Properties

Label 1620.2.x.a.917.1
Level $1620$
Weight $2$
Character 1620.917
Analytic conductor $12.936$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1620,2,Mod(53,1620)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1620.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1620, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9357651274\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 917.1
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 1620.917
Dual form 1620.2.x.a.53.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.19067 + 0.448288i) q^{5} +(-2.73205 + 0.732051i) q^{7} +(2.44949 + 1.41421i) q^{11} +(-4.09808 - 1.09808i) q^{13} +(-1.41421 + 1.41421i) q^{17} +4.00000i q^{19} +(2.07055 - 7.72741i) q^{23} +(4.59808 - 1.96410i) q^{25} +(4.94975 - 8.57321i) q^{29} +(4.00000 + 6.92820i) q^{31} +(5.65685 - 2.82843i) q^{35} +(-3.00000 - 3.00000i) q^{37} +(1.22474 - 0.707107i) q^{41} +(-3.10583 - 11.5911i) q^{47} +(0.866025 - 0.500000i) q^{49} +(7.07107 + 7.07107i) q^{53} +(-6.00000 - 2.00000i) q^{55} +(-1.41421 - 2.44949i) q^{59} +(9.46979 + 0.568406i) q^{65} +(2.92820 - 10.9282i) q^{67} -5.65685i q^{71} +(7.00000 - 7.00000i) q^{73} +(-7.72741 - 2.07055i) q^{77} +(11.5911 - 3.10583i) q^{83} +(2.46410 - 3.73205i) q^{85} +1.41421 q^{89} +12.0000 q^{91} +(-1.79315 - 8.76268i) q^{95} +(-4.09808 + 1.09808i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} - 12 q^{13} + 16 q^{25} + 32 q^{31} - 24 q^{37} - 48 q^{55} - 32 q^{67} + 56 q^{73} - 8 q^{85} + 96 q^{91} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.19067 + 0.448288i −0.979698 + 0.200480i
\(6\) 0 0
\(7\) −2.73205 + 0.732051i −1.03262 + 0.276689i −0.735051 0.678012i \(-0.762842\pi\)
−0.297567 + 0.954701i \(0.596175\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.44949 + 1.41421i 0.738549 + 0.426401i 0.821541 0.570149i \(-0.193114\pi\)
−0.0829925 + 0.996550i \(0.526448\pi\)
\(12\) 0 0
\(13\) −4.09808 1.09808i −1.13660 0.304552i −0.359018 0.933331i \(-0.616888\pi\)
−0.777584 + 0.628779i \(0.783555\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.41421 + 1.41421i −0.342997 + 0.342997i −0.857493 0.514496i \(-0.827979\pi\)
0.514496 + 0.857493i \(0.327979\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.07055 7.72741i 0.431740 1.61128i −0.317009 0.948422i \(-0.602679\pi\)
0.748749 0.662853i \(-0.230655\pi\)
\(24\) 0 0
\(25\) 4.59808 1.96410i 0.919615 0.392820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.94975 8.57321i 0.919145 1.59201i 0.118428 0.992963i \(-0.462214\pi\)
0.800717 0.599043i \(-0.204452\pi\)
\(30\) 0 0
\(31\) 4.00000 + 6.92820i 0.718421 + 1.24434i 0.961625 + 0.274367i \(0.0884683\pi\)
−0.243204 + 0.969975i \(0.578198\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.65685 2.82843i 0.956183 0.478091i
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.22474 0.707107i 0.191273 0.110432i −0.401305 0.915944i \(-0.631443\pi\)
0.592578 + 0.805513i \(0.298110\pi\)
\(42\) 0 0
\(43\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.10583 11.5911i −0.453032 1.69074i −0.693811 0.720157i \(-0.744070\pi\)
0.240779 0.970580i \(-0.422597\pi\)
\(48\) 0 0
\(49\) 0.866025 0.500000i 0.123718 0.0714286i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.07107 + 7.07107i 0.971286 + 0.971286i 0.999599 0.0283132i \(-0.00901359\pi\)
−0.0283132 + 0.999599i \(0.509014\pi\)
\(54\) 0 0
\(55\) −6.00000 2.00000i −0.809040 0.269680i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.41421 2.44949i −0.184115 0.318896i 0.759163 0.650901i \(-0.225609\pi\)
−0.943278 + 0.332004i \(0.892275\pi\)
\(60\) 0 0
\(61\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.46979 + 0.568406i 1.17458 + 0.0705021i
\(66\) 0 0
\(67\) 2.92820 10.9282i 0.357737 1.33509i −0.519268 0.854611i \(-0.673795\pi\)
0.877005 0.480481i \(-0.159538\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.65685i 0.671345i −0.941979 0.335673i \(-0.891036\pi\)
0.941979 0.335673i \(-0.108964\pi\)
\(72\) 0 0
\(73\) 7.00000 7.00000i 0.819288 0.819288i −0.166717 0.986005i \(-0.553317\pi\)
0.986005 + 0.166717i \(0.0533166\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.72741 2.07055i −0.880620 0.235961i
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.5911 3.10583i 1.27229 0.340909i 0.441382 0.897319i \(-0.354488\pi\)
0.830908 + 0.556410i \(0.187822\pi\)
\(84\) 0 0
\(85\) 2.46410 3.73205i 0.267269 0.404798i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.41421 0.149906 0.0749532 0.997187i \(-0.476119\pi\)
0.0749532 + 0.997187i \(0.476119\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.79315 8.76268i −0.183973 0.899032i
\(96\) 0 0
\(97\) −4.09808 + 1.09808i −0.416097 + 0.111493i −0.460793 0.887508i \(-0.652435\pi\)
0.0446959 + 0.999001i \(0.485768\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.22474 + 0.707107i 0.121867 + 0.0703598i 0.559694 0.828699i \(-0.310919\pi\)
−0.437828 + 0.899059i \(0.644252\pi\)
\(102\) 0 0
\(103\) 2.73205 + 0.732051i 0.269197 + 0.0721311i 0.390892 0.920436i \(-0.372166\pi\)
−0.121695 + 0.992567i \(0.538833\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.82843 2.82843i 0.273434 0.273434i −0.557047 0.830481i \(-0.688066\pi\)
0.830481 + 0.557047i \(0.188066\pi\)
\(108\) 0 0
\(109\) 8.00000i 0.766261i 0.923694 + 0.383131i \(0.125154\pi\)
−0.923694 + 0.383131i \(0.874846\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.03528 3.86370i 0.0973906 0.363467i −0.899980 0.435930i \(-0.856419\pi\)
0.997371 + 0.0724636i \(0.0230861\pi\)
\(114\) 0 0
\(115\) −1.07180 + 17.8564i −0.0999456 + 1.66512i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.82843 4.89898i 0.259281 0.449089i
\(120\) 0 0
\(121\) −1.50000 2.59808i −0.136364 0.236189i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.19239 + 6.36396i −0.822192 + 0.569210i
\(126\) 0 0
\(127\) −10.0000 10.0000i −0.887357 0.887357i 0.106912 0.994268i \(-0.465904\pi\)
−0.994268 + 0.106912i \(0.965904\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.44949 + 1.41421i −0.214013 + 0.123560i −0.603175 0.797609i \(-0.706098\pi\)
0.389162 + 0.921169i \(0.372765\pi\)
\(132\) 0 0
\(133\) −2.92820 10.9282i −0.253907 0.947595i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.10583 + 11.5911i 0.265349 + 0.990295i 0.962037 + 0.272921i \(0.0879897\pi\)
−0.696688 + 0.717375i \(0.745344\pi\)
\(138\) 0 0
\(139\) −13.8564 + 8.00000i −1.17529 + 0.678551i −0.954919 0.296866i \(-0.904058\pi\)
−0.220366 + 0.975417i \(0.570725\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.48528 8.48528i −0.709575 0.709575i
\(144\) 0 0
\(145\) −7.00000 + 21.0000i −0.581318 + 1.74396i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.36396 11.0227i −0.521356 0.903015i −0.999691 0.0248379i \(-0.992093\pi\)
0.478335 0.878177i \(-0.341240\pi\)
\(150\) 0 0
\(151\) 10.0000 17.3205i 0.813788 1.40952i −0.0964061 0.995342i \(-0.530735\pi\)
0.910195 0.414181i \(-0.135932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −11.8685 13.3843i −0.953302 1.07505i
\(156\) 0 0
\(157\) −3.29423 + 12.2942i −0.262908 + 0.981186i 0.700610 + 0.713544i \(0.252911\pi\)
−0.963518 + 0.267642i \(0.913756\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.6274i 1.78329i
\(162\) 0 0
\(163\) −4.00000 + 4.00000i −0.313304 + 0.313304i −0.846188 0.532884i \(-0.821108\pi\)
0.532884 + 0.846188i \(0.321108\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.4548 + 4.14110i 1.19593 + 0.320448i 0.801227 0.598361i \(-0.204181\pi\)
0.394702 + 0.918809i \(0.370848\pi\)
\(168\) 0 0
\(169\) 4.33013 + 2.50000i 0.333087 + 0.192308i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.86370 1.03528i 0.293752 0.0787106i −0.108933 0.994049i \(-0.534744\pi\)
0.402685 + 0.915338i \(0.368077\pi\)
\(174\) 0 0
\(175\) −11.1244 + 8.73205i −0.840922 + 0.660081i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.1421 1.05703 0.528516 0.848923i \(-0.322748\pi\)
0.528516 + 0.848923i \(0.322748\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.91688 + 5.22715i 0.582060 + 0.384308i
\(186\) 0 0
\(187\) −5.46410 + 1.46410i −0.399575 + 0.107066i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −9.79796 5.65685i −0.708955 0.409316i 0.101719 0.994813i \(-0.467566\pi\)
−0.810674 + 0.585498i \(0.800899\pi\)
\(192\) 0 0
\(193\) 20.4904 + 5.49038i 1.47493 + 0.395206i 0.904618 0.426222i \(-0.140156\pi\)
0.570311 + 0.821429i \(0.306823\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.48528 8.48528i 0.604551 0.604551i −0.336966 0.941517i \(-0.609401\pi\)
0.941517 + 0.336966i \(0.109401\pi\)
\(198\) 0 0
\(199\) 12.0000i 0.850657i −0.905039 0.425329i \(-0.860158\pi\)
0.905039 0.425329i \(-0.139842\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.24693 + 27.0459i −0.508635 + 1.89825i
\(204\) 0 0
\(205\) −2.36603 + 2.09808i −0.165250 + 0.146536i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.65685 + 9.79796i −0.391293 + 0.677739i
\(210\) 0 0
\(211\) −4.00000 6.92820i −0.275371 0.476957i 0.694857 0.719148i \(-0.255467\pi\)
−0.970229 + 0.242190i \(0.922134\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −16.0000 16.0000i −1.08615 1.08615i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.34847 4.24264i 0.494312 0.285391i
\(222\) 0 0
\(223\) −2.19615 8.19615i −0.147065 0.548855i −0.999655 0.0262738i \(-0.991636\pi\)
0.852590 0.522581i \(-0.175031\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.07055 + 7.72741i 0.137427 + 0.512886i 0.999976 + 0.00691198i \(0.00220017\pi\)
−0.862549 + 0.505974i \(0.831133\pi\)
\(228\) 0 0
\(229\) 5.19615 3.00000i 0.343371 0.198246i −0.318390 0.947960i \(-0.603142\pi\)
0.661762 + 0.749714i \(0.269809\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.24264 4.24264i −0.277945 0.277945i 0.554343 0.832288i \(-0.312969\pi\)
−0.832288 + 0.554343i \(0.812969\pi\)
\(234\) 0 0
\(235\) 12.0000 + 24.0000i 0.782794 + 1.56559i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(240\) 0 0
\(241\) −5.00000 + 8.66025i −0.322078 + 0.557856i −0.980917 0.194429i \(-0.937715\pi\)
0.658838 + 0.752285i \(0.271048\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.67303 + 1.48356i −0.106886 + 0.0947814i
\(246\) 0 0
\(247\) 4.39230 16.3923i 0.279476 1.04302i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 25.4558i 1.60676i −0.595468 0.803379i \(-0.703033\pi\)
0.595468 0.803379i \(-0.296967\pi\)
\(252\) 0 0
\(253\) 16.0000 16.0000i 1.00591 1.00591i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −19.3185 5.17638i −1.20506 0.322894i −0.400236 0.916412i \(-0.631072\pi\)
−0.804820 + 0.593519i \(0.797738\pi\)
\(258\) 0 0
\(259\) 10.3923 + 6.00000i 0.645746 + 0.372822i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15.4548 + 4.14110i −0.952985 + 0.255351i −0.701628 0.712543i \(-0.747543\pi\)
−0.251356 + 0.967895i \(0.580877\pi\)
\(264\) 0 0
\(265\) −18.6603 12.3205i −1.14629 0.756843i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18.3848 −1.12094 −0.560470 0.828175i \(-0.689379\pi\)
−0.560470 + 0.828175i \(0.689379\pi\)
\(270\) 0 0
\(271\) 12.0000 0.728948 0.364474 0.931214i \(-0.381249\pi\)
0.364474 + 0.931214i \(0.381249\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 14.0406 + 1.69161i 0.846680 + 0.102008i
\(276\) 0 0
\(277\) −20.4904 + 5.49038i −1.23115 + 0.329885i −0.815026 0.579424i \(-0.803278\pi\)
−0.416121 + 0.909309i \(0.636611\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.0227 + 6.36396i 0.657559 + 0.379642i 0.791346 0.611368i \(-0.209380\pi\)
−0.133787 + 0.991010i \(0.542714\pi\)
\(282\) 0 0
\(283\) 5.46410 + 1.46410i 0.324807 + 0.0870318i 0.417538 0.908659i \(-0.362893\pi\)
−0.0927310 + 0.995691i \(0.529560\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.82843 + 2.82843i −0.166957 + 0.166957i
\(288\) 0 0
\(289\) 13.0000i 0.764706i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.10583 + 11.5911i −0.181444 + 0.677160i 0.813919 + 0.580978i \(0.197330\pi\)
−0.995364 + 0.0961820i \(0.969337\pi\)
\(294\) 0 0
\(295\) 4.19615 + 4.73205i 0.244309 + 0.275511i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.9706 + 29.3939i −0.981433 + 1.69989i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −12.0000 12.0000i −0.684876 0.684876i 0.276219 0.961095i \(-0.410919\pi\)
−0.961095 + 0.276219i \(0.910919\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.89898 + 2.82843i −0.277796 + 0.160385i −0.632425 0.774622i \(-0.717940\pi\)
0.354629 + 0.935007i \(0.384607\pi\)
\(312\) 0 0
\(313\) 1.09808 + 4.09808i 0.0620669 + 0.231637i 0.989991 0.141133i \(-0.0450746\pi\)
−0.927924 + 0.372770i \(0.878408\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.55291 + 5.79555i 0.0872204 + 0.325511i 0.995725 0.0923631i \(-0.0294421\pi\)
−0.908505 + 0.417874i \(0.862775\pi\)
\(318\) 0 0
\(319\) 24.2487 14.0000i 1.35767 0.783850i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.65685 5.65685i −0.314756 0.314756i
\(324\) 0 0
\(325\) −21.0000 + 3.00000i −1.16487 + 0.166410i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.9706 + 29.3939i 0.935617 + 1.62054i
\(330\) 0 0
\(331\) 10.0000 17.3205i 0.549650 0.952021i −0.448649 0.893708i \(-0.648095\pi\)
0.998298 0.0583130i \(-0.0185721\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.51575 + 25.2528i −0.0828142 + 1.37971i
\(336\) 0 0
\(337\) −1.09808 + 4.09808i −0.0598160 + 0.223236i −0.989363 0.145467i \(-0.953532\pi\)
0.929547 + 0.368703i \(0.120198\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 22.6274i 1.22534i
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.72741 + 2.07055i 0.414829 + 0.111153i 0.460196 0.887817i \(-0.347779\pi\)
−0.0453672 + 0.998970i \(0.514446\pi\)
\(348\) 0 0
\(349\) 27.7128 + 16.0000i 1.48343 + 0.856460i 0.999823 0.0188232i \(-0.00599197\pi\)
0.483610 + 0.875284i \(0.339325\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −17.3867 + 4.65874i −0.925399 + 0.247960i −0.689892 0.723913i \(-0.742342\pi\)
−0.235507 + 0.971873i \(0.575675\pi\)
\(354\) 0 0
\(355\) 2.53590 + 12.3923i 0.134592 + 0.657715i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.3137 −0.597115 −0.298557 0.954392i \(-0.596505\pi\)
−0.298557 + 0.954392i \(0.596505\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.1967 + 18.4727i −0.638403 + 0.966906i
\(366\) 0 0
\(367\) −19.1244 + 5.12436i −0.998283 + 0.267489i −0.720726 0.693220i \(-0.756191\pi\)
−0.277557 + 0.960709i \(0.589525\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −24.4949 14.1421i −1.27171 0.734223i
\(372\) 0 0
\(373\) 6.83013 + 1.83013i 0.353651 + 0.0947604i 0.431271 0.902223i \(-0.358065\pi\)
−0.0776200 + 0.996983i \(0.524732\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −29.6985 + 29.6985i −1.52955 + 1.52955i
\(378\) 0 0
\(379\) 16.0000i 0.821865i 0.911666 + 0.410932i \(0.134797\pi\)
−0.911666 + 0.410932i \(0.865203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.31749 34.7733i 0.476101 1.77683i −0.141064 0.990000i \(-0.545052\pi\)
0.617165 0.786834i \(-0.288281\pi\)
\(384\) 0 0
\(385\) 17.8564 + 1.07180i 0.910047 + 0.0546238i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.6066 + 18.3712i −0.537776 + 0.931455i 0.461247 + 0.887272i \(0.347402\pi\)
−0.999023 + 0.0441839i \(0.985931\pi\)
\(390\) 0 0
\(391\) 8.00000 + 13.8564i 0.404577 + 0.700749i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −17.0000 17.0000i −0.853206 0.853206i 0.137321 0.990527i \(-0.456151\pi\)
−0.990527 + 0.137321i \(0.956151\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.3712 + 10.6066i −0.917413 + 0.529668i −0.882809 0.469733i \(-0.844350\pi\)
−0.0346039 + 0.999401i \(0.511017\pi\)
\(402\) 0 0
\(403\) −8.78461 32.7846i −0.437593 1.63312i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.10583 11.5911i −0.153950 0.574550i
\(408\) 0 0
\(409\) −20.7846 + 12.0000i −1.02773 + 0.593362i −0.916334 0.400414i \(-0.868866\pi\)
−0.111398 + 0.993776i \(0.535533\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.65685 + 5.65685i 0.278356 + 0.278356i
\(414\) 0 0
\(415\) −24.0000 + 12.0000i −1.17811 + 0.589057i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.7279 + 22.0454i 0.621800 + 1.07699i 0.989150 + 0.146906i \(0.0469315\pi\)
−0.367351 + 0.930082i \(0.619735\pi\)
\(420\) 0 0
\(421\) 11.0000 19.0526i 0.536107 0.928565i −0.463002 0.886357i \(-0.653228\pi\)
0.999109 0.0422075i \(-0.0134391\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.72500 + 9.28032i −0.180689 + 0.450162i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.2843i 1.36241i −0.732095 0.681203i \(-0.761457\pi\)
0.732095 0.681203i \(-0.238543\pi\)
\(432\) 0 0
\(433\) 23.0000 23.0000i 1.10531 1.10531i 0.111551 0.993759i \(-0.464418\pi\)
0.993759 0.111551i \(-0.0355818\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 30.9096 + 8.28221i 1.47861 + 0.396192i
\(438\) 0 0
\(439\) −17.3205 10.0000i −0.826663 0.477274i 0.0260459 0.999661i \(-0.491708\pi\)
−0.852709 + 0.522387i \(0.825042\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −23.1822 + 6.21166i −1.10142 + 0.295125i −0.763343 0.645994i \(-0.776443\pi\)
−0.338078 + 0.941118i \(0.609777\pi\)
\(444\) 0 0
\(445\) −3.09808 + 0.633975i −0.146863 + 0.0300533i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.41421 −0.0667409 −0.0333704 0.999443i \(-0.510624\pi\)
−0.0333704 + 0.999443i \(0.510624\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −26.2880 + 5.37945i −1.23240 + 0.252193i
\(456\) 0 0
\(457\) −20.4904 + 5.49038i −0.958500 + 0.256829i −0.703965 0.710235i \(-0.748589\pi\)
−0.254534 + 0.967064i \(0.581922\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.4722 + 7.77817i 0.627463 + 0.362266i 0.779769 0.626068i \(-0.215337\pi\)
−0.152306 + 0.988333i \(0.548670\pi\)
\(462\) 0 0
\(463\) −35.5167 9.51666i −1.65060 0.442277i −0.690819 0.723028i \(-0.742750\pi\)
−0.959781 + 0.280751i \(0.909416\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.7990 19.7990i 0.916188 0.916188i −0.0805616 0.996750i \(-0.525671\pi\)
0.996750 + 0.0805616i \(0.0256714\pi\)
\(468\) 0 0
\(469\) 32.0000i 1.47762i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 7.85641 + 18.3923i 0.360477 + 0.843897i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19.7990 34.2929i 0.904639 1.56688i 0.0832378 0.996530i \(-0.473474\pi\)
0.821401 0.570351i \(-0.193193\pi\)
\(480\) 0 0
\(481\) 9.00000 + 15.5885i 0.410365 + 0.710772i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.48528 4.24264i 0.385297 0.192648i
\(486\) 0 0
\(487\) 6.00000 + 6.00000i 0.271886 + 0.271886i 0.829859 0.557973i \(-0.188421\pi\)
−0.557973 + 0.829859i \(0.688421\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 31.8434 18.3848i 1.43707 0.829693i 0.439426 0.898279i \(-0.355182\pi\)
0.997645 + 0.0685856i \(0.0218486\pi\)
\(492\) 0 0
\(493\) 5.12436 + 19.1244i 0.230789 + 0.861318i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.14110 + 15.4548i 0.185754 + 0.693243i
\(498\) 0 0
\(499\) −3.46410 + 2.00000i −0.155074 + 0.0895323i −0.575529 0.817781i \(-0.695204\pi\)
0.420455 + 0.907314i \(0.361871\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.48528 + 8.48528i 0.378340 + 0.378340i 0.870503 0.492163i \(-0.163794\pi\)
−0.492163 + 0.870503i \(0.663794\pi\)
\(504\) 0 0
\(505\) −3.00000 1.00000i −0.133498 0.0444994i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.707107 + 1.22474i 0.0313420 + 0.0542859i 0.881271 0.472611i \(-0.156689\pi\)
−0.849929 + 0.526897i \(0.823355\pi\)
\(510\) 0 0
\(511\) −14.0000 + 24.2487i −0.619324 + 1.07270i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.31319 0.378937i −0.278193 0.0166980i
\(516\) 0 0
\(517\) 8.78461 32.7846i 0.386347 1.44187i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 29.6985i 1.30111i −0.759457 0.650557i \(-0.774535\pi\)
0.759457 0.650557i \(-0.225465\pi\)
\(522\) 0 0
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.4548 4.14110i −0.673222 0.180389i
\(528\) 0 0
\(529\) −35.5070 20.5000i −1.54378 0.891304i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.79555 + 1.55291i −0.251033 + 0.0672642i
\(534\) 0 0
\(535\) −4.92820 + 7.46410i −0.213065 + 0.322701i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.82843 0.121829
\(540\) 0 0
\(541\) 40.0000 1.71973 0.859867 0.510518i \(-0.170546\pi\)
0.859867 + 0.510518i \(0.170546\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.58630 17.5254i −0.153620 0.750704i
\(546\) 0 0
\(547\) 16.3923 4.39230i 0.700884 0.187801i 0.109258 0.994013i \(-0.465153\pi\)
0.591627 + 0.806212i \(0.298486\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 34.2929 + 19.7990i 1.46092 + 0.843465i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −12.7279 + 12.7279i −0.539299 + 0.539299i −0.923323 0.384024i \(-0.874538\pi\)
0.384024 + 0.923323i \(0.374538\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.21166 + 23.1822i −0.261790 + 0.977014i 0.702396 + 0.711787i \(0.252114\pi\)
−0.964186 + 0.265227i \(0.914553\pi\)
\(564\) 0 0
\(565\) −0.535898 + 8.92820i −0.0225454 + 0.375612i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.77817 13.4722i 0.326078 0.564784i −0.655652 0.755063i \(-0.727606\pi\)
0.981730 + 0.190280i \(0.0609394\pi\)
\(570\) 0 0
\(571\) 2.00000 + 3.46410i 0.0836974 + 0.144968i 0.904835 0.425762i \(-0.139994\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.65685 39.5980i −0.235907 1.65135i
\(576\) 0 0
\(577\) 7.00000 + 7.00000i 0.291414 + 0.291414i 0.837639 0.546225i \(-0.183936\pi\)
−0.546225 + 0.837639i \(0.683936\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −29.3939 + 16.9706i −1.21946 + 0.704058i
\(582\) 0 0
\(583\) 7.32051 + 27.3205i 0.303184 + 1.13150i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.10583 11.5911i −0.128191 0.478416i 0.871742 0.489965i \(-0.162990\pi\)
−0.999933 + 0.0115488i \(0.996324\pi\)
\(588\) 0 0
\(589\) −27.7128 + 16.0000i −1.14189 + 0.659269i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.1421 + 14.1421i 0.580748 + 0.580748i 0.935109 0.354361i \(-0.115302\pi\)
−0.354361 + 0.935109i \(0.615302\pi\)
\(594\) 0 0
\(595\) −4.00000 + 12.0000i −0.163984 + 0.491952i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14.1421 24.4949i −0.577832 1.00083i −0.995728 0.0923393i \(-0.970566\pi\)
0.417896 0.908495i \(-0.362768\pi\)
\(600\) 0 0
\(601\) 20.0000 34.6410i 0.815817 1.41304i −0.0929227 0.995673i \(-0.529621\pi\)
0.908740 0.417363i \(-0.137046\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.45069 + 5.01910i 0.180946 + 0.204055i
\(606\) 0 0
\(607\) 6.58846 24.5885i 0.267417 0.998015i −0.693337 0.720614i \(-0.743860\pi\)
0.960754 0.277401i \(-0.0894731\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 50.9117i 2.05967i
\(612\) 0 0
\(613\) −27.0000 + 27.0000i −1.09052 + 1.09052i −0.0950469 + 0.995473i \(0.530300\pi\)
−0.995473 + 0.0950469i \(0.969700\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.79555 + 1.55291i 0.233320 + 0.0625180i 0.373585 0.927596i \(-0.378129\pi\)
−0.140264 + 0.990114i \(0.544795\pi\)
\(618\) 0 0
\(619\) 20.7846 + 12.0000i 0.835404 + 0.482321i 0.855699 0.517473i \(-0.173127\pi\)
−0.0202954 + 0.999794i \(0.506461\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.86370 + 1.03528i −0.154796 + 0.0414775i
\(624\) 0 0
\(625\) 17.2846 18.0622i 0.691384 0.722487i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.48528 0.338330
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 26.3896 + 17.4238i 1.04724 + 0.691444i
\(636\) 0 0
\(637\) −4.09808 + 1.09808i −0.162372 + 0.0435074i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −35.5176 20.5061i −1.40286 0.809942i −0.408176 0.912903i \(-0.633835\pi\)
−0.994685 + 0.102961i \(0.967168\pi\)
\(642\) 0 0
\(643\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.82843 + 2.82843i −0.111197 + 0.111197i −0.760516 0.649319i \(-0.775054\pi\)
0.649319 + 0.760516i \(0.275054\pi\)
\(648\) 0 0
\(649\) 8.00000i 0.314027i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.55291 5.79555i 0.0607702 0.226798i −0.928861 0.370428i \(-0.879211\pi\)
0.989631 + 0.143630i \(0.0458777\pi\)
\(654\) 0 0
\(655\) 4.73205 4.19615i 0.184897 0.163957i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.41421 2.44949i 0.0550899 0.0954186i −0.837165 0.546950i \(-0.815789\pi\)
0.892255 + 0.451531i \(0.149122\pi\)
\(660\) 0 0
\(661\) 8.00000 + 13.8564i 0.311164 + 0.538952i 0.978615 0.205702i \(-0.0659478\pi\)
−0.667451 + 0.744654i \(0.732615\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 11.3137 + 22.6274i 0.438727 + 0.877454i
\(666\) 0 0
\(667\) −56.0000 56.0000i −2.16833 2.16833i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −8.41858 31.4186i −0.324513 1.21110i −0.914801 0.403905i \(-0.867653\pi\)
0.590288 0.807192i \(-0.299014\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.62347 13.5230i −0.139261 0.519730i −0.999944 0.0105881i \(-0.996630\pi\)
0.860683 0.509142i \(-0.170037\pi\)
\(678\) 0 0
\(679\) 10.3923 6.00000i 0.398820 0.230259i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.48528 8.48528i −0.324680 0.324680i 0.525879 0.850559i \(-0.323736\pi\)
−0.850559 + 0.525879i \(0.823736\pi\)
\(684\) 0 0
\(685\) −12.0000 24.0000i −0.458496 0.916993i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −21.2132 36.7423i −0.808159 1.39977i
\(690\) 0 0
\(691\) −6.00000 + 10.3923i −0.228251 + 0.395342i −0.957290 0.289130i \(-0.906634\pi\)
0.729039 + 0.684472i \(0.239967\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 26.7685 23.7370i 1.01539 0.900397i
\(696\) 0 0
\(697\) −0.732051 + 2.73205i −0.0277284 + 0.103484i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9.89949i 0.373899i 0.982370 + 0.186949i \(0.0598600\pi\)
−0.982370 + 0.186949i \(0.940140\pi\)
\(702\) 0 0
\(703\) 12.0000 12.0000i 0.452589 0.452589i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.86370 1.03528i −0.145310 0.0389356i
\(708\) 0 0
\(709\) −8.66025 5.00000i −0.325243 0.187779i 0.328484 0.944509i \(-0.393462\pi\)
−0.653727 + 0.756730i \(0.726796\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 61.8193 16.5644i 2.31515 0.620342i
\(714\) 0 0
\(715\) 22.3923 + 14.7846i 0.837425 + 0.552913i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −39.5980 −1.47676 −0.738378 0.674387i \(-0.764408\pi\)
−0.738378 + 0.674387i \(0.764408\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.92065 49.1421i 0.219888 1.82509i
\(726\) 0 0
\(727\) 8.19615 2.19615i 0.303978 0.0814508i −0.103606 0.994618i \(-0.533038\pi\)
0.407584 + 0.913168i \(0.366371\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 39.6147 + 10.6147i 1.46320 + 0.392064i 0.900595 0.434659i \(-0.143131\pi\)
0.562609 + 0.826723i \(0.309798\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22.6274 22.6274i 0.833492 0.833492i
\(738\) 0 0
\(739\) 28.0000i 1.03000i −0.857191 0.514998i \(-0.827793\pi\)
0.857191 0.514998i \(-0.172207\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.24693 27.0459i 0.265864 0.992219i −0.695855 0.718182i \(-0.744974\pi\)
0.961719 0.274036i \(-0.0883589\pi\)
\(744\) 0 0
\(745\) 18.8827 + 21.2942i 0.691808 + 0.780160i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.65685 + 9.79796i −0.206697 + 0.358010i
\(750\) 0 0
\(751\) 12.0000 + 20.7846i 0.437886 + 0.758441i 0.997526 0.0702946i \(-0.0223939\pi\)
−0.559640 + 0.828736i \(0.689061\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −14.1421 + 42.4264i −0.514685 + 1.54406i
\(756\) 0 0
\(757\) 9.00000 + 9.00000i 0.327111 + 0.327111i 0.851487 0.524376i \(-0.175701\pi\)
−0.524376 + 0.851487i \(0.675701\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.2702 13.4350i 0.843542 0.487019i −0.0149244 0.999889i \(-0.504751\pi\)
0.858467 + 0.512869i \(0.171417\pi\)
\(762\) 0 0
\(763\) −5.85641 21.8564i −0.212016 0.791255i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.10583 + 11.5911i 0.112145 + 0.418531i
\(768\) 0 0
\(769\) 6.92820 4.00000i 0.249837 0.144244i −0.369852 0.929091i \(-0.620592\pi\)
0.619690 + 0.784847i \(0.287258\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −12.7279 12.7279i −0.457792 0.457792i 0.440138 0.897930i \(-0.354929\pi\)
−0.897930 + 0.440138i \(0.854929\pi\)
\(774\) 0 0
\(775\) 32.0000 + 24.0000i 1.14947 + 0.862105i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.82843 + 4.89898i 0.101339 + 0.175524i
\(780\) 0 0
\(781\) 8.00000 13.8564i 0.286263 0.495821i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.70522 28.4094i 0.0608618 1.01397i
\(786\) 0 0
\(787\) −7.32051 + 27.3205i −0.260948 + 0.973871i 0.703736 + 0.710461i \(0.251514\pi\)
−0.964684 + 0.263410i \(0.915153\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.3137i 0.402269i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.5911 3.10583i −0.410578 0.110014i 0.0476171 0.998866i \(-0.484837\pi\)
−0.458195 + 0.888852i \(0.651504\pi\)
\(798\) 0 0
\(799\) 20.7846 + 12.0000i 0.735307 + 0.424529i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 27.0459 7.24693i 0.954430 0.255739i
\(804\) 0 0
\(805\) −10.1436 49.5692i −0.357515 1.74709i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 43.8406 1.54135 0.770677 0.637226i \(-0.219918\pi\)
0.770677 + 0.637226i \(0.219918\pi\)
\(810\) 0 0
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.96953 10.5558i 0.244132 0.369755i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13.4722 + 7.77817i 0.470183 + 0.271460i 0.716316 0.697776i \(-0.245827\pi\)
−0.246133 + 0.969236i \(0.579160\pi\)
\(822\) 0 0
\(823\) −35.5167 9.51666i −1.23803 0.331730i −0.420331 0.907371i \(-0.638086\pi\)
−0.817702 + 0.575641i \(0.804753\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.9411 33.9411i 1.18025 1.18025i 0.200569 0.979680i \(-0.435721\pi\)
0.979680 0.200569i \(-0.0642791\pi\)
\(828\) 0 0
\(829\) 8.00000i 0.277851i 0.990303 + 0.138926i \(0.0443649\pi\)
−0.990303 + 0.138926i \(0.955635\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.517638 + 1.93185i −0.0179351 + 0.0669347i
\(834\) 0 0
\(835\) −35.7128 2.14359i −1.23589 0.0741821i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.65685 9.79796i 0.195296 0.338263i −0.751701 0.659504i \(-0.770766\pi\)
0.946998 + 0.321241i \(0.104100\pi\)
\(840\) 0 0
\(841\) −34.5000 59.7558i −1.18966 2.06054i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10.6066 3.53553i −0.364878 0.121626i
\(846\) 0 0
\(847\) 6.00000 + 6.00000i 0.206162 + 0.206162i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −29.3939 + 16.9706i −1.00761 + 0.581743i
\(852\) 0 0
\(853\) −1.83013 6.83013i −0.0626624 0.233859i 0.927491 0.373845i \(-0.121961\pi\)
−0.990153 + 0.139986i \(0.955294\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −10.8704 40.5689i −0.371326 1.38581i −0.858640 0.512580i \(-0.828690\pi\)
0.487314 0.873227i \(-0.337977\pi\)
\(858\) 0 0
\(859\) 6.92820 4.00000i 0.236387 0.136478i −0.377128 0.926161i \(-0.623088\pi\)
0.613515 + 0.789683i \(0.289755\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.65685 + 5.65685i 0.192562 + 0.192562i 0.796802 0.604240i \(-0.206523\pi\)
−0.604240 + 0.796802i \(0.706523\pi\)
\(864\) 0 0
\(865\) −8.00000 + 4.00000i −0.272008 + 0.136004i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −24.0000 + 41.5692i −0.813209 + 1.40852i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 20.4553 24.1160i 0.691516 0.815268i
\(876\) 0 0
\(877\) −5.49038 + 20.4904i −0.185397 + 0.691911i 0.809148 + 0.587605i \(0.199929\pi\)
−0.994545 + 0.104306i \(0.966738\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41.0122i 1.38174i −0.722981 0.690868i \(-0.757229\pi\)
0.722981 0.690868i \(-0.242771\pi\)
\(882\) 0 0
\(883\) −20.0000 + 20.0000i −0.673054 + 0.673054i −0.958419 0.285365i \(-0.907885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −46.3644 12.4233i −1.55677 0.417134i −0.625128 0.780522i \(-0.714953\pi\)
−0.931638 + 0.363388i \(0.881620\pi\)
\(888\) 0 0
\(889\) 34.6410 + 20.0000i 1.16182 + 0.670778i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 46.3644 12.4233i 1.55153 0.415730i
\(894\) 0 0
\(895\) −30.9808 + 6.33975i −1.03557 + 0.211914i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 79.1960 2.64133
\(900\) 0 0
\(901\) −20.0000 −0.666297
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17.5254 + 3.58630i −0.582563 + 0.119213i
\(906\) 0 0
\(907\) −21.8564 + 5.85641i −0.725730 + 0.194459i −0.602727 0.797948i \(-0.705919\pi\)
−0.123003 + 0.992406i \(0.539253\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −24.4949 14.1421i −0.811552 0.468550i 0.0359424 0.999354i \(-0.488557\pi\)
−0.847495 + 0.530804i \(0.821890\pi\)
\(912\) 0 0
\(913\) 32.7846 + 8.78461i 1.08501 + 0.290728i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.65685 5.65685i 0.186806 0.186806i
\(918\) 0 0
\(919\) 32.0000i 1.05558i 0.849374 + 0.527791i \(0.176980\pi\)
−0.849374 + 0.527791i \(0.823020\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.21166 + 23.1822i −0.204459 + 0.763052i
\(924\) 0 0
\(925\) −19.6865 7.90192i −0.647289 0.259814i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.6777 30.6186i 0.579986 1.00456i −0.415495 0.909596i \(-0.636392\pi\)
0.995480 0.0949688i \(-0.0302751\pi\)
\(930\) 0 0
\(931\) 2.00000 + 3.46410i 0.0655474 + 0.113531i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 11.3137 5.65685i 0.369998 0.184999i
\(936\) 0 0
\(937\) 37.0000 + 37.0000i 1.20874 + 1.20874i 0.971436 + 0.237301i \(0.0762628\pi\)
0.237301 + 0.971436i \(0.423737\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 33.0681 19.0919i 1.07799 0.622378i 0.147636 0.989042i \(-0.452834\pi\)
0.930353 + 0.366664i \(0.119500\pi\)
\(942\) 0 0
\(943\) −2.92820 10.9282i −0.0953554 0.355871i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.28221 + 30.9096i 0.269136 + 1.00443i 0.959670 + 0.281128i \(0.0907087\pi\)
−0.690535 + 0.723299i \(0.742625\pi\)
\(948\) 0 0
\(949\) −36.3731 + 21.0000i −1.18072 + 0.681689i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −25.4558 25.4558i −0.824596 0.824596i 0.162168 0.986763i \(-0.448151\pi\)
−0.986763 + 0.162168i \(0.948151\pi\)
\(954\) 0 0
\(955\) 24.0000 + 8.00000i 0.776622 + 0.258874i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.9706 29.3939i −0.548008 0.949178i
\(960\) 0 0
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −47.3489 2.84203i −1.52422 0.0914882i
\(966\) 0 0
\(967\) −0.732051 + 2.73205i −0.0235412 + 0.0878568i −0.976697 0.214623i \(-0.931148\pi\)
0.953156 + 0.302480i \(0.0978144\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 53.7401i 1.72460i 0.506396 + 0.862301i \(0.330978\pi\)
−0.506396 + 0.862301i \(0.669022\pi\)
\(972\) 0 0
\(973\) 32.0000 32.0000i 1.02587 1.02587i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.3867 + 4.65874i 0.556249 + 0.149046i 0.525982 0.850495i \(-0.323698\pi\)
0.0302663 + 0.999542i \(0.490364\pi\)
\(978\) 0 0
\(979\) 3.46410 + 2.00000i 0.110713 + 0.0639203i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 19.3185 5.17638i 0.616165 0.165101i 0.0627812 0.998027i \(-0.480003\pi\)
0.553384 + 0.832926i \(0.313336\pi\)
\(984\) 0 0
\(985\) −14.7846 + 22.3923i −0.471077 + 0.713478i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.37945 + 26.2880i 0.170540 + 0.833387i
\(996\) 0 0
\(997\) 15.0263 4.02628i 0.475887 0.127514i −0.0128998 0.999917i \(-0.504106\pi\)
0.488787 + 0.872403i \(0.337440\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.2.x.a.917.1 8
3.2 odd 2 inner 1620.2.x.a.917.2 8
5.3 odd 4 inner 1620.2.x.a.593.1 8
9.2 odd 6 180.2.j.a.17.1 4
9.4 even 3 inner 1620.2.x.a.377.2 8
9.5 odd 6 inner 1620.2.x.a.377.1 8
9.7 even 3 180.2.j.a.17.2 yes 4
15.8 even 4 inner 1620.2.x.a.593.2 8
36.7 odd 6 720.2.w.b.17.2 4
36.11 even 6 720.2.w.b.17.1 4
45.2 even 12 900.2.j.a.593.2 4
45.7 odd 12 900.2.j.a.593.1 4
45.13 odd 12 inner 1620.2.x.a.53.2 8
45.23 even 12 inner 1620.2.x.a.53.1 8
45.29 odd 6 900.2.j.a.557.2 4
45.34 even 6 900.2.j.a.557.1 4
45.38 even 12 180.2.j.a.53.2 yes 4
45.43 odd 12 180.2.j.a.53.1 yes 4
72.11 even 6 2880.2.w.a.2177.2 4
72.29 odd 6 2880.2.w.j.2177.2 4
72.43 odd 6 2880.2.w.a.2177.1 4
72.61 even 6 2880.2.w.j.2177.1 4
180.7 even 12 3600.2.w.f.593.2 4
180.43 even 12 720.2.w.b.593.1 4
180.47 odd 12 3600.2.w.f.593.1 4
180.79 odd 6 3600.2.w.f.1457.2 4
180.83 odd 12 720.2.w.b.593.2 4
180.119 even 6 3600.2.w.f.1457.1 4
360.43 even 12 2880.2.w.a.2753.2 4
360.83 odd 12 2880.2.w.a.2753.1 4
360.133 odd 12 2880.2.w.j.2753.2 4
360.173 even 12 2880.2.w.j.2753.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.j.a.17.1 4 9.2 odd 6
180.2.j.a.17.2 yes 4 9.7 even 3
180.2.j.a.53.1 yes 4 45.43 odd 12
180.2.j.a.53.2 yes 4 45.38 even 12
720.2.w.b.17.1 4 36.11 even 6
720.2.w.b.17.2 4 36.7 odd 6
720.2.w.b.593.1 4 180.43 even 12
720.2.w.b.593.2 4 180.83 odd 12
900.2.j.a.557.1 4 45.34 even 6
900.2.j.a.557.2 4 45.29 odd 6
900.2.j.a.593.1 4 45.7 odd 12
900.2.j.a.593.2 4 45.2 even 12
1620.2.x.a.53.1 8 45.23 even 12 inner
1620.2.x.a.53.2 8 45.13 odd 12 inner
1620.2.x.a.377.1 8 9.5 odd 6 inner
1620.2.x.a.377.2 8 9.4 even 3 inner
1620.2.x.a.593.1 8 5.3 odd 4 inner
1620.2.x.a.593.2 8 15.8 even 4 inner
1620.2.x.a.917.1 8 1.1 even 1 trivial
1620.2.x.a.917.2 8 3.2 odd 2 inner
2880.2.w.a.2177.1 4 72.43 odd 6
2880.2.w.a.2177.2 4 72.11 even 6
2880.2.w.a.2753.1 4 360.83 odd 12
2880.2.w.a.2753.2 4 360.43 even 12
2880.2.w.j.2177.1 4 72.61 even 6
2880.2.w.j.2177.2 4 72.29 odd 6
2880.2.w.j.2753.1 4 360.173 even 12
2880.2.w.j.2753.2 4 360.133 odd 12
3600.2.w.f.593.1 4 180.47 odd 12
3600.2.w.f.593.2 4 180.7 even 12
3600.2.w.f.1457.1 4 180.119 even 6
3600.2.w.f.1457.2 4 180.79 odd 6