Properties

Label 163.2.a
Level $163$
Weight $2$
Character orbit 163.a
Rep. character $\chi_{163}(1,\cdot)$
Character field $\Q$
Dimension $13$
Newform subspaces $3$
Sturm bound $27$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 163 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 163.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(27\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(163))\).

Total New Old
Modular forms 14 14 0
Cusp forms 13 13 0
Eisenstein series 1 1 0

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(163\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(6\)\(6\)\(0\)\(6\)\(6\)\(0\)\(0\)\(0\)\(0\)
\(-\)\(8\)\(8\)\(0\)\(7\)\(7\)\(0\)\(1\)\(1\)\(0\)

Trace form

\( 13 q - 2 q^{2} - 4 q^{3} + 12 q^{4} - 2 q^{5} - 6 q^{6} - 4 q^{7} - 12 q^{8} + 7 q^{9} + 6 q^{10} - 2 q^{11} - 10 q^{12} + 2 q^{14} + 14 q^{16} - 8 q^{17} - 2 q^{18} - 4 q^{19} - 10 q^{20} - 18 q^{21} - 2 q^{22}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(163))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 163
163.2.a.a 163.a 1.a $1$ $1.302$ \(\Q\) None 163.2.a.a \(0\) \(0\) \(-4\) \(2\) $+$ $\mathrm{SU}(2)$ \(q-2q^{4}-4q^{5}+2q^{7}-3q^{9}-6q^{11}+\cdots\)
163.2.a.b 163.a 1.a $5$ $1.302$ 5.5.65657.1 None 163.2.a.b \(-5\) \(-5\) \(-9\) \(-6\) $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{2}+\beta _{3})q^{2}+(-1+\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)
163.2.a.c 163.a 1.a $7$ $1.302$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 163.2.a.c \(3\) \(1\) \(11\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(1+\beta _{2})q^{4}+(2-\beta _{6})q^{5}+\cdots\)