Properties

Label 162.8.c.j.55.1
Level $162$
Weight $8$
Character 162.55
Analytic conductor $50.606$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,8,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8,0,-64,-105] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.8.c.j.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.00000 - 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(-52.5000 - 90.9327i) q^{5} +(468.500 - 811.466i) q^{7} -512.000 q^{8} -840.000 q^{10} +(-2971.50 + 5146.79i) q^{11} +(-34.0000 - 58.8897i) q^{13} +(-3748.00 - 6491.73i) q^{14} +(-2048.00 + 3547.24i) q^{16} -5400.00 q^{17} -48382.0 q^{19} +(-3360.00 + 5819.69i) q^{20} +(23772.0 + 41174.3i) q^{22} +(321.000 + 555.988i) q^{23} +(33550.0 - 58110.3i) q^{25} -544.000 q^{26} -59968.0 q^{28} +(62967.0 - 109062. i) q^{29} +(80637.5 + 139668. i) q^{31} +(16384.0 + 28377.9i) q^{32} +(-21600.0 + 37412.3i) q^{34} -98385.0 q^{35} -414286. q^{37} +(-193528. + 335200. i) q^{38} +(26880.0 + 46557.5i) q^{40} +(313737. + 543408. i) q^{41} +(-285295. + 494145. i) q^{43} +380352. q^{44} +5136.00 q^{46} +(-269349. + 466526. i) q^{47} +(-27213.0 - 47134.3i) q^{49} +(-268400. - 464882. i) q^{50} +(-2176.00 + 3768.94i) q^{52} +356283. q^{53} +624015. q^{55} +(-239872. + 415470. i) q^{56} +(-503736. - 872496. i) q^{58} +(1.45541e6 + 2.52085e6i) q^{59} +(-1.34208e6 + 2.32456e6i) q^{61} +1.29020e6 q^{62} +262144. q^{64} +(-3570.00 + 6183.42i) q^{65} +(-1.34054e6 - 2.32188e6i) q^{67} +(172800. + 299298. i) q^{68} +(-393540. + 681631. i) q^{70} -3.70548e6 q^{71} -153151. q^{73} +(-1.65714e6 + 2.87026e6i) q^{74} +(1.54822e6 + 2.68160e6i) q^{76} +(2.78430e6 + 4.82254e6i) q^{77} +(3.78964e6 - 6.56386e6i) q^{79} +430080. q^{80} +5.01979e6 q^{82} +(-4.67300e6 + 8.09387e6i) q^{83} +(283500. + 491036. i) q^{85} +(2.28236e6 + 3.95316e6i) q^{86} +(1.52141e6 - 2.63516e6i) q^{88} +4.03360e6 q^{89} -63716.0 q^{91} +(20544.0 - 35583.3i) q^{92} +(2.15479e6 + 3.73221e6i) q^{94} +(2.54006e6 + 4.39950e6i) q^{95} +(2.87705e6 - 4.98319e6i) q^{97} -435408. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 64 q^{4} - 105 q^{5} + 937 q^{7} - 1024 q^{8} - 1680 q^{10} - 5943 q^{11} - 68 q^{13} - 7496 q^{14} - 4096 q^{16} - 10800 q^{17} - 96764 q^{19} - 6720 q^{20} + 47544 q^{22} + 642 q^{23}+ \cdots - 870816 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 6.92820i 0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −52.5000 90.9327i −0.187830 0.325331i 0.756697 0.653766i \(-0.226812\pi\)
−0.944526 + 0.328436i \(0.893479\pi\)
\(6\) 0 0
\(7\) 468.500 811.466i 0.516258 0.894184i −0.483564 0.875309i \(-0.660658\pi\)
0.999822 0.0188755i \(-0.00600862\pi\)
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) −840.000 −0.265631
\(11\) −2971.50 + 5146.79i −0.673134 + 1.16590i 0.303877 + 0.952711i \(0.401719\pi\)
−0.977011 + 0.213190i \(0.931615\pi\)
\(12\) 0 0
\(13\) −34.0000 58.8897i −0.00429217 0.00743426i 0.863871 0.503713i \(-0.168033\pi\)
−0.868164 + 0.496278i \(0.834700\pi\)
\(14\) −3748.00 6491.73i −0.365049 0.632284i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −5400.00 −0.266577 −0.133288 0.991077i \(-0.542554\pi\)
−0.133288 + 0.991077i \(0.542554\pi\)
\(18\) 0 0
\(19\) −48382.0 −1.61825 −0.809126 0.587635i \(-0.800059\pi\)
−0.809126 + 0.587635i \(0.800059\pi\)
\(20\) −3360.00 + 5819.69i −0.0939149 + 0.162665i
\(21\) 0 0
\(22\) 23772.0 + 41174.3i 0.475977 + 0.824417i
\(23\) 321.000 + 555.988i 0.00550120 + 0.00952836i 0.868763 0.495228i \(-0.164916\pi\)
−0.863262 + 0.504757i \(0.831582\pi\)
\(24\) 0 0
\(25\) 33550.0 58110.3i 0.429440 0.743812i
\(26\) −544.000 −0.00607005
\(27\) 0 0
\(28\) −59968.0 −0.516258
\(29\) 62967.0 109062.i 0.479424 0.830387i −0.520297 0.853985i \(-0.674179\pi\)
0.999722 + 0.0235980i \(0.00751219\pi\)
\(30\) 0 0
\(31\) 80637.5 + 139668.i 0.486151 + 0.842038i 0.999873 0.0159184i \(-0.00506719\pi\)
−0.513722 + 0.857956i \(0.671734\pi\)
\(32\) 16384.0 + 28377.9i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −21600.0 + 37412.3i −0.0942492 + 0.163244i
\(35\) −98385.0 −0.387874
\(36\) 0 0
\(37\) −414286. −1.34460 −0.672302 0.740277i \(-0.734694\pi\)
−0.672302 + 0.740277i \(0.734694\pi\)
\(38\) −193528. + 335200.i −0.572139 + 0.990973i
\(39\) 0 0
\(40\) 26880.0 + 46557.5i 0.0664078 + 0.115022i
\(41\) 313737. + 543408.i 0.710922 + 1.23135i 0.964511 + 0.264042i \(0.0850557\pi\)
−0.253589 + 0.967312i \(0.581611\pi\)
\(42\) 0 0
\(43\) −285295. + 494145.i −0.547211 + 0.947797i 0.451254 + 0.892396i \(0.350977\pi\)
−0.998464 + 0.0554009i \(0.982356\pi\)
\(44\) 380352. 0.673134
\(45\) 0 0
\(46\) 5136.00 0.00777987
\(47\) −269349. + 466526.i −0.378419 + 0.655441i −0.990832 0.135097i \(-0.956865\pi\)
0.612413 + 0.790538i \(0.290199\pi\)
\(48\) 0 0
\(49\) −27213.0 47134.3i −0.0330438 0.0572336i
\(50\) −268400. 464882.i −0.303660 0.525954i
\(51\) 0 0
\(52\) −2176.00 + 3768.94i −0.00214609 + 0.00371713i
\(53\) 356283. 0.328723 0.164361 0.986400i \(-0.447444\pi\)
0.164361 + 0.986400i \(0.447444\pi\)
\(54\) 0 0
\(55\) 624015. 0.505738
\(56\) −239872. + 415470.i −0.182525 + 0.316142i
\(57\) 0 0
\(58\) −503736. 872496.i −0.339004 0.587172i
\(59\) 1.45541e6 + 2.52085e6i 0.922581 + 1.59796i 0.795406 + 0.606077i \(0.207258\pi\)
0.127175 + 0.991880i \(0.459409\pi\)
\(60\) 0 0
\(61\) −1.34208e6 + 2.32456e6i −0.757051 + 1.31125i 0.187297 + 0.982303i \(0.440027\pi\)
−0.944348 + 0.328948i \(0.893306\pi\)
\(62\) 1.29020e6 0.687521
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −3570.00 + 6183.42i −0.00161240 + 0.00279275i
\(66\) 0 0
\(67\) −1.34054e6 2.32188e6i −0.544525 0.943145i −0.998637 0.0521999i \(-0.983377\pi\)
0.454112 0.890945i \(-0.349957\pi\)
\(68\) 172800. + 299298.i 0.0666442 + 0.115431i
\(69\) 0 0
\(70\) −393540. + 681631.i −0.137134 + 0.237523i
\(71\) −3.70548e6 −1.22868 −0.614342 0.789040i \(-0.710578\pi\)
−0.614342 + 0.789040i \(0.710578\pi\)
\(72\) 0 0
\(73\) −153151. −0.0460776 −0.0230388 0.999735i \(-0.507334\pi\)
−0.0230388 + 0.999735i \(0.507334\pi\)
\(74\) −1.65714e6 + 2.87026e6i −0.475389 + 0.823398i
\(75\) 0 0
\(76\) 1.54822e6 + 2.68160e6i 0.404563 + 0.700724i
\(77\) 2.78430e6 + 4.82254e6i 0.695021 + 1.20381i
\(78\) 0 0
\(79\) 3.78964e6 6.56386e6i 0.864776 1.49784i −0.00249356 0.999997i \(-0.500794\pi\)
0.867269 0.497839i \(-0.165873\pi\)
\(80\) 430080. 0.0939149
\(81\) 0 0
\(82\) 5.01979e6 1.00540
\(83\) −4.67300e6 + 8.09387e6i −0.897062 + 1.55376i −0.0658301 + 0.997831i \(0.520970\pi\)
−0.831232 + 0.555926i \(0.812364\pi\)
\(84\) 0 0
\(85\) 283500. + 491036.i 0.0500711 + 0.0867256i
\(86\) 2.28236e6 + 3.95316e6i 0.386936 + 0.670193i
\(87\) 0 0
\(88\) 1.52141e6 2.63516e6i 0.237989 0.412209i
\(89\) 4.03360e6 0.606496 0.303248 0.952912i \(-0.401929\pi\)
0.303248 + 0.952912i \(0.401929\pi\)
\(90\) 0 0
\(91\) −63716.0 −0.00886347
\(92\) 20544.0 35583.3i 0.00275060 0.00476418i
\(93\) 0 0
\(94\) 2.15479e6 + 3.73221e6i 0.267583 + 0.463467i
\(95\) 2.54006e6 + 4.39950e6i 0.303956 + 0.526467i
\(96\) 0 0
\(97\) 2.87705e6 4.98319e6i 0.320071 0.554379i −0.660432 0.750886i \(-0.729627\pi\)
0.980502 + 0.196507i \(0.0629599\pi\)
\(98\) −435408. −0.0467310
\(99\) 0 0
\(100\) −4.29440e6 −0.429440
\(101\) −4.43961e6 + 7.68963e6i −0.428766 + 0.742644i −0.996764 0.0803857i \(-0.974385\pi\)
0.567998 + 0.823030i \(0.307718\pi\)
\(102\) 0 0
\(103\) 1.32783e6 + 2.29986e6i 0.119732 + 0.207382i 0.919662 0.392712i \(-0.128463\pi\)
−0.799929 + 0.600094i \(0.795130\pi\)
\(104\) 17408.0 + 30151.5i 0.00151751 + 0.00262841i
\(105\) 0 0
\(106\) 1.42513e6 2.46840e6i 0.116221 0.201301i
\(107\) 2.11234e7 1.66694 0.833471 0.552564i \(-0.186350\pi\)
0.833471 + 0.552564i \(0.186350\pi\)
\(108\) 0 0
\(109\) −1.84213e7 −1.36247 −0.681237 0.732063i \(-0.738558\pi\)
−0.681237 + 0.732063i \(0.738558\pi\)
\(110\) 2.49606e6 4.32330e6i 0.178805 0.309700i
\(111\) 0 0
\(112\) 1.91898e6 + 3.32376e6i 0.129064 + 0.223546i
\(113\) 9.31424e6 + 1.61327e7i 0.607258 + 1.05180i 0.991690 + 0.128648i \(0.0410637\pi\)
−0.384433 + 0.923153i \(0.625603\pi\)
\(114\) 0 0
\(115\) 33705.0 58378.8i 0.00206658 0.00357942i
\(116\) −8.05978e6 −0.479424
\(117\) 0 0
\(118\) 2.32866e7 1.30473
\(119\) −2.52990e6 + 4.38192e6i −0.137622 + 0.238369i
\(120\) 0 0
\(121\) −7.91604e6 1.37110e7i −0.406218 0.703590i
\(122\) 1.07367e7 + 1.85965e7i 0.535316 + 0.927195i
\(123\) 0 0
\(124\) 5.16080e6 8.93877e6i 0.243075 0.421019i
\(125\) −1.52486e7 −0.698306
\(126\) 0 0
\(127\) −2.58380e6 −0.111930 −0.0559649 0.998433i \(-0.517823\pi\)
−0.0559649 + 0.998433i \(0.517823\pi\)
\(128\) 1.04858e6 1.81619e6i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 28560.0 + 49467.4i 0.00114014 + 0.00197477i
\(131\) −2.09642e7 3.63110e7i −0.814757 1.41120i −0.909503 0.415698i \(-0.863537\pi\)
0.0947460 0.995501i \(-0.469796\pi\)
\(132\) 0 0
\(133\) −2.26670e7 + 3.92603e7i −0.835435 + 1.44702i
\(134\) −2.14486e7 −0.770074
\(135\) 0 0
\(136\) 2.76480e6 0.0942492
\(137\) −633309. + 1.09692e6i −0.0210423 + 0.0364464i −0.876355 0.481666i \(-0.840032\pi\)
0.855312 + 0.518112i \(0.173365\pi\)
\(138\) 0 0
\(139\) −1.15281e7 1.99672e7i −0.364086 0.630616i 0.624543 0.780991i \(-0.285285\pi\)
−0.988629 + 0.150374i \(0.951952\pi\)
\(140\) 3.14832e6 + 5.45305e6i 0.0969685 + 0.167954i
\(141\) 0 0
\(142\) −1.48219e7 + 2.56723e7i −0.434405 + 0.752412i
\(143\) 404124. 0.0115568
\(144\) 0 0
\(145\) −1.32231e7 −0.360200
\(146\) −612604. + 1.06106e6i −0.0162909 + 0.0282167i
\(147\) 0 0
\(148\) 1.32572e7 + 2.29621e7i 0.336151 + 0.582230i
\(149\) −1.19133e7 2.06345e7i −0.295040 0.511024i 0.679954 0.733255i \(-0.262000\pi\)
−0.974994 + 0.222230i \(0.928666\pi\)
\(150\) 0 0
\(151\) −2.25247e7 + 3.90139e7i −0.532401 + 0.922146i 0.466883 + 0.884319i \(0.345377\pi\)
−0.999284 + 0.0378270i \(0.987956\pi\)
\(152\) 2.47716e7 0.572139
\(153\) 0 0
\(154\) 4.45487e7 0.982908
\(155\) 8.46694e6 1.46652e7i 0.182627 0.316320i
\(156\) 0 0
\(157\) −1.76288e7 3.05339e7i −0.363558 0.629700i 0.624986 0.780636i \(-0.285105\pi\)
−0.988544 + 0.150936i \(0.951771\pi\)
\(158\) −3.03172e7 5.25108e7i −0.611489 1.05913i
\(159\) 0 0
\(160\) 1.72032e6 2.97968e6i 0.0332039 0.0575109i
\(161\) 601554. 0.0113601
\(162\) 0 0
\(163\) −6.55009e7 −1.18465 −0.592326 0.805699i \(-0.701790\pi\)
−0.592326 + 0.805699i \(0.701790\pi\)
\(164\) 2.00792e7 3.47781e7i 0.355461 0.615677i
\(165\) 0 0
\(166\) 3.73840e7 + 6.47510e7i 0.634319 + 1.09867i
\(167\) −2.64045e7 4.57339e7i −0.438703 0.759855i 0.558887 0.829244i \(-0.311228\pi\)
−0.997590 + 0.0693886i \(0.977895\pi\)
\(168\) 0 0
\(169\) 3.13719e7 5.43378e7i 0.499963 0.865962i
\(170\) 4.53600e6 0.0708112
\(171\) 0 0
\(172\) 3.65178e7 0.547211
\(173\) 5.53665e7 9.58976e7i 0.812991 1.40814i −0.0977712 0.995209i \(-0.531171\pi\)
0.910762 0.412932i \(-0.135495\pi\)
\(174\) 0 0
\(175\) −3.14364e7 5.44494e7i −0.443403 0.767997i
\(176\) −1.21713e7 2.10812e7i −0.168283 0.291475i
\(177\) 0 0
\(178\) 1.61344e7 2.79456e7i 0.214429 0.371402i
\(179\) −1.19427e7 −0.155639 −0.0778195 0.996967i \(-0.524796\pi\)
−0.0778195 + 0.996967i \(0.524796\pi\)
\(180\) 0 0
\(181\) −7.95226e7 −0.996817 −0.498408 0.866942i \(-0.666082\pi\)
−0.498408 + 0.866942i \(0.666082\pi\)
\(182\) −254864. + 441437.i −0.00313371 + 0.00542774i
\(183\) 0 0
\(184\) −164352. 284666.i −0.00194497 0.00336878i
\(185\) 2.17500e7 + 3.76721e7i 0.252556 + 0.437441i
\(186\) 0 0
\(187\) 1.60461e7 2.77927e7i 0.179442 0.310802i
\(188\) 3.44767e7 0.378419
\(189\) 0 0
\(190\) 4.06409e7 0.429858
\(191\) 3.01157e6 5.21620e6i 0.0312735 0.0541673i −0.849965 0.526839i \(-0.823377\pi\)
0.881239 + 0.472672i \(0.156710\pi\)
\(192\) 0 0
\(193\) 2.92925e7 + 5.07361e7i 0.293296 + 0.508003i 0.974587 0.224009i \(-0.0719147\pi\)
−0.681291 + 0.732012i \(0.738581\pi\)
\(194\) −2.30164e7 3.98656e7i −0.226324 0.392005i
\(195\) 0 0
\(196\) −1.74163e6 + 3.01660e6i −0.0165219 + 0.0286168i
\(197\) −1.68414e8 −1.56945 −0.784725 0.619844i \(-0.787196\pi\)
−0.784725 + 0.619844i \(0.787196\pi\)
\(198\) 0 0
\(199\) −1.01669e8 −0.914543 −0.457271 0.889327i \(-0.651173\pi\)
−0.457271 + 0.889327i \(0.651173\pi\)
\(200\) −1.71776e7 + 2.97525e7i −0.151830 + 0.262977i
\(201\) 0 0
\(202\) 3.55169e7 + 6.15171e7i 0.303183 + 0.525129i
\(203\) −5.90001e7 1.02191e8i −0.495013 0.857387i
\(204\) 0 0
\(205\) 3.29424e7 5.70579e7i 0.267065 0.462570i
\(206\) 2.12452e7 0.169327
\(207\) 0 0
\(208\) 278528. 0.00214609
\(209\) 1.43767e8 2.49012e8i 1.08930 1.88672i
\(210\) 0 0
\(211\) 4.31910e7 + 7.48090e7i 0.316523 + 0.548233i 0.979760 0.200176i \(-0.0641513\pi\)
−0.663237 + 0.748409i \(0.730818\pi\)
\(212\) −1.14011e7 1.97472e7i −0.0821806 0.142341i
\(213\) 0 0
\(214\) 8.44935e7 1.46347e8i 0.589353 1.02079i
\(215\) 5.99120e7 0.411130
\(216\) 0 0
\(217\) 1.51115e8 1.00392
\(218\) −7.36854e7 + 1.27627e8i −0.481708 + 0.834342i
\(219\) 0 0
\(220\) −1.99685e7 3.45864e7i −0.126435 0.218991i
\(221\) 183600. + 318005.i 0.00114419 + 0.00198180i
\(222\) 0 0
\(223\) −2.08087e7 + 3.60416e7i −0.125654 + 0.217639i −0.921988 0.387217i \(-0.873436\pi\)
0.796334 + 0.604857i \(0.206770\pi\)
\(224\) 3.07036e7 0.182525
\(225\) 0 0
\(226\) 1.49028e8 0.858792
\(227\) −1.04658e8 + 1.81272e8i −0.593855 + 1.02859i 0.399852 + 0.916580i \(0.369061\pi\)
−0.993707 + 0.112007i \(0.964272\pi\)
\(228\) 0 0
\(229\) −1.66459e8 2.88316e8i −0.915976 1.58652i −0.805466 0.592642i \(-0.798085\pi\)
−0.110510 0.993875i \(-0.535248\pi\)
\(230\) −269640. 467030.i −0.00146129 0.00253103i
\(231\) 0 0
\(232\) −3.22391e7 + 5.58398e7i −0.169502 + 0.293586i
\(233\) 7.95428e7 0.411960 0.205980 0.978556i \(-0.433962\pi\)
0.205980 + 0.978556i \(0.433962\pi\)
\(234\) 0 0
\(235\) 5.65633e7 0.284313
\(236\) 9.31465e7 1.61334e8i 0.461291 0.798979i
\(237\) 0 0
\(238\) 2.02392e7 + 3.50553e7i 0.0973137 + 0.168552i
\(239\) −7.34502e7 1.27220e8i −0.348017 0.602783i 0.637880 0.770136i \(-0.279812\pi\)
−0.985897 + 0.167352i \(0.946478\pi\)
\(240\) 0 0
\(241\) 1.51528e7 2.62454e7i 0.0697320 0.120779i −0.829051 0.559173i \(-0.811119\pi\)
0.898783 + 0.438393i \(0.144452\pi\)
\(242\) −1.26657e8 −0.574479
\(243\) 0 0
\(244\) 1.71787e8 0.757051
\(245\) −2.85736e6 + 4.94910e6i −0.0124132 + 0.0215003i
\(246\) 0 0
\(247\) 1.64499e6 + 2.84920e6i 0.00694582 + 0.0120305i
\(248\) −4.12864e7 7.15101e7i −0.171880 0.297705i
\(249\) 0 0
\(250\) −6.09945e7 + 1.05646e8i −0.246888 + 0.427623i
\(251\) 1.47027e8 0.586866 0.293433 0.955980i \(-0.405202\pi\)
0.293433 + 0.955980i \(0.405202\pi\)
\(252\) 0 0
\(253\) −3.81541e6 −0.0148122
\(254\) −1.03352e7 + 1.79011e7i −0.0395732 + 0.0685427i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) 1.83888e8 + 3.18503e8i 0.675752 + 1.17044i 0.976248 + 0.216654i \(0.0695144\pi\)
−0.300496 + 0.953783i \(0.597152\pi\)
\(258\) 0 0
\(259\) −1.94093e8 + 3.36179e8i −0.694162 + 1.20232i
\(260\) 456960. 0.00161240
\(261\) 0 0
\(262\) −3.35427e8 −1.15224
\(263\) −1.62928e8 + 2.82200e8i −0.552270 + 0.956559i 0.445840 + 0.895112i \(0.352905\pi\)
−0.998110 + 0.0614470i \(0.980428\pi\)
\(264\) 0 0
\(265\) −1.87049e7 3.23978e7i −0.0617439 0.106944i
\(266\) 1.81336e8 + 3.14083e8i 0.590742 + 1.02319i
\(267\) 0 0
\(268\) −8.57945e7 + 1.48600e8i −0.272262 + 0.471572i
\(269\) −3.39029e8 −1.06195 −0.530976 0.847387i \(-0.678174\pi\)
−0.530976 + 0.847387i \(0.678174\pi\)
\(270\) 0 0
\(271\) −2.50778e6 −0.00765416 −0.00382708 0.999993i \(-0.501218\pi\)
−0.00382708 + 0.999993i \(0.501218\pi\)
\(272\) 1.10592e7 1.91551e7i 0.0333221 0.0577156i
\(273\) 0 0
\(274\) 5.06647e6 + 8.77539e6i 0.0148792 + 0.0257715i
\(275\) 1.99388e8 + 3.45350e8i 0.578141 + 1.00137i
\(276\) 0 0
\(277\) 2.64293e7 4.57768e7i 0.0747146 0.129410i −0.826248 0.563307i \(-0.809529\pi\)
0.900962 + 0.433898i \(0.142862\pi\)
\(278\) −1.84449e8 −0.514896
\(279\) 0 0
\(280\) 5.03731e7 0.137134
\(281\) −2.69776e8 + 4.67266e8i −0.725322 + 1.25630i 0.233519 + 0.972352i \(0.424976\pi\)
−0.958841 + 0.283943i \(0.908357\pi\)
\(282\) 0 0
\(283\) −3.29283e7 5.70334e7i −0.0863607 0.149581i 0.819609 0.572923i \(-0.194190\pi\)
−0.905970 + 0.423341i \(0.860857\pi\)
\(284\) 1.18575e8 + 2.05379e8i 0.307171 + 0.532036i
\(285\) 0 0
\(286\) 1.61650e6 2.79985e6i 0.00408595 0.00707708i
\(287\) 5.87943e8 1.46808
\(288\) 0 0
\(289\) −3.81179e8 −0.928937
\(290\) −5.28923e7 + 9.16121e7i −0.127350 + 0.220577i
\(291\) 0 0
\(292\) 4.90083e6 + 8.48849e6i 0.0115194 + 0.0199522i
\(293\) 1.76292e7 + 3.05346e7i 0.0409444 + 0.0709179i 0.885771 0.464122i \(-0.153630\pi\)
−0.844827 + 0.535040i \(0.820297\pi\)
\(294\) 0 0
\(295\) 1.52818e8 2.64689e8i 0.346576 0.600288i
\(296\) 2.12114e8 0.475389
\(297\) 0 0
\(298\) −1.90613e8 −0.417249
\(299\) 21828.0 37807.2i 4.72242e−5 8.17947e-5i
\(300\) 0 0
\(301\) 2.67321e8 + 4.63014e8i 0.565003 + 0.978614i
\(302\) 1.80197e8 + 3.12111e8i 0.376465 + 0.652056i
\(303\) 0 0
\(304\) 9.90863e7 1.71623e8i 0.202282 0.350362i
\(305\) 2.81838e8 0.568787
\(306\) 0 0
\(307\) 1.14259e8 0.225376 0.112688 0.993630i \(-0.464054\pi\)
0.112688 + 0.993630i \(0.464054\pi\)
\(308\) 1.78195e8 3.08643e8i 0.347510 0.601906i
\(309\) 0 0
\(310\) −6.77355e7 1.17321e8i −0.129137 0.223672i
\(311\) −7.77314e7 1.34635e8i −0.146533 0.253802i 0.783411 0.621504i \(-0.213478\pi\)
−0.929944 + 0.367702i \(0.880145\pi\)
\(312\) 0 0
\(313\) −1.91150e8 + 3.31081e8i −0.352345 + 0.610280i −0.986660 0.162795i \(-0.947949\pi\)
0.634315 + 0.773075i \(0.281282\pi\)
\(314\) −2.82060e8 −0.514148
\(315\) 0 0
\(316\) −4.85074e8 −0.864776
\(317\) −2.22443e8 + 3.85283e8i −0.392204 + 0.679317i −0.992740 0.120281i \(-0.961621\pi\)
0.600536 + 0.799598i \(0.294954\pi\)
\(318\) 0 0
\(319\) 3.74213e8 + 6.48156e8i 0.645433 + 1.11792i
\(320\) −1.37626e7 2.38375e7i −0.0234787 0.0406663i
\(321\) 0 0
\(322\) 2.40622e6 4.16769e6i 0.00401642 0.00695664i
\(323\) 2.61263e8 0.431389
\(324\) 0 0
\(325\) −4.56280e6 −0.00737292
\(326\) −2.62004e8 + 4.53804e8i −0.418838 + 0.725448i
\(327\) 0 0
\(328\) −1.60633e8 2.78225e8i −0.251349 0.435349i
\(329\) 2.52380e8 + 4.37135e8i 0.390723 + 0.676753i
\(330\) 0 0
\(331\) 2.75444e8 4.77083e8i 0.417480 0.723096i −0.578205 0.815891i \(-0.696247\pi\)
0.995685 + 0.0927950i \(0.0295801\pi\)
\(332\) 5.98144e8 0.897062
\(333\) 0 0
\(334\) −4.22472e8 −0.620419
\(335\) −1.40757e8 + 2.43798e8i −0.204556 + 0.354301i
\(336\) 0 0
\(337\) 2.48397e8 + 4.30236e8i 0.353542 + 0.612353i 0.986867 0.161533i \(-0.0516438\pi\)
−0.633325 + 0.773886i \(0.718310\pi\)
\(338\) −2.50976e8 4.34702e8i −0.353527 0.612327i
\(339\) 0 0
\(340\) 1.81440e7 3.14263e7i 0.0250355 0.0433628i
\(341\) −9.58457e8 −1.30898
\(342\) 0 0
\(343\) 7.20663e8 0.964279
\(344\) 1.46071e8 2.53002e8i 0.193468 0.335097i
\(345\) 0 0
\(346\) −4.42932e8 7.67180e8i −0.574871 0.995706i
\(347\) 1.25581e8 + 2.17512e8i 0.161350 + 0.279467i 0.935353 0.353715i \(-0.115082\pi\)
−0.774003 + 0.633182i \(0.781748\pi\)
\(348\) 0 0
\(349\) 2.41457e8 4.18216e8i 0.304054 0.526637i −0.672996 0.739646i \(-0.734993\pi\)
0.977050 + 0.213009i \(0.0683263\pi\)
\(350\) −5.02982e8 −0.627067
\(351\) 0 0
\(352\) −1.94740e8 −0.237989
\(353\) 2.43467e8 4.21698e8i 0.294598 0.510258i −0.680294 0.732940i \(-0.738148\pi\)
0.974891 + 0.222682i \(0.0714811\pi\)
\(354\) 0 0
\(355\) 1.94538e8 + 3.36949e8i 0.230783 + 0.399729i
\(356\) −1.29075e8 2.23565e8i −0.151624 0.262621i
\(357\) 0 0
\(358\) −4.77710e7 + 8.27417e7i −0.0550267 + 0.0953090i
\(359\) −4.59969e8 −0.524684 −0.262342 0.964975i \(-0.584495\pi\)
−0.262342 + 0.964975i \(0.584495\pi\)
\(360\) 0 0
\(361\) 1.44695e9 1.61874
\(362\) −3.18090e8 + 5.50949e8i −0.352428 + 0.610423i
\(363\) 0 0
\(364\) 2.03891e6 + 3.53150e6i 0.00221587 + 0.00383799i
\(365\) 8.04043e6 + 1.39264e7i 0.00865474 + 0.0149905i
\(366\) 0 0
\(367\) −3.26252e8 + 5.65084e8i −0.344526 + 0.596736i −0.985267 0.171021i \(-0.945294\pi\)
0.640742 + 0.767756i \(0.278627\pi\)
\(368\) −2.62963e6 −0.00275060
\(369\) 0 0
\(370\) 3.48000e8 0.357169
\(371\) 1.66919e8 2.89111e8i 0.169706 0.293939i
\(372\) 0 0
\(373\) −9.58955e8 1.66096e9i −0.956791 1.65721i −0.730214 0.683218i \(-0.760580\pi\)
−0.226577 0.973993i \(-0.572754\pi\)
\(374\) −1.28369e8 2.22341e8i −0.126885 0.219771i
\(375\) 0 0
\(376\) 1.37907e8 2.38861e8i 0.133791 0.231733i
\(377\) −8.56351e6 −0.00823109
\(378\) 0 0
\(379\) 1.43151e9 1.35070 0.675348 0.737499i \(-0.263993\pi\)
0.675348 + 0.737499i \(0.263993\pi\)
\(380\) 1.62564e8 2.81568e8i 0.151978 0.263233i
\(381\) 0 0
\(382\) −2.40926e7 4.17296e7i −0.0221137 0.0383021i
\(383\) 6.99297e7 + 1.21122e8i 0.0636013 + 0.110161i 0.896073 0.443907i \(-0.146408\pi\)
−0.832471 + 0.554068i \(0.813075\pi\)
\(384\) 0 0
\(385\) 2.92351e8 5.06367e8i 0.261091 0.452223i
\(386\) 4.68680e8 0.414783
\(387\) 0 0
\(388\) −3.68262e8 −0.320071
\(389\) 8.87960e8 1.53799e9i 0.764838 1.32474i −0.175494 0.984481i \(-0.556152\pi\)
0.940332 0.340258i \(-0.110515\pi\)
\(390\) 0 0
\(391\) −1.73340e6 3.00234e6i −0.00146649 0.00254004i
\(392\) 1.39331e7 + 2.41328e7i 0.0116828 + 0.0202351i
\(393\) 0 0
\(394\) −6.73658e8 + 1.16681e9i −0.554884 + 0.961088i
\(395\) −7.95825e8 −0.649722
\(396\) 0 0
\(397\) −1.05301e9 −0.844630 −0.422315 0.906449i \(-0.638782\pi\)
−0.422315 + 0.906449i \(0.638782\pi\)
\(398\) −4.06677e8 + 7.04385e8i −0.323340 + 0.560041i
\(399\) 0 0
\(400\) 1.37421e8 + 2.38020e8i 0.107360 + 0.185953i
\(401\) −1.16506e9 2.01794e9i −0.902284 1.56280i −0.824522 0.565830i \(-0.808556\pi\)
−0.0777620 0.996972i \(-0.524777\pi\)
\(402\) 0 0
\(403\) 5.48335e6 9.49744e6i 0.00417329 0.00722835i
\(404\) 5.68270e8 0.428766
\(405\) 0 0
\(406\) −9.44001e8 −0.700054
\(407\) 1.23105e9 2.13224e9i 0.905098 1.56768i
\(408\) 0 0
\(409\) 7.52109e7 + 1.30269e8i 0.0543562 + 0.0941478i 0.891923 0.452187i \(-0.149356\pi\)
−0.837567 + 0.546335i \(0.816023\pi\)
\(410\) −2.63539e8 4.56463e8i −0.188843 0.327086i
\(411\) 0 0
\(412\) 8.49809e7 1.47191e8i 0.0598661 0.103691i
\(413\) 2.72745e9 1.90516
\(414\) 0 0
\(415\) 9.81330e8 0.673980
\(416\) 1.11411e6 1.92970e6i 0.000758756 0.00131420i
\(417\) 0 0
\(418\) −1.15014e9 1.99210e9i −0.770251 1.33411i
\(419\) −4.55716e8 7.89324e8i −0.302653 0.524211i 0.674083 0.738656i \(-0.264539\pi\)
−0.976736 + 0.214445i \(0.931206\pi\)
\(420\) 0 0
\(421\) 3.76741e8 6.52535e8i 0.246068 0.426203i −0.716363 0.697728i \(-0.754195\pi\)
0.962431 + 0.271525i \(0.0875279\pi\)
\(422\) 6.91056e8 0.447631
\(423\) 0 0
\(424\) −1.82417e8 −0.116221
\(425\) −1.81170e8 + 3.13796e8i −0.114479 + 0.198283i
\(426\) 0 0
\(427\) 1.25753e9 + 2.17811e9i 0.781667 + 1.35389i
\(428\) −6.75948e8 1.17078e9i −0.416735 0.721807i
\(429\) 0 0
\(430\) 2.39648e8 4.15082e8i 0.145356 0.251764i
\(431\) −2.72892e9 −1.64180 −0.820900 0.571072i \(-0.806528\pi\)
−0.820900 + 0.571072i \(0.806528\pi\)
\(432\) 0 0
\(433\) 1.84699e9 1.09335 0.546673 0.837346i \(-0.315894\pi\)
0.546673 + 0.837346i \(0.315894\pi\)
\(434\) 6.04459e8 1.04695e9i 0.354938 0.614771i
\(435\) 0 0
\(436\) 5.89483e8 + 1.02101e9i 0.340619 + 0.589969i
\(437\) −1.55306e7 2.68998e7i −0.00890233 0.0154193i
\(438\) 0 0
\(439\) −7.50330e8 + 1.29961e9i −0.423279 + 0.733140i −0.996258 0.0864296i \(-0.972454\pi\)
0.572979 + 0.819570i \(0.305788\pi\)
\(440\) −3.19496e8 −0.178805
\(441\) 0 0
\(442\) 2.93760e6 0.00161813
\(443\) −6.58449e8 + 1.14047e9i −0.359840 + 0.623261i −0.987934 0.154876i \(-0.950502\pi\)
0.628094 + 0.778138i \(0.283835\pi\)
\(444\) 0 0
\(445\) −2.11764e8 3.66786e8i −0.113918 0.197312i
\(446\) 1.66469e8 + 2.88333e8i 0.0888509 + 0.153894i
\(447\) 0 0
\(448\) 1.22814e8 2.12721e8i 0.0645322 0.111773i
\(449\) 2.71216e8 0.141401 0.0707006 0.997498i \(-0.477477\pi\)
0.0707006 + 0.997498i \(0.477477\pi\)
\(450\) 0 0
\(451\) −3.72908e9 −1.91418
\(452\) 5.96111e8 1.03250e9i 0.303629 0.525900i
\(453\) 0 0
\(454\) 8.37261e8 + 1.45018e9i 0.419919 + 0.727321i
\(455\) 3.34509e6 + 5.79387e6i 0.00166482 + 0.00288356i
\(456\) 0 0
\(457\) 1.07531e9 1.86249e9i 0.527018 0.912822i −0.472486 0.881338i \(-0.656643\pi\)
0.999504 0.0314843i \(-0.0100234\pi\)
\(458\) −2.66335e9 −1.29539
\(459\) 0 0
\(460\) −4.31424e6 −0.00206658
\(461\) −4.92094e8 + 8.52332e8i −0.233935 + 0.405187i −0.958963 0.283533i \(-0.908494\pi\)
0.725028 + 0.688720i \(0.241827\pi\)
\(462\) 0 0
\(463\) 1.28374e9 + 2.22351e9i 0.601096 + 1.04113i 0.992655 + 0.120976i \(0.0386025\pi\)
−0.391559 + 0.920153i \(0.628064\pi\)
\(464\) 2.57913e8 + 4.46718e8i 0.119856 + 0.207597i
\(465\) 0 0
\(466\) 3.18171e8 5.51089e8i 0.145650 0.252273i
\(467\) −6.97867e8 −0.317076 −0.158538 0.987353i \(-0.550678\pi\)
−0.158538 + 0.987353i \(0.550678\pi\)
\(468\) 0 0
\(469\) −2.51217e9 −1.12446
\(470\) 2.26253e8 3.91882e8i 0.100520 0.174106i
\(471\) 0 0
\(472\) −7.45172e8 1.29068e9i −0.326182 0.564963i
\(473\) −1.69551e9 2.93671e9i −0.736692 1.27599i
\(474\) 0 0
\(475\) −1.62322e9 + 2.81149e9i −0.694942 + 1.20368i
\(476\) 3.23827e8 0.137622
\(477\) 0 0
\(478\) −1.17520e9 −0.492171
\(479\) 1.53533e9 2.65927e9i 0.638304 1.10557i −0.347501 0.937680i \(-0.612970\pi\)
0.985805 0.167895i \(-0.0536970\pi\)
\(480\) 0 0
\(481\) 1.40857e7 + 2.43972e7i 0.00577127 + 0.00999613i
\(482\) −1.21222e8 2.09963e8i −0.0493080 0.0854039i
\(483\) 0 0
\(484\) −5.06626e8 + 8.77503e8i −0.203109 + 0.351795i
\(485\) −6.04180e8 −0.240475
\(486\) 0 0
\(487\) −1.74254e9 −0.683646 −0.341823 0.939764i \(-0.611044\pi\)
−0.341823 + 0.939764i \(0.611044\pi\)
\(488\) 6.87147e8 1.19017e9i 0.267658 0.463597i
\(489\) 0 0
\(490\) 2.28589e7 + 3.95928e7i 0.00877747 + 0.0152030i
\(491\) 5.05269e8 + 8.75152e8i 0.192636 + 0.333655i 0.946123 0.323807i \(-0.104963\pi\)
−0.753487 + 0.657463i \(0.771630\pi\)
\(492\) 0 0
\(493\) −3.40022e8 + 5.88935e8i −0.127803 + 0.221362i
\(494\) 2.63198e7 0.00982287
\(495\) 0 0
\(496\) −6.60582e8 −0.243075
\(497\) −1.73602e9 + 3.00687e9i −0.634318 + 1.09867i
\(498\) 0 0
\(499\) −7.80436e8 1.35176e9i −0.281181 0.487019i 0.690495 0.723337i \(-0.257393\pi\)
−0.971676 + 0.236318i \(0.924059\pi\)
\(500\) 4.87956e8 + 8.45165e8i 0.174576 + 0.302375i
\(501\) 0 0
\(502\) 5.88108e8 1.01863e9i 0.207488 0.359380i
\(503\) 1.63663e9 0.573407 0.286704 0.958019i \(-0.407441\pi\)
0.286704 + 0.958019i \(0.407441\pi\)
\(504\) 0 0
\(505\) 9.32318e8 0.322140
\(506\) −1.52616e7 + 2.64339e7i −0.00523690 + 0.00907057i
\(507\) 0 0
\(508\) 8.26816e7 + 1.43209e8i 0.0279824 + 0.0484670i
\(509\) 2.64263e8 + 4.57717e8i 0.0888227 + 0.153845i 0.907014 0.421101i \(-0.138356\pi\)
−0.818191 + 0.574946i \(0.805023\pi\)
\(510\) 0 0
\(511\) −7.17512e7 + 1.24277e8i −0.0237879 + 0.0412019i
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) 2.94221e9 0.955658
\(515\) 1.39422e8 2.41486e8i 0.0449785 0.0779051i
\(516\) 0 0
\(517\) −1.60074e9 2.77256e9i −0.509453 0.882399i
\(518\) 1.55274e9 + 2.68943e9i 0.490846 + 0.850171i
\(519\) 0 0
\(520\) 1.82784e6 3.16591e6i 0.000570068 0.000987386i
\(521\) 4.50707e9 1.39625 0.698124 0.715977i \(-0.254018\pi\)
0.698124 + 0.715977i \(0.254018\pi\)
\(522\) 0 0
\(523\) 3.60454e9 1.10178 0.550888 0.834579i \(-0.314289\pi\)
0.550888 + 0.834579i \(0.314289\pi\)
\(524\) −1.34171e9 + 2.32390e9i −0.407378 + 0.705600i
\(525\) 0 0
\(526\) 1.30343e9 + 2.25760e9i 0.390514 + 0.676390i
\(527\) −4.35443e8 7.54209e8i −0.129597 0.224468i
\(528\) 0 0
\(529\) 1.70221e9 2.94831e9i 0.499939 0.865921i
\(530\) −2.99278e8 −0.0873190
\(531\) 0 0
\(532\) 2.90137e9 0.835435
\(533\) 2.13341e7 3.69518e7i 0.00610280 0.0105704i
\(534\) 0 0
\(535\) −1.10898e9 1.92081e9i −0.313101 0.542307i
\(536\) 6.86356e8 + 1.18880e9i 0.192519 + 0.333452i
\(537\) 0 0
\(538\) −1.35612e9 + 2.34887e9i −0.375456 + 0.650310i
\(539\) 3.23454e8 0.0889716
\(540\) 0 0
\(541\) −2.24714e9 −0.610154 −0.305077 0.952328i \(-0.598682\pi\)
−0.305077 + 0.952328i \(0.598682\pi\)
\(542\) −1.00311e7 + 1.73744e7i −0.00270616 + 0.00468720i
\(543\) 0 0
\(544\) −8.84736e7 1.53241e8i −0.0235623 0.0408111i
\(545\) 9.67120e8 + 1.67510e9i 0.255913 + 0.443255i
\(546\) 0 0
\(547\) −2.13370e9 + 3.69568e9i −0.557415 + 0.965470i 0.440297 + 0.897852i \(0.354873\pi\)
−0.997711 + 0.0676181i \(0.978460\pi\)
\(548\) 8.10636e7 0.0210423
\(549\) 0 0
\(550\) 3.19020e9 0.817615
\(551\) −3.04647e9 + 5.27664e9i −0.775829 + 1.34378i
\(552\) 0 0
\(553\) −3.55090e9 6.15033e9i −0.892894 1.54654i
\(554\) −2.11434e8 3.66214e8i −0.0528312 0.0915064i
\(555\) 0 0
\(556\) −7.37796e8 + 1.27790e9i −0.182043 + 0.315308i
\(557\) 7.18311e8 0.176124 0.0880622 0.996115i \(-0.471933\pi\)
0.0880622 + 0.996115i \(0.471933\pi\)
\(558\) 0 0
\(559\) 3.88001e7 0.00939489
\(560\) 2.01492e8 3.48995e8i 0.0484843 0.0839772i
\(561\) 0 0
\(562\) 2.15821e9 + 3.73812e9i 0.512880 + 0.888335i
\(563\) 2.85577e9 + 4.94635e9i 0.674442 + 1.16817i 0.976632 + 0.214920i \(0.0689489\pi\)
−0.302190 + 0.953248i \(0.597718\pi\)
\(564\) 0 0
\(565\) 9.77995e8 1.69394e9i 0.228122 0.395119i
\(566\) −5.26852e8 −0.122133
\(567\) 0 0
\(568\) 1.89721e9 0.434405
\(569\) −3.18000e9 + 5.50793e9i −0.723660 + 1.25342i 0.235863 + 0.971786i \(0.424208\pi\)
−0.959523 + 0.281629i \(0.909125\pi\)
\(570\) 0 0
\(571\) 2.37475e9 + 4.11319e9i 0.533816 + 0.924597i 0.999220 + 0.0394982i \(0.0125760\pi\)
−0.465403 + 0.885099i \(0.654091\pi\)
\(572\) −1.29320e7 2.23988e7i −0.00288921 0.00500425i
\(573\) 0 0
\(574\) 2.35177e9 4.07339e9i 0.519043 0.899010i
\(575\) 4.30782e7 0.00944975
\(576\) 0 0
\(577\) −8.95938e8 −0.194161 −0.0970807 0.995277i \(-0.530950\pi\)
−0.0970807 + 0.995277i \(0.530950\pi\)
\(578\) −1.52471e9 + 2.64088e9i −0.328429 + 0.568855i
\(579\) 0 0
\(580\) 4.23138e8 + 7.32897e8i 0.0900501 + 0.155971i
\(581\) 4.37860e9 + 7.58396e9i 0.926230 + 1.60428i
\(582\) 0 0
\(583\) −1.05869e9 + 1.83371e9i −0.221274 + 0.383258i
\(584\) 7.84133e7 0.0162909
\(585\) 0 0
\(586\) 2.82067e8 0.0579042
\(587\) 3.21382e9 5.56650e9i 0.655826 1.13592i −0.325861 0.945418i \(-0.605654\pi\)
0.981686 0.190505i \(-0.0610127\pi\)
\(588\) 0 0
\(589\) −3.90140e9 6.75743e9i −0.786715 1.36263i
\(590\) −1.22255e9 2.11751e9i −0.245066 0.424467i
\(591\) 0 0
\(592\) 8.48458e8 1.46957e9i 0.168075 0.291115i
\(593\) −6.89741e9 −1.35830 −0.679148 0.734001i \(-0.737651\pi\)
−0.679148 + 0.734001i \(0.737651\pi\)
\(594\) 0 0
\(595\) 5.31279e8 0.103398
\(596\) −7.62452e8 + 1.32061e9i −0.147520 + 0.255512i
\(597\) 0 0
\(598\) −174624. 302458.i −3.33926e−5 5.78376e-5i
\(599\) 4.25282e9 + 7.36610e9i 0.808506 + 1.40037i 0.913899 + 0.405942i \(0.133057\pi\)
−0.105393 + 0.994431i \(0.533610\pi\)
\(600\) 0 0
\(601\) 3.51840e9 6.09404e9i 0.661126 1.14510i −0.319194 0.947689i \(-0.603412\pi\)
0.980320 0.197415i \(-0.0632545\pi\)
\(602\) 4.27714e9 0.799035
\(603\) 0 0
\(604\) 2.88316e9 0.532401
\(605\) −8.31184e8 + 1.43965e9i −0.152600 + 0.264310i
\(606\) 0 0
\(607\) 4.58441e9 + 7.94042e9i 0.831999 + 1.44106i 0.896451 + 0.443143i \(0.146137\pi\)
−0.0644524 + 0.997921i \(0.520530\pi\)
\(608\) −7.92691e8 1.37298e9i −0.143035 0.247743i
\(609\) 0 0
\(610\) 1.12735e9 1.95263e9i 0.201097 0.348309i
\(611\) 3.66315e7 0.00649696
\(612\) 0 0
\(613\) 1.89814e9 0.332826 0.166413 0.986056i \(-0.446781\pi\)
0.166413 + 0.986056i \(0.446781\pi\)
\(614\) 4.57038e8 7.91613e8i 0.0796825 0.138014i
\(615\) 0 0
\(616\) −1.42556e9 2.46914e9i −0.245727 0.425612i
\(617\) −5.04005e9 8.72962e9i −0.863847 1.49623i −0.868188 0.496236i \(-0.834715\pi\)
0.00434118 0.999991i \(-0.498618\pi\)
\(618\) 0 0
\(619\) 1.03899e9 1.79957e9i 0.176073 0.304967i −0.764459 0.644672i \(-0.776994\pi\)
0.940532 + 0.339705i \(0.110327\pi\)
\(620\) −1.08377e9 −0.182627
\(621\) 0 0
\(622\) −1.24370e9 −0.207229
\(623\) 1.88974e9 3.27313e9i 0.313108 0.542319i
\(624\) 0 0
\(625\) −1.82054e9 3.15327e9i −0.298277 0.516632i
\(626\) 1.52920e9 + 2.64865e9i 0.249146 + 0.431533i
\(627\) 0 0
\(628\) −1.12824e9 + 1.95417e9i −0.181779 + 0.314850i
\(629\) 2.23714e9 0.358440
\(630\) 0 0
\(631\) −8.91619e9 −1.41279 −0.706393 0.707820i \(-0.749679\pi\)
−0.706393 + 0.707820i \(0.749679\pi\)
\(632\) −1.94030e9 + 3.36069e9i −0.305744 + 0.529565i
\(633\) 0 0
\(634\) 1.77955e9 + 3.08227e9i 0.277330 + 0.480350i
\(635\) 1.35649e8 + 2.34952e8i 0.0210237 + 0.0364142i
\(636\) 0 0
\(637\) −1.85048e6 + 3.20513e6i −0.000283659 + 0.000491313i
\(638\) 5.98741e9 0.912780
\(639\) 0 0
\(640\) −2.20201e8 −0.0332039
\(641\) 9.39525e8 1.62730e9i 0.140898 0.244043i −0.786937 0.617033i \(-0.788334\pi\)
0.927835 + 0.372991i \(0.121668\pi\)
\(642\) 0 0
\(643\) 1.15260e9 + 1.99636e9i 0.170978 + 0.296143i 0.938762 0.344566i \(-0.111974\pi\)
−0.767784 + 0.640709i \(0.778641\pi\)
\(644\) −1.92497e7 3.33415e7i −0.00284004 0.00491909i
\(645\) 0 0
\(646\) 1.04505e9 1.81008e9i 0.152519 0.264171i
\(647\) −5.73867e9 −0.833002 −0.416501 0.909135i \(-0.636744\pi\)
−0.416501 + 0.909135i \(0.636744\pi\)
\(648\) 0 0
\(649\) −1.72991e10 −2.48408
\(650\) −1.82512e7 + 3.16120e7i −0.00260672 + 0.00451497i
\(651\) 0 0
\(652\) 2.09603e9 + 3.63043e9i 0.296163 + 0.512969i
\(653\) 3.68438e9 + 6.38153e9i 0.517807 + 0.896868i 0.999786 + 0.0206853i \(0.00658480\pi\)
−0.481979 + 0.876183i \(0.660082\pi\)
\(654\) 0 0
\(655\) −2.20124e9 + 3.81265e9i −0.306071 + 0.530130i
\(656\) −2.57013e9 −0.355461
\(657\) 0 0
\(658\) 4.03808e9 0.552566
\(659\) −6.22699e9 + 1.07855e10i −0.847577 + 1.46805i 0.0357868 + 0.999359i \(0.488606\pi\)
−0.883364 + 0.468687i \(0.844727\pi\)
\(660\) 0 0
\(661\) 2.76604e9 + 4.79091e9i 0.372523 + 0.645228i 0.989953 0.141398i \(-0.0451596\pi\)
−0.617430 + 0.786626i \(0.711826\pi\)
\(662\) −2.20355e9 3.81667e9i −0.295203 0.511306i
\(663\) 0 0
\(664\) 2.39258e9 4.14406e9i 0.317159 0.549336i
\(665\) 4.76006e9 0.627678
\(666\) 0 0
\(667\) 8.08496e7 0.0105496
\(668\) −1.68989e9 + 2.92697e9i −0.219351 + 0.379928i
\(669\) 0 0
\(670\) 1.12605e9 + 1.95038e9i 0.144643 + 0.250529i
\(671\) −7.97601e9 1.38148e10i −1.01919 1.76529i
\(672\) 0 0
\(673\) −5.58942e9 + 9.68116e9i −0.706829 + 1.22426i 0.259199 + 0.965824i \(0.416541\pi\)
−0.966028 + 0.258439i \(0.916792\pi\)
\(674\) 3.97435e9 0.499984
\(675\) 0 0
\(676\) −4.01561e9 −0.499963
\(677\) 8.00186e9 1.38596e10i 0.991130 1.71669i 0.380476 0.924791i \(-0.375760\pi\)
0.610654 0.791898i \(-0.290907\pi\)
\(678\) 0 0
\(679\) −2.69579e9 4.66925e9i −0.330478 0.572405i
\(680\) −1.45152e8 2.51411e8i −0.0177028 0.0306621i
\(681\) 0 0
\(682\) −3.83383e9 + 6.64039e9i −0.462794 + 0.801582i
\(683\) 9.70052e8 0.116499 0.0582496 0.998302i \(-0.481448\pi\)
0.0582496 + 0.998302i \(0.481448\pi\)
\(684\) 0 0
\(685\) 1.32995e8 0.0158095
\(686\) 2.88265e9 4.99290e9i 0.340924 0.590498i
\(687\) 0 0
\(688\) −1.16857e9 2.02402e9i −0.136803 0.236949i
\(689\) −1.21136e7 2.09814e7i −0.00141093 0.00244381i
\(690\) 0 0
\(691\) −1.04881e8 + 1.81659e8i −0.0120927 + 0.0209451i −0.872008 0.489491i \(-0.837183\pi\)
0.859916 + 0.510436i \(0.170516\pi\)
\(692\) −7.08691e9 −0.812991
\(693\) 0 0
\(694\) 2.00929e9 0.228184
\(695\) −1.21045e9 + 2.09655e9i −0.136773 + 0.236897i
\(696\) 0 0
\(697\) −1.69418e9 2.93441e9i −0.189516 0.328251i
\(698\) −1.93166e9 3.34573e9i −0.214999 0.372389i
\(699\) 0 0
\(700\) −2.01193e9 + 3.48476e9i −0.221702 + 0.383999i
\(701\) −1.65792e10 −1.81782 −0.908910 0.416993i \(-0.863084\pi\)
−0.908910 + 0.416993i \(0.863084\pi\)
\(702\) 0 0
\(703\) 2.00440e10 2.17591
\(704\) −7.78961e8 + 1.34920e9i −0.0841417 + 0.145738i
\(705\) 0 0
\(706\) −1.94774e9 3.37358e9i −0.208312 0.360807i
\(707\) 4.15992e9 + 7.20519e9i 0.442707 + 0.766791i
\(708\) 0 0
\(709\) 4.89451e9 8.47753e9i 0.515759 0.893321i −0.484073 0.875027i \(-0.660843\pi\)
0.999833 0.0182937i \(-0.00582340\pi\)
\(710\) 3.11260e9 0.326377
\(711\) 0 0
\(712\) −2.06520e9 −0.214429
\(713\) −5.17693e7 + 8.96670e7i −0.00534883 + 0.00926444i
\(714\) 0 0
\(715\) −2.12165e7 3.67481e7i −0.00217071 0.00375979i
\(716\) 3.82168e8 + 6.61934e8i 0.0389097 + 0.0673936i
\(717\) 0 0
\(718\) −1.83987e9 + 3.18676e9i −0.185504 + 0.321302i
\(719\) 1.08605e10 1.08968 0.544838 0.838541i \(-0.316591\pi\)
0.544838 + 0.838541i \(0.316591\pi\)
\(720\) 0 0
\(721\) 2.48835e9 0.247251
\(722\) 5.78778e9 1.00247e10i 0.572311 0.991272i
\(723\) 0 0
\(724\) 2.54472e9 + 4.40759e9i 0.249204 + 0.431634i
\(725\) −4.22509e9 7.31806e9i −0.411768 0.713203i
\(726\) 0 0
\(727\) −4.00529e9 + 6.93737e9i −0.386602 + 0.669614i −0.991990 0.126317i \(-0.959685\pi\)
0.605388 + 0.795930i \(0.293018\pi\)
\(728\) 3.26226e7 0.00313371
\(729\) 0 0
\(730\) 1.28647e8 0.0122397
\(731\) 1.54059e9 2.66839e9i 0.145874 0.252661i
\(732\) 0 0
\(733\) −8.35865e9 1.44776e10i −0.783921 1.35779i −0.929641 0.368466i \(-0.879883\pi\)
0.145720 0.989326i \(-0.453450\pi\)
\(734\) 2.61001e9 + 4.52068e9i 0.243616 + 0.421956i
\(735\) 0 0
\(736\) −1.05185e7 + 1.82186e7i −0.000972484 + 0.00168439i
\(737\) 1.59336e10 1.46615
\(738\) 0 0
\(739\) −9.35702e9 −0.852869 −0.426434 0.904519i \(-0.640230\pi\)
−0.426434 + 0.904519i \(0.640230\pi\)
\(740\) 1.39200e9 2.41102e9i 0.126278 0.218720i
\(741\) 0 0
\(742\) −1.33535e9 2.31289e9i −0.120000 0.207846i
\(743\) −7.91592e9 1.37108e10i −0.708012 1.22631i −0.965594 0.260056i \(-0.916259\pi\)
0.257582 0.966256i \(-0.417074\pi\)
\(744\) 0 0
\(745\) −1.25090e9 + 2.16662e9i −0.110835 + 0.191971i
\(746\) −1.53433e10 −1.35311
\(747\) 0 0
\(748\) −2.05390e9 −0.179442
\(749\) 9.89631e9 1.71409e10i 0.860571 1.49055i
\(750\) 0 0
\(751\) 7.52700e9 + 1.30371e10i 0.648458 + 1.12316i 0.983491 + 0.180956i \(0.0579192\pi\)
−0.335033 + 0.942206i \(0.608748\pi\)
\(752\) −1.10325e9 1.91089e9i −0.0946047 0.163860i
\(753\) 0 0
\(754\) −3.42540e7 + 5.93298e7i −0.00291013 + 0.00504049i
\(755\) 4.73018e9 0.400003
\(756\) 0 0
\(757\) 6.81448e9 0.570949 0.285474 0.958386i \(-0.407849\pi\)
0.285474 + 0.958386i \(0.407849\pi\)
\(758\) 5.72605e9 9.91781e9i 0.477543 0.827129i
\(759\) 0 0
\(760\) −1.30051e9 2.25255e9i −0.107465 0.186134i
\(761\) −1.71134e9 2.96413e9i −0.140764 0.243810i 0.787021 0.616927i \(-0.211622\pi\)
−0.927784 + 0.373117i \(0.878289\pi\)
\(762\) 0 0
\(763\) −8.63040e9 + 1.49483e10i −0.703388 + 1.21830i
\(764\) −3.85481e8 −0.0312735
\(765\) 0 0
\(766\) 1.11887e9 0.0899458
\(767\) 9.89682e7 1.71418e8i 0.00791975 0.0137174i
\(768\) 0 0
\(769\) −4.81185e9 8.33437e9i −0.381566 0.660892i 0.609720 0.792617i \(-0.291282\pi\)
−0.991286 + 0.131725i \(0.957949\pi\)
\(770\) −2.33881e9 4.05093e9i −0.184619 0.319770i
\(771\) 0 0
\(772\) 1.87472e9 3.24711e9i 0.146648 0.254001i
\(773\) −2.46796e10 −1.92181 −0.960905 0.276880i \(-0.910700\pi\)
−0.960905 + 0.276880i \(0.910700\pi\)
\(774\) 0 0
\(775\) 1.08216e10 0.835091
\(776\) −1.47305e9 + 2.55140e9i −0.113162 + 0.196003i
\(777\) 0 0
\(778\) −7.10368e9 1.23039e10i −0.540822 0.936732i
\(779\) −1.51792e10 2.62912e10i −1.15045 1.99264i
\(780\) 0 0
\(781\) 1.10108e10 1.90713e10i 0.827069 1.43253i
\(782\) −2.77344e7 −0.00207393
\(783\) 0 0
\(784\) 2.22929e8 0.0165219
\(785\) −1.85102e9 + 3.20606e9i −0.136574 + 0.236553i
\(786\) 0 0
\(787\) 1.23130e10 + 2.13268e10i 0.900436 + 1.55960i 0.826929 + 0.562307i \(0.190086\pi\)
0.0735075 + 0.997295i \(0.476581\pi\)
\(788\) 5.38926e9 + 9.33448e9i 0.392363 + 0.679592i
\(789\) 0 0
\(790\) −3.18330e9 + 5.51364e9i −0.229712 + 0.397872i
\(791\) 1.74549e10 1.25401
\(792\) 0 0
\(793\) 1.82523e8 0.0129976
\(794\) −4.21205e9 + 7.29548e9i −0.298622 + 0.517228i
\(795\) 0 0
\(796\) 3.25342e9 + 5.63508e9i 0.228636 + 0.396009i
\(797\) −2.23164e9 3.86532e9i −0.156142 0.270446i 0.777332 0.629091i \(-0.216573\pi\)
−0.933474 + 0.358644i \(0.883239\pi\)
\(798\) 0 0
\(799\) 1.45448e9 2.51924e9i 0.100878 0.174725i
\(800\) 2.19873e9 0.151830
\(801\) 0 0
\(802\) −1.86410e10 −1.27602
\(803\) 4.55088e8 7.88236e8i 0.0310164 0.0537220i
\(804\) 0 0
\(805\) −3.15816e7 5.47009e7i −0.00213377 0.00369580i
\(806\) −4.38668e7 7.59795e7i −0.00295096 0.00511121i
\(807\) 0 0
\(808\) 2.27308e9 3.93709e9i 0.151592 0.262564i
\(809\) −2.56496e9 −0.170318 −0.0851590 0.996367i \(-0.527140\pi\)
−0.0851590 + 0.996367i \(0.527140\pi\)
\(810\) 0 0
\(811\) 3.95820e9 0.260570 0.130285 0.991477i \(-0.458411\pi\)
0.130285 + 0.991477i \(0.458411\pi\)
\(812\) −3.77601e9 + 6.54023e9i −0.247506 + 0.428694i
\(813\) 0 0
\(814\) −9.84841e9 1.70579e10i −0.640001 1.10851i
\(815\) 3.43880e9 + 5.95617e9i 0.222513 + 0.385403i
\(816\) 0 0
\(817\) 1.38031e10 2.39077e10i 0.885525 1.53377i
\(818\) 1.20337e9 0.0768713
\(819\) 0 0
\(820\) −4.21663e9 −0.267065
\(821\) −7.92551e9 + 1.37274e10i −0.499835 + 0.865739i −1.00000 0.000191070i \(-0.999939\pi\)
0.500165 + 0.865930i \(0.333273\pi\)
\(822\) 0 0
\(823\) 7.87267e9 + 1.36359e10i 0.492292 + 0.852674i 0.999961 0.00887803i \(-0.00282600\pi\)
−0.507669 + 0.861552i \(0.669493\pi\)
\(824\) −6.79847e8 1.17753e9i −0.0423317 0.0733207i
\(825\) 0 0
\(826\) 1.09098e10 1.88963e10i 0.673575 1.16667i
\(827\) −2.15640e9 −0.132574 −0.0662872 0.997801i \(-0.521115\pi\)
−0.0662872 + 0.997801i \(0.521115\pi\)
\(828\) 0 0
\(829\) 2.95703e10 1.80267 0.901333 0.433126i \(-0.142589\pi\)
0.901333 + 0.433126i \(0.142589\pi\)
\(830\) 3.92532e9 6.79885e9i 0.238288 0.412726i
\(831\) 0 0
\(832\) −8.91290e6 1.54376e7i −0.000536522 0.000929283i
\(833\) 1.46950e8 + 2.54525e8i 0.00880872 + 0.0152571i
\(834\) 0 0
\(835\) −2.77247e9 + 4.80206e9i −0.164803 + 0.285447i
\(836\) −1.84022e10 −1.08930
\(837\) 0 0
\(838\) −7.29146e9 −0.428016
\(839\) 1.55991e9 2.70184e9i 0.0911869 0.157940i −0.816824 0.576887i \(-0.804267\pi\)
0.908011 + 0.418947i \(0.137601\pi\)
\(840\) 0 0
\(841\) 6.95252e8 + 1.20421e9i 0.0403048 + 0.0698099i
\(842\) −3.01393e9 5.22028e9i −0.173997 0.301371i
\(843\) 0 0
\(844\) 2.76422e9 4.78778e9i 0.158261 0.274117i
\(845\) −6.58811e9 −0.375632
\(846\) 0 0
\(847\) −1.48347e10 −0.838852
\(848\) −7.29668e8 + 1.26382e9i −0.0410903 + 0.0711705i
\(849\) 0 0
\(850\) 1.44936e9 + 2.51037e9i 0.0809487 + 0.140207i
\(851\) −1.32986e8 2.30338e8i −0.00739694 0.0128119i
\(852\) 0 0
\(853\) 7.19709e9 1.24657e10i 0.397041 0.687695i −0.596319 0.802748i \(-0.703370\pi\)
0.993359 + 0.115053i \(0.0367038\pi\)
\(854\) 2.01205e10 1.10544
\(855\) 0 0
\(856\) −1.08152e10 −0.589353
\(857\) −2.36600e9 + 4.09804e9i −0.128405 + 0.222404i −0.923059 0.384659i \(-0.874319\pi\)
0.794654 + 0.607063i \(0.207652\pi\)
\(858\) 0 0
\(859\) 2.41867e9 + 4.18926e9i 0.130197 + 0.225508i 0.923752 0.382990i \(-0.125106\pi\)
−0.793555 + 0.608498i \(0.791772\pi\)
\(860\) −1.91718e9 3.32066e9i −0.102782 0.178024i
\(861\) 0 0
\(862\) −1.09157e10 + 1.89065e10i −0.580464 + 1.00539i
\(863\) −1.90890e10 −1.01099 −0.505493 0.862831i \(-0.668689\pi\)
−0.505493 + 0.862831i \(0.668689\pi\)
\(864\) 0 0
\(865\) −1.16270e10 −0.610815
\(866\) 7.38797e9 1.27963e10i 0.386556 0.669535i
\(867\) 0 0
\(868\) −4.83567e9 8.37563e9i −0.250979 0.434709i
\(869\) 2.25219e10 + 3.90090e10i 1.16422 + 2.01649i
\(870\) 0 0
\(871\) −9.11567e7 + 1.57888e8i −0.00467439 + 0.00809628i
\(872\) 9.43173e9 0.481708
\(873\) 0 0
\(874\) −2.48490e8 −0.0125898
\(875\) −7.14398e9 + 1.23737e10i −0.360506 + 0.624414i
\(876\) 0 0
\(877\) 1.68182e10 + 2.91299e10i 0.841938 + 1.45828i 0.888254 + 0.459352i \(0.151918\pi\)
−0.0463168 + 0.998927i \(0.514748\pi\)
\(878\) 6.00264e9 + 1.03969e10i 0.299303 + 0.518408i
\(879\) 0 0
\(880\) −1.27798e9 + 2.21353e9i −0.0632173 + 0.109495i
\(881\) 2.81256e10 1.38575 0.692876 0.721057i \(-0.256343\pi\)
0.692876 + 0.721057i \(0.256343\pi\)
\(882\) 0 0
\(883\) 1.99944e10 0.977341 0.488671 0.872468i \(-0.337482\pi\)
0.488671 + 0.872468i \(0.337482\pi\)
\(884\) 1.17504e7 2.03523e7i 0.000572097 0.000990901i
\(885\) 0 0
\(886\) 5.26760e9 + 9.12374e9i 0.254445 + 0.440712i
\(887\) 1.61338e10 + 2.79446e10i 0.776255 + 1.34451i 0.934087 + 0.357047i \(0.116216\pi\)
−0.157832 + 0.987466i \(0.550450\pi\)
\(888\) 0 0
\(889\) −1.21051e9 + 2.09666e9i −0.0577846 + 0.100086i
\(890\) −3.38823e9 −0.161104
\(891\) 0 0
\(892\) 2.66351e9 0.125654
\(893\) 1.30316e10 2.25715e10i 0.612377 1.06067i
\(894\) 0 0
\(895\) 6.26994e8 + 1.08599e9i 0.0292336 + 0.0506341i
\(896\) −9.82516e8 1.70177e9i −0.0456312 0.0790355i
\(897\) 0 0
\(898\) 1.08486e9 1.87904e9i 0.0499929 0.0865902i
\(899\) 2.03100e10 0.932290
\(900\) 0 0
\(901\) −1.92393e9 −0.0876299
\(902\) −1.49163e10 + 2.58358e10i −0.676766 + 1.17219i
\(903\) 0 0
\(904\) −4.76889e9 8.25996e9i −0.214698 0.371868i
\(905\) 4.17494e9 + 7.23120e9i 0.187232 + 0.324295i
\(906\) 0 0
\(907\) −5.76161e9 + 9.97941e9i −0.256400 + 0.444098i −0.965275 0.261236i \(-0.915870\pi\)
0.708875 + 0.705335i \(0.249203\pi\)
\(908\) 1.33962e10 0.593855
\(909\) 0 0
\(910\) 5.35214e7 0.00235441
\(911\) 2.94854e9 5.10703e9i 0.129209 0.223797i −0.794161 0.607707i \(-0.792089\pi\)
0.923370 + 0.383910i \(0.125423\pi\)
\(912\) 0 0
\(913\) −2.77716e10 4.81019e10i −1.20769 2.09177i
\(914\) −8.60245e9 1.48999e10i −0.372658 0.645463i
\(915\) 0 0
\(916\) −1.06534e10 + 1.84522e10i −0.457988 + 0.793258i
\(917\) −3.92868e10 −1.68250
\(918\) 0 0
\(919\) 4.37679e9 0.186017 0.0930083 0.995665i \(-0.470352\pi\)
0.0930083 + 0.995665i \(0.470352\pi\)
\(920\) −1.72570e7 + 2.98899e7i −0.000730646 + 0.00126552i
\(921\) 0 0
\(922\) 3.93675e9 + 6.81866e9i 0.165417 + 0.286511i
\(923\) 1.25986e8 + 2.18215e8i 0.00527372 + 0.00913436i
\(924\) 0 0
\(925\) −1.38993e10 + 2.40743e10i −0.577427 + 1.00013i
\(926\) 2.05399e10 0.850078
\(927\) 0 0
\(928\) 4.12661e9 0.169502
\(929\) −1.51512e10 + 2.62426e10i −0.620000 + 1.07387i 0.369485 + 0.929237i \(0.379534\pi\)
−0.989485 + 0.144635i \(0.953799\pi\)
\(930\) 0 0
\(931\) 1.31662e9 + 2.28045e9i 0.0534732 + 0.0926183i
\(932\) −2.54537e9 4.40871e9i −0.102990 0.178384i
\(933\) 0 0
\(934\) −2.79147e9 + 4.83496e9i −0.112103 + 0.194169i
\(935\) −3.36968e9 −0.134818
\(936\) 0 0
\(937\) 2.61397e10 1.03804 0.519018 0.854763i \(-0.326298\pi\)
0.519018 + 0.854763i \(0.326298\pi\)
\(938\) −1.00487e10 + 1.74048e10i −0.397557 + 0.688588i
\(939\) 0 0
\(940\) −1.81003e9 3.13506e9i −0.0710783 0.123111i
\(941\) 1.21220e10 + 2.09959e10i 0.474253 + 0.821429i 0.999565 0.0294797i \(-0.00938504\pi\)
−0.525313 + 0.850909i \(0.676052\pi\)
\(942\) 0 0
\(943\) −2.01419e8 + 3.48868e8i −0.00782186 + 0.0135479i
\(944\) −1.19228e10 −0.461291
\(945\) 0 0
\(946\) −2.71281e10 −1.04184
\(947\) −1.28877e10 + 2.23222e10i −0.493119 + 0.854106i −0.999969 0.00792781i \(-0.997476\pi\)
0.506850 + 0.862034i \(0.330810\pi\)
\(948\) 0 0
\(949\) 5.20713e6 + 9.01902e6i 0.000197773 + 0.000342553i
\(950\) 1.29857e10 + 2.24919e10i 0.491398 + 0.851127i
\(951\) 0 0
\(952\) 1.29531e9 2.24354e9i 0.0486569 0.0842761i
\(953\) 2.22288e10 0.831937 0.415968 0.909379i \(-0.363443\pi\)
0.415968 + 0.909379i \(0.363443\pi\)
\(954\) 0 0
\(955\) −6.32431e8 −0.0234964
\(956\) −4.70082e9 + 8.14205e9i −0.174009 + 0.301392i
\(957\) 0 0
\(958\) −1.22826e10 2.12742e10i −0.451349 0.781759i
\(959\) 5.93411e8 + 1.02782e9i 0.0217265 + 0.0376314i
\(960\) 0 0
\(961\) 7.51494e8 1.30163e9i 0.0273145 0.0473102i
\(962\) 2.25372e8 0.00816181
\(963\) 0 0
\(964\) −1.93955e9 −0.0697320
\(965\) 3.07571e9 5.32729e9i 0.110179 0.190836i
\(966\) 0 0
\(967\) 1.54705e9 + 2.67957e9i 0.0550189 + 0.0952956i 0.892223 0.451595i \(-0.149145\pi\)
−0.837204 + 0.546890i \(0.815811\pi\)
\(968\) 4.05301e9 + 7.02002e9i 0.143620 + 0.248757i
\(969\) 0 0
\(970\) −2.41672e9 + 4.18588e9i −0.0850208 + 0.147260i
\(971\) −1.62621e10 −0.570044 −0.285022 0.958521i \(-0.592001\pi\)
−0.285022 + 0.958521i \(0.592001\pi\)
\(972\) 0 0
\(973\) −2.16036e10 −0.751850
\(974\) −6.97016e9 + 1.20727e10i −0.241705 + 0.418646i
\(975\) 0 0
\(976\) −5.49718e9 9.52139e9i −0.189263 0.327813i
\(977\) −2.21128e9 3.83005e9i −0.0758601 0.131393i 0.825600 0.564256i \(-0.190837\pi\)
−0.901460 + 0.432863i \(0.857504\pi\)
\(978\) 0 0
\(979\) −1.19858e10 + 2.07601e10i −0.408253 + 0.707115i
\(980\) 3.65743e8 0.0124132
\(981\) 0 0
\(982\) 8.08431e9 0.272428
\(983\) −1.86923e10 + 3.23761e10i −0.627663 + 1.08714i 0.360357 + 0.932815i \(0.382655\pi\)
−0.988019 + 0.154329i \(0.950678\pi\)
\(984\) 0 0
\(985\) 8.84176e9 + 1.53144e10i 0.294789 + 0.510590i
\(986\) 2.72017e9 + 4.71148e9i 0.0903707 + 0.156527i
\(987\) 0 0
\(988\) 1.05279e8 1.82349e8i 0.00347291 0.00601525i
\(989\) −3.66319e8 −0.0120413
\(990\) 0 0
\(991\) −1.24473e10 −0.406273 −0.203136 0.979150i \(-0.565113\pi\)
−0.203136 + 0.979150i \(0.565113\pi\)
\(992\) −2.64233e9 + 4.57665e9i −0.0859402 + 0.148853i
\(993\) 0 0
\(994\) 1.38881e10 + 2.40550e10i 0.448530 + 0.776877i
\(995\) 5.33764e9 + 9.24506e9i 0.171778 + 0.297529i
\(996\) 0 0
\(997\) −1.42168e10 + 2.46241e10i −0.454326 + 0.786915i −0.998649 0.0519600i \(-0.983453\pi\)
0.544323 + 0.838876i \(0.316786\pi\)
\(998\) −1.24870e10 −0.397650
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.c.j.55.1 2
3.2 odd 2 162.8.c.c.55.1 2
9.2 odd 6 54.8.a.e.1.1 yes 1
9.4 even 3 inner 162.8.c.j.109.1 2
9.5 odd 6 162.8.c.c.109.1 2
9.7 even 3 54.8.a.b.1.1 1
36.7 odd 6 432.8.a.f.1.1 1
36.11 even 6 432.8.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.8.a.b.1.1 1 9.7 even 3
54.8.a.e.1.1 yes 1 9.2 odd 6
162.8.c.c.55.1 2 3.2 odd 2
162.8.c.c.109.1 2 9.5 odd 6
162.8.c.j.55.1 2 1.1 even 1 trivial
162.8.c.j.109.1 2 9.4 even 3 inner
432.8.a.c.1.1 1 36.11 even 6
432.8.a.f.1.1 1 36.7 odd 6