Properties

Label 1629.4.a.b.1.11
Level $1629$
Weight $4$
Character 1629.1
Self dual yes
Analytic conductor $96.114$
Analytic rank $1$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1629,4,Mod(1,1629)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1629.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1629, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1629 = 3^{2} \cdot 181 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1629.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.1141113994\)
Analytic rank: \(1\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 5 x^{16} - 71 x^{15} + 350 x^{14} + 1993 x^{13} - 9702 x^{12} - 28280 x^{11} + 136606 x^{10} + \cdots - 19616 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 543)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(2.22090\) of defining polynomial
Character \(\chi\) \(=\) 1629.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.22090 q^{2} -3.06759 q^{4} -12.5951 q^{5} +24.1343 q^{7} -24.5800 q^{8} -27.9724 q^{10} +41.6126 q^{11} -69.2885 q^{13} +53.5999 q^{14} -30.0492 q^{16} +124.194 q^{17} -114.386 q^{19} +38.6365 q^{20} +92.4176 q^{22} +69.0499 q^{23} +33.6357 q^{25} -153.883 q^{26} -74.0341 q^{28} -138.456 q^{29} +194.464 q^{31} +129.904 q^{32} +275.822 q^{34} -303.973 q^{35} +58.7545 q^{37} -254.040 q^{38} +309.587 q^{40} +207.753 q^{41} -304.683 q^{43} -127.651 q^{44} +153.353 q^{46} +354.608 q^{47} +239.464 q^{49} +74.7016 q^{50} +212.549 q^{52} -57.2922 q^{53} -524.114 q^{55} -593.222 q^{56} -307.497 q^{58} +67.1797 q^{59} -512.348 q^{61} +431.887 q^{62} +528.898 q^{64} +872.694 q^{65} +106.780 q^{67} -380.976 q^{68} -675.094 q^{70} -372.183 q^{71} -451.820 q^{73} +130.488 q^{74} +350.889 q^{76} +1004.29 q^{77} -661.578 q^{79} +378.471 q^{80} +461.399 q^{82} -235.552 q^{83} -1564.23 q^{85} -676.671 q^{86} -1022.84 q^{88} -1352.43 q^{89} -1672.23 q^{91} -211.817 q^{92} +787.549 q^{94} +1440.70 q^{95} -131.453 q^{97} +531.825 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 5 q^{2} + 31 q^{4} + 21 q^{5} - 62 q^{7} + 60 q^{8} - 127 q^{10} + 65 q^{11} - 246 q^{13} + 121 q^{14} - 85 q^{16} + 433 q^{17} - 459 q^{19} + 208 q^{20} - 270 q^{22} + 165 q^{23} - 146 q^{25} + 89 q^{26}+ \cdots - 1803 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.22090 0.785208 0.392604 0.919708i \(-0.371574\pi\)
0.392604 + 0.919708i \(0.371574\pi\)
\(3\) 0 0
\(4\) −3.06759 −0.383449
\(5\) −12.5951 −1.12654 −0.563268 0.826274i \(-0.690456\pi\)
−0.563268 + 0.826274i \(0.690456\pi\)
\(6\) 0 0
\(7\) 24.1343 1.30313 0.651564 0.758593i \(-0.274113\pi\)
0.651564 + 0.758593i \(0.274113\pi\)
\(8\) −24.5800 −1.08629
\(9\) 0 0
\(10\) −27.9724 −0.884566
\(11\) 41.6126 1.14061 0.570304 0.821434i \(-0.306826\pi\)
0.570304 + 0.821434i \(0.306826\pi\)
\(12\) 0 0
\(13\) −69.2885 −1.47824 −0.739122 0.673571i \(-0.764760\pi\)
−0.739122 + 0.673571i \(0.764760\pi\)
\(14\) 53.5999 1.02323
\(15\) 0 0
\(16\) −30.0492 −0.469518
\(17\) 124.194 1.77185 0.885924 0.463830i \(-0.153525\pi\)
0.885924 + 0.463830i \(0.153525\pi\)
\(18\) 0 0
\(19\) −114.386 −1.38116 −0.690578 0.723258i \(-0.742644\pi\)
−0.690578 + 0.723258i \(0.742644\pi\)
\(20\) 38.6365 0.431969
\(21\) 0 0
\(22\) 92.4176 0.895613
\(23\) 69.0499 0.625996 0.312998 0.949754i \(-0.398667\pi\)
0.312998 + 0.949754i \(0.398667\pi\)
\(24\) 0 0
\(25\) 33.6357 0.269086
\(26\) −153.883 −1.16073
\(27\) 0 0
\(28\) −74.0341 −0.499683
\(29\) −138.456 −0.886572 −0.443286 0.896380i \(-0.646187\pi\)
−0.443286 + 0.896380i \(0.646187\pi\)
\(30\) 0 0
\(31\) 194.464 1.12667 0.563336 0.826228i \(-0.309518\pi\)
0.563336 + 0.826228i \(0.309518\pi\)
\(32\) 129.904 0.717625
\(33\) 0 0
\(34\) 275.822 1.39127
\(35\) −303.973 −1.46802
\(36\) 0 0
\(37\) 58.7545 0.261059 0.130529 0.991444i \(-0.458332\pi\)
0.130529 + 0.991444i \(0.458332\pi\)
\(38\) −254.040 −1.08449
\(39\) 0 0
\(40\) 309.587 1.22375
\(41\) 207.753 0.791355 0.395678 0.918389i \(-0.370510\pi\)
0.395678 + 0.918389i \(0.370510\pi\)
\(42\) 0 0
\(43\) −304.683 −1.08055 −0.540275 0.841488i \(-0.681680\pi\)
−0.540275 + 0.841488i \(0.681680\pi\)
\(44\) −127.651 −0.437365
\(45\) 0 0
\(46\) 153.353 0.491537
\(47\) 354.608 1.10053 0.550264 0.834990i \(-0.314527\pi\)
0.550264 + 0.834990i \(0.314527\pi\)
\(48\) 0 0
\(49\) 239.464 0.698145
\(50\) 74.7016 0.211288
\(51\) 0 0
\(52\) 212.549 0.566831
\(53\) −57.2922 −0.148485 −0.0742423 0.997240i \(-0.523654\pi\)
−0.0742423 + 0.997240i \(0.523654\pi\)
\(54\) 0 0
\(55\) −524.114 −1.28494
\(56\) −593.222 −1.41558
\(57\) 0 0
\(58\) −307.497 −0.696143
\(59\) 67.1797 0.148238 0.0741190 0.997249i \(-0.476386\pi\)
0.0741190 + 0.997249i \(0.476386\pi\)
\(60\) 0 0
\(61\) −512.348 −1.07540 −0.537701 0.843136i \(-0.680707\pi\)
−0.537701 + 0.843136i \(0.680707\pi\)
\(62\) 431.887 0.884672
\(63\) 0 0
\(64\) 528.898 1.03300
\(65\) 872.694 1.66530
\(66\) 0 0
\(67\) 106.780 0.194705 0.0973527 0.995250i \(-0.468963\pi\)
0.0973527 + 0.995250i \(0.468963\pi\)
\(68\) −380.976 −0.679413
\(69\) 0 0
\(70\) −675.094 −1.15270
\(71\) −372.183 −0.622113 −0.311056 0.950391i \(-0.600683\pi\)
−0.311056 + 0.950391i \(0.600683\pi\)
\(72\) 0 0
\(73\) −451.820 −0.724404 −0.362202 0.932100i \(-0.617975\pi\)
−0.362202 + 0.932100i \(0.617975\pi\)
\(74\) 130.488 0.204986
\(75\) 0 0
\(76\) 350.889 0.529602
\(77\) 1004.29 1.48636
\(78\) 0 0
\(79\) −661.578 −0.942194 −0.471097 0.882081i \(-0.656142\pi\)
−0.471097 + 0.882081i \(0.656142\pi\)
\(80\) 378.471 0.528930
\(81\) 0 0
\(82\) 461.399 0.621378
\(83\) −235.552 −0.311509 −0.155754 0.987796i \(-0.549781\pi\)
−0.155754 + 0.987796i \(0.549781\pi\)
\(84\) 0 0
\(85\) −1564.23 −1.99605
\(86\) −676.671 −0.848457
\(87\) 0 0
\(88\) −1022.84 −1.23904
\(89\) −1352.43 −1.61076 −0.805380 0.592759i \(-0.798039\pi\)
−0.805380 + 0.592759i \(0.798039\pi\)
\(90\) 0 0
\(91\) −1672.23 −1.92634
\(92\) −211.817 −0.240037
\(93\) 0 0
\(94\) 787.549 0.864144
\(95\) 1440.70 1.55592
\(96\) 0 0
\(97\) −131.453 −0.137599 −0.0687994 0.997631i \(-0.521917\pi\)
−0.0687994 + 0.997631i \(0.521917\pi\)
\(98\) 531.825 0.548188
\(99\) 0 0
\(100\) −103.181 −0.103181
\(101\) −1264.62 −1.24589 −0.622944 0.782266i \(-0.714064\pi\)
−0.622944 + 0.782266i \(0.714064\pi\)
\(102\) 0 0
\(103\) 843.745 0.807152 0.403576 0.914946i \(-0.367767\pi\)
0.403576 + 0.914946i \(0.367767\pi\)
\(104\) 1703.12 1.60581
\(105\) 0 0
\(106\) −127.240 −0.116591
\(107\) −205.666 −0.185817 −0.0929087 0.995675i \(-0.529616\pi\)
−0.0929087 + 0.995675i \(0.529616\pi\)
\(108\) 0 0
\(109\) 1416.75 1.24495 0.622476 0.782639i \(-0.286127\pi\)
0.622476 + 0.782639i \(0.286127\pi\)
\(110\) −1164.01 −1.00894
\(111\) 0 0
\(112\) −725.215 −0.611843
\(113\) −2107.97 −1.75488 −0.877440 0.479686i \(-0.840751\pi\)
−0.877440 + 0.479686i \(0.840751\pi\)
\(114\) 0 0
\(115\) −869.688 −0.705208
\(116\) 424.726 0.339955
\(117\) 0 0
\(118\) 149.200 0.116398
\(119\) 2997.33 2.30895
\(120\) 0 0
\(121\) 400.611 0.300985
\(122\) −1137.88 −0.844413
\(123\) 0 0
\(124\) −596.537 −0.432021
\(125\) 1150.74 0.823402
\(126\) 0 0
\(127\) −2481.52 −1.73386 −0.866928 0.498433i \(-0.833909\pi\)
−0.866928 + 0.498433i \(0.833909\pi\)
\(128\) 135.397 0.0934966
\(129\) 0 0
\(130\) 1938.17 1.30760
\(131\) −636.102 −0.424248 −0.212124 0.977243i \(-0.568038\pi\)
−0.212124 + 0.977243i \(0.568038\pi\)
\(132\) 0 0
\(133\) −2760.62 −1.79982
\(134\) 237.148 0.152884
\(135\) 0 0
\(136\) −3052.69 −1.92475
\(137\) 251.472 0.156823 0.0784114 0.996921i \(-0.475015\pi\)
0.0784114 + 0.996921i \(0.475015\pi\)
\(138\) 0 0
\(139\) −2121.90 −1.29480 −0.647400 0.762151i \(-0.724144\pi\)
−0.647400 + 0.762151i \(0.724144\pi\)
\(140\) 932.464 0.562912
\(141\) 0 0
\(142\) −826.582 −0.488488
\(143\) −2883.28 −1.68610
\(144\) 0 0
\(145\) 1743.86 0.998756
\(146\) −1003.45 −0.568808
\(147\) 0 0
\(148\) −180.235 −0.100103
\(149\) 1929.37 1.06081 0.530404 0.847745i \(-0.322040\pi\)
0.530404 + 0.847745i \(0.322040\pi\)
\(150\) 0 0
\(151\) −1892.02 −1.01967 −0.509837 0.860271i \(-0.670294\pi\)
−0.509837 + 0.860271i \(0.670294\pi\)
\(152\) 2811.61 1.50034
\(153\) 0 0
\(154\) 2230.43 1.16710
\(155\) −2449.29 −1.26924
\(156\) 0 0
\(157\) −2989.77 −1.51981 −0.759904 0.650036i \(-0.774754\pi\)
−0.759904 + 0.650036i \(0.774754\pi\)
\(158\) −1469.30 −0.739818
\(159\) 0 0
\(160\) −1636.15 −0.808432
\(161\) 1666.47 0.815753
\(162\) 0 0
\(163\) 2488.85 1.19596 0.597980 0.801511i \(-0.295970\pi\)
0.597980 + 0.801511i \(0.295970\pi\)
\(164\) −637.301 −0.303444
\(165\) 0 0
\(166\) −523.139 −0.244599
\(167\) −2212.25 −1.02509 −0.512543 0.858661i \(-0.671297\pi\)
−0.512543 + 0.858661i \(0.671297\pi\)
\(168\) 0 0
\(169\) 2603.90 1.18521
\(170\) −3474.00 −1.56732
\(171\) 0 0
\(172\) 934.642 0.414336
\(173\) 1293.44 0.568432 0.284216 0.958760i \(-0.408267\pi\)
0.284216 + 0.958760i \(0.408267\pi\)
\(174\) 0 0
\(175\) 811.774 0.350653
\(176\) −1250.42 −0.535536
\(177\) 0 0
\(178\) −3003.62 −1.26478
\(179\) 1516.30 0.633149 0.316574 0.948568i \(-0.397467\pi\)
0.316574 + 0.948568i \(0.397467\pi\)
\(180\) 0 0
\(181\) −181.000 −0.0743294
\(182\) −3713.86 −1.51258
\(183\) 0 0
\(184\) −1697.25 −0.680016
\(185\) −740.017 −0.294093
\(186\) 0 0
\(187\) 5168.03 2.02098
\(188\) −1087.79 −0.421997
\(189\) 0 0
\(190\) 3199.65 1.22172
\(191\) −4170.02 −1.57975 −0.789875 0.613268i \(-0.789854\pi\)
−0.789875 + 0.613268i \(0.789854\pi\)
\(192\) 0 0
\(193\) −4053.18 −1.51168 −0.755840 0.654757i \(-0.772771\pi\)
−0.755840 + 0.654757i \(0.772771\pi\)
\(194\) −291.945 −0.108044
\(195\) 0 0
\(196\) −734.576 −0.267703
\(197\) −4980.20 −1.80114 −0.900571 0.434710i \(-0.856851\pi\)
−0.900571 + 0.434710i \(0.856851\pi\)
\(198\) 0 0
\(199\) −775.235 −0.276155 −0.138078 0.990421i \(-0.544092\pi\)
−0.138078 + 0.990421i \(0.544092\pi\)
\(200\) −826.767 −0.292306
\(201\) 0 0
\(202\) −2808.60 −0.978281
\(203\) −3341.53 −1.15532
\(204\) 0 0
\(205\) −2616.66 −0.891491
\(206\) 1873.87 0.633782
\(207\) 0 0
\(208\) 2082.06 0.694063
\(209\) −4759.90 −1.57536
\(210\) 0 0
\(211\) 2014.44 0.657252 0.328626 0.944460i \(-0.393415\pi\)
0.328626 + 0.944460i \(0.393415\pi\)
\(212\) 175.749 0.0569363
\(213\) 0 0
\(214\) −456.764 −0.145905
\(215\) 3837.50 1.21728
\(216\) 0 0
\(217\) 4693.26 1.46820
\(218\) 3146.46 0.977546
\(219\) 0 0
\(220\) 1607.77 0.492707
\(221\) −8605.21 −2.61923
\(222\) 0 0
\(223\) 1581.37 0.474870 0.237435 0.971403i \(-0.423693\pi\)
0.237435 + 0.971403i \(0.423693\pi\)
\(224\) 3135.14 0.935158
\(225\) 0 0
\(226\) −4681.60 −1.37795
\(227\) −3284.88 −0.960464 −0.480232 0.877142i \(-0.659447\pi\)
−0.480232 + 0.877142i \(0.659447\pi\)
\(228\) 0 0
\(229\) −2869.66 −0.828089 −0.414045 0.910257i \(-0.635884\pi\)
−0.414045 + 0.910257i \(0.635884\pi\)
\(230\) −1931.49 −0.553734
\(231\) 0 0
\(232\) 3403.25 0.963078
\(233\) 1453.15 0.408581 0.204290 0.978910i \(-0.434511\pi\)
0.204290 + 0.978910i \(0.434511\pi\)
\(234\) 0 0
\(235\) −4466.31 −1.23979
\(236\) −206.080 −0.0568417
\(237\) 0 0
\(238\) 6656.77 1.81300
\(239\) 6263.29 1.69514 0.847570 0.530683i \(-0.178065\pi\)
0.847570 + 0.530683i \(0.178065\pi\)
\(240\) 0 0
\(241\) −5448.22 −1.45623 −0.728114 0.685456i \(-0.759603\pi\)
−0.728114 + 0.685456i \(0.759603\pi\)
\(242\) 889.717 0.236335
\(243\) 0 0
\(244\) 1571.68 0.412361
\(245\) −3016.06 −0.786486
\(246\) 0 0
\(247\) 7925.64 2.04169
\(248\) −4779.94 −1.22390
\(249\) 0 0
\(250\) 2555.68 0.646542
\(251\) 6442.28 1.62005 0.810026 0.586394i \(-0.199453\pi\)
0.810026 + 0.586394i \(0.199453\pi\)
\(252\) 0 0
\(253\) 2873.35 0.714015
\(254\) −5511.23 −1.36144
\(255\) 0 0
\(256\) −3930.48 −0.959589
\(257\) −1661.83 −0.403356 −0.201678 0.979452i \(-0.564639\pi\)
−0.201678 + 0.979452i \(0.564639\pi\)
\(258\) 0 0
\(259\) 1418.00 0.340193
\(260\) −2677.07 −0.638556
\(261\) 0 0
\(262\) −1412.72 −0.333123
\(263\) 2563.49 0.601033 0.300517 0.953777i \(-0.402841\pi\)
0.300517 + 0.953777i \(0.402841\pi\)
\(264\) 0 0
\(265\) 721.599 0.167273
\(266\) −6131.08 −1.41324
\(267\) 0 0
\(268\) −327.558 −0.0746596
\(269\) −3782.12 −0.857249 −0.428624 0.903483i \(-0.641002\pi\)
−0.428624 + 0.903483i \(0.641002\pi\)
\(270\) 0 0
\(271\) 3065.79 0.687209 0.343605 0.939114i \(-0.388352\pi\)
0.343605 + 0.939114i \(0.388352\pi\)
\(272\) −3731.92 −0.831915
\(273\) 0 0
\(274\) 558.495 0.123138
\(275\) 1399.67 0.306921
\(276\) 0 0
\(277\) −3315.35 −0.719133 −0.359567 0.933119i \(-0.617075\pi\)
−0.359567 + 0.933119i \(0.617075\pi\)
\(278\) −4712.53 −1.01669
\(279\) 0 0
\(280\) 7471.67 1.59471
\(281\) −3047.80 −0.647034 −0.323517 0.946222i \(-0.604865\pi\)
−0.323517 + 0.946222i \(0.604865\pi\)
\(282\) 0 0
\(283\) 636.812 0.133762 0.0668808 0.997761i \(-0.478695\pi\)
0.0668808 + 0.997761i \(0.478695\pi\)
\(284\) 1141.71 0.238548
\(285\) 0 0
\(286\) −6403.48 −1.32394
\(287\) 5013.97 1.03124
\(288\) 0 0
\(289\) 10511.1 2.13945
\(290\) 3872.94 0.784231
\(291\) 0 0
\(292\) 1386.00 0.277772
\(293\) 8294.83 1.65389 0.826944 0.562284i \(-0.190077\pi\)
0.826944 + 0.562284i \(0.190077\pi\)
\(294\) 0 0
\(295\) −846.132 −0.166996
\(296\) −1444.19 −0.283587
\(297\) 0 0
\(298\) 4284.95 0.832955
\(299\) −4784.37 −0.925375
\(300\) 0 0
\(301\) −7353.30 −1.40810
\(302\) −4202.00 −0.800656
\(303\) 0 0
\(304\) 3437.20 0.648477
\(305\) 6453.06 1.21148
\(306\) 0 0
\(307\) −2003.72 −0.372502 −0.186251 0.982502i \(-0.559634\pi\)
−0.186251 + 0.982502i \(0.559634\pi\)
\(308\) −3080.75 −0.569942
\(309\) 0 0
\(310\) −5439.64 −0.996615
\(311\) 8950.67 1.63198 0.815990 0.578065i \(-0.196192\pi\)
0.815990 + 0.578065i \(0.196192\pi\)
\(312\) 0 0
\(313\) −6502.45 −1.17425 −0.587125 0.809497i \(-0.699740\pi\)
−0.587125 + 0.809497i \(0.699740\pi\)
\(314\) −6639.99 −1.19336
\(315\) 0 0
\(316\) 2029.45 0.361283
\(317\) −7060.10 −1.25090 −0.625449 0.780265i \(-0.715084\pi\)
−0.625449 + 0.780265i \(0.715084\pi\)
\(318\) 0 0
\(319\) −5761.51 −1.01123
\(320\) −6661.50 −1.16372
\(321\) 0 0
\(322\) 3701.07 0.640536
\(323\) −14206.0 −2.44720
\(324\) 0 0
\(325\) −2330.57 −0.397774
\(326\) 5527.49 0.939078
\(327\) 0 0
\(328\) −5106.58 −0.859645
\(329\) 8558.20 1.43413
\(330\) 0 0
\(331\) 9067.92 1.50579 0.752897 0.658138i \(-0.228656\pi\)
0.752897 + 0.658138i \(0.228656\pi\)
\(332\) 722.578 0.119448
\(333\) 0 0
\(334\) −4913.20 −0.804906
\(335\) −1344.90 −0.219343
\(336\) 0 0
\(337\) 11310.3 1.82822 0.914108 0.405470i \(-0.132892\pi\)
0.914108 + 0.405470i \(0.132892\pi\)
\(338\) 5783.01 0.930634
\(339\) 0 0
\(340\) 4798.41 0.765384
\(341\) 8092.17 1.28509
\(342\) 0 0
\(343\) −2498.78 −0.393356
\(344\) 7489.12 1.17380
\(345\) 0 0
\(346\) 2872.61 0.446337
\(347\) −3949.05 −0.610940 −0.305470 0.952202i \(-0.598814\pi\)
−0.305470 + 0.952202i \(0.598814\pi\)
\(348\) 0 0
\(349\) 1396.69 0.214221 0.107110 0.994247i \(-0.465840\pi\)
0.107110 + 0.994247i \(0.465840\pi\)
\(350\) 1802.87 0.275336
\(351\) 0 0
\(352\) 5405.65 0.818529
\(353\) 3218.35 0.485256 0.242628 0.970119i \(-0.421991\pi\)
0.242628 + 0.970119i \(0.421991\pi\)
\(354\) 0 0
\(355\) 4687.67 0.700833
\(356\) 4148.71 0.617644
\(357\) 0 0
\(358\) 3367.56 0.497153
\(359\) 2851.63 0.419230 0.209615 0.977784i \(-0.432779\pi\)
0.209615 + 0.977784i \(0.432779\pi\)
\(360\) 0 0
\(361\) 6225.16 0.907590
\(362\) −401.983 −0.0583640
\(363\) 0 0
\(364\) 5129.71 0.738654
\(365\) 5690.70 0.816068
\(366\) 0 0
\(367\) 6627.24 0.942613 0.471307 0.881969i \(-0.343783\pi\)
0.471307 + 0.881969i \(0.343783\pi\)
\(368\) −2074.89 −0.293916
\(369\) 0 0
\(370\) −1643.51 −0.230924
\(371\) −1382.71 −0.193495
\(372\) 0 0
\(373\) 4853.81 0.673782 0.336891 0.941544i \(-0.390625\pi\)
0.336891 + 0.941544i \(0.390625\pi\)
\(374\) 11477.7 1.58689
\(375\) 0 0
\(376\) −8716.27 −1.19550
\(377\) 9593.40 1.31057
\(378\) 0 0
\(379\) 9236.82 1.25188 0.625941 0.779870i \(-0.284715\pi\)
0.625941 + 0.779870i \(0.284715\pi\)
\(380\) −4419.48 −0.596617
\(381\) 0 0
\(382\) −9261.21 −1.24043
\(383\) 6565.85 0.875977 0.437988 0.898981i \(-0.355691\pi\)
0.437988 + 0.898981i \(0.355691\pi\)
\(384\) 0 0
\(385\) −12649.1 −1.67444
\(386\) −9001.71 −1.18698
\(387\) 0 0
\(388\) 403.245 0.0527621
\(389\) −4912.64 −0.640310 −0.320155 0.947365i \(-0.603735\pi\)
−0.320155 + 0.947365i \(0.603735\pi\)
\(390\) 0 0
\(391\) 8575.57 1.10917
\(392\) −5886.03 −0.758391
\(393\) 0 0
\(394\) −11060.5 −1.41427
\(395\) 8332.62 1.06142
\(396\) 0 0
\(397\) −7872.23 −0.995204 −0.497602 0.867405i \(-0.665786\pi\)
−0.497602 + 0.867405i \(0.665786\pi\)
\(398\) −1721.72 −0.216839
\(399\) 0 0
\(400\) −1010.72 −0.126341
\(401\) −1393.53 −0.173540 −0.0867698 0.996228i \(-0.527654\pi\)
−0.0867698 + 0.996228i \(0.527654\pi\)
\(402\) 0 0
\(403\) −13474.2 −1.66550
\(404\) 3879.35 0.477734
\(405\) 0 0
\(406\) −7421.21 −0.907164
\(407\) 2444.93 0.297766
\(408\) 0 0
\(409\) −8216.36 −0.993332 −0.496666 0.867942i \(-0.665443\pi\)
−0.496666 + 0.867942i \(0.665443\pi\)
\(410\) −5811.35 −0.700006
\(411\) 0 0
\(412\) −2588.26 −0.309501
\(413\) 1621.33 0.193173
\(414\) 0 0
\(415\) 2966.80 0.350926
\(416\) −9000.86 −1.06083
\(417\) 0 0
\(418\) −10571.3 −1.23698
\(419\) 8188.66 0.954755 0.477377 0.878698i \(-0.341587\pi\)
0.477377 + 0.878698i \(0.341587\pi\)
\(420\) 0 0
\(421\) −9284.71 −1.07484 −0.537422 0.843314i \(-0.680602\pi\)
−0.537422 + 0.843314i \(0.680602\pi\)
\(422\) 4473.88 0.516079
\(423\) 0 0
\(424\) 1408.24 0.161298
\(425\) 4177.34 0.476779
\(426\) 0 0
\(427\) −12365.2 −1.40139
\(428\) 630.899 0.0712515
\(429\) 0 0
\(430\) 8522.71 0.955818
\(431\) 245.242 0.0274081 0.0137041 0.999906i \(-0.495638\pi\)
0.0137041 + 0.999906i \(0.495638\pi\)
\(432\) 0 0
\(433\) −13239.2 −1.46937 −0.734683 0.678411i \(-0.762669\pi\)
−0.734683 + 0.678411i \(0.762669\pi\)
\(434\) 10423.3 1.15284
\(435\) 0 0
\(436\) −4346.00 −0.477376
\(437\) −7898.35 −0.864598
\(438\) 0 0
\(439\) 10250.7 1.11444 0.557218 0.830366i \(-0.311869\pi\)
0.557218 + 0.830366i \(0.311869\pi\)
\(440\) 12882.7 1.39582
\(441\) 0 0
\(442\) −19111.3 −2.05664
\(443\) −13273.9 −1.42362 −0.711811 0.702371i \(-0.752125\pi\)
−0.711811 + 0.702371i \(0.752125\pi\)
\(444\) 0 0
\(445\) 17034.0 1.81458
\(446\) 3512.06 0.372872
\(447\) 0 0
\(448\) 12764.6 1.34614
\(449\) 13798.5 1.45032 0.725160 0.688581i \(-0.241766\pi\)
0.725160 + 0.688581i \(0.241766\pi\)
\(450\) 0 0
\(451\) 8645.15 0.902625
\(452\) 6466.40 0.672907
\(453\) 0 0
\(454\) −7295.40 −0.754164
\(455\) 21061.8 2.17010
\(456\) 0 0
\(457\) 6261.74 0.640945 0.320472 0.947258i \(-0.396158\pi\)
0.320472 + 0.947258i \(0.396158\pi\)
\(458\) −6373.23 −0.650222
\(459\) 0 0
\(460\) 2667.85 0.270411
\(461\) −11419.4 −1.15370 −0.576850 0.816850i \(-0.695718\pi\)
−0.576850 + 0.816850i \(0.695718\pi\)
\(462\) 0 0
\(463\) 1294.61 0.129948 0.0649739 0.997887i \(-0.479304\pi\)
0.0649739 + 0.997887i \(0.479304\pi\)
\(464\) 4160.48 0.416262
\(465\) 0 0
\(466\) 3227.31 0.320821
\(467\) 6534.30 0.647476 0.323738 0.946147i \(-0.395060\pi\)
0.323738 + 0.946147i \(0.395060\pi\)
\(468\) 0 0
\(469\) 2577.06 0.253726
\(470\) −9919.24 −0.973490
\(471\) 0 0
\(472\) −1651.28 −0.161030
\(473\) −12678.7 −1.23248
\(474\) 0 0
\(475\) −3847.45 −0.371649
\(476\) −9194.58 −0.885363
\(477\) 0 0
\(478\) 13910.2 1.33104
\(479\) −2316.45 −0.220963 −0.110482 0.993878i \(-0.535239\pi\)
−0.110482 + 0.993878i \(0.535239\pi\)
\(480\) 0 0
\(481\) −4071.01 −0.385909
\(482\) −12100.0 −1.14344
\(483\) 0 0
\(484\) −1228.91 −0.115412
\(485\) 1655.66 0.155010
\(486\) 0 0
\(487\) −6271.75 −0.583573 −0.291787 0.956483i \(-0.594250\pi\)
−0.291787 + 0.956483i \(0.594250\pi\)
\(488\) 12593.5 1.16820
\(489\) 0 0
\(490\) −6698.38 −0.617555
\(491\) −21736.4 −1.99786 −0.998932 0.0461948i \(-0.985291\pi\)
−0.998932 + 0.0461948i \(0.985291\pi\)
\(492\) 0 0
\(493\) −17195.3 −1.57087
\(494\) 17602.1 1.60315
\(495\) 0 0
\(496\) −5843.49 −0.528993
\(497\) −8982.37 −0.810693
\(498\) 0 0
\(499\) 3086.65 0.276909 0.138454 0.990369i \(-0.455787\pi\)
0.138454 + 0.990369i \(0.455787\pi\)
\(500\) −3530.00 −0.315733
\(501\) 0 0
\(502\) 14307.7 1.27208
\(503\) 9728.59 0.862378 0.431189 0.902262i \(-0.358094\pi\)
0.431189 + 0.902262i \(0.358094\pi\)
\(504\) 0 0
\(505\) 15928.0 1.40354
\(506\) 6381.43 0.560650
\(507\) 0 0
\(508\) 7612.30 0.664845
\(509\) −14650.3 −1.27576 −0.637881 0.770135i \(-0.720189\pi\)
−0.637881 + 0.770135i \(0.720189\pi\)
\(510\) 0 0
\(511\) −10904.3 −0.943992
\(512\) −9812.39 −0.846973
\(513\) 0 0
\(514\) −3690.77 −0.316718
\(515\) −10627.0 −0.909286
\(516\) 0 0
\(517\) 14756.2 1.25527
\(518\) 3149.24 0.267123
\(519\) 0 0
\(520\) −21450.9 −1.80900
\(521\) −9999.74 −0.840876 −0.420438 0.907321i \(-0.638124\pi\)
−0.420438 + 0.907321i \(0.638124\pi\)
\(522\) 0 0
\(523\) 1356.47 0.113412 0.0567060 0.998391i \(-0.481940\pi\)
0.0567060 + 0.998391i \(0.481940\pi\)
\(524\) 1951.30 0.162677
\(525\) 0 0
\(526\) 5693.27 0.471936
\(527\) 24151.3 1.99629
\(528\) 0 0
\(529\) −7399.11 −0.608129
\(530\) 1602.60 0.131344
\(531\) 0 0
\(532\) 8468.47 0.690140
\(533\) −14394.9 −1.16982
\(534\) 0 0
\(535\) 2590.38 0.209330
\(536\) −2624.66 −0.211508
\(537\) 0 0
\(538\) −8399.72 −0.673118
\(539\) 9964.71 0.796309
\(540\) 0 0
\(541\) −19207.0 −1.52638 −0.763190 0.646174i \(-0.776368\pi\)
−0.763190 + 0.646174i \(0.776368\pi\)
\(542\) 6808.83 0.539602
\(543\) 0 0
\(544\) 16133.3 1.27152
\(545\) −17844.0 −1.40248
\(546\) 0 0
\(547\) 7518.52 0.587694 0.293847 0.955852i \(-0.405064\pi\)
0.293847 + 0.955852i \(0.405064\pi\)
\(548\) −771.414 −0.0601335
\(549\) 0 0
\(550\) 3108.53 0.240997
\(551\) 15837.4 1.22449
\(552\) 0 0
\(553\) −15966.7 −1.22780
\(554\) −7363.06 −0.564669
\(555\) 0 0
\(556\) 6509.12 0.496489
\(557\) −6622.61 −0.503787 −0.251893 0.967755i \(-0.581053\pi\)
−0.251893 + 0.967755i \(0.581053\pi\)
\(558\) 0 0
\(559\) 21111.0 1.59732
\(560\) 9134.13 0.689263
\(561\) 0 0
\(562\) −6768.87 −0.508056
\(563\) −2100.74 −0.157257 −0.0786286 0.996904i \(-0.525054\pi\)
−0.0786286 + 0.996904i \(0.525054\pi\)
\(564\) 0 0
\(565\) 26550.1 1.97694
\(566\) 1414.30 0.105031
\(567\) 0 0
\(568\) 9148.28 0.675798
\(569\) −1053.41 −0.0776120 −0.0388060 0.999247i \(-0.512355\pi\)
−0.0388060 + 0.999247i \(0.512355\pi\)
\(570\) 0 0
\(571\) 9008.40 0.660227 0.330114 0.943941i \(-0.392913\pi\)
0.330114 + 0.943941i \(0.392913\pi\)
\(572\) 8844.72 0.646532
\(573\) 0 0
\(574\) 11135.5 0.809736
\(575\) 2322.54 0.168446
\(576\) 0 0
\(577\) −22068.6 −1.59225 −0.796123 0.605135i \(-0.793119\pi\)
−0.796123 + 0.605135i \(0.793119\pi\)
\(578\) 23344.1 1.67991
\(579\) 0 0
\(580\) −5349.45 −0.382972
\(581\) −5684.89 −0.405936
\(582\) 0 0
\(583\) −2384.08 −0.169363
\(584\) 11105.8 0.786916
\(585\) 0 0
\(586\) 18422.0 1.29865
\(587\) 12450.1 0.875417 0.437709 0.899117i \(-0.355790\pi\)
0.437709 + 0.899117i \(0.355790\pi\)
\(588\) 0 0
\(589\) −22244.0 −1.55611
\(590\) −1879.18 −0.131126
\(591\) 0 0
\(592\) −1765.52 −0.122572
\(593\) −4923.34 −0.340940 −0.170470 0.985363i \(-0.554529\pi\)
−0.170470 + 0.985363i \(0.554529\pi\)
\(594\) 0 0
\(595\) −37751.5 −2.60111
\(596\) −5918.53 −0.406766
\(597\) 0 0
\(598\) −10625.6 −0.726612
\(599\) −6790.19 −0.463171 −0.231586 0.972815i \(-0.574391\pi\)
−0.231586 + 0.972815i \(0.574391\pi\)
\(600\) 0 0
\(601\) 12782.4 0.867562 0.433781 0.901018i \(-0.357179\pi\)
0.433781 + 0.901018i \(0.357179\pi\)
\(602\) −16331.0 −1.10565
\(603\) 0 0
\(604\) 5803.96 0.390993
\(605\) −5045.72 −0.339070
\(606\) 0 0
\(607\) 23914.8 1.59913 0.799565 0.600580i \(-0.205064\pi\)
0.799565 + 0.600580i \(0.205064\pi\)
\(608\) −14859.2 −0.991152
\(609\) 0 0
\(610\) 14331.6 0.951263
\(611\) −24570.3 −1.62685
\(612\) 0 0
\(613\) −24235.4 −1.59683 −0.798417 0.602105i \(-0.794329\pi\)
−0.798417 + 0.602105i \(0.794329\pi\)
\(614\) −4450.06 −0.292492
\(615\) 0 0
\(616\) −24685.5 −1.61462
\(617\) −12764.3 −0.832855 −0.416427 0.909169i \(-0.636718\pi\)
−0.416427 + 0.909169i \(0.636718\pi\)
\(618\) 0 0
\(619\) −19695.8 −1.27890 −0.639451 0.768832i \(-0.720838\pi\)
−0.639451 + 0.768832i \(0.720838\pi\)
\(620\) 7513.43 0.486688
\(621\) 0 0
\(622\) 19878.6 1.28144
\(623\) −32640.0 −2.09903
\(624\) 0 0
\(625\) −18698.1 −1.19668
\(626\) −14441.3 −0.922029
\(627\) 0 0
\(628\) 9171.39 0.582768
\(629\) 7296.95 0.462557
\(630\) 0 0
\(631\) −15589.6 −0.983539 −0.491769 0.870725i \(-0.663650\pi\)
−0.491769 + 0.870725i \(0.663650\pi\)
\(632\) 16261.6 1.02350
\(633\) 0 0
\(634\) −15679.8 −0.982215
\(635\) 31255.0 1.95325
\(636\) 0 0
\(637\) −16592.1 −1.03203
\(638\) −12795.7 −0.794026
\(639\) 0 0
\(640\) −1705.34 −0.105327
\(641\) 7419.16 0.457159 0.228580 0.973525i \(-0.426592\pi\)
0.228580 + 0.973525i \(0.426592\pi\)
\(642\) 0 0
\(643\) 20440.9 1.25367 0.626837 0.779151i \(-0.284349\pi\)
0.626837 + 0.779151i \(0.284349\pi\)
\(644\) −5112.05 −0.312800
\(645\) 0 0
\(646\) −31550.2 −1.92156
\(647\) 12837.7 0.780066 0.390033 0.920801i \(-0.372464\pi\)
0.390033 + 0.920801i \(0.372464\pi\)
\(648\) 0 0
\(649\) 2795.52 0.169081
\(650\) −5175.97 −0.312336
\(651\) 0 0
\(652\) −7634.77 −0.458590
\(653\) 8034.18 0.481473 0.240736 0.970591i \(-0.422611\pi\)
0.240736 + 0.970591i \(0.422611\pi\)
\(654\) 0 0
\(655\) 8011.74 0.477931
\(656\) −6242.80 −0.371556
\(657\) 0 0
\(658\) 19006.9 1.12609
\(659\) 2980.52 0.176183 0.0880914 0.996112i \(-0.471923\pi\)
0.0880914 + 0.996112i \(0.471923\pi\)
\(660\) 0 0
\(661\) 30120.5 1.77239 0.886195 0.463312i \(-0.153339\pi\)
0.886195 + 0.463312i \(0.153339\pi\)
\(662\) 20139.0 1.18236
\(663\) 0 0
\(664\) 5789.89 0.338390
\(665\) 34770.2 2.02757
\(666\) 0 0
\(667\) −9560.36 −0.554990
\(668\) 6786.29 0.393068
\(669\) 0 0
\(670\) −2986.90 −0.172230
\(671\) −21320.2 −1.22661
\(672\) 0 0
\(673\) 2403.47 0.137662 0.0688312 0.997628i \(-0.478073\pi\)
0.0688312 + 0.997628i \(0.478073\pi\)
\(674\) 25119.0 1.43553
\(675\) 0 0
\(676\) −7987.70 −0.454467
\(677\) −8398.45 −0.476778 −0.238389 0.971170i \(-0.576619\pi\)
−0.238389 + 0.971170i \(0.576619\pi\)
\(678\) 0 0
\(679\) −3172.53 −0.179309
\(680\) 38448.8 2.16830
\(681\) 0 0
\(682\) 17971.9 1.00906
\(683\) −7666.40 −0.429497 −0.214749 0.976669i \(-0.568893\pi\)
−0.214749 + 0.976669i \(0.568893\pi\)
\(684\) 0 0
\(685\) −3167.31 −0.176667
\(686\) −5549.54 −0.308867
\(687\) 0 0
\(688\) 9155.46 0.507338
\(689\) 3969.69 0.219497
\(690\) 0 0
\(691\) 22625.9 1.24563 0.622814 0.782370i \(-0.285989\pi\)
0.622814 + 0.782370i \(0.285989\pi\)
\(692\) −3967.76 −0.217965
\(693\) 0 0
\(694\) −8770.45 −0.479715
\(695\) 26725.5 1.45864
\(696\) 0 0
\(697\) 25801.6 1.40216
\(698\) 3101.91 0.168208
\(699\) 0 0
\(700\) −2490.19 −0.134458
\(701\) 22649.0 1.22031 0.610156 0.792281i \(-0.291107\pi\)
0.610156 + 0.792281i \(0.291107\pi\)
\(702\) 0 0
\(703\) −6720.69 −0.360563
\(704\) 22008.8 1.17825
\(705\) 0 0
\(706\) 7147.64 0.381027
\(707\) −30520.8 −1.62355
\(708\) 0 0
\(709\) 5919.34 0.313548 0.156774 0.987634i \(-0.449891\pi\)
0.156774 + 0.987634i \(0.449891\pi\)
\(710\) 10410.9 0.550300
\(711\) 0 0
\(712\) 33242.9 1.74976
\(713\) 13427.8 0.705292
\(714\) 0 0
\(715\) 36315.1 1.89945
\(716\) −4651.39 −0.242780
\(717\) 0 0
\(718\) 6333.20 0.329183
\(719\) 29546.8 1.53256 0.766279 0.642508i \(-0.222106\pi\)
0.766279 + 0.642508i \(0.222106\pi\)
\(720\) 0 0
\(721\) 20363.2 1.05182
\(722\) 13825.5 0.712647
\(723\) 0 0
\(724\) 555.234 0.0285015
\(725\) −4657.06 −0.238564
\(726\) 0 0
\(727\) 31490.3 1.60648 0.803240 0.595656i \(-0.203108\pi\)
0.803240 + 0.595656i \(0.203108\pi\)
\(728\) 41103.5 2.09258
\(729\) 0 0
\(730\) 12638.5 0.640783
\(731\) −37839.7 −1.91457
\(732\) 0 0
\(733\) −27583.9 −1.38995 −0.694975 0.719034i \(-0.744585\pi\)
−0.694975 + 0.719034i \(0.744585\pi\)
\(734\) 14718.5 0.740147
\(735\) 0 0
\(736\) 8969.87 0.449231
\(737\) 4443.40 0.222082
\(738\) 0 0
\(739\) −35392.5 −1.76175 −0.880876 0.473348i \(-0.843045\pi\)
−0.880876 + 0.473348i \(0.843045\pi\)
\(740\) 2270.07 0.112769
\(741\) 0 0
\(742\) −3070.85 −0.151933
\(743\) 35369.8 1.74643 0.873213 0.487340i \(-0.162033\pi\)
0.873213 + 0.487340i \(0.162033\pi\)
\(744\) 0 0
\(745\) −24300.6 −1.19504
\(746\) 10779.8 0.529059
\(747\) 0 0
\(748\) −15853.4 −0.774943
\(749\) −4963.60 −0.242144
\(750\) 0 0
\(751\) 1628.37 0.0791210 0.0395605 0.999217i \(-0.487404\pi\)
0.0395605 + 0.999217i \(0.487404\pi\)
\(752\) −10655.7 −0.516718
\(753\) 0 0
\(754\) 21306.0 1.02907
\(755\) 23830.2 1.14870
\(756\) 0 0
\(757\) −4093.04 −0.196518 −0.0982590 0.995161i \(-0.531327\pi\)
−0.0982590 + 0.995161i \(0.531327\pi\)
\(758\) 20514.1 0.982988
\(759\) 0 0
\(760\) −35412.5 −1.69019
\(761\) −27568.6 −1.31322 −0.656610 0.754230i \(-0.728010\pi\)
−0.656610 + 0.754230i \(0.728010\pi\)
\(762\) 0 0
\(763\) 34192.2 1.62233
\(764\) 12791.9 0.605753
\(765\) 0 0
\(766\) 14582.1 0.687824
\(767\) −4654.78 −0.219132
\(768\) 0 0
\(769\) −19012.2 −0.891545 −0.445773 0.895146i \(-0.647071\pi\)
−0.445773 + 0.895146i \(0.647071\pi\)
\(770\) −28092.4 −1.31478
\(771\) 0 0
\(772\) 12433.5 0.579652
\(773\) −18694.2 −0.869836 −0.434918 0.900470i \(-0.643223\pi\)
−0.434918 + 0.900470i \(0.643223\pi\)
\(774\) 0 0
\(775\) 6540.95 0.303171
\(776\) 3231.13 0.149473
\(777\) 0 0
\(778\) −10910.5 −0.502776
\(779\) −23764.0 −1.09298
\(780\) 0 0
\(781\) −15487.5 −0.709586
\(782\) 19045.5 0.870928
\(783\) 0 0
\(784\) −7195.68 −0.327792
\(785\) 37656.4 1.71212
\(786\) 0 0
\(787\) 17033.3 0.771502 0.385751 0.922603i \(-0.373942\pi\)
0.385751 + 0.922603i \(0.373942\pi\)
\(788\) 15277.2 0.690646
\(789\) 0 0
\(790\) 18505.9 0.833433
\(791\) −50874.4 −2.28684
\(792\) 0 0
\(793\) 35499.9 1.58971
\(794\) −17483.5 −0.781442
\(795\) 0 0
\(796\) 2378.10 0.105891
\(797\) −4978.07 −0.221245 −0.110622 0.993863i \(-0.535284\pi\)
−0.110622 + 0.993863i \(0.535284\pi\)
\(798\) 0 0
\(799\) 44040.1 1.94997
\(800\) 4369.42 0.193103
\(801\) 0 0
\(802\) −3094.89 −0.136265
\(803\) −18801.4 −0.826261
\(804\) 0 0
\(805\) −20989.3 −0.918976
\(806\) −29924.8 −1.30776
\(807\) 0 0
\(808\) 31084.5 1.35340
\(809\) −13743.3 −0.597266 −0.298633 0.954368i \(-0.596531\pi\)
−0.298633 + 0.954368i \(0.596531\pi\)
\(810\) 0 0
\(811\) −14258.2 −0.617352 −0.308676 0.951167i \(-0.599886\pi\)
−0.308676 + 0.951167i \(0.599886\pi\)
\(812\) 10250.4 0.443005
\(813\) 0 0
\(814\) 5429.95 0.233808
\(815\) −31347.2 −1.34729
\(816\) 0 0
\(817\) 34851.5 1.49241
\(818\) −18247.7 −0.779972
\(819\) 0 0
\(820\) 8026.85 0.341841
\(821\) −39920.0 −1.69698 −0.848489 0.529213i \(-0.822487\pi\)
−0.848489 + 0.529213i \(0.822487\pi\)
\(822\) 0 0
\(823\) −18426.0 −0.780424 −0.390212 0.920725i \(-0.627598\pi\)
−0.390212 + 0.920725i \(0.627598\pi\)
\(824\) −20739.3 −0.876805
\(825\) 0 0
\(826\) 3600.82 0.151681
\(827\) −5145.34 −0.216350 −0.108175 0.994132i \(-0.534501\pi\)
−0.108175 + 0.994132i \(0.534501\pi\)
\(828\) 0 0
\(829\) −6858.20 −0.287328 −0.143664 0.989626i \(-0.545889\pi\)
−0.143664 + 0.989626i \(0.545889\pi\)
\(830\) 6588.97 0.275550
\(831\) 0 0
\(832\) −36646.5 −1.52703
\(833\) 29739.9 1.23701
\(834\) 0 0
\(835\) 27863.5 1.15480
\(836\) 14601.4 0.604068
\(837\) 0 0
\(838\) 18186.2 0.749681
\(839\) −13863.3 −0.570457 −0.285228 0.958460i \(-0.592069\pi\)
−0.285228 + 0.958460i \(0.592069\pi\)
\(840\) 0 0
\(841\) −5219.01 −0.213990
\(842\) −20620.4 −0.843976
\(843\) 0 0
\(844\) −6179.49 −0.252022
\(845\) −32796.3 −1.33518
\(846\) 0 0
\(847\) 9668.45 0.392222
\(848\) 1721.58 0.0697162
\(849\) 0 0
\(850\) 9277.48 0.374370
\(851\) 4057.00 0.163422
\(852\) 0 0
\(853\) −43369.7 −1.74085 −0.870427 0.492297i \(-0.836157\pi\)
−0.870427 + 0.492297i \(0.836157\pi\)
\(854\) −27461.8 −1.10038
\(855\) 0 0
\(856\) 5055.28 0.201853
\(857\) 31753.5 1.26567 0.632834 0.774287i \(-0.281891\pi\)
0.632834 + 0.774287i \(0.281891\pi\)
\(858\) 0 0
\(859\) −17071.5 −0.678083 −0.339041 0.940771i \(-0.610103\pi\)
−0.339041 + 0.940771i \(0.610103\pi\)
\(860\) −11771.9 −0.466765
\(861\) 0 0
\(862\) 544.659 0.0215211
\(863\) 14310.1 0.564452 0.282226 0.959348i \(-0.408927\pi\)
0.282226 + 0.959348i \(0.408927\pi\)
\(864\) 0 0
\(865\) −16291.0 −0.640359
\(866\) −29403.0 −1.15376
\(867\) 0 0
\(868\) −14397.0 −0.562979
\(869\) −27530.0 −1.07467
\(870\) 0 0
\(871\) −7398.64 −0.287822
\(872\) −34823.7 −1.35239
\(873\) 0 0
\(874\) −17541.5 −0.678889
\(875\) 27772.3 1.07300
\(876\) 0 0
\(877\) −33188.1 −1.27786 −0.638930 0.769265i \(-0.720623\pi\)
−0.638930 + 0.769265i \(0.720623\pi\)
\(878\) 22765.7 0.875064
\(879\) 0 0
\(880\) 15749.2 0.603301
\(881\) 29862.3 1.14198 0.570990 0.820957i \(-0.306559\pi\)
0.570990 + 0.820957i \(0.306559\pi\)
\(882\) 0 0
\(883\) −19945.6 −0.760160 −0.380080 0.924954i \(-0.624104\pi\)
−0.380080 + 0.924954i \(0.624104\pi\)
\(884\) 26397.2 1.00434
\(885\) 0 0
\(886\) −29480.1 −1.11784
\(887\) 44470.7 1.68340 0.841702 0.539943i \(-0.181554\pi\)
0.841702 + 0.539943i \(0.181554\pi\)
\(888\) 0 0
\(889\) −59889.8 −2.25944
\(890\) 37830.8 1.42482
\(891\) 0 0
\(892\) −4850.98 −0.182088
\(893\) −40562.2 −1.52000
\(894\) 0 0
\(895\) −19097.9 −0.713266
\(896\) 3267.72 0.121838
\(897\) 0 0
\(898\) 30645.2 1.13880
\(899\) −26924.7 −0.998876
\(900\) 0 0
\(901\) −7115.33 −0.263092
\(902\) 19200.0 0.708748
\(903\) 0 0
\(904\) 51814.1 1.90632
\(905\) 2279.71 0.0837348
\(906\) 0 0
\(907\) −12086.1 −0.442462 −0.221231 0.975221i \(-0.571008\pi\)
−0.221231 + 0.975221i \(0.571008\pi\)
\(908\) 10076.7 0.368289
\(909\) 0 0
\(910\) 46776.3 1.70398
\(911\) −12341.1 −0.448825 −0.224413 0.974494i \(-0.572046\pi\)
−0.224413 + 0.974494i \(0.572046\pi\)
\(912\) 0 0
\(913\) −9801.95 −0.355309
\(914\) 13906.7 0.503275
\(915\) 0 0
\(916\) 8802.94 0.317530
\(917\) −15351.9 −0.552850
\(918\) 0 0
\(919\) 27933.9 1.00267 0.501335 0.865253i \(-0.332843\pi\)
0.501335 + 0.865253i \(0.332843\pi\)
\(920\) 21377.0 0.766063
\(921\) 0 0
\(922\) −25361.4 −0.905894
\(923\) 25788.0 0.919635
\(924\) 0 0
\(925\) 1976.25 0.0702472
\(926\) 2875.21 0.102036
\(927\) 0 0
\(928\) −17986.0 −0.636227
\(929\) 9624.47 0.339901 0.169951 0.985453i \(-0.445639\pi\)
0.169951 + 0.985453i \(0.445639\pi\)
\(930\) 0 0
\(931\) −27391.3 −0.964246
\(932\) −4457.68 −0.156670
\(933\) 0 0
\(934\) 14512.0 0.508403
\(935\) −65091.7 −2.27671
\(936\) 0 0
\(937\) 9150.38 0.319029 0.159514 0.987196i \(-0.449007\pi\)
0.159514 + 0.987196i \(0.449007\pi\)
\(938\) 5723.40 0.199228
\(939\) 0 0
\(940\) 13700.8 0.475395
\(941\) 27348.1 0.947421 0.473710 0.880681i \(-0.342914\pi\)
0.473710 + 0.880681i \(0.342914\pi\)
\(942\) 0 0
\(943\) 14345.3 0.495385
\(944\) −2018.69 −0.0696005
\(945\) 0 0
\(946\) −28158.0 −0.967756
\(947\) 18536.5 0.636067 0.318034 0.948079i \(-0.396978\pi\)
0.318034 + 0.948079i \(0.396978\pi\)
\(948\) 0 0
\(949\) 31305.9 1.07085
\(950\) −8544.82 −0.291822
\(951\) 0 0
\(952\) −73674.4 −2.50820
\(953\) −30118.8 −1.02376 −0.511880 0.859057i \(-0.671051\pi\)
−0.511880 + 0.859057i \(0.671051\pi\)
\(954\) 0 0
\(955\) 52521.7 1.77965
\(956\) −19213.2 −0.650000
\(957\) 0 0
\(958\) −5144.62 −0.173502
\(959\) 6069.10 0.204360
\(960\) 0 0
\(961\) 8025.40 0.269390
\(962\) −9041.33 −0.303019
\(963\) 0 0
\(964\) 16712.9 0.558389
\(965\) 51050.0 1.70296
\(966\) 0 0
\(967\) −42667.4 −1.41891 −0.709457 0.704749i \(-0.751060\pi\)
−0.709457 + 0.704749i \(0.751060\pi\)
\(968\) −9847.02 −0.326958
\(969\) 0 0
\(970\) 3677.07 0.121715
\(971\) −20101.0 −0.664337 −0.332169 0.943220i \(-0.607780\pi\)
−0.332169 + 0.943220i \(0.607780\pi\)
\(972\) 0 0
\(973\) −51210.5 −1.68729
\(974\) −13928.9 −0.458226
\(975\) 0 0
\(976\) 15395.6 0.504920
\(977\) 44958.6 1.47221 0.736107 0.676865i \(-0.236662\pi\)
0.736107 + 0.676865i \(0.236662\pi\)
\(978\) 0 0
\(979\) −56278.3 −1.83724
\(980\) 9252.04 0.301577
\(981\) 0 0
\(982\) −48274.5 −1.56874
\(983\) −21743.8 −0.705515 −0.352757 0.935715i \(-0.614756\pi\)
−0.352757 + 0.935715i \(0.614756\pi\)
\(984\) 0 0
\(985\) 62726.0 2.02905
\(986\) −38189.2 −1.23346
\(987\) 0 0
\(988\) −24312.6 −0.782882
\(989\) −21038.3 −0.676420
\(990\) 0 0
\(991\) 36395.9 1.16665 0.583327 0.812237i \(-0.301750\pi\)
0.583327 + 0.812237i \(0.301750\pi\)
\(992\) 25261.7 0.808529
\(993\) 0 0
\(994\) −19949.0 −0.636562
\(995\) 9764.13 0.311099
\(996\) 0 0
\(997\) 36605.3 1.16279 0.581395 0.813622i \(-0.302507\pi\)
0.581395 + 0.813622i \(0.302507\pi\)
\(998\) 6855.15 0.217431
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1629.4.a.b.1.11 17
3.2 odd 2 543.4.a.a.1.7 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
543.4.a.a.1.7 17 3.2 odd 2
1629.4.a.b.1.11 17 1.1 even 1 trivial