Defining parameters
| Level: | \( N \) | \(=\) | \( 163 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 163.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(27\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(163))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 14 | 14 | 0 |
| Cusp forms | 13 | 13 | 0 |
| Eisenstein series | 1 | 1 | 0 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(163\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(6\) | \(6\) | \(0\) | \(6\) | \(6\) | \(0\) | \(0\) | \(0\) | \(0\) | |||
| \(-\) | \(8\) | \(8\) | \(0\) | \(7\) | \(7\) | \(0\) | \(1\) | \(1\) | \(0\) | |||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(163))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 163 | |||||||
| 163.2.a.a | $1$ | $1.302$ | \(\Q\) | None | \(0\) | \(0\) | \(-4\) | \(2\) | $+$ | \(q-2q^{4}-4q^{5}+2q^{7}-3q^{9}-6q^{11}+\cdots\) | |
| 163.2.a.b | $5$ | $1.302$ | 5.5.65657.1 | None | \(-5\) | \(-5\) | \(-9\) | \(-6\) | $+$ | \(q+(-1+\beta _{2}+\beta _{3})q^{2}+(-1+\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\) | |
| 163.2.a.c | $7$ | $1.302$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(3\) | \(1\) | \(11\) | \(0\) | $-$ | \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(1+\beta _{2})q^{4}+(2-\beta _{6})q^{5}+\cdots\) | |