Properties

Label 163.2
Level 163
Weight 2
Dimension 1027
Nonzero newspaces 5
Newform subspaces 7
Sturm bound 4428
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 163 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 7 \)
Sturm bound: \(4428\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(163))\).

Total New Old
Modular forms 1188 1188 0
Cusp forms 1027 1027 0
Eisenstein series 161 161 0

Trace form

\( 1027 q - 78 q^{2} - 77 q^{3} - 74 q^{4} - 75 q^{5} - 69 q^{6} - 73 q^{7} - 66 q^{8} - 68 q^{9} - 63 q^{10} - 69 q^{11} - 53 q^{12} - 67 q^{13} - 57 q^{14} - 57 q^{15} - 50 q^{16} - 63 q^{17} - 42 q^{18}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(163))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
163.2.a \(\chi_{163}(1, \cdot)\) 163.2.a.a 1 1
163.2.a.b 5
163.2.a.c 7
163.2.c \(\chi_{163}(58, \cdot)\) 163.2.c.a 24 2
163.2.e \(\chi_{163}(38, \cdot)\) 163.2.e.a 72 6
163.2.g \(\chi_{163}(6, \cdot)\) 163.2.g.a 216 18
163.2.i \(\chi_{163}(4, \cdot)\) 163.2.i.a 702 54