Properties

Label 163.2.e
Level $163$
Weight $2$
Character orbit 163.e
Rep. character $\chi_{163}(38,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $72$
Newform subspaces $1$
Sturm bound $27$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 163 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 163.e (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 163 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 1 \)
Sturm bound: \(27\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(163, [\chi])\).

Total New Old
Modular forms 84 84 0
Cusp forms 72 72 0
Eisenstein series 12 12 0

Trace form

\( 72 q - 3 q^{2} - 3 q^{4} - 9 q^{6} + 6 q^{7} + 21 q^{8} + 6 q^{9} - 21 q^{11} - 33 q^{12} + 3 q^{13} + 18 q^{14} - 36 q^{15} + 21 q^{16} + 9 q^{17} - 66 q^{18} - 24 q^{19} + 42 q^{20} - 3 q^{21} - 6 q^{22}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(163, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
163.2.e.a 163.e 163.e $72$ $1.302$ None 163.2.e.a \(-3\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{9}]$