)
0.996217 + 0.0868953i \(0.0276946\pi\)
\(180\) 0 0
\(181\) −2.49725 −0.185619 −0.0928095 0.995684i \(-0.529585\pi\)
−0.0928095 + 0.995684i \(0.529585\pi\)
\(182\) 8.27319 4.74914i 0.613249 0.352030i
\(183\) 0 0
\(184\) −7.16035 −0.527868
\(185\) 1.97212 3.41580i 0.144993 0.251135i
\(186\) 0 0
\(187\) −1.54220 + 2.67117i −0.112777 + 0.195336i
\(188\) −4.60553 + 7.97700i −0.335892 + 0.581783i
\(189\) 0 0
\(190\) −12.7118 −0.922210
\(191\) −2.66349 4.61330i −0.192723 0.333807i 0.753428 0.657530i \(-0.228399\pi\)
−0.946152 + 0.323723i \(0.895065\pi\)
\(192\) 0 0
\(193\) −4.86186 + 8.42099i −0.349964 + 0.606156i −0.986243 0.165303i \(-0.947140\pi\)
0.636278 + 0.771460i \(0.280473\pi\)
\(194\) −1.39194 + 2.41091i −0.0999356 + 0.173093i
\(195\) 0 0
\(196\) 6.67043 + 2.12257i 0.476460 + 0.151612i
\(197\) 3.08593 + 5.34499i 0.219863 + 0.380815i 0.954766 0.297358i \(-0.0961055\pi\)
−0.734903 + 0.678173i \(0.762772\pi\)
\(198\) 0 0
\(199\) 5.41454 0.383827 0.191913 0.981412i \(-0.438531\pi\)
0.191913 + 0.981412i \(0.438531\pi\)
\(200\) −0.790985 1.37003i −0.0559311 0.0968755i
\(201\) 0 0
\(202\) −2.67775 + 4.63800i −0.188406 + 0.326328i
\(203\) 8.86469 + 22.8850i 0.622179 + 1.60621i
\(204\) 0 0
\(205\) −8.25072 −0.576255
\(206\) −3.26429 + 5.65391i −0.227434 + 0.393927i
\(207\) 0 0
\(208\) −2.81454 + 2.25352i −0.195153 + 0.156254i
\(209\) 4.91877 0.340238
\(210\) 0 0
\(211\) 13.6366 + 23.6193i 0.938785 + 1.62602i 0.767742 + 0.640759i \(0.221380\pi\)
0.171043 + 0.985264i \(0.445286\pi\)
\(212\) −3.80147 6.58434i −0.261086 0.452214i
\(213\) 0 0
\(214\) −4.61994 −0.315813
\(215\) 0.181130 + 0.313726i 0.0123530 + 0.0213960i
\(216\) 0 0
\(217\) 2.12356 + 5.48216i 0.144157 + 0.372153i
\(218\) −4.95093 8.57527i −0.335320 0.580791i
\(219\) 0 0
\(220\) −0.661295 1.14540i −0.0445845 0.0772226i
\(221\) 12.1350 9.71619i 0.816292 0.653582i
\(222\) 0 0
\(223\) −2.88502 4.99700i −0.193195 0.334624i 0.753112 0.657892i \(-0.228552\pi\)
−0.946307 + 0.323268i \(0.895218\pi\)
\(224\) −2.61442 0.405935i −0.174684 0.0271227i
\(225\) 0 0
\(226\) 1.50417 2.60530i 0.100056 0.173302i
\(227\) −16.9846 −1.12731 −0.563653 0.826012i \(-0.690604\pi\)
−0.563653 + 0.826012i \(0.690604\pi\)
\(228\) 0 0
\(229\) 0.460390 0.797420i 0.0304235 0.0526950i −0.850413 0.526116i \(-0.823648\pi\)
0.880836 + 0.473421i \(0.156981\pi\)
\(230\) −6.61899 + 11.4644i −0.436444 + 0.755942i
\(231\) 0 0
\(232\) −4.63798 8.03322i −0.304498 0.527407i
\(233\) 2.50283 4.33502i 0.163966 0.283997i −0.772322 0.635231i \(-0.780905\pi\)
0.936287 + 0.351235i \(0.114238\pi\)
\(234\) 0 0
\(235\) 8.51466 + 14.7478i 0.555435 + 0.962041i
\(236\) 2.48056 0.161471
\(237\) 0 0
\(238\) 11.2722 + 1.75021i 0.730671 + 0.113449i
\(239\) −13.8239 −0.894195 −0.447097 0.894485i \(-0.647542\pi\)
−0.447097 + 0.894485i \(0.647542\pi\)
\(240\) 0 0
\(241\) 10.7589 0.693041 0.346521 0.938042i \(-0.387363\pi\)
0.346521 + 0.938042i \(0.387363\pi\)
\(242\) −5.24412 9.08307i −0.337104 0.583882i
\(243\) 0 0
\(244\) −4.31156 7.46783i −0.276019 0.478079i
\(245\) 9.56457 8.71794i 0.611058 0.556969i
\(246\) 0 0
\(247\) −23.0947 9.01203i −1.46948 0.573422i
\(248\) −1.11104 1.92438i −0.0705513 0.122198i
\(249\) 0 0
\(250\) −12.1687 −0.769616
\(251\) 11.8267 20.4844i 0.746492 1.29296i −0.203002 0.979178i \(-0.565070\pi\)
0.949494 0.313784i \(-0.101597\pi\)
\(252\) 0 0
\(253\) 2.56119 4.43611i 0.161021 0.278896i
\(254\) 7.58356 + 13.1351i 0.475835 + 0.824170i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 19.1940 1.19729 0.598646 0.801014i \(-0.295706\pi\)
0.598646 + 0.801014i \(0.295706\pi\)
\(258\) 0 0
\(259\) 5.57764 + 0.866025i 0.346578 + 0.0538122i
\(260\) 1.00637 + 6.58951i 0.0624122 + 0.408664i
\(261\) 0 0
\(262\) 9.69444 16.7913i 0.598925 1.03737i
\(263\) 5.49567 9.51878i 0.338878 0.586953i −0.645344 0.763892i \(-0.723286\pi\)
0.984222 + 0.176939i \(0.0566194\pi\)
\(264\) 0 0
\(265\) −14.0562 −0.863469
\(266\) −6.57088 16.9633i −0.402886 1.04009i
\(267\) 0 0
\(268\) 6.96322 12.0606i 0.425346 0.736721i
\(269\) −16.5175 −1.00709 −0.503546 0.863968i \(-0.667972\pi\)
−0.503546 + 0.863968i \(0.667972\pi\)
\(270\) 0 0
\(271\) −18.1906 −1.10500 −0.552499 0.833514i \(-0.686326\pi\)
−0.552499 + 0.833514i \(0.686326\pi\)
\(272\) −4.31156 −0.261426
\(273\) 0 0
\(274\) −4.74829 −0.286854
\(275\) 1.13171 0.0682448
\(276\) 0 0
\(277\) 16.4894 0.990751 0.495376 0.868679i \(-0.335030\pi\)
0.495376 + 0.868679i \(0.335030\pi\)
\(278\) 7.69027 13.3199i 0.461232 0.798877i
\(279\) 0 0
\(280\) −3.06671 + 3.81071i −0.183271 + 0.227734i
\(281\) −15.2768 −0.911335 −0.455667 0.890150i \(-0.650599\pi\)
−0.455667 + 0.890150i \(0.650599\pi\)
\(282\) 0 0
\(283\) 4.57838 7.92998i 0.272156 0.471388i −0.697257 0.716821i \(-0.745597\pi\)
0.969414 + 0.245432i \(0.0789299\pi\)
\(284\) −7.50874 + 13.0055i −0.445562 + 0.771736i
\(285\) 0 0
\(286\) −0.389409 2.54978i −0.0230262 0.150772i
\(287\) −4.26490 11.0102i −0.251749 0.649912i
\(288\) 0 0
\(289\) 1.58952 0.0935010
\(290\) −17.1493 −1.00704
\(291\) 0 0
\(292\) −0.989914 1.71458i −0.0579303 0.100338i
\(293\) −5.93488 + 10.2795i −0.346719 + 0.600536i −0.985665 0.168717i \(-0.946038\pi\)
0.638945 + 0.769252i \(0.279371\pi\)
\(294\) 0 0
\(295\) 2.29302 3.97163i 0.133505 0.231237i
\(296\) −2.13341 −0.124002
\(297\) 0 0
\(298\) 5.82384 + 10.0872i 0.337366 + 0.584335i
\(299\) −20.1531 + 16.1360i −1.16548 + 0.933169i
\(300\) 0 0
\(301\) −0.325025 + 0.403878i −0.0187341 + 0.0232792i
\(302\) 4.09544 + 7.09351i 0.235666 + 0.408186i
\(303\) 0 0
\(304\) 3.43786 + 5.95456i 0.197175 + 0.341517i
\(305\) −15.9423 −0.912855
\(306\) 0 0
\(307\) −28.0679 −1.60192 −0.800959 0.598719i \(-0.795677\pi\)
−0.800959 + 0.598719i \(0.795677\pi\)
\(308\) 1.18665 1.47454i 0.0676155 0.0840195i
\(309\) 0 0
\(310\) −4.10817 −0.233328
\(311\) 12.7326 + 22.0536i 0.722001 + 1.25054i 0.960196 + 0.279325i \(0.0901108\pi\)
−0.238195 + 0.971217i \(0.576556\pi\)
\(312\) 0 0
\(313\) −8.82204 + 15.2802i −0.498651 + 0.863689i −0.999999 0.00155673i \(-0.999504\pi\)
0.501348 + 0.865246i \(0.332838\pi\)
\(314\) −11.4353 19.8066i −0.645333 1.11775i
\(315\) 0 0
\(316\) 7.37533 12.7744i 0.414895 0.718619i
\(317\) 14.8710 25.7573i 0.835239 1.44668i −0.0585974 0.998282i \(-0.518663\pi\)
0.893836 0.448394i \(-0.148004\pi\)
\(318\) 0 0
\(319\) 6.63585 0.371536
\(320\) 0.924396 1.60110i 0.0516753 0.0895042i
\(321\) 0 0
\(322\) −18.7202 2.90663i −1.04324 0.161980i
\(323\) −14.8225 25.6734i −0.824748 1.42851i
\(324\) 0 0
\(325\) −5.31365 2.07349i −0.294748 0.115017i
\(326\) 9.01923 + 15.6218i 0.499529 + 0.865209i
\(327\) 0 0
\(328\) 2.23138 + 3.86487i 0.123207 + 0.213402i
\(329\) −15.2789 + 18.9857i −0.842355 + 1.04672i
\(330\) 0 0
\(331\) −12.0197 20.8187i −0.660661 1.14430i −0.980442 0.196807i \(-0.936943\pi\)
0.319781 0.947491i \(-0.396391\pi\)
\(332\) 9.71538 0.533201
\(333\) 0 0
\(334\) 3.86936 + 6.70193i 0.211722 + 0.366713i
\(335\) −12.8735 22.2976i −0.703356 1.21825i
\(336\) 0 0
\(337\) −2.21939 −0.120898 −0.0604490 0.998171i \(-0.519253\pi\)
−0.0604490 + 0.998171i \(0.519253\pi\)
\(338\) −2.84327 + 12.6853i −0.154654 + 0.689987i
\(339\) 0 0
\(340\) −3.98558 + 6.90323i −0.216149 + 0.374380i
\(341\) 1.58964 0.0860837
\(342\) 0 0
\(343\) 16.5777 + 8.25707i 0.895113 + 0.445840i
\(344\) 0.0979721 0.169693i 0.00528230 0.00914921i
\(345\) 0 0
\(346\) −6.01212 10.4133i −0.323214 0.559823i
\(347\) 2.01895 0.108383 0.0541916 0.998531i \(-0.482742\pi\)
0.0541916 + 0.998531i \(0.482742\pi\)
\(348\) 0 0
\(349\) −16.8191 29.1316i −0.900306 1.55938i −0.827097 0.562060i \(-0.810009\pi\)
−0.0732096 0.997317i \(-0.523324\pi\)
\(350\) −1.51183 3.90292i −0.0808107 0.208620i
\(351\) 0 0
\(352\) −0.357690 + 0.619538i −0.0190650 + 0.0330215i
\(353\) 11.6388 20.1590i 0.619472 1.07296i −0.370110 0.928988i \(-0.620680\pi\)
0.989582 0.143970i \(-0.0459867\pi\)
\(354\) 0 0
\(355\) 13.8821 + 24.0445i 0.736785 + 1.27615i
\(356\) 4.46953 0.236885
\(357\) 0 0
\(358\) −5.65742 + 9.79893i −0.299004 + 0.517890i
\(359\) −5.44896 + 9.43787i −0.287585 + 0.498112i −0.973233 0.229822i \(-0.926186\pi\)
0.685648 + 0.727933i \(0.259519\pi\)
\(360\) 0 0
\(361\) −14.1378 + 24.4874i −0.744096 + 1.28881i
\(362\) 2.49725 0.131252
\(363\) 0 0
\(364\) −8.27319 + 4.74914i −0.433633 + 0.248923i
\(365\) −3.66029 −0.191588
\(366\) 0 0
\(367\) −2.44394 + 4.23302i −0.127573 + 0.220962i −0.922736 0.385434i \(-0.874052\pi\)
0.795163 + 0.606396i \(0.207385\pi\)
\(368\) 7.16035 0.373259
\(369\) 0 0
\(370\) −1.97212 + 3.41580i −0.102525 + 0.177579i
\(371\) −7.26584 18.7574i −0.377224 0.973836i
\(372\) 0 0
\(373\) 7.68366 + 13.3085i 0.397845 + 0.689088i 0.993460 0.114182i \(-0.0364249\pi\)
−0.595615 + 0.803270i \(0.703092\pi\)
\(374\) 1.54220 2.67117i 0.0797454 0.138123i
\(375\) 0 0
\(376\) 4.60553 7.97700i 0.237512 0.411383i
\(377\) −31.1568 12.1580i −1.60466 0.626170i
\(378\) 0 0
\(379\) 8.66626 + 15.0104i 0.445156 + 0.771033i 0.998063 0.0622101i \(-0.0198149\pi\)
−0.552907 + 0.833243i \(0.686482\pi\)
\(380\) 12.7118 0.652101
\(381\) 0 0
\(382\) 2.66349 + 4.61330i 0.136276 + 0.236037i
\(383\) −5.99628 10.3859i −0.306396 0.530693i 0.671175 0.741298i \(-0.265790\pi\)
−0.977571 + 0.210606i \(0.932456\pi\)
\(384\) 0 0
\(385\) −1.26395 3.26300i −0.0644169 0.166298i
\(386\) 4.86186 8.42099i 0.247462 0.428617i
\(387\) 0 0
\(388\) 1.39194 2.41091i 0.0706651 0.122396i
\(389\) 8.89274 + 15.4027i 0.450880 + 0.780947i 0.998441 0.0558191i \(-0.0177770\pi\)
−0.547561 + 0.836766i \(0.684444\pi\)
\(390\) 0 0
\(391\) −30.8722 −1.56128
\(392\) −6.67043 2.12257i −0.336908 0.107206i
\(393\) 0 0
\(394\) −3.08593 5.34499i −0.155467 0.269277i
\(395\) −13.6354 23.6173i −0.686074 1.18831i
\(396\) 0 0
\(397\) −7.02952 12.1755i −0.352802 0.611070i 0.633938 0.773384i \(-0.281438\pi\)
−0.986739 + 0.162314i \(0.948104\pi\)
\(398\) −5.41454 −0.271406
\(399\) 0 0
\(400\) 0.790985 + 1.37003i 0.0395493 + 0.0685013i
\(401\) −4.13072 −0.206278 −0.103139 0.994667i \(-0.532889\pi\)
−0.103139 + 0.994667i \(0.532889\pi\)
\(402\) 0 0
\(403\) −7.46371 2.91249i −0.371794 0.145082i
\(404\) 2.67775 4.63800i 0.133223 0.230749i
\(405\) 0 0
\(406\) −8.86469 22.8850i −0.439947 1.13576i
\(407\) 0.763101 1.32173i 0.0378255 0.0655157i
\(408\) 0 0
\(409\) −5.21490 −0.257860 −0.128930 0.991654i \(-0.541154\pi\)
−0.128930 + 0.991654i \(0.541154\pi\)
\(410\) 8.25072 0.407474
\(411\) 0 0
\(412\) 3.26429 5.65391i 0.160820 0.278548i
\(413\) 6.48525 + 1.00695i 0.319118 + 0.0495486i
\(414\) 0 0
\(415\) 8.98086 15.5553i 0.440853 0.763580i
\(416\) 2.81454 2.25352i 0.137994 0.110488i
\(417\) 0 0
\(418\) −4.91877 −0.240585
\(419\) −3.69624 6.40207i −0.180573 0.312762i 0.761503 0.648162i \(-0.224462\pi\)
−0.942076 + 0.335400i \(0.891129\pi\)
\(420\) 0 0
\(421\) 4.67144 0.227672 0.113836 0.993500i \(-0.463686\pi\)
0.113836 + 0.993500i \(0.463686\pi\)
\(422\) −13.6366 23.6193i −0.663821 1.14977i
\(423\) 0 0
\(424\) 3.80147 + 6.58434i 0.184616 + 0.319764i
\(425\) −3.41038 5.90695i −0.165428 0.286529i
\(426\) 0 0
\(427\) −8.24079 21.2743i −0.398800 1.02954i
\(428\) 4.61994 0.223313
\(429\) 0 0
\(430\) −0.181130 0.313726i −0.00873486 0.0151292i
\(431\) −11.0089 + 19.0680i −0.530280 + 0.918472i 0.469096 + 0.883147i \(0.344580\pi\)
−0.999376 + 0.0353247i \(0.988753\pi\)
\(432\) 0 0
\(433\) −12.5366 + 21.7141i −0.602472 + 1.04351i 0.389973 + 0.920826i \(0.372484\pi\)
−0.992446 + 0.122686i \(0.960849\pi\)
\(434\) −2.12356 5.48216i −0.101934 0.263152i
\(435\) 0 0
\(436\) 4.95093 + 8.57527i 0.237107 + 0.410681i
\(437\) 24.6163 + 42.6367i 1.17756 + 2.03959i
\(438\) 0 0
\(439\) −13.9493 −0.665764 −0.332882 0.942969i \(-0.608021\pi\)
−0.332882 + 0.942969i \(0.608021\pi\)
\(440\) 0.661295 + 1.14540i 0.0315260 + 0.0546046i
\(441\) 0 0
\(442\) −12.1350 + 9.71619i −0.577205 + 0.462152i
\(443\) −1.69137 + 2.92955i −0.0803596 + 0.139187i −0.903404 0.428789i \(-0.858940\pi\)
0.823045 + 0.567976i \(0.192274\pi\)
\(444\) 0 0
\(445\) 4.13161 7.15616i 0.195857 0.339235i
\(446\) 2.88502 + 4.99700i 0.136610 + 0.236615i
\(447\) 0 0
\(448\) 2.61442 + 0.405935i 0.123520 + 0.0191786i
\(449\) −7.51094 + 13.0093i −0.354463 + 0.613948i −0.987026 0.160561i \(-0.948670\pi\)
0.632563 + 0.774509i \(0.282003\pi\)
\(450\) 0 0
\(451\) −3.19258 −0.150333
\(452\) −1.50417 + 2.60530i −0.0707503 + 0.122543i
\(453\) 0 0
\(454\) 16.9846 0.797126
\(455\) −0.0438411 + 17.6363i −0.00205530 + 0.826802i
\(456\) 0 0
\(457\) −11.9647 −0.559686 −0.279843 0.960046i \(-0.590282\pi\)
−0.279843 + 0.960046i \(0.590282\pi\)
\(458\) −0.460390 + 0.797420i −0.0215126 + 0.0372610i
\(459\) 0 0
\(460\) 6.61899 11.4644i 0.308612 0.534532i
\(461\) −5.35595 + 9.27677i −0.249451 + 0.432062i −0.963374 0.268163i \(-0.913584\pi\)
0.713922 + 0.700225i \(0.246917\pi\)
\(462\) 0 0
\(463\) −13.5305 −0.628814 −0.314407 0.949288i \(-0.601806\pi\)
−0.314407 + 0.949288i \(0.601806\pi\)
\(464\) 4.63798 + 8.03322i 0.215313 + 0.372933i
\(465\) 0 0
\(466\) −2.50283 + 4.33502i −0.115941 + 0.200816i
\(467\) 13.9783 24.2112i 0.646840 1.12036i −0.337034 0.941493i \(-0.609424\pi\)
0.983873 0.178867i \(-0.0572430\pi\)
\(468\) 0 0
\(469\) 23.1006 28.7050i 1.06669 1.32548i
\(470\) −8.51466 14.7478i −0.392752 0.680266i
\(471\) 0 0
\(472\) −2.48056 −0.114177
\(473\) 0.0700874 + 0.121395i 0.00322262 + 0.00558174i
\(474\) 0 0
\(475\) −5.43860 + 9.41993i −0.249540 + 0.432216i
\(476\) −11.2722 1.75021i −0.516662 0.0802208i
\(477\) 0 0
\(478\) 13.8239 0.632291
\(479\) −5.79262 + 10.0331i −0.264672 + 0.458425i −0.967478 0.252957i \(-0.918597\pi\)
0.702806 + 0.711382i \(0.251930\pi\)
\(480\) 0 0
\(481\) −6.00457 + 4.80769i −0.273785 + 0.219212i
\(482\) −10.7589 −0.490054
\(483\) 0 0
\(484\) 5.24412 + 9.08307i 0.238369 + 0.412867i
\(485\) −2.57341 4.45728i −0.116853 0.202394i
\(486\) 0 0
\(487\) −8.48336 −0.384418 −0.192209 0.981354i \(-0.561565\pi\)
−0.192209 + 0.981354i \(0.561565\pi\)
\(488\) 4.31156 + 7.46783i 0.195175 + 0.338053i
\(489\) 0 0
\(490\) −9.56457 + 8.71794i −0.432083 + 0.393836i
\(491\) 14.8606 + 25.7394i 0.670650 + 1.16160i 0.977720 + 0.209914i \(0.0673183\pi\)
−0.307069 + 0.951687i \(0.599348\pi\)
\(492\) 0 0
\(493\) −19.9969 34.6357i −0.900616 1.55991i
\(494\) 23.0947 + 9.01203i 1.03908 + 0.405471i
\(495\) 0 0
\(496\) 1.11104 + 1.92438i 0.0498873 + 0.0864073i
\(497\) −24.9104 + 30.9539i −1.11739 + 1.38847i
\(498\) 0 0
\(499\) 17.7944 30.8208i 0.796586 1.37973i −0.125241 0.992126i \(-0.539970\pi\)
0.921827 0.387601i \(-0.126696\pi\)
\(500\) 12.1687 0.544200
\(501\) 0 0
\(502\) −11.8267 + 20.4844i −0.527850 + 0.914263i
\(503\) −13.5658 + 23.4966i −0.604867 + 1.04766i 0.387205 + 0.921994i \(0.373440\pi\)
−0.992072 + 0.125667i \(0.959893\pi\)
\(504\) 0 0
\(505\) −4.95060 8.57469i −0.220299 0.381568i
\(506\) −2.56119 + 4.43611i −0.113859 + 0.197209i
\(507\) 0 0
\(508\) −7.58356 13.1351i −0.336466 0.582776i
\(509\) −7.21670 −0.319875 −0.159937 0.987127i \(-0.551129\pi\)
−0.159937 + 0.987127i \(0.551129\pi\)
\(510\) 0 0
\(511\) −1.89205 4.88448i −0.0836992 0.216077i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −19.1940 −0.846613
\(515\) −6.03499 10.4529i −0.265933 0.460610i
\(516\) 0 0
\(517\) 3.29471 + 5.70660i 0.144901 + 0.250976i
\(518\) −5.57764 0.866025i −0.245067 0.0380510i
\(519\) 0 0
\(520\) −1.00637 6.58951i −0.0441321 0.288969i
\(521\) −11.6165 20.1203i −0.508926 0.881486i −0.999947 0.0103382i \(-0.996709\pi\)
0.491020 0.871148i \(-0.336624\pi\)
\(522\) 0 0
\(523\) −39.7226 −1.73695 −0.868475 0.495734i \(-0.834899\pi\)
−0.868475 + 0.495734i \(0.834899\pi\)
\(524\) −9.69444 + 16.7913i −0.423504 + 0.733530i
\(525\) 0 0
\(526\) −5.49567 + 9.51878i −0.239623 + 0.415039i
\(527\) −4.79032 8.29708i −0.208670 0.361427i
\(528\) 0 0
\(529\) 28.2706 1.22916
\(530\) 14.0562 0.610564
\(531\) 0 0
\(532\) 6.57088 + 16.9633i 0.284884 + 0.735452i
\(533\) 14.9899 + 5.84936i 0.649284 + 0.253364i
\(534\) 0 0
\(535\) 4.27065 7.39699i 0.184636 0.319800i
\(536\) −6.96322 + 12.0606i −0.300765 + 0.520940i
\(537\) 0 0
\(538\) 16.5175 0.712122
\(539\) 3.70096 3.37336i 0.159412 0.145301i
\(540\) 0 0
\(541\) 17.6323 30.5400i 0.758070 1.31302i −0.185764 0.982594i \(-0.559476\pi\)
0.943834 0.330421i \(-0.107191\pi\)
\(542\) 18.1906 0.781352
\(543\) 0 0
\(544\) 4.31156 0.184856
\(545\) 18.3065 0.784164
\(546\) 0 0
\(547\) −37.3861 −1.59851 −0.799257 0.600990i \(-0.794773\pi\)
−0.799257 + 0.600990i \(0.794773\pi\)
\(548\) 4.74829 0.202837
\(549\) 0 0
\(550\) −1.13171 −0.0482563
\(551\) −31.8895 + 55.2342i −1.35854 + 2.35306i
\(552\) 0 0
\(553\) 24.4678 30.4039i 1.04048 1.29291i
\(554\) −16.4894 −0.700567
\(555\) 0 0
\(556\) −7.69027 + 13.3199i −0.326140 + 0.564891i
\(557\) 16.6350 28.8127i 0.704847 1.22083i −0.261899 0.965095i \(-0.584349\pi\)
0.966747 0.255736i \(-0.0823179\pi\)
\(558\) 0 0
\(559\) −0.106660 0.698389i −0.00451123 0.0295387i
\(560\) 3.06671 3.81071i 0.129592 0.161032i
\(561\) 0 0
\(562\) 15.2768 0.644411
\(563\) −14.6410 −0.617045 −0.308523 0.951217i \(-0.599835\pi\)
−0.308523 + 0.951217i \(0.599835\pi\)
\(564\) 0 0
\(565\) 2.78090 + 4.81666i 0.116993 + 0.202638i
\(566\) −4.57838 + 7.92998i −0.192444 + 0.333322i
\(567\) 0 0
\(568\) 7.50874 13.0055i 0.315060 0.545700i
\(569\) −34.8196 −1.45972 −0.729858 0.683599i \(-0.760414\pi\)
−0.729858 + 0.683599i \(0.760414\pi\)
\(570\) 0 0
\(571\) 17.3721 + 30.0894i 0.727001 + 1.25920i 0.958145 + 0.286283i \(0.0924199\pi\)
−0.231144 + 0.972920i \(0.574247\pi\)
\(572\) 0.389409 + 2.54978i 0.0162820 + 0.106612i
\(573\) 0 0
\(574\) 4.26490 + 11.0102i 0.178013 + 0.459557i
\(575\) 5.66373 + 9.80987i 0.236194 + 0.409100i
\(576\) 0 0
\(577\) −11.2007 19.4003i −0.466293 0.807643i 0.532966 0.846137i \(-0.321077\pi\)
−0.999259 + 0.0384934i \(0.987744\pi\)
\(578\) −1.58952 −0.0661152
\(579\) 0 0
\(580\) 17.1493 0.712086
\(581\) 25.4001 + 3.94381i 1.05378 + 0.163617i
\(582\) 0 0
\(583\) −5.43900 −0.225260
\(584\) 0.989914 + 1.71458i 0.0409629 + 0.0709499i
\(585\) 0 0
\(586\) 5.93488 10.2795i 0.245168 0.424643i
\(587\) 7.57505 + 13.1204i 0.312656 + 0.541536i 0.978936 0.204165i \(-0.0654480\pi\)
−0.666280 + 0.745701i \(0.732115\pi\)
\(588\) 0 0
\(589\) −7.63923 + 13.2315i −0.314769 + 0.545196i
\(590\) −2.29302 + 3.97163i −0.0944022 + 0.163509i
\(591\) 0 0
\(592\) 2.13341 0.0876826
\(593\) 3.85455 6.67627i 0.158287 0.274162i −0.775964 0.630777i \(-0.782736\pi\)
0.934251 + 0.356616i \(0.116069\pi\)
\(594\) 0 0
\(595\) −13.2223 + 16.4301i −0.542060 + 0.673568i
\(596\) −5.82384 10.0872i −0.238554 0.413187i
\(597\) 0 0
\(598\) 20.1531 16.1360i 0.824121 0.659850i
\(599\) 8.99448 + 15.5789i 0.367505 + 0.636537i 0.989175 0.146743i \(-0.0468789\pi\)
−0.621670 + 0.783279i \(0.713546\pi\)
\(600\) 0 0
\(601\) 4.77657 + 8.27326i 0.194840 + 0.337473i 0.946848 0.321681i \(-0.104248\pi\)
−0.752008 + 0.659154i \(0.770914\pi\)
\(602\) 0.325025 0.403878i 0.0132470 0.0164609i
\(603\) 0 0
\(604\) −4.09544 7.09351i −0.166641 0.288631i
\(605\) 19.3905 0.788338
\(606\) 0 0
\(607\) −10.7619 18.6402i −0.436813 0.756582i 0.560629 0.828067i \(-0.310559\pi\)
−0.997442 + 0.0714855i \(0.977226\pi\)
\(608\) −3.43786 5.95456i −0.139424 0.241489i
\(609\) 0 0
\(610\) 15.9423 0.645486
\(611\) −5.01392 32.8303i −0.202841 1.32817i
\(612\) 0 0
\(613\) 18.4945 32.0334i 0.746985 1.29382i −0.202276 0.979328i \(-0.564834\pi\)
0.949262 0.314488i \(-0.101833\pi\)
\(614\) 28.0679 1.13273
\(615\) 0 0
\(616\) −1.18665 + 1.47454i −0.0478114 + 0.0594108i
\(617\) −1.88766 + 3.26953i −0.0759945 + 0.131626i −0.901518 0.432741i \(-0.857546\pi\)
0.825524 + 0.564367i \(0.190880\pi\)
\(618\) 0 0
\(619\) −14.0117 24.2689i −0.563177 0.975451i −0.997217 0.0745570i \(-0.976246\pi\)
0.434040 0.900894i \(-0.357088\pi\)
\(620\) 4.10817 0.164988
\(621\) 0 0
\(622\) −12.7326 22.0536i −0.510532 0.884267i
\(623\) 11.6852 + 1.81434i 0.468160 + 0.0726899i
\(624\) 0 0
\(625\) 7.29376 12.6332i 0.291750 0.505326i
\(626\) 8.82204 15.2802i 0.352600 0.610721i
\(627\) 0 0
\(628\) 11.4353 + 19.8066i 0.456319 + 0.790368i
\(629\) −9.19832 −0.366761
\(630\) 0 0
\(631\) 6.85038 11.8652i 0.272709 0.472346i −0.696845 0.717221i \(-0.745414\pi\)
0.969555 + 0.244875i \(0.0787470\pi\)
\(632\) −7.37533 + 12.7744i −0.293375 + 0.508140i
\(633\) 0 0
\(634\) −14.8710 + 25.7573i −0.590603 + 1.02295i
\(635\) −28.0408 −1.11277
\(636\) 0 0
\(637\) −23.5575 + 9.05791i −0.933381 + 0.358887i
\(638\) −6.63585 −0.262716
\(639\) 0 0
\(640\) −0.924396 + 1.60110i −0.0365399 + 0.0632890i
\(641\) 6.40335 0.252917 0.126458 0.991972i \(-0.459639\pi\)
0.126458 + 0.991972i \(0.459639\pi\)
\(642\) 0 0
\(643\) 9.93369 17.2057i 0.391747 0.678525i −0.600933 0.799299i \(-0.705204\pi\)
0.992680 + 0.120774i \(0.0385377\pi\)
\(644\) 18.7202 + 2.90663i 0.737679 + 0.114537i
\(645\) 0 0
\(646\) 14.8225 + 25.6734i 0.583185 + 1.01011i
\(647\) 15.2592 26.4297i 0.599902 1.03906i −0.392933 0.919567i \(-0.628540\pi\)
0.992835 0.119494i \(-0.0381271\pi\)
\(648\) 0 0
\(649\) 0.887274 1.53680i 0.0348285 0.0603248i
\(650\) 5.31365 + 2.07349i 0.208418 + 0.0813291i
\(651\) 0 0
\(652\) −9.01923 15.6218i −0.353220 0.611795i
\(653\) −3.65412 −0.142997 −0.0714984 0.997441i \(-0.522778\pi\)
−0.0714984 + 0.997441i \(0.522778\pi\)
\(654\) 0 0
\(655\) 17.9230 + 31.0435i 0.700309 + 1.21297i
\(656\) −2.23138 3.86487i −0.0871208 0.150898i
\(657\) 0 0
\(658\) 15.2789 18.9857i 0.595635 0.740141i
\(659\) −4.12332 + 7.14181i −0.160622 + 0.278205i −0.935092 0.354405i \(-0.884683\pi\)
0.774470 + 0.632611i \(0.218017\pi\)
\(660\) 0 0
\(661\) −23.0565 + 39.9351i −0.896796 + 1.55330i −0.0652290 + 0.997870i \(0.520778\pi\)
−0.831567 + 0.555425i \(0.812556\pi\)
\(662\) 12.0197 + 20.8187i 0.467158 + 0.809141i
\(663\) 0 0
\(664\) −9.71538 −0.377030
\(665\) 33.2340 + 5.16016i 1.28876 + 0.200102i
\(666\) 0 0
\(667\) 33.2095 + 57.5206i 1.28588 + 2.22721i
\(668\) −3.86936 6.70193i −0.149710 0.259306i
\(669\) 0 0
\(670\) 12.8735 + 22.2976i 0.497348 + 0.861432i
\(671\) −6.16881 −0.238144
\(672\) 0 0
\(673\) −3.98669 6.90515i −0.153676 0.266174i 0.778900 0.627148i \(-0.215778\pi\)
−0.932576 + 0.360974i \(0.882444\pi\)
\(674\) 2.21939 0.0854879
\(675\) 0 0
\(676\) 2.84327 12.6853i 0.109357 0.487895i
\(677\) 20.4979 35.5033i 0.787797 1.36450i −0.139517 0.990220i \(-0.544555\pi\)
0.927314 0.374285i \(-0.122112\pi\)
\(678\) 0 0
\(679\) 4.61780 5.73811i 0.177215 0.220209i
\(680\) 3.98558 6.90323i 0.152840 0.264727i
\(681\) 0 0
\(682\) −1.58964 −0.0608704
\(683\) −35.2665 −1.34944 −0.674718 0.738076i \(-0.735735\pi\)
−0.674718 + 0.738076i \(0.735735\pi\)
\(684\) 0 0
\(685\) 4.38930 7.60248i 0.167706 0.290476i
\(686\) −16.5777 8.25707i −0.632940 0.315256i
\(687\) 0 0
\(688\) −0.0979721 + 0.169693i −0.00373515 + 0.00646947i
\(689\) 25.5373 + 9.96519i 0.972895 + 0.379644i
\(690\) 0 0
\(691\) 40.7075 1.54859 0.774293 0.632827i \(-0.218105\pi\)
0.774293 + 0.632827i \(0.218105\pi\)
\(692\) 6.01212 + 10.4133i 0.228547 + 0.395854i
\(693\) 0 0
\(694\) −2.01895 −0.0766384
\(695\) 14.2177 + 24.6258i 0.539308 + 0.934109i
\(696\) 0 0
\(697\) 9.62073 + 16.6636i 0.364411 + 0.631179i
\(698\) 16.8191 + 29.1316i 0.636613 + 1.10265i
\(699\) 0 0
\(700\) 1.51183 + 3.90292i 0.0571418 + 0.147517i
\(701\) 33.7968 1.27649 0.638243 0.769835i \(-0.279661\pi\)
0.638243 + 0.769835i \(0.279661\pi\)
\(702\) 0 0
\(703\) 7.33438 + 12.7035i 0.276621 + 0.479122i
\(704\) 0.357690 0.619538i 0.0134810 0.0233497i
\(705\) 0 0
\(706\) −11.6388 + 20.1590i −0.438033 + 0.758696i
\(707\) 8.88349 11.0387i 0.334098 0.415153i
\(708\) 0 0
\(709\) 1.67680 + 2.90430i 0.0629736 + 0.109073i 0.895793 0.444471i \(-0.146608\pi\)
−0.832820 + 0.553544i \(0.813275\pi\)
\(710\) −13.8821 24.0445i −0.520986 0.902374i
\(711\) 0 0
\(712\) −4.46953 −0.167503
\(713\) 7.95545 + 13.7792i 0.297934 + 0.516037i
\(714\) 0 0
\(715\) 4.44242 + 1.73352i 0.166137 + 0.0648300i
\(716\) 5.65742 9.79893i 0.211428 0.366203i
\(717\) 0 0
\(718\) 5.44896 9.43787i 0.203353 0.352218i
\(719\) −19.5541 33.8687i −0.729245 1.26309i −0.957203 0.289419i \(-0.906538\pi\)
0.227958 0.973671i \(-0.426795\pi\)
\(720\) 0 0
\(721\) 10.8294 13.4566i 0.403306 0.501151i
\(722\) 14.1378 24.4874i 0.526155 0.911328i
\(723\) 0 0
\(724\) −2.49725 −0.0928095
\(725\) −7.33715 + 12.7083i −0.272495 + 0.471975i
\(726\) 0 0
\(727\) −3.65073 −0.135398 −0.0676990 0.997706i \(-0.521566\pi\)
−0.0676990 + 0.997706i \(0.521566\pi\)
\(728\) 8.27319 4.74914i 0.306625 0.176015i
\(729\) 0 0
\(730\) 3.66029 0.135473
\(731\) 0.422412 0.731639i 0.0156235 0.0270607i
\(732\) 0 0
\(733\) 16.3999 28.4054i 0.605744 1.04918i −0.386190 0.922419i \(-0.626209\pi\)
0.991933 0.126760i \(-0.0404577\pi\)
\(734\) 2.44394 4.23302i 0.0902074 0.156244i
\(735\) 0 0
\(736\) −7.16035 −0.263934
\(737\) −4.98135 8.62796i −0.183490 0.317815i
\(738\) 0 0
\(739\) −5.11506 + 8.85954i −0.188160 + 0.325903i −0.944637 0.328118i \(-0.893586\pi\)
0.756477 + 0.654021i \(0.226919\pi\)
\(740\) 1.97212 3.41580i 0.0724964 0.125567i
\(741\) 0 0
\(742\) 7.26584 + 18.7574i 0.266738 + 0.688606i
\(743\) −17.1231 29.6581i −0.628186 1.08805i −0.987915 0.154994i \(-0.950464\pi\)
0.359729 0.933057i \(-0.382869\pi\)
\(744\) 0 0
\(745\) −21.5341 −0.788949
\(746\) −7.68366 13.3085i −0.281319 0.487259i
\(747\) 0 0
\(748\) −1.54220 + 2.67117i −0.0563885 + 0.0976678i
\(749\) 12.0785 + 1.87539i 0.441338 + 0.0685254i
\(750\) 0 0
\(751\) 11.7925 0.430316 0.215158 0.976579i \(-0.430973\pi\)
0.215158 + 0.976579i \(0.430973\pi\)
\(752\) −4.60553 + 7.97700i −0.167946 + 0.290891i
\(753\) 0 0
\(754\) 31.1568 + 12.1580i 1.13466 + 0.442769i
\(755\) −15.1432 −0.551118
\(756\) 0 0
\(757\) 24.1278 + 41.7906i 0.876940 + 1.51890i 0.854682 + 0.519152i \(0.173752\pi\)
0.0222575 + 0.999752i \(0.492915\pi\)
\(758\) −8.66626 15.0104i −0.314773 0.545203i
\(759\) 0 0
\(760\) −12.7118 −0.461105
\(761\) 6.11899 + 10.5984i 0.221813 + 0.384192i 0.955359 0.295449i \(-0.0954691\pi\)
−0.733545 + 0.679641i \(0.762136\pi\)
\(762\) 0 0
\(763\) 9.46285 + 24.4292i 0.342578 + 0.884395i
\(764\) −2.66349 4.61330i −0.0963617 0.166903i
\(765\) 0 0
\(766\) 5.99628 + 10.3859i 0.216654 + 0.375256i
\(767\) −6.98165 + 5.59000i −0.252093 + 0.201843i
\(768\) 0 0
\(769\) 0.357690 + 0.619538i 0.0128986 + 0.0223411i 0.872403 0.488788i \(-0.162561\pi\)
−0.859504 + 0.511129i \(0.829227\pi\)
\(770\) 1.26395 + 3.26300i 0.0455496 + 0.117590i
\(771\) 0 0
\(772\) −4.86186 + 8.42099i −0.174982 + 0.303078i
\(773\) −5.43066 −0.195327 −0.0976636 0.995219i \(-0.531137\pi\)
−0.0976636 + 0.995219i \(0.531137\pi\)
\(774\) 0 0
\(775\) −1.75764 + 3.04432i −0.0631362 + 0.109355i
\(776\) −1.39194 + 2.41091i −0.0499678 + 0.0865467i
\(777\) 0 0
\(778\) −8.89274 15.4027i −0.318820 0.552213i
\(779\) 15.3424 26.5738i 0.549698 0.952105i
\(780\) 0 0
\(781\) 5.37161 + 9.30390i 0.192211 + 0.332920i
\(782\) 30.8722 1.10399
\(783\) 0 0
\(784\) 6.67043 + 2.12257i 0.238230 + 0.0758061i
\(785\) 42.2831 1.50915
\(786\) 0 0
\(787\) −5.17027 −0.184300 −0.0921501 0.995745i \(-0.529374\pi\)
−0.0921501 + 0.995745i \(0.529374\pi\)
\(788\) 3.08593 + 5.34499i 0.109932 + 0.190407i
\(789\) 0 0
\(790\) 13.6354 + 23.6173i 0.485127 + 0.840265i
\(791\) −4.99013 + 6.20077i −0.177428 + 0.220474i
\(792\) 0 0
\(793\) 28.9640 + 11.3023i 1.02854 + 0.401358i
\(794\) 7.02952 + 12.1755i 0.249468 + 0.432092i
\(795\) 0 0
\(796\) 5.41454 0.191913
\(797\) −3.24073 + 5.61311i −0.114793 + 0.198827i −0.917697 0.397281i \(-0.869954\pi\)
0.802904 + 0.596108i \(0.203287\pi\)
\(798\) 0 0
\(799\) 19.8570 34.3933i 0.702490 1.21675i
\(800\) −0.790985 1.37003i −0.0279656 0.0484378i
\(801\) 0 0
\(802\) 4.13072 0.145861
\(803\) −1.41633 −0.0499812
\(804\) 0 0
\(805\) 21.9587 27.2860i 0.773942 0.961706i
\(806\) 7.46371 + 2.91249i 0.262898 + 0.102588i
\(807\) 0 0
\(808\) −2.67775 + 4.63800i −0.0942028 + 0.163164i
\(809\) 23.2909 40.3409i 0.818863 1.41831i −0.0876578 0.996151i \(-0.527938\pi\)
0.906521 0.422161i \(-0.138728\pi\)
\(810\) 0 0
\(811\) 44.2321 1.55320 0.776600 0.629994i \(-0.216943\pi\)
0.776600 + 0.629994i \(0.216943\pi\)
\(812\) 8.86469 + 22.8850i 0.311090 + 0.803105i
\(813\) 0 0
\(814\) −0.763101 + 1.32173i −0.0267467 + 0.0463266i
\(815\) −33.3493 −1.16818
\(816\) 0 0
\(817\) −1.34726 −0.0471346
\(818\) 5.21490 0.182335
\(819\) 0 0
\(820\) −8.25072 −0.288128
\(821\) 8.26567 0.288474 0.144237 0.989543i \(-0.453927\pi\)
0.144237 + 0.989543i \(0.453927\pi\)
\(822\) 0 0
\(823\) −51.2361 −1.78598 −0.892989 0.450078i \(-0.851396\pi\)
−0.892989 + 0.450078i \(0.851396\pi\)
\(824\) −3.26429 + 5.65391i −0.113717 + 0.196963i
\(825\) 0 0
\(826\) −6.48525 1.00695i −0.225651 0.0350362i
\(827\) 4.84895 0.168615 0.0843073 0.996440i \(-0.473132\pi\)
0.0843073 + 0.996440i \(0.473132\pi\)
\(828\) 0 0
\(829\) −0.997594 + 1.72788i −0.0346479 + 0.0600118i −0.882829 0.469694i \(-0.844364\pi\)
0.848181 + 0.529706i \(0.177698\pi\)
\(830\) −8.98086 + 15.5553i −0.311730 + 0.539932i
\(831\) 0 0
\(832\) −2.81454 + 2.25352i −0.0975766 + 0.0781268i
\(833\) −28.7600 9.15159i −0.996473 0.317084i
\(834\) 0 0
\(835\) −14.3073 −0.495124
\(836\) 4.91877 0.170119
\(837\) 0 0
\(838\) 3.69624 + 6.40207i 0.127684 + 0.221156i
\(839\) −11.0996 + 19.2251i −0.383201 + 0.663724i −0.991518 0.129971i \(-0.958512\pi\)
0.608317 + 0.793694i \(0.291845\pi\)
\(840\) 0 0
\(841\) −28.5217 + 49.4011i −0.983507 + 1.70348i
\(842\) −4.67144 −0.160989
\(843\) 0 0
\(844\) 13.6366 + 23.6193i 0.469392 + 0.813011i
\(845\) −17.6821 16.2786i −0.608281 0.560000i
\(846\) 0 0
\(847\) 10.0232 + 25.8758i 0.344402 + 0.889102i
\(848\) −3.80147 6.58434i −0.130543 0.226107i
\(849\) 0 0
\(850\) 3.41038 + 5.90695i 0.116975 + 0.202607i
\(851\) 15.2760 0.523653
\(852\) 0 0
\(853\) −20.8901 −0.715262 −0.357631 0.933863i \(-0.616415\pi\)
−0.357631 + 0.933863i \(0.616415\pi\)
\(854\) 8.24079 + 21.2743i 0.281994 + 0.727992i
\(855\) 0 0
\(856\) −4.61994 −0.157906
\(857\) −6.25195 10.8287i −0.213563 0.369901i 0.739264 0.673415i \(-0.235173\pi\)
−0.952827 + 0.303514i \(0.901840\pi\)
\(858\) 0 0
\(859\) 4.94030 8.55685i 0.168561 0.291956i −0.769353 0.638824i \(-0.779421\pi\)
0.937914 + 0.346868i \(0.112755\pi\)
\(860\) 0.181130 + 0.313726i 0.00617648 + 0.0106980i
\(861\) 0 0
\(862\) 11.0089 19.0680i 0.374965 0.649458i
\(863\) 20.2808 35.1274i 0.690367 1.19575i −0.281350 0.959605i \(-0.590782\pi\)
0.971718 0.236146i \(-0.0758844\pi\)
\(864\) 0 0
\(865\) 22.2303 0.755854
\(866\) 12.5366 21.7141i 0.426012 0.737875i
\(867\) 0 0
\(868\) 2.12356 + 5.48216i 0.0720784 + 0.186077i
\(869\) −5.27617 9.13860i −0.178982 0.310006i
\(870\) 0 0
\(871\) 7.58068 + 49.6369i 0.256861 + 1.68188i
\(872\) −4.95093 8.57527i −0.167660 0.290395i
\(873\) 0 0
\(874\) −24.6163 42.6367i −0.832659 1.44221i
\(875\) 31.8141 + 4.93969i 1.07551 + 0.166992i
\(876\) 0 0
\(877\) 15.6174 + 27.0502i 0.527363 + 0.913420i 0.999491 + 0.0318902i \(0.0101527\pi\)
−0.472128 + 0.881530i \(0.656514\pi\)
\(878\) 13.9493 0.470766
\(879\) 0 0
\(880\) −0.661295 1.14540i −0.0222923 0.0386113i
\(881\) 19.0177 + 32.9396i 0.640722 + 1.10976i 0.985272 + 0.170994i \(0.0546980\pi\)
−0.344550 + 0.938768i \(0.611969\pi\)
\(882\) 0 0
\(883\) 22.5813 0.759921 0.379961 0.925003i \(-0.375938\pi\)
0.379961 + 0.925003i \(0.375938\pi\)
\(884\) 12.1350 9.71619i 0.408146 0.326791i
\(885\) 0 0
\(886\) 1.69137 2.92955i 0.0568228 0.0984201i
\(887\) −7.73646 −0.259765 −0.129882 0.991529i \(-0.541460\pi\)
−0.129882 + 0.991529i \(0.541460\pi\)
\(888\) 0 0
\(889\) −14.4946 37.4192i −0.486135 1.25500i
\(890\) −4.13161 + 7.15616i −0.138492 + 0.239875i
\(891\) 0 0
\(892\) −2.88502 4.99700i −0.0965976 0.167312i
\(893\) −63.3327 −2.11935
\(894\) 0 0
\(895\) −10.4594 18.1162i −0.349619 0.605557i
\(896\) −2.61442 0.405935i −0.0873418 0.0135613i
\(897\) 0 0
\(898\) 7.51094 13.0093i 0.250643 0.434127i
\(899\) −10.3060 + 17.8505i −0.343724 + 0.595347i
\(900\) 0 0
\(901\) 16.3903 + 28.3887i 0.546038 + 0.945766i
\(902\) 3.19258 0.106301
\(903\) 0 0
\(904\) 1.50417 2.60530i 0.0500280 0.0866510i
\(905\) −2.30845 + 3.99835i −0.0767353 + 0.132909i
\(906\) 0 0
\(907\) 20.3205 35.1961i 0.674731 1.16867i −0.301817 0.953366i \(-0.597593\pi\)
0.976548 0.215302i \(-0.0690735\pi\)
\(908\) −16.9846 −0.563653
\(909\) 0 0
\(910\) 0.0438411 17.6363i 0.00145332 0.584637i
\(911\) −2.41059 −0.0798664 −0.0399332 0.999202i \(-0.512715\pi\)
−0.0399332 + 0.999202i \(0.512715\pi\)
\(912\) 0 0
\(913\) 3.47510 6.01905i 0.115009 0.199201i
\(914\) 11.9647 0.395758
\(915\) 0 0
\(916\) 0.460390 0.797420i 0.0152117 0.0263475i
\(917\) −32.1615 + 39.9642i −1.06207 + 1.31973i
\(918\) 0 0
\(919\) −6.62695 11.4782i −0.218603 0.378631i 0.735778 0.677223i \(-0.236817\pi\)
−0.954381 + 0.298591i \(0.903483\pi\)
\(920\) −6.61899 + 11.4644i −0.218222 + 0.377971i
\(921\) 0 0
\(922\) 5.35595 9.27677i 0.176389 0.305514i
\(923\) −8.17458 53.5257i −0.269069 1.76182i
\(924\) 0 0
\(925\) 1.68750 + 2.92283i 0.0554845 + 0.0961020i
\(926\) 13.5305 0.444639
\(927\) 0 0
\(928\) −4.63798 8.03322i −0.152249 0.263703i
\(929\) −12.3258 21.3489i −0.404397 0.700436i 0.589854 0.807510i \(-0.299185\pi\)
−0.994251 + 0.107074i \(0.965852\pi\)
\(930\) 0 0
\(931\) 10.2931 + 47.0166i 0.337342 + 1.54091i
\(932\) 2.50283 4.33502i 0.0819828 0.141998i
\(933\) 0 0
\(934\) −13.9783 + 24.2112i −0.457385 + 0.792214i
\(935\) 2.85121 + 4.93844i 0.0932446 + 0.161504i
\(936\) 0 0
\(937\) −26.6818 −0.871656 −0.435828 0.900030i \(-0.643544\pi\)
−0.435828 + 0.900030i \(0.643544\pi\)
\(938\) −23.1006 + 28.7050i −0.754263 + 0.937253i
\(939\) 0 0
\(940\) 8.51466 + 14.7478i 0.277717 + 0.481021i
\(941\) 20.1805 + 34.9536i 0.657865 + 1.13946i 0.981167 + 0.193159i \(0.0618735\pi\)
−0.323303 + 0.946296i \(0.604793\pi\)
\(942\) 0 0
\(943\) −15.9775 27.6738i −0.520298 0.901183i
\(944\) 2.48056 0.0807355
\(945\) 0 0
\(946\) −0.0700874 0.121395i −0.00227874 0.00394689i
\(947\) −5.51853 −0.179328 −0.0896641 0.995972i \(-0.528579\pi\)
−0.0896641 + 0.995972i \(0.528579\pi\)
\(948\) 0 0
\(949\) 6.65000 + 2.59496i 0.215868 + 0.0842361i
\(950\) 5.43860 9.41993i 0.176451 0.305623i
\(951\) 0 0
\(952\) 11.2722 + 1.75021i 0.365335 + 0.0567246i
\(953\) 2.92091 5.05916i 0.0946175 0.163882i −0.814831 0.579698i \(-0.803171\pi\)
0.909449 + 0.415816i \(0.136504\pi\)
\(954\) 0 0
\(955\) −9.84847 −0.318689
\(956\) −13.8239 −0.447097
\(957\) 0 0
\(958\) 5.79262 10.0331i 0.187151 0.324155i
\(959\) 12.4140 + 1.92749i 0.400870 + 0.0622420i
\(960\) 0 0
\(961\) 13.0312 22.5706i 0.420360 0.728085i
\(962\) 6.00457 4.80769i 0.193595 0.155006i
\(963\) 0 0
\(964\) 10.7589 0.346521
\(965\) 8.98857 + 15.5687i 0.289352 + 0.501173i
\(966\) 0 0
\(967\) 4.98537 0.160319 0.0801594 0.996782i \(-0.474457\pi\)
0.0801594 + 0.996782i \(0.474457\pi\)
\(968\) −5.24412 9.08307i −0.168552 0.291941i
\(969\) 0 0
\(970\) 2.57341 + 4.45728i 0.0826272 + 0.143115i
\(971\) −1.37240 2.37707i −0.0440424 0.0762837i 0.843164 0.537657i \(-0.180690\pi\)
−0.887206 + 0.461373i \(0.847357\pi\)
\(972\) 0 0
\(973\) −25.5127 + 31.7022i −0.817898 + 1.01633i
\(974\) 8.48336 0.271824
\(975\) 0 0
\(976\) −4.31156 7.46783i −0.138010 0.239040i
\(977\) −8.19729 + 14.1981i −0.262255 + 0.454238i −0.966841 0.255380i \(-0.917799\pi\)
0.704586 + 0.709618i \(0.251133\pi\)
\(978\) 0 0
\(979\) 1.59871 2.76904i 0.0510949 0.0884990i
\(980\) 9.56457 8.71794i 0.305529 0.278484i
\(981\) 0 0
\(982\) −14.8606 25.7394i −0.474221 0.821376i
\(983\) −15.1127 26.1760i −0.482021 0.834884i 0.517766 0.855522i \(-0.326764\pi\)
−0.999787 + 0.0206379i \(0.993430\pi\)
\(984\) 0 0
\(985\) 11.4105 0.363568
\(986\) 19.9969 + 34.6357i 0.636831 + 1.10302i
\(987\) 0 0
\(988\) −23.0947 9.01203i −0.734741 0.286711i
\(989\) −0.701514 + 1.21506i −0.0223069 + 0.0386366i
\(990\) 0 0
\(991\) −10.0272 + 17.3677i −0.318525 + 0.551702i −0.980181 0.198106i \(-0.936521\pi\)
0.661655 + 0.749808i \(0.269854\pi\)
\(992\) −1.11104 1.92438i −0.0352756 0.0610992i
\(993\) 0 0
\(994\) 24.9104 30.9539i 0.790111 0.981798i
\(995\) 5.00518 8.66922i 0.158675 0.274833i
\(996\) 0 0
\(997\) −43.4877 −1.37727 −0.688635 0.725108i \(-0.741790\pi\)
−0.688635 + 0.725108i \(0.741790\pi\)
\(998\) −17.7944 + 30.8208i −0.563272 + 0.975615i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.m.h.289.4 8
3.2 odd 2 546.2.j.c.289.1 8
7.4 even 3 1638.2.p.h.991.4 8
13.9 even 3 1638.2.p.h.919.4 8
21.11 odd 6 546.2.k.c.445.1 yes 8
39.35 odd 6 546.2.k.c.373.1 yes 8
91.74 even 3 inner 1638.2.m.h.1621.4 8
273.74 odd 6 546.2.j.c.529.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.j.c.289.1 8 3.2 odd 2
546.2.j.c.529.1 yes 8 273.74 odd 6
546.2.k.c.373.1 yes 8 39.35 odd 6
546.2.k.c.445.1 yes 8 21.11 odd 6
1638.2.m.h.289.4 8 1.1 even 1 trivial
1638.2.m.h.1621.4 8 91.74 even 3 inner
1638.2.p.h.919.4 8 13.9 even 3
1638.2.p.h.991.4 8 7.4 even 3