Properties

Label 162.8.c.e.109.1
Level $162$
Weight $8$
Character 162.109
Analytic conductor $50.606$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,8,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,0,-64,165] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.109
Dual form 162.8.c.e.55.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 - 6.92820i) q^{2} +(-32.0000 + 55.4256i) q^{4} +(82.5000 - 142.894i) q^{5} +(254.000 + 439.941i) q^{7} +512.000 q^{8} -1320.00 q^{10} +(-1512.00 - 2618.86i) q^{11} +(-2519.50 + 4363.90i) q^{13} +(2032.00 - 3519.53i) q^{14} +(-2048.00 - 3547.24i) q^{16} -3189.00 q^{17} +1508.00 q^{19} +(5280.00 + 9145.23i) q^{20} +(-12096.0 + 20950.9i) q^{22} +(37800.0 - 65471.5i) q^{23} +(25450.0 + 44080.7i) q^{25} +40312.0 q^{26} -32512.0 q^{28} +(41332.5 + 71590.0i) q^{29} +(87446.0 - 151461. i) q^{31} +(-16384.0 + 28377.9i) q^{32} +(12756.0 + 22094.0i) q^{34} +83820.0 q^{35} -323569. q^{37} +(-6032.00 - 10447.7i) q^{38} +(42240.0 - 73161.8i) q^{40} +(154059. - 266838. i) q^{41} +(-168340. - 291573. i) q^{43} +193536. q^{44} -604800. q^{46} +(191598. + 331857. i) q^{47} +(282740. - 489719. i) q^{49} +(203600. - 352646. i) q^{50} +(-161248. - 279290. i) q^{52} +760206. q^{53} -498960. q^{55} +(130048. + 225250. i) q^{56} +(330660. - 572720. i) q^{58} +(1.11283e6 - 1.92748e6i) q^{59} +(-1.12241e6 - 1.94407e6i) q^{61} -1.39914e6 q^{62} +262144. q^{64} +(415718. + 720044. i) q^{65} +(-736594. + 1.27582e6i) q^{67} +(102048. - 176752. i) q^{68} +(-335280. - 580722. i) q^{70} -5.00689e6 q^{71} -5.89830e6 q^{73} +(1.29428e6 + 2.24175e6i) q^{74} +(-48256.0 + 83581.8i) q^{76} +(768096. - 1.33038e6i) q^{77} +(-3.51438e6 - 6.08709e6i) q^{79} -675840. q^{80} -2.46494e6 q^{82} +(1.32560e6 + 2.29600e6i) q^{83} +(-263092. + 455690. i) q^{85} +(-1.34672e6 + 2.33259e6i) q^{86} +(-774144. - 1.34086e6i) q^{88} -6.77090e6 q^{89} -2.55981e6 q^{91} +(2.41920e6 + 4.19018e6i) q^{92} +(1.53278e6 - 2.65486e6i) q^{94} +(124410. - 215484. i) q^{95} +(-8.08819e6 - 1.40092e7i) q^{97} -4.52383e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 64 q^{4} + 165 q^{5} + 508 q^{7} + 1024 q^{8} - 2640 q^{10} - 3024 q^{11} - 5039 q^{13} + 4064 q^{14} - 4096 q^{16} - 6378 q^{17} + 3016 q^{19} + 10560 q^{20} - 24192 q^{22} + 75600 q^{23}+ \cdots - 9047664 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 6.92820i −0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 + 55.4256i −0.250000 + 0.433013i
\(5\) 82.5000 142.894i 0.295161 0.511234i −0.679861 0.733341i \(-0.737960\pi\)
0.975022 + 0.222107i \(0.0712934\pi\)
\(6\) 0 0
\(7\) 254.000 + 439.941i 0.279892 + 0.484787i 0.971358 0.237622i \(-0.0763680\pi\)
−0.691466 + 0.722409i \(0.743035\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) −1320.00 −0.417421
\(11\) −1512.00 2618.86i −0.342513 0.593250i 0.642385 0.766382i \(-0.277945\pi\)
−0.984899 + 0.173131i \(0.944611\pi\)
\(12\) 0 0
\(13\) −2519.50 + 4363.90i −0.318063 + 0.550901i −0.980084 0.198585i \(-0.936366\pi\)
0.662021 + 0.749485i \(0.269699\pi\)
\(14\) 2032.00 3519.53i 0.197914 0.342796i
\(15\) 0 0
\(16\) −2048.00 3547.24i −0.125000 0.216506i
\(17\) −3189.00 −0.157428 −0.0787142 0.996897i \(-0.525081\pi\)
−0.0787142 + 0.996897i \(0.525081\pi\)
\(18\) 0 0
\(19\) 1508.00 0.0504387 0.0252193 0.999682i \(-0.491972\pi\)
0.0252193 + 0.999682i \(0.491972\pi\)
\(20\) 5280.00 + 9145.23i 0.147580 + 0.255617i
\(21\) 0 0
\(22\) −12096.0 + 20950.9i −0.242193 + 0.419491i
\(23\) 37800.0 65471.5i 0.647805 1.12203i −0.335841 0.941919i \(-0.609020\pi\)
0.983646 0.180113i \(-0.0576462\pi\)
\(24\) 0 0
\(25\) 25450.0 + 44080.7i 0.325760 + 0.564233i
\(26\) 40312.0 0.449808
\(27\) 0 0
\(28\) −32512.0 −0.279892
\(29\) 41332.5 + 71590.0i 0.314701 + 0.545079i 0.979374 0.202056i \(-0.0647623\pi\)
−0.664673 + 0.747135i \(0.731429\pi\)
\(30\) 0 0
\(31\) 87446.0 151461.i 0.527198 0.913134i −0.472299 0.881438i \(-0.656576\pi\)
0.999498 0.0316960i \(-0.0100908\pi\)
\(32\) −16384.0 + 28377.9i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 12756.0 + 22094.0i 0.0556594 + 0.0964049i
\(35\) 83820.0 0.330453
\(36\) 0 0
\(37\) −323569. −1.05017 −0.525087 0.851049i \(-0.675967\pi\)
−0.525087 + 0.851049i \(0.675967\pi\)
\(38\) −6032.00 10447.7i −0.0178328 0.0308873i
\(39\) 0 0
\(40\) 42240.0 73161.8i 0.104355 0.180748i
\(41\) 154059. 266838.i 0.349095 0.604650i −0.636994 0.770869i \(-0.719822\pi\)
0.986089 + 0.166219i \(0.0531557\pi\)
\(42\) 0 0
\(43\) −168340. 291573.i −0.322885 0.559253i 0.658197 0.752846i \(-0.271319\pi\)
−0.981082 + 0.193593i \(0.937986\pi\)
\(44\) 193536. 0.342513
\(45\) 0 0
\(46\) −604800. −0.916135
\(47\) 191598. + 331857.i 0.269184 + 0.466240i 0.968651 0.248425i \(-0.0799128\pi\)
−0.699468 + 0.714664i \(0.746580\pi\)
\(48\) 0 0
\(49\) 282740. 489719.i 0.343321 0.594649i
\(50\) 203600. 352646.i 0.230347 0.398973i
\(51\) 0 0
\(52\) −161248. 279290.i −0.159031 0.275450i
\(53\) 760206. 0.701400 0.350700 0.936488i \(-0.385944\pi\)
0.350700 + 0.936488i \(0.385944\pi\)
\(54\) 0 0
\(55\) −498960. −0.404386
\(56\) 130048. + 225250.i 0.0989568 + 0.171398i
\(57\) 0 0
\(58\) 330660. 572720.i 0.222527 0.385429i
\(59\) 1.11283e6 1.92748e6i 0.705420 1.22182i −0.261120 0.965306i \(-0.584092\pi\)
0.966540 0.256516i \(-0.0825748\pi\)
\(60\) 0 0
\(61\) −1.12241e6 1.94407e6i −0.633135 1.09662i −0.986907 0.161290i \(-0.948435\pi\)
0.353772 0.935332i \(-0.384899\pi\)
\(62\) −1.39914e6 −0.745571
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 415718. + 720044.i 0.187759 + 0.325209i
\(66\) 0 0
\(67\) −736594. + 1.27582e6i −0.299203 + 0.518235i −0.975954 0.217977i \(-0.930054\pi\)
0.676751 + 0.736212i \(0.263388\pi\)
\(68\) 102048. 176752.i 0.0393571 0.0681685i
\(69\) 0 0
\(70\) −335280. 580722.i −0.116833 0.202360i
\(71\) −5.00689e6 −1.66021 −0.830107 0.557604i \(-0.811721\pi\)
−0.830107 + 0.557604i \(0.811721\pi\)
\(72\) 0 0
\(73\) −5.89830e6 −1.77459 −0.887293 0.461207i \(-0.847417\pi\)
−0.887293 + 0.461207i \(0.847417\pi\)
\(74\) 1.29428e6 + 2.24175e6i 0.371292 + 0.643097i
\(75\) 0 0
\(76\) −48256.0 + 83581.8i −0.0126097 + 0.0218406i
\(77\) 768096. 1.33038e6i 0.191733 0.332092i
\(78\) 0 0
\(79\) −3.51438e6 6.08709e6i −0.801963 1.38904i −0.918322 0.395834i \(-0.870456\pi\)
0.116359 0.993207i \(-0.462878\pi\)
\(80\) −675840. −0.147580
\(81\) 0 0
\(82\) −2.46494e6 −0.493695
\(83\) 1.32560e6 + 2.29600e6i 0.254471 + 0.440757i 0.964752 0.263162i \(-0.0847653\pi\)
−0.710281 + 0.703919i \(0.751432\pi\)
\(84\) 0 0
\(85\) −263092. + 455690.i −0.0464667 + 0.0804828i
\(86\) −1.34672e6 + 2.33259e6i −0.228314 + 0.395452i
\(87\) 0 0
\(88\) −774144. 1.34086e6i −0.121097 0.209746i
\(89\) −6.77090e6 −1.01808 −0.509039 0.860743i \(-0.669999\pi\)
−0.509039 + 0.860743i \(0.669999\pi\)
\(90\) 0 0
\(91\) −2.55981e6 −0.356093
\(92\) 2.41920e6 + 4.19018e6i 0.323903 + 0.561016i
\(93\) 0 0
\(94\) 1.53278e6 2.65486e6i 0.190341 0.329681i
\(95\) 124410. 215484.i 0.0148875 0.0257860i
\(96\) 0 0
\(97\) −8.08819e6 1.40092e7i −0.899809 1.55852i −0.827737 0.561116i \(-0.810372\pi\)
−0.0720719 0.997399i \(-0.522961\pi\)
\(98\) −4.52383e6 −0.485529
\(99\) 0 0
\(100\) −3.25760e6 −0.325760
\(101\) −1.35081e6 2.33967e6i −0.130457 0.225959i 0.793396 0.608706i \(-0.208311\pi\)
−0.923853 + 0.382748i \(0.874978\pi\)
\(102\) 0 0
\(103\) −1.03446e6 + 1.79173e6i −0.0932787 + 0.161563i −0.908889 0.417038i \(-0.863068\pi\)
0.815610 + 0.578602i \(0.196401\pi\)
\(104\) −1.28998e6 + 2.23432e6i −0.112452 + 0.194773i
\(105\) 0 0
\(106\) −3.04082e6 5.26686e6i −0.247982 0.429518i
\(107\) −9.15450e6 −0.722423 −0.361211 0.932484i \(-0.617637\pi\)
−0.361211 + 0.932484i \(0.617637\pi\)
\(108\) 0 0
\(109\) 8.68645e6 0.642465 0.321233 0.947000i \(-0.395903\pi\)
0.321233 + 0.947000i \(0.395903\pi\)
\(110\) 1.99584e6 + 3.45690e6i 0.142972 + 0.247635i
\(111\) 0 0
\(112\) 1.04038e6 1.80200e6i 0.0699730 0.121197i
\(113\) 1.24888e7 2.16312e7i 0.814227 1.41028i −0.0956551 0.995415i \(-0.530495\pi\)
0.909882 0.414867i \(-0.136172\pi\)
\(114\) 0 0
\(115\) −6.23700e6 1.08028e7i −0.382414 0.662360i
\(116\) −5.29056e6 −0.314701
\(117\) 0 0
\(118\) −1.78053e7 −0.997614
\(119\) −810006. 1.40297e6i −0.0440630 0.0763193i
\(120\) 0 0
\(121\) 5.17130e6 8.95695e6i 0.265369 0.459633i
\(122\) −8.97926e6 + 1.55525e7i −0.447694 + 0.775429i
\(123\) 0 0
\(124\) 5.59654e6 + 9.69350e6i 0.263599 + 0.456567i
\(125\) 2.12891e7 0.974929
\(126\) 0 0
\(127\) −4.98659e6 −0.216018 −0.108009 0.994150i \(-0.534448\pi\)
−0.108009 + 0.994150i \(0.534448\pi\)
\(128\) −1.04858e6 1.81619e6i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 3.32574e6 5.76035e6i 0.132766 0.229957i
\(131\) 1.11702e7 1.93474e7i 0.434123 0.751923i −0.563101 0.826388i \(-0.690392\pi\)
0.997224 + 0.0744655i \(0.0237251\pi\)
\(132\) 0 0
\(133\) 383032. + 663431.i 0.0141174 + 0.0244520i
\(134\) 1.17855e7 0.423137
\(135\) 0 0
\(136\) −1.63277e6 −0.0556594
\(137\) −6.43154e6 1.11398e7i −0.213694 0.370129i 0.739174 0.673515i \(-0.235216\pi\)
−0.952868 + 0.303386i \(0.901883\pi\)
\(138\) 0 0
\(139\) −2.20951e7 + 3.82699e7i −0.697822 + 1.20866i 0.271398 + 0.962467i \(0.412514\pi\)
−0.969220 + 0.246196i \(0.920819\pi\)
\(140\) −2.68224e6 + 4.64578e6i −0.0826132 + 0.143090i
\(141\) 0 0
\(142\) 2.00276e7 + 3.46888e7i 0.586974 + 1.01667i
\(143\) 1.52379e7 0.435763
\(144\) 0 0
\(145\) 1.36397e7 0.371550
\(146\) 2.35932e7 + 4.08646e7i 0.627411 + 1.08671i
\(147\) 0 0
\(148\) 1.03542e7 1.79340e7i 0.262543 0.454738i
\(149\) 1.31444e6 2.27667e6i 0.0325527 0.0563830i −0.849290 0.527927i \(-0.822970\pi\)
0.881843 + 0.471544i \(0.156303\pi\)
\(150\) 0 0
\(151\) 2.76509e7 + 4.78928e7i 0.653568 + 1.13201i 0.982251 + 0.187572i \(0.0600619\pi\)
−0.328683 + 0.944440i \(0.606605\pi\)
\(152\) 772096. 0.0178328
\(153\) 0 0
\(154\) −1.22895e7 −0.271152
\(155\) −1.44286e7 2.49911e7i −0.311217 0.539043i
\(156\) 0 0
\(157\) 1.11855e7 1.93739e7i 0.230679 0.399548i −0.727329 0.686289i \(-0.759239\pi\)
0.958008 + 0.286741i \(0.0925720\pi\)
\(158\) −2.81151e7 + 4.86967e7i −0.567074 + 0.982200i
\(159\) 0 0
\(160\) 2.70336e6 + 4.68236e6i 0.0521776 + 0.0903742i
\(161\) 3.84048e7 0.725262
\(162\) 0 0
\(163\) 5.23606e7 0.946995 0.473498 0.880795i \(-0.342991\pi\)
0.473498 + 0.880795i \(0.342991\pi\)
\(164\) 9.85978e6 + 1.70776e7i 0.174547 + 0.302325i
\(165\) 0 0
\(166\) 1.06048e7 1.83680e7i 0.179938 0.311662i
\(167\) 2.73979e7 4.74545e7i 0.455207 0.788442i −0.543493 0.839414i \(-0.682899\pi\)
0.998700 + 0.0509718i \(0.0162319\pi\)
\(168\) 0 0
\(169\) 1.86785e7 + 3.23521e7i 0.297672 + 0.515584i
\(170\) 4.20948e6 0.0657139
\(171\) 0 0
\(172\) 2.15475e7 0.322885
\(173\) −6.18226e7 1.07080e8i −0.907791 1.57234i −0.817127 0.576458i \(-0.804434\pi\)
−0.0906639 0.995882i \(-0.528899\pi\)
\(174\) 0 0
\(175\) −1.29286e7 + 2.23930e7i −0.182355 + 0.315849i
\(176\) −6.19315e6 + 1.07269e7i −0.0856283 + 0.148313i
\(177\) 0 0
\(178\) 2.70836e7 + 4.69102e7i 0.359945 + 0.623443i
\(179\) 9.87297e7 1.28666 0.643328 0.765591i \(-0.277553\pi\)
0.643328 + 0.765591i \(0.277553\pi\)
\(180\) 0 0
\(181\) 9.19855e7 1.15304 0.576520 0.817083i \(-0.304410\pi\)
0.576520 + 0.817083i \(0.304410\pi\)
\(182\) 1.02392e7 + 1.77349e7i 0.125898 + 0.218061i
\(183\) 0 0
\(184\) 1.93536e7 3.35214e7i 0.229034 0.396698i
\(185\) −2.66944e7 + 4.62361e7i −0.309970 + 0.536884i
\(186\) 0 0
\(187\) 4.82177e6 + 8.35155e6i 0.0539213 + 0.0933945i
\(188\) −2.45245e7 −0.269184
\(189\) 0 0
\(190\) −1.99056e6 −0.0210541
\(191\) −6.59893e7 1.14297e8i −0.685262 1.18691i −0.973354 0.229306i \(-0.926354\pi\)
0.288092 0.957603i \(-0.406979\pi\)
\(192\) 0 0
\(193\) −7.39537e7 + 1.28092e8i −0.740473 + 1.28254i 0.211807 + 0.977311i \(0.432065\pi\)
−0.952280 + 0.305225i \(0.901268\pi\)
\(194\) −6.47055e7 + 1.12073e8i −0.636261 + 1.10204i
\(195\) 0 0
\(196\) 1.80953e7 + 3.13420e7i 0.171660 + 0.297325i
\(197\) −2.69561e7 −0.251203 −0.125602 0.992081i \(-0.540086\pi\)
−0.125602 + 0.992081i \(0.540086\pi\)
\(198\) 0 0
\(199\) 1.35831e8 1.22183 0.610916 0.791695i \(-0.290801\pi\)
0.610916 + 0.791695i \(0.290801\pi\)
\(200\) 1.30304e7 + 2.25693e7i 0.115174 + 0.199486i
\(201\) 0 0
\(202\) −1.08065e7 + 1.87173e7i −0.0922473 + 0.159777i
\(203\) −2.09969e7 + 3.63677e7i −0.176165 + 0.305126i
\(204\) 0 0
\(205\) −2.54197e7 4.40283e7i −0.206078 0.356938i
\(206\) 1.65513e7 0.131916
\(207\) 0 0
\(208\) 2.06397e7 0.159031
\(209\) −2.28010e6 3.94924e6i −0.0172759 0.0299228i
\(210\) 0 0
\(211\) 1.09670e6 1.89954e6i 0.00803710 0.0139207i −0.861979 0.506944i \(-0.830775\pi\)
0.870016 + 0.493024i \(0.164108\pi\)
\(212\) −2.43266e7 + 4.21349e7i −0.175350 + 0.303715i
\(213\) 0 0
\(214\) 3.66180e7 + 6.34242e7i 0.255415 + 0.442392i
\(215\) −5.55522e7 −0.381212
\(216\) 0 0
\(217\) 8.88451e7 0.590234
\(218\) −3.47458e7 6.01815e7i −0.227146 0.393428i
\(219\) 0 0
\(220\) 1.59667e7 2.76552e7i 0.101097 0.175104i
\(221\) 8.03469e6 1.39165e7i 0.0500721 0.0867274i
\(222\) 0 0
\(223\) −9.97215e6 1.72723e7i −0.0602174 0.104300i 0.834345 0.551242i \(-0.185846\pi\)
−0.894562 + 0.446943i \(0.852513\pi\)
\(224\) −1.66461e7 −0.0989568
\(225\) 0 0
\(226\) −1.99820e8 −1.15149
\(227\) 6.29925e7 + 1.09106e8i 0.357436 + 0.619098i 0.987532 0.157420i \(-0.0503176\pi\)
−0.630096 + 0.776518i \(0.716984\pi\)
\(228\) 0 0
\(229\) −1.17523e7 + 2.03556e7i −0.0646693 + 0.112010i −0.896547 0.442948i \(-0.853933\pi\)
0.831878 + 0.554959i \(0.187266\pi\)
\(230\) −4.98960e7 + 8.64224e7i −0.270407 + 0.468359i
\(231\) 0 0
\(232\) 2.11622e7 + 3.66541e7i 0.111264 + 0.192714i
\(233\) −1.27757e8 −0.661665 −0.330833 0.943689i \(-0.607330\pi\)
−0.330833 + 0.943689i \(0.607330\pi\)
\(234\) 0 0
\(235\) 6.32273e7 0.317810
\(236\) 7.12212e7 + 1.23359e8i 0.352710 + 0.610911i
\(237\) 0 0
\(238\) −6.48005e6 + 1.12238e7i −0.0311572 + 0.0539659i
\(239\) 4.67439e7 8.09628e7i 0.221479 0.383613i −0.733778 0.679389i \(-0.762245\pi\)
0.955257 + 0.295776i \(0.0955783\pi\)
\(240\) 0 0
\(241\) 6.73901e7 + 1.16723e8i 0.310125 + 0.537152i 0.978389 0.206772i \(-0.0662958\pi\)
−0.668264 + 0.743924i \(0.732963\pi\)
\(242\) −8.27408e7 −0.375289
\(243\) 0 0
\(244\) 1.43668e8 0.633135
\(245\) −4.66520e7 8.08037e7i −0.202670 0.351034i
\(246\) 0 0
\(247\) −3.79941e6 + 6.58076e6i −0.0160427 + 0.0277867i
\(248\) 4.47724e7 7.75480e7i 0.186393 0.322842i
\(249\) 0 0
\(250\) −8.51565e7 1.47495e8i −0.344689 0.597019i
\(251\) 1.31470e7 0.0524771 0.0262385 0.999656i \(-0.491647\pi\)
0.0262385 + 0.999656i \(0.491647\pi\)
\(252\) 0 0
\(253\) −2.28614e8 −0.887527
\(254\) 1.99464e7 + 3.45481e7i 0.0763740 + 0.132284i
\(255\) 0 0
\(256\) −8.38861e6 + 1.45295e7i −0.0312500 + 0.0541266i
\(257\) 6.42355e7 1.11259e8i 0.236053 0.408855i −0.723525 0.690298i \(-0.757480\pi\)
0.959578 + 0.281443i \(0.0908129\pi\)
\(258\) 0 0
\(259\) −8.21865e7 1.42351e8i −0.293935 0.509111i
\(260\) −5.32118e7 −0.187759
\(261\) 0 0
\(262\) −1.78724e8 −0.613942
\(263\) 4.88758e7 + 8.46554e7i 0.165672 + 0.286952i 0.936894 0.349614i \(-0.113687\pi\)
−0.771222 + 0.636567i \(0.780354\pi\)
\(264\) 0 0
\(265\) 6.27170e7 1.08629e8i 0.207026 0.358579i
\(266\) 3.06426e6 5.30745e6i 0.00998250 0.0172902i
\(267\) 0 0
\(268\) −4.71420e7 8.16524e7i −0.149602 0.259118i
\(269\) 3.96851e7 0.124307 0.0621534 0.998067i \(-0.480203\pi\)
0.0621534 + 0.998067i \(0.480203\pi\)
\(270\) 0 0
\(271\) −3.50733e8 −1.07049 −0.535246 0.844696i \(-0.679781\pi\)
−0.535246 + 0.844696i \(0.679781\pi\)
\(272\) 6.53107e6 + 1.13121e7i 0.0196786 + 0.0340843i
\(273\) 0 0
\(274\) −5.14523e7 + 8.91180e7i −0.151105 + 0.261721i
\(275\) 7.69608e7 1.33300e8i 0.223154 0.386514i
\(276\) 0 0
\(277\) −2.69801e8 4.67309e8i −0.762719 1.32107i −0.941444 0.337169i \(-0.890531\pi\)
0.178726 0.983899i \(-0.442803\pi\)
\(278\) 3.53522e8 0.986869
\(279\) 0 0
\(280\) 4.29158e7 0.116833
\(281\) 5.04259e7 + 8.73403e7i 0.135576 + 0.234824i 0.925817 0.377971i \(-0.123378\pi\)
−0.790242 + 0.612796i \(0.790045\pi\)
\(282\) 0 0
\(283\) 1.27056e8 2.20068e8i 0.333229 0.577170i −0.649914 0.760008i \(-0.725195\pi\)
0.983143 + 0.182838i \(0.0585284\pi\)
\(284\) 1.60221e8 2.77510e8i 0.415053 0.718894i
\(285\) 0 0
\(286\) −6.09517e7 1.05572e8i −0.154065 0.266849i
\(287\) 1.56524e8 0.390836
\(288\) 0 0
\(289\) −4.00169e8 −0.975216
\(290\) −5.45589e7 9.44988e7i −0.131363 0.227527i
\(291\) 0 0
\(292\) 1.88746e8 3.26917e8i 0.443646 0.768418i
\(293\) 2.71542e8 4.70325e8i 0.630668 1.09235i −0.356748 0.934201i \(-0.616114\pi\)
0.987415 0.158148i \(-0.0505522\pi\)
\(294\) 0 0
\(295\) −1.83617e8 3.18034e8i −0.416425 0.721269i
\(296\) −1.65667e8 −0.371292
\(297\) 0 0
\(298\) −2.10310e7 −0.0460365
\(299\) 1.90474e8 + 3.29911e8i 0.412085 + 0.713752i
\(300\) 0 0
\(301\) 8.55167e7 1.48119e8i 0.180746 0.313061i
\(302\) 2.21208e8 3.83143e8i 0.462142 0.800454i
\(303\) 0 0
\(304\) −3.08838e6 5.34924e6i −0.00630484 0.0109203i
\(305\) −3.70394e8 −0.747507
\(306\) 0 0
\(307\) −7.29877e8 −1.43968 −0.719839 0.694141i \(-0.755784\pi\)
−0.719839 + 0.694141i \(0.755784\pi\)
\(308\) 4.91581e7 + 8.51444e7i 0.0958667 + 0.166046i
\(309\) 0 0
\(310\) −1.15429e8 + 1.99928e8i −0.220063 + 0.381161i
\(311\) −3.19385e8 + 5.53191e8i −0.602078 + 1.04283i 0.390427 + 0.920634i \(0.372327\pi\)
−0.992506 + 0.122197i \(0.961006\pi\)
\(312\) 0 0
\(313\) 3.18880e8 + 5.52317e8i 0.587790 + 1.01808i 0.994521 + 0.104535i \(0.0333354\pi\)
−0.406731 + 0.913548i \(0.633331\pi\)
\(314\) −1.78968e8 −0.326229
\(315\) 0 0
\(316\) 4.49841e8 0.801963
\(317\) 3.27189e8 + 5.66707e8i 0.576887 + 0.999198i 0.995834 + 0.0911869i \(0.0290661\pi\)
−0.418947 + 0.908011i \(0.637601\pi\)
\(318\) 0 0
\(319\) 1.24989e8 2.16488e8i 0.215579 0.373393i
\(320\) 2.16269e7 3.74589e7i 0.0368951 0.0639042i
\(321\) 0 0
\(322\) −1.53619e8 2.66076e8i −0.256419 0.444130i
\(323\) −4.80901e6 −0.00794049
\(324\) 0 0
\(325\) −2.56485e8 −0.414448
\(326\) −2.09442e8 3.62765e8i −0.334813 0.579914i
\(327\) 0 0
\(328\) 7.88782e7 1.36621e8i 0.123424 0.213776i
\(329\) −9.73318e7 + 1.68584e8i −0.150685 + 0.260993i
\(330\) 0 0
\(331\) −4.03844e8 6.99479e8i −0.612091 1.06017i −0.990887 0.134693i \(-0.956995\pi\)
0.378796 0.925480i \(-0.376338\pi\)
\(332\) −1.69677e8 −0.254471
\(333\) 0 0
\(334\) −4.38366e8 −0.643760
\(335\) 1.21538e8 + 2.10510e8i 0.176626 + 0.305926i
\(336\) 0 0
\(337\) 9.36402e7 1.62190e8i 0.133278 0.230844i −0.791660 0.610961i \(-0.790783\pi\)
0.924938 + 0.380117i \(0.124116\pi\)
\(338\) 1.49428e8 2.58817e8i 0.210486 0.364573i
\(339\) 0 0
\(340\) −1.68379e7 2.91641e7i −0.0232334 0.0402414i
\(341\) −5.28873e8 −0.722290
\(342\) 0 0
\(343\) 7.05623e8 0.944155
\(344\) −8.61901e7 1.49286e8i −0.114157 0.197726i
\(345\) 0 0
\(346\) −4.94581e8 + 8.56639e8i −0.641905 + 1.11181i
\(347\) −1.41278e8 + 2.44700e8i −0.181518 + 0.314399i −0.942398 0.334494i \(-0.891435\pi\)
0.760879 + 0.648893i \(0.224768\pi\)
\(348\) 0 0
\(349\) 3.80306e8 + 6.58709e8i 0.478899 + 0.829478i 0.999707 0.0241959i \(-0.00770255\pi\)
−0.520808 + 0.853674i \(0.674369\pi\)
\(350\) 2.06858e8 0.257889
\(351\) 0 0
\(352\) 9.90904e7 0.121097
\(353\) 2.34447e8 + 4.06074e8i 0.283683 + 0.491353i 0.972289 0.233783i \(-0.0751105\pi\)
−0.688606 + 0.725135i \(0.741777\pi\)
\(354\) 0 0
\(355\) −4.13069e8 + 7.15456e8i −0.490030 + 0.848757i
\(356\) 2.16669e8 3.75281e8i 0.254520 0.440841i
\(357\) 0 0
\(358\) −3.94919e8 6.84020e8i −0.454901 0.787912i
\(359\) 1.53906e8 0.175560 0.0877802 0.996140i \(-0.472023\pi\)
0.0877802 + 0.996140i \(0.472023\pi\)
\(360\) 0 0
\(361\) −8.91598e8 −0.997456
\(362\) −3.67942e8 6.37294e8i −0.407661 0.706090i
\(363\) 0 0
\(364\) 8.19140e7 1.41879e8i 0.0890232 0.154193i
\(365\) −4.86610e8 + 8.42833e8i −0.523788 + 0.907228i
\(366\) 0 0
\(367\) 3.74764e8 + 6.49110e8i 0.395755 + 0.685468i 0.993197 0.116444i \(-0.0371496\pi\)
−0.597442 + 0.801912i \(0.703816\pi\)
\(368\) −3.09658e8 −0.323903
\(369\) 0 0
\(370\) 4.27111e8 0.438364
\(371\) 1.93092e8 + 3.34446e8i 0.196316 + 0.340030i
\(372\) 0 0
\(373\) 2.70864e8 4.69150e8i 0.270253 0.468092i −0.698674 0.715441i \(-0.746226\pi\)
0.968926 + 0.247349i \(0.0795594\pi\)
\(374\) 3.85741e7 6.68124e7i 0.0381281 0.0660399i
\(375\) 0 0
\(376\) 9.80982e7 + 1.69911e8i 0.0951707 + 0.164841i
\(377\) −4.16549e8 −0.400379
\(378\) 0 0
\(379\) 1.32974e9 1.25467 0.627334 0.778750i \(-0.284146\pi\)
0.627334 + 0.778750i \(0.284146\pi\)
\(380\) 7.96224e6 + 1.37910e7i 0.00744377 + 0.0128930i
\(381\) 0 0
\(382\) −5.27914e8 + 9.14375e8i −0.484554 + 0.839271i
\(383\) −3.59974e8 + 6.23494e8i −0.327398 + 0.567070i −0.981995 0.188908i \(-0.939505\pi\)
0.654597 + 0.755978i \(0.272838\pi\)
\(384\) 0 0
\(385\) −1.26736e8 2.19513e8i −0.113184 0.196041i
\(386\) 1.18326e9 1.04719
\(387\) 0 0
\(388\) 1.03529e9 0.899809
\(389\) −1.16034e9 2.00976e9i −0.999447 1.73109i −0.528517 0.848922i \(-0.677252\pi\)
−0.470930 0.882171i \(-0.656081\pi\)
\(390\) 0 0
\(391\) −1.20544e8 + 2.08789e8i −0.101983 + 0.176640i
\(392\) 1.44763e8 2.50736e8i 0.121382 0.210240i
\(393\) 0 0
\(394\) 1.07824e8 + 1.86757e8i 0.0888138 + 0.153830i
\(395\) −1.15975e9 −0.946833
\(396\) 0 0
\(397\) 1.18373e9 0.949477 0.474739 0.880127i \(-0.342543\pi\)
0.474739 + 0.880127i \(0.342543\pi\)
\(398\) −5.43322e8 9.41061e8i −0.431983 0.748216i
\(399\) 0 0
\(400\) 1.04243e8 1.80555e8i 0.0814400 0.141058i
\(401\) −6.33820e8 + 1.09781e9i −0.490863 + 0.850200i −0.999945 0.0105184i \(-0.996652\pi\)
0.509082 + 0.860718i \(0.329985\pi\)
\(402\) 0 0
\(403\) 4.40640e8 + 7.63212e8i 0.335364 + 0.580868i
\(404\) 1.72903e8 0.130457
\(405\) 0 0
\(406\) 3.35951e8 0.249135
\(407\) 4.89236e8 + 8.47382e8i 0.359698 + 0.623016i
\(408\) 0 0
\(409\) 5.09744e8 8.82903e8i 0.368401 0.638089i −0.620915 0.783878i \(-0.713239\pi\)
0.989316 + 0.145789i \(0.0465721\pi\)
\(410\) −2.03358e8 + 3.52226e8i −0.145719 + 0.252393i
\(411\) 0 0
\(412\) −6.62053e7 1.14671e8i −0.0466394 0.0807817i
\(413\) 1.13064e9 0.789765
\(414\) 0 0
\(415\) 4.37447e8 0.300440
\(416\) −8.25590e7 1.42996e8i −0.0562261 0.0973864i
\(417\) 0 0
\(418\) −1.82408e7 + 3.15939e7i −0.0122159 + 0.0211586i
\(419\) −5.20643e8 + 9.01780e8i −0.345773 + 0.598896i −0.985494 0.169711i \(-0.945717\pi\)
0.639721 + 0.768607i \(0.279050\pi\)
\(420\) 0 0
\(421\) 9.79224e8 + 1.69607e9i 0.639580 + 1.10779i 0.985525 + 0.169530i \(0.0542251\pi\)
−0.345945 + 0.938255i \(0.612442\pi\)
\(422\) −1.75472e7 −0.0113662
\(423\) 0 0
\(424\) 3.89225e8 0.247982
\(425\) −8.11600e7 1.40573e8i −0.0512839 0.0888263i
\(426\) 0 0
\(427\) 5.70183e8 9.87586e8i 0.354419 0.613871i
\(428\) 2.92944e8 5.07394e8i 0.180606 0.312818i
\(429\) 0 0
\(430\) 2.22209e8 + 3.84877e8i 0.134779 + 0.233444i
\(431\) 2.84256e9 1.71017 0.855084 0.518489i \(-0.173505\pi\)
0.855084 + 0.518489i \(0.173505\pi\)
\(432\) 0 0
\(433\) −8.41292e7 −0.0498011 −0.0249006 0.999690i \(-0.507927\pi\)
−0.0249006 + 0.999690i \(0.507927\pi\)
\(434\) −3.55381e8 6.15537e8i −0.208679 0.361443i
\(435\) 0 0
\(436\) −2.77966e8 + 4.81452e8i −0.160616 + 0.278196i
\(437\) 5.70024e7 9.87311e7i 0.0326744 0.0565938i
\(438\) 0 0
\(439\) 9.35233e8 + 1.61987e9i 0.527587 + 0.913807i 0.999483 + 0.0321530i \(0.0102364\pi\)
−0.471896 + 0.881654i \(0.656430\pi\)
\(440\) −2.55468e8 −0.142972
\(441\) 0 0
\(442\) −1.28555e8 −0.0708127
\(443\) 5.06663e8 + 8.77566e8i 0.276889 + 0.479587i 0.970610 0.240658i \(-0.0773631\pi\)
−0.693721 + 0.720244i \(0.744030\pi\)
\(444\) 0 0
\(445\) −5.58599e8 + 9.67522e8i −0.300497 + 0.520476i
\(446\) −7.97772e7 + 1.38178e8i −0.0425801 + 0.0737509i
\(447\) 0 0
\(448\) 6.65846e7 + 1.15328e8i 0.0349865 + 0.0605984i
\(449\) −1.65756e8 −0.0864183 −0.0432092 0.999066i \(-0.513758\pi\)
−0.0432092 + 0.999066i \(0.513758\pi\)
\(450\) 0 0
\(451\) −9.31749e8 −0.478279
\(452\) 7.99282e8 + 1.38440e9i 0.407113 + 0.705141i
\(453\) 0 0
\(454\) 5.03940e8 8.72850e8i 0.252746 0.437768i
\(455\) −2.11184e8 + 3.65782e8i −0.105105 + 0.182047i
\(456\) 0 0
\(457\) 6.90398e8 + 1.19581e9i 0.338371 + 0.586076i 0.984126 0.177469i \(-0.0567908\pi\)
−0.645756 + 0.763544i \(0.723457\pi\)
\(458\) 1.88037e8 0.0914562
\(459\) 0 0
\(460\) 7.98336e8 0.382414
\(461\) −1.39246e9 2.41181e9i −0.661955 1.14654i −0.980101 0.198498i \(-0.936394\pi\)
0.318146 0.948042i \(-0.396940\pi\)
\(462\) 0 0
\(463\) −1.39459e9 + 2.41551e9i −0.653001 + 1.13103i 0.329390 + 0.944194i \(0.393157\pi\)
−0.982391 + 0.186837i \(0.940176\pi\)
\(464\) 1.69298e8 2.93233e8i 0.0786754 0.136270i
\(465\) 0 0
\(466\) 5.11027e8 + 8.85125e8i 0.233934 + 0.405186i
\(467\) 3.97258e9 1.80494 0.902471 0.430751i \(-0.141751\pi\)
0.902471 + 0.430751i \(0.141751\pi\)
\(468\) 0 0
\(469\) −7.48380e8 −0.334979
\(470\) −2.52909e8 4.38052e8i −0.112363 0.194618i
\(471\) 0 0
\(472\) 5.69770e8 9.86871e8i 0.249404 0.431980i
\(473\) −5.09060e8 + 8.81718e8i −0.221185 + 0.383103i
\(474\) 0 0
\(475\) 3.83786e7 + 6.64737e7i 0.0164309 + 0.0284592i
\(476\) 1.03681e8 0.0440630
\(477\) 0 0
\(478\) −7.47902e8 −0.313218
\(479\) 1.17233e9 + 2.03054e9i 0.487391 + 0.844186i 0.999895 0.0144991i \(-0.00461537\pi\)
−0.512504 + 0.858685i \(0.671282\pi\)
\(480\) 0 0
\(481\) 8.15232e8 1.41202e9i 0.334021 0.578541i
\(482\) 5.39121e8 9.33785e8i 0.219291 0.379824i
\(483\) 0 0
\(484\) 3.30963e8 + 5.73245e8i 0.132685 + 0.229817i
\(485\) −2.66910e9 −1.06235
\(486\) 0 0
\(487\) 3.08381e9 1.20986 0.604931 0.796278i \(-0.293201\pi\)
0.604931 + 0.796278i \(0.293201\pi\)
\(488\) −5.74673e8 9.95362e8i −0.223847 0.387714i
\(489\) 0 0
\(490\) −3.73216e8 + 6.46429e8i −0.143309 + 0.248219i
\(491\) 1.85925e9 3.22032e9i 0.708848 1.22776i −0.256436 0.966561i \(-0.582548\pi\)
0.965285 0.261200i \(-0.0841183\pi\)
\(492\) 0 0
\(493\) −1.31809e8 2.28300e8i −0.0495430 0.0858109i
\(494\) 6.07905e7 0.0226877
\(495\) 0 0
\(496\) −7.16358e8 −0.263599
\(497\) −1.27175e9 2.20274e9i −0.464681 0.804850i
\(498\) 0 0
\(499\) −2.18213e8 + 3.77956e8i −0.0786192 + 0.136172i −0.902654 0.430366i \(-0.858384\pi\)
0.824035 + 0.566539i \(0.191718\pi\)
\(500\) −6.81252e8 + 1.17996e9i −0.243732 + 0.422156i
\(501\) 0 0
\(502\) −5.25881e7 9.10853e7i −0.0185535 0.0321355i
\(503\) −5.04603e8 −0.176792 −0.0883958 0.996085i \(-0.528174\pi\)
−0.0883958 + 0.996085i \(0.528174\pi\)
\(504\) 0 0
\(505\) −4.45766e8 −0.154024
\(506\) 9.14458e8 + 1.58389e9i 0.313788 + 0.543497i
\(507\) 0 0
\(508\) 1.59571e8 2.76385e8i 0.0540046 0.0935387i
\(509\) 2.30043e9 3.98446e9i 0.773208 1.33923i −0.162589 0.986694i \(-0.551984\pi\)
0.935796 0.352541i \(-0.114682\pi\)
\(510\) 0 0
\(511\) −1.49817e9 2.59490e9i −0.496692 0.860296i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) −1.02777e9 −0.333829
\(515\) 1.70686e8 + 2.95636e8i 0.0550645 + 0.0953745i
\(516\) 0 0
\(517\) 5.79392e8 1.00354e9i 0.184398 0.319386i
\(518\) −6.57492e8 + 1.13881e9i −0.207844 + 0.359996i
\(519\) 0 0
\(520\) 2.12847e8 + 3.68662e8i 0.0663830 + 0.114979i
\(521\) 7.14937e7 0.0221481 0.0110740 0.999939i \(-0.496475\pi\)
0.0110740 + 0.999939i \(0.496475\pi\)
\(522\) 0 0
\(523\) −2.12182e9 −0.648563 −0.324281 0.945961i \(-0.605122\pi\)
−0.324281 + 0.945961i \(0.605122\pi\)
\(524\) 7.14895e8 + 1.23823e9i 0.217061 + 0.375961i
\(525\) 0 0
\(526\) 3.91007e8 6.77243e8i 0.117148 0.202906i
\(527\) −2.78865e8 + 4.83009e8i −0.0829960 + 0.143753i
\(528\) 0 0
\(529\) −1.15527e9 2.00098e9i −0.339303 0.587690i
\(530\) −1.00347e9 −0.292779
\(531\) 0 0
\(532\) −4.90281e7 −0.0141174
\(533\) 7.76303e8 + 1.34460e9i 0.222068 + 0.384633i
\(534\) 0 0
\(535\) −7.55246e8 + 1.30812e9i −0.213231 + 0.369327i
\(536\) −3.77136e8 + 6.53219e8i −0.105784 + 0.183224i
\(537\) 0 0
\(538\) −1.58740e8 2.74946e8i −0.0439491 0.0761220i
\(539\) −1.71001e9 −0.470368
\(540\) 0 0
\(541\) −2.11351e9 −0.573870 −0.286935 0.957950i \(-0.592636\pi\)
−0.286935 + 0.957950i \(0.592636\pi\)
\(542\) 1.40293e9 + 2.42995e9i 0.378476 + 0.655540i
\(543\) 0 0
\(544\) 5.22486e7 9.04972e7i 0.0139148 0.0241012i
\(545\) 7.16632e8 1.24124e9i 0.189631 0.328450i
\(546\) 0 0
\(547\) −3.12777e9 5.41745e9i −0.817107 1.41527i −0.907805 0.419392i \(-0.862243\pi\)
0.0906987 0.995878i \(-0.471090\pi\)
\(548\) 8.23237e8 0.213694
\(549\) 0 0
\(550\) −1.23137e9 −0.315588
\(551\) 6.23294e7 + 1.07958e8i 0.0158731 + 0.0274931i
\(552\) 0 0
\(553\) 1.78531e9 3.09224e9i 0.448926 0.777563i
\(554\) −2.15841e9 + 3.73847e9i −0.539324 + 0.934136i
\(555\) 0 0
\(556\) −1.41409e9 2.44927e9i −0.348911 0.604331i
\(557\) −6.50846e9 −1.59583 −0.797913 0.602773i \(-0.794062\pi\)
−0.797913 + 0.602773i \(0.794062\pi\)
\(558\) 0 0
\(559\) 1.69653e9 0.410790
\(560\) −1.71663e8 2.97330e8i −0.0413066 0.0715451i
\(561\) 0 0
\(562\) 4.03408e8 6.98722e8i 0.0958665 0.166046i
\(563\) 8.66244e7 1.50038e8i 0.0204579 0.0354341i −0.855615 0.517612i \(-0.826821\pi\)
0.876073 + 0.482178i \(0.160154\pi\)
\(564\) 0 0
\(565\) −2.06065e9 3.56915e9i −0.480656 0.832520i
\(566\) −2.03290e9 −0.471257
\(567\) 0 0
\(568\) −2.56353e9 −0.586974
\(569\) −3.64441e9 6.31230e9i −0.829343 1.43646i −0.898555 0.438862i \(-0.855382\pi\)
0.0692121 0.997602i \(-0.477951\pi\)
\(570\) 0 0
\(571\) −2.14518e9 + 3.71556e9i −0.482212 + 0.835215i −0.999791 0.0204199i \(-0.993500\pi\)
0.517580 + 0.855635i \(0.326833\pi\)
\(572\) −4.87614e8 + 8.44572e8i −0.108941 + 0.188691i
\(573\) 0 0
\(574\) −6.26096e8 1.08443e9i −0.138181 0.239337i
\(575\) 3.84804e9 0.844116
\(576\) 0 0
\(577\) 6.28378e8 0.136178 0.0680888 0.997679i \(-0.478310\pi\)
0.0680888 + 0.997679i \(0.478310\pi\)
\(578\) 1.60068e9 + 2.77245e9i 0.344791 + 0.597196i
\(579\) 0 0
\(580\) −4.36471e8 + 7.55990e8i −0.0928876 + 0.160886i
\(581\) −6.73404e8 + 1.16637e9i −0.142449 + 0.246729i
\(582\) 0 0
\(583\) −1.14943e9 1.99087e9i −0.240239 0.416106i
\(584\) −3.01993e9 −0.627411
\(585\) 0 0
\(586\) −4.34467e9 −0.891899
\(587\) 4.48401e9 + 7.76654e9i 0.915026 + 1.58487i 0.806863 + 0.590738i \(0.201163\pi\)
0.108163 + 0.994133i \(0.465503\pi\)
\(588\) 0 0
\(589\) 1.31869e8 2.28403e8i 0.0265912 0.0460573i
\(590\) −1.46894e9 + 2.54428e9i −0.294457 + 0.510014i
\(591\) 0 0
\(592\) 6.62669e8 + 1.14778e9i 0.131272 + 0.227369i
\(593\) −7.57484e9 −1.49170 −0.745851 0.666112i \(-0.767957\pi\)
−0.745851 + 0.666112i \(0.767957\pi\)
\(594\) 0 0
\(595\) −2.67302e8 −0.0520227
\(596\) 8.41239e7 + 1.45707e8i 0.0162764 + 0.0281915i
\(597\) 0 0
\(598\) 1.52379e9 2.63929e9i 0.291388 0.504699i
\(599\) 3.02973e9 5.24765e9i 0.575984 0.997633i −0.419950 0.907547i \(-0.637953\pi\)
0.995934 0.0900859i \(-0.0287141\pi\)
\(600\) 0 0
\(601\) 3.27899e8 + 5.67937e8i 0.0616139 + 0.106718i 0.895187 0.445691i \(-0.147042\pi\)
−0.833573 + 0.552409i \(0.813709\pi\)
\(602\) −1.36827e9 −0.255613
\(603\) 0 0
\(604\) −3.53932e9 −0.653568
\(605\) −8.53264e8 1.47790e9i −0.156653 0.271332i
\(606\) 0 0
\(607\) −1.92806e9 + 3.33949e9i −0.349913 + 0.606066i −0.986234 0.165358i \(-0.947122\pi\)
0.636321 + 0.771424i \(0.280455\pi\)
\(608\) −2.47071e7 + 4.27939e7i −0.00445819 + 0.00772181i
\(609\) 0 0
\(610\) 1.48158e9 + 2.56617e9i 0.264284 + 0.457752i
\(611\) −1.93092e9 −0.342469
\(612\) 0 0
\(613\) −4.89889e9 −0.858986 −0.429493 0.903070i \(-0.641308\pi\)
−0.429493 + 0.903070i \(0.641308\pi\)
\(614\) 2.91951e9 + 5.05674e9i 0.509003 + 0.881619i
\(615\) 0 0
\(616\) 3.93265e8 6.81155e8i 0.0677880 0.117412i
\(617\) 3.32728e9 5.76302e9i 0.570284 0.987761i −0.426253 0.904604i \(-0.640167\pi\)
0.996537 0.0831565i \(-0.0265001\pi\)
\(618\) 0 0
\(619\) −5.27657e9 9.13929e9i −0.894199 1.54880i −0.834792 0.550565i \(-0.814412\pi\)
−0.0594070 0.998234i \(-0.518921\pi\)
\(620\) 1.84686e9 0.311217
\(621\) 0 0
\(622\) 5.11016e9 0.851468
\(623\) −1.71981e9 2.97880e9i −0.284952 0.493552i
\(624\) 0 0
\(625\) −2.31928e8 + 4.01712e8i −0.0379992 + 0.0658165i
\(626\) 2.55104e9 4.41853e9i 0.415631 0.719893i
\(627\) 0 0
\(628\) 7.15874e8 + 1.23993e9i 0.115339 + 0.199774i
\(629\) 1.03186e9 0.165327
\(630\) 0 0
\(631\) 6.37775e9 1.01057 0.505283 0.862954i \(-0.331388\pi\)
0.505283 + 0.862954i \(0.331388\pi\)
\(632\) −1.79936e9 3.11659e9i −0.283537 0.491100i
\(633\) 0 0
\(634\) 2.61751e9 4.53366e9i 0.407921 0.706540i
\(635\) −4.11394e8 + 7.12555e8i −0.0637602 + 0.110436i
\(636\) 0 0
\(637\) 1.42472e9 + 2.46769e9i 0.218395 + 0.378271i
\(638\) −1.99983e9 −0.304874
\(639\) 0 0
\(640\) −3.46030e8 −0.0521776
\(641\) −3.34351e8 5.79113e8i −0.0501418 0.0868481i 0.839865 0.542795i \(-0.182634\pi\)
−0.890007 + 0.455947i \(0.849301\pi\)
\(642\) 0 0
\(643\) −1.62316e9 + 2.81140e9i −0.240782 + 0.417046i −0.960937 0.276767i \(-0.910737\pi\)
0.720155 + 0.693813i \(0.244070\pi\)
\(644\) −1.22895e9 + 2.12861e9i −0.181316 + 0.314048i
\(645\) 0 0
\(646\) 1.92360e7 + 3.33178e7i 0.00280739 + 0.00486253i
\(647\) 7.46321e9 1.08333 0.541665 0.840595i \(-0.317794\pi\)
0.541665 + 0.840595i \(0.317794\pi\)
\(648\) 0 0
\(649\) −6.73041e9 −0.966462
\(650\) 1.02594e9 + 1.77698e9i 0.146530 + 0.253797i
\(651\) 0 0
\(652\) −1.67554e9 + 2.90212e9i −0.236749 + 0.410061i
\(653\) 5.08150e9 8.80141e9i 0.714160 1.23696i −0.249122 0.968472i \(-0.580142\pi\)
0.963283 0.268490i \(-0.0865245\pi\)
\(654\) 0 0
\(655\) −1.84309e9 3.19232e9i −0.256272 0.443876i
\(656\) −1.26205e9 −0.174547
\(657\) 0 0
\(658\) 1.55731e9 0.213100
\(659\) 1.41534e9 + 2.45144e9i 0.192647 + 0.333674i 0.946127 0.323797i \(-0.104959\pi\)
−0.753480 + 0.657471i \(0.771626\pi\)
\(660\) 0 0
\(661\) −1.98137e9 + 3.43184e9i −0.266846 + 0.462192i −0.968046 0.250774i \(-0.919315\pi\)
0.701199 + 0.712965i \(0.252648\pi\)
\(662\) −3.23075e9 + 5.59583e9i −0.432814 + 0.749655i
\(663\) 0 0
\(664\) 6.78706e8 + 1.17555e9i 0.0899691 + 0.155831i
\(665\) 1.26401e8 0.0166676
\(666\) 0 0
\(667\) 6.24947e9 0.815461
\(668\) 1.75346e9 + 3.03709e9i 0.227604 + 0.394221i
\(669\) 0 0
\(670\) 9.72304e8 1.68408e9i 0.124894 0.216322i
\(671\) −3.39416e9 + 5.87886e9i −0.433714 + 0.751215i
\(672\) 0 0
\(673\) 5.93077e9 + 1.02724e10i 0.749995 + 1.29903i 0.947824 + 0.318794i \(0.103278\pi\)
−0.197829 + 0.980237i \(0.563389\pi\)
\(674\) −1.49824e9 −0.188483
\(675\) 0 0
\(676\) −2.39085e9 −0.297672
\(677\) −4.93418e9 8.54625e9i −0.611159 1.05856i −0.991045 0.133526i \(-0.957370\pi\)
0.379886 0.925033i \(-0.375963\pi\)
\(678\) 0 0
\(679\) 4.10880e9 7.11665e9i 0.503699 0.872432i
\(680\) −1.34703e8 + 2.33313e8i −0.0164285 + 0.0284550i
\(681\) 0 0
\(682\) 2.11549e9 + 3.66414e9i 0.255368 + 0.442310i
\(683\) 1.36287e10 1.63674 0.818372 0.574689i \(-0.194877\pi\)
0.818372 + 0.574689i \(0.194877\pi\)
\(684\) 0 0
\(685\) −2.12241e9 −0.252297
\(686\) −2.82249e9 4.88870e9i −0.333809 0.578175i
\(687\) 0 0
\(688\) −6.89521e8 + 1.19428e9i −0.0807212 + 0.139813i
\(689\) −1.91534e9 + 3.31746e9i −0.223089 + 0.386402i
\(690\) 0 0
\(691\) 1.08135e9 + 1.87295e9i 0.124679 + 0.215950i 0.921607 0.388124i \(-0.126877\pi\)
−0.796929 + 0.604074i \(0.793543\pi\)
\(692\) 7.91329e9 0.907791
\(693\) 0 0
\(694\) 2.26045e9 0.256706
\(695\) 3.64569e9 + 6.31453e9i 0.411940 + 0.713500i
\(696\) 0 0
\(697\) −4.91294e8 + 8.50946e8i −0.0549575 + 0.0951892i
\(698\) 3.04245e9 5.26968e9i 0.338633 0.586530i
\(699\) 0 0
\(700\) −8.27430e8 1.43315e9i −0.0911776 0.157924i
\(701\) 2.93914e9 0.322260 0.161130 0.986933i \(-0.448486\pi\)
0.161130 + 0.986933i \(0.448486\pi\)
\(702\) 0 0
\(703\) −4.87942e8 −0.0529693
\(704\) −3.96362e8 6.86519e8i −0.0428142 0.0741563i
\(705\) 0 0
\(706\) 1.87557e9 3.24859e9i 0.200594 0.347439i
\(707\) 6.86210e8 1.18855e9i 0.0730279 0.126488i
\(708\) 0 0
\(709\) 6.54572e9 + 1.13375e10i 0.689756 + 1.19469i 0.971917 + 0.235326i \(0.0756157\pi\)
−0.282160 + 0.959367i \(0.591051\pi\)
\(710\) 6.60910e9 0.693007
\(711\) 0 0
\(712\) −3.46670e9 −0.359945
\(713\) −6.61092e9 1.14504e10i −0.683044 1.18307i
\(714\) 0 0
\(715\) 1.25713e9 2.17741e9i 0.128620 0.222777i
\(716\) −3.15935e9 + 5.47216e9i −0.321664 + 0.557138i
\(717\) 0 0
\(718\) −6.15626e8 1.06630e9i −0.0620699 0.107508i
\(719\) −3.03015e9 −0.304027 −0.152014 0.988378i \(-0.548576\pi\)
−0.152014 + 0.988378i \(0.548576\pi\)
\(720\) 0 0
\(721\) −1.05101e9 −0.104432
\(722\) 3.56639e9 + 6.17717e9i 0.352654 + 0.610815i
\(723\) 0 0
\(724\) −2.94354e9 + 5.09836e9i −0.288260 + 0.499281i
\(725\) −2.10382e9 + 3.64393e9i −0.205034 + 0.355130i
\(726\) 0 0
\(727\) 5.34238e9 + 9.25328e9i 0.515661 + 0.893151i 0.999835 + 0.0181794i \(0.00578701\pi\)
−0.484174 + 0.874972i \(0.660880\pi\)
\(728\) −1.31062e9 −0.125898
\(729\) 0 0
\(730\) 7.78576e9 0.740749
\(731\) 5.36836e8 + 9.29828e8i 0.0508313 + 0.0880424i
\(732\) 0 0
\(733\) 8.38524e9 1.45237e10i 0.786414 1.36211i −0.141736 0.989904i \(-0.545268\pi\)
0.928150 0.372205i \(-0.121398\pi\)
\(734\) 2.99811e9 5.19288e9i 0.279841 0.484699i
\(735\) 0 0
\(736\) 1.23863e9 + 2.14537e9i 0.114517 + 0.198349i
\(737\) 4.45492e9 0.409924
\(738\) 0 0
\(739\) 1.68052e10 1.53175 0.765877 0.642987i \(-0.222305\pi\)
0.765877 + 0.642987i \(0.222305\pi\)
\(740\) −1.70844e9 2.95911e9i −0.154985 0.268442i
\(741\) 0 0
\(742\) 1.54474e9 2.67557e9i 0.138817 0.240437i
\(743\) −1.03917e10 + 1.79989e10i −0.929448 + 1.60985i −0.145203 + 0.989402i \(0.546383\pi\)
−0.784246 + 0.620450i \(0.786950\pi\)
\(744\) 0 0
\(745\) −2.16882e8 3.75651e8i −0.0192166 0.0332841i
\(746\) −4.33382e9 −0.382195
\(747\) 0 0
\(748\) −6.17186e8 −0.0539213
\(749\) −2.32524e9 4.02744e9i −0.202200 0.350221i
\(750\) 0 0
\(751\) −5.03006e9 + 8.71232e9i −0.433344 + 0.750575i −0.997159 0.0753269i \(-0.976000\pi\)
0.563814 + 0.825901i \(0.309333\pi\)
\(752\) 7.84785e8 1.35929e9i 0.0672959 0.116560i
\(753\) 0 0
\(754\) 1.66620e9 + 2.88594e9i 0.141555 + 0.245181i
\(755\) 9.12481e9 0.771631
\(756\) 0 0
\(757\) 6.59893e9 0.552889 0.276445 0.961030i \(-0.410844\pi\)
0.276445 + 0.961030i \(0.410844\pi\)
\(758\) −5.31896e9 9.21270e9i −0.443592 0.768325i
\(759\) 0 0
\(760\) 6.36979e7 1.10328e8i 0.00526354 0.00911671i
\(761\) 3.03962e9 5.26478e9i 0.250019 0.433046i −0.713511 0.700644i \(-0.752896\pi\)
0.963531 + 0.267597i \(0.0862297\pi\)
\(762\) 0 0
\(763\) 2.20636e9 + 3.82153e9i 0.179821 + 0.311459i
\(764\) 8.44663e9 0.685262
\(765\) 0 0
\(766\) 5.75959e9 0.463011
\(767\) 5.60756e9 + 9.71258e9i 0.448735 + 0.777232i
\(768\) 0 0
\(769\) −2.42525e9 + 4.20065e9i −0.192315 + 0.333100i −0.946017 0.324117i \(-0.894933\pi\)
0.753702 + 0.657216i \(0.228266\pi\)
\(770\) −1.01389e9 + 1.75610e9i −0.0800335 + 0.138622i
\(771\) 0 0
\(772\) −4.73304e9 8.19786e9i −0.370236 0.641268i
\(773\) −2.33466e10 −1.81800 −0.909002 0.416792i \(-0.863154\pi\)
−0.909002 + 0.416792i \(0.863154\pi\)
\(774\) 0 0
\(775\) 8.90200e9 0.686961
\(776\) −4.14115e9 7.17269e9i −0.318131 0.551018i
\(777\) 0 0
\(778\) −9.28268e9 + 1.60781e10i −0.706716 + 1.22407i
\(779\) 2.32321e8 4.02392e8i 0.0176079 0.0304978i
\(780\) 0 0
\(781\) 7.57042e9 + 1.31124e10i 0.568645 + 0.984922i
\(782\) 1.92871e9 0.144226
\(783\) 0 0
\(784\) −2.31620e9 −0.171660
\(785\) −1.84561e9 3.19669e9i −0.136175 0.235862i
\(786\) 0 0
\(787\) −4.68028e9 + 8.10648e9i −0.342263 + 0.592817i −0.984853 0.173394i \(-0.944527\pi\)
0.642590 + 0.766211i \(0.277860\pi\)
\(788\) 8.62595e8 1.49406e9i 0.0628008 0.108774i
\(789\) 0 0
\(790\) 4.63899e9 + 8.03496e9i 0.334756 + 0.579814i
\(791\) 1.26886e10 0.911582
\(792\) 0 0
\(793\) 1.13116e10 0.805506
\(794\) −4.73491e9 8.20110e9i −0.335691 0.581434i
\(795\) 0 0
\(796\) −4.34658e9 + 7.52849e9i −0.305458 + 0.529069i
\(797\) −1.31186e10 + 2.27222e10i −0.917878 + 1.58981i −0.115245 + 0.993337i \(0.536765\pi\)
−0.802633 + 0.596474i \(0.796568\pi\)
\(798\) 0 0
\(799\) −6.11006e8 1.05829e9i −0.0423772 0.0733994i
\(800\) −1.66789e9 −0.115174
\(801\) 0 0
\(802\) 1.01411e10 0.694185
\(803\) 8.91823e9 + 1.54468e10i 0.607819 + 1.05277i
\(804\) 0 0
\(805\) 3.16840e9 5.48782e9i 0.214069 0.370778i
\(806\) 3.52512e9 6.10569e9i 0.237138 0.410736i
\(807\) 0 0
\(808\) −6.91613e8 1.19791e9i −0.0461236 0.0798885i
\(809\) −1.59304e10 −1.05780 −0.528902 0.848683i \(-0.677396\pi\)
−0.528902 + 0.848683i \(0.677396\pi\)
\(810\) 0 0
\(811\) −1.69281e10 −1.11438 −0.557191 0.830384i \(-0.688121\pi\)
−0.557191 + 0.830384i \(0.688121\pi\)
\(812\) −1.34380e9 2.32753e9i −0.0880824 0.152563i
\(813\) 0 0
\(814\) 3.91389e9 6.77906e9i 0.254345 0.440539i
\(815\) 4.31975e9 7.48202e9i 0.279516 0.484136i
\(816\) 0 0
\(817\) −2.53857e8 4.39693e8i −0.0162859 0.0282080i
\(818\) −8.15591e9 −0.520997
\(819\) 0 0
\(820\) 3.25373e9 0.206078
\(821\) −4.36796e9 7.56553e9i −0.275472 0.477131i 0.694782 0.719220i \(-0.255501\pi\)
−0.970254 + 0.242089i \(0.922167\pi\)
\(822\) 0 0
\(823\) −7.21847e9 + 1.25028e10i −0.451384 + 0.781820i −0.998472 0.0552552i \(-0.982403\pi\)
0.547089 + 0.837075i \(0.315736\pi\)
\(824\) −5.29642e8 + 9.17368e8i −0.0329790 + 0.0571213i
\(825\) 0 0
\(826\) −4.52255e9 7.83329e9i −0.279224 0.483631i
\(827\) 5.56666e9 0.342236 0.171118 0.985251i \(-0.445262\pi\)
0.171118 + 0.985251i \(0.445262\pi\)
\(828\) 0 0
\(829\) −1.50766e10 −0.919101 −0.459550 0.888152i \(-0.651989\pi\)
−0.459550 + 0.888152i \(0.651989\pi\)
\(830\) −1.74979e9 3.03072e9i −0.106222 0.183981i
\(831\) 0 0
\(832\) −6.60472e8 + 1.14397e9i −0.0397578 + 0.0688626i
\(833\) −9.01656e8 + 1.56171e9i −0.0540485 + 0.0936147i
\(834\) 0 0
\(835\) −4.52065e9 7.82999e9i −0.268719 0.465435i
\(836\) 2.91852e8 0.0172759
\(837\) 0 0
\(838\) 8.33029e9 0.488997
\(839\) −6.00020e9 1.03927e10i −0.350751 0.607519i 0.635630 0.771994i \(-0.280740\pi\)
−0.986381 + 0.164475i \(0.947407\pi\)
\(840\) 0 0
\(841\) 5.20819e9 9.02084e9i 0.301926 0.522951i
\(842\) 7.83380e9 1.35685e10i 0.452251 0.783322i
\(843\) 0 0
\(844\) 7.01888e7 + 1.21571e8i 0.00401855 + 0.00696033i
\(845\) 6.16390e9 0.351445
\(846\) 0 0
\(847\) 5.25404e9 0.297099
\(848\) −1.55690e9 2.69663e9i −0.0876750 0.151858i
\(849\) 0 0
\(850\) −6.49280e8 + 1.12459e9i −0.0362632 + 0.0628097i
\(851\) −1.22309e10 + 2.11846e10i −0.680307 + 1.17833i
\(852\) 0 0
\(853\) 4.50830e8 + 7.80861e8i 0.0248709 + 0.0430777i 0.878193 0.478307i \(-0.158749\pi\)
−0.853322 + 0.521384i \(0.825416\pi\)
\(854\) −9.12293e9 −0.501224
\(855\) 0 0
\(856\) −4.68710e9 −0.255415
\(857\) 1.40718e10 + 2.43731e10i 0.763690 + 1.32275i 0.940936 + 0.338583i \(0.109948\pi\)
−0.177247 + 0.984166i \(0.556719\pi\)
\(858\) 0 0
\(859\) 4.75771e9 8.24060e9i 0.256107 0.443591i −0.709088 0.705120i \(-0.750893\pi\)
0.965196 + 0.261529i \(0.0842266\pi\)
\(860\) 1.77767e9 3.07902e9i 0.0953030 0.165070i
\(861\) 0 0
\(862\) −1.13702e10 1.96938e10i −0.604636 1.04726i
\(863\) −1.24682e10 −0.660336 −0.330168 0.943922i \(-0.607105\pi\)
−0.330168 + 0.943922i \(0.607105\pi\)
\(864\) 0 0
\(865\) −2.04014e10 −1.07178
\(866\) 3.36517e8 + 5.82864e8i 0.0176074 + 0.0304968i
\(867\) 0 0
\(868\) −2.84304e9 + 4.92430e9i −0.147559 + 0.255579i
\(869\) −1.06275e10 + 1.84074e10i −0.549366 + 0.951530i
\(870\) 0 0
\(871\) −3.71170e9 6.42885e9i −0.190331 0.329663i
\(872\) 4.44746e9 0.227146
\(873\) 0 0
\(874\) −9.12038e8 −0.0462086
\(875\) 5.40744e9 + 9.36596e9i 0.272875 + 0.472633i
\(876\) 0 0
\(877\) 3.35537e9 5.81167e9i 0.167974 0.290939i −0.769734 0.638365i \(-0.779611\pi\)
0.937707 + 0.347426i \(0.112944\pi\)
\(878\) 7.48186e9 1.29590e10i 0.373060 0.646159i
\(879\) 0 0
\(880\) 1.02187e9 + 1.76993e9i 0.0505483 + 0.0875522i
\(881\) −3.59350e10 −1.77053 −0.885263 0.465091i \(-0.846022\pi\)
−0.885263 + 0.465091i \(0.846022\pi\)
\(882\) 0 0
\(883\) −1.40241e9 −0.0685509 −0.0342754 0.999412i \(-0.510912\pi\)
−0.0342754 + 0.999412i \(0.510912\pi\)
\(884\) 5.14220e8 + 8.90655e8i 0.0250361 + 0.0433637i
\(885\) 0 0
\(886\) 4.05331e9 7.02053e9i 0.195790 0.339119i
\(887\) 4.09845e8 7.09873e8i 0.0197191 0.0341545i −0.855997 0.516980i \(-0.827056\pi\)
0.875717 + 0.482826i \(0.160389\pi\)
\(888\) 0 0
\(889\) −1.26659e9 2.19381e9i −0.0604618 0.104723i
\(890\) 8.93759e9 0.424967
\(891\) 0 0
\(892\) 1.27643e9 0.0602174
\(893\) 2.88930e8 + 5.00441e8i 0.0135773 + 0.0235165i
\(894\) 0 0
\(895\) 8.14520e9 1.41079e10i 0.379771 0.657782i
\(896\) 5.32677e8 9.22623e8i 0.0247392 0.0428495i
\(897\) 0 0
\(898\) 6.63022e8 + 1.14839e9i 0.0305535 + 0.0529202i
\(899\) 1.44574e10 0.663640
\(900\) 0 0
\(901\) −2.42430e9 −0.110420
\(902\) 3.72700e9 + 6.45535e9i 0.169097 + 0.292885i
\(903\) 0 0
\(904\) 6.39425e9 1.10752e10i 0.287873 0.498610i
\(905\) 7.58881e9 1.31442e10i 0.340333 0.589473i
\(906\) 0 0
\(907\) −1.42253e9 2.46390e9i −0.0633047 0.109647i 0.832636 0.553821i \(-0.186831\pi\)
−0.895941 + 0.444174i \(0.853497\pi\)
\(908\) −8.06304e9 −0.357436
\(909\) 0 0
\(910\) 3.37895e9 0.148640
\(911\) 2.16498e10 + 3.74985e10i 0.948723 + 1.64324i 0.748119 + 0.663564i \(0.230957\pi\)
0.200604 + 0.979672i \(0.435710\pi\)
\(912\) 0 0
\(913\) 4.00861e9 6.94311e9i 0.174319 0.301930i
\(914\) 5.52319e9 9.56644e9i 0.239264 0.414418i
\(915\) 0 0
\(916\) −7.52146e8 1.30276e9i −0.0323346 0.0560052i
\(917\) 1.13490e10 0.486030
\(918\) 0 0
\(919\) −3.26317e10 −1.38687 −0.693435 0.720520i \(-0.743903\pi\)
−0.693435 + 0.720520i \(0.743903\pi\)
\(920\) −3.19334e9 5.53103e9i −0.135204 0.234180i
\(921\) 0 0
\(922\) −1.11397e10 + 1.92944e10i −0.468073 + 0.810726i
\(923\) 1.26149e10 2.18496e10i 0.528052 0.914613i
\(924\) 0 0
\(925\) −8.23483e9 1.42631e10i −0.342104 0.592542i
\(926\) 2.23135e10 0.923483
\(927\) 0 0
\(928\) −2.70877e9 −0.111264
\(929\) −2.34773e10 4.06639e10i −0.960712 1.66400i −0.720718 0.693228i \(-0.756188\pi\)
−0.239994 0.970774i \(-0.577146\pi\)
\(930\) 0 0
\(931\) 4.26371e8 7.38497e8i 0.0173167 0.0299933i
\(932\) 4.08822e9 7.08100e9i 0.165416 0.286509i
\(933\) 0 0
\(934\) −1.58903e10 2.75228e10i −0.638143 1.10530i
\(935\) 1.59118e9 0.0636619
\(936\) 0 0
\(937\) −2.80951e10 −1.11569 −0.557843 0.829947i \(-0.688371\pi\)
−0.557843 + 0.829947i \(0.688371\pi\)
\(938\) 2.99352e9 + 5.18493e9i 0.118433 + 0.205132i
\(939\) 0 0
\(940\) −2.02327e9 + 3.50441e9i −0.0794525 + 0.137616i
\(941\) 1.36099e10 2.35730e10i 0.532464 0.922254i −0.466818 0.884354i \(-0.654600\pi\)
0.999282 0.0379007i \(-0.0120671\pi\)
\(942\) 0 0
\(943\) −1.16469e10 2.01730e10i −0.452291 0.783391i
\(944\) −9.11632e9 −0.352710
\(945\) 0 0
\(946\) 8.14496e9 0.312802
\(947\) 1.15221e10 + 1.99568e10i 0.440864 + 0.763599i 0.997754 0.0669872i \(-0.0213387\pi\)
−0.556890 + 0.830587i \(0.688005\pi\)
\(948\) 0 0
\(949\) 1.48608e10 2.57396e10i 0.564429 0.977620i
\(950\) 3.07029e8 5.31789e8i 0.0116184 0.0201237i
\(951\) 0 0
\(952\) −4.14723e8 7.18321e8i −0.0155786 0.0269830i
\(953\) 2.22131e10 0.831352 0.415676 0.909513i \(-0.363545\pi\)
0.415676 + 0.909513i \(0.363545\pi\)
\(954\) 0 0
\(955\) −2.17765e10 −0.809051
\(956\) 2.99161e9 + 5.18162e9i 0.110739 + 0.191806i
\(957\) 0 0
\(958\) 9.37868e9 1.62443e10i 0.344637 0.596929i
\(959\) 3.26722e9 5.65899e9i 0.119623 0.207193i
\(960\) 0 0
\(961\) −1.53730e9 2.66268e9i −0.0558761 0.0967803i
\(962\) −1.30437e10 −0.472377
\(963\) 0 0
\(964\) −8.62593e9 −0.310125
\(965\) 1.22024e10 + 2.11351e10i 0.437117 + 0.757110i
\(966\) 0 0
\(967\) −1.35385e10 + 2.34494e10i −0.481481 + 0.833950i −0.999774 0.0212534i \(-0.993234\pi\)
0.518293 + 0.855203i \(0.326568\pi\)
\(968\) 2.64770e9 4.58596e9i 0.0938222 0.162505i
\(969\) 0 0
\(970\) 1.06764e10 + 1.84921e10i 0.375599 + 0.650556i
\(971\) −2.57664e10 −0.903204 −0.451602 0.892220i \(-0.649147\pi\)
−0.451602 + 0.892220i \(0.649147\pi\)
\(972\) 0 0
\(973\) −2.24486e10 −0.781259
\(974\) −1.23352e10 2.13652e10i −0.427751 0.740886i
\(975\) 0 0
\(976\) −4.59738e9 + 7.96290e9i −0.158284 + 0.274155i
\(977\) 4.75936e9 8.24346e9i 0.163274 0.282799i −0.772767 0.634690i \(-0.781128\pi\)
0.936041 + 0.351891i \(0.114461\pi\)
\(978\) 0 0
\(979\) 1.02376e10 + 1.77320e10i 0.348706 + 0.603976i
\(980\) 5.97146e9 0.202670
\(981\) 0 0
\(982\) −2.97481e10 −1.00246
\(983\) 2.75959e9 + 4.77974e9i 0.0926631 + 0.160497i 0.908631 0.417600i \(-0.137129\pi\)
−0.815968 + 0.578097i \(0.803795\pi\)
\(984\) 0 0
\(985\) −2.22388e9 + 3.85187e9i −0.0741454 + 0.128424i
\(986\) −1.05447e9 + 1.82640e9i −0.0350322 + 0.0606775i
\(987\) 0 0
\(988\) −2.43162e8 4.21169e8i −0.00802133 0.0138934i
\(989\) −2.54530e10 −0.836666
\(990\) 0 0
\(991\) 1.65440e10 0.539987 0.269994 0.962862i \(-0.412978\pi\)
0.269994 + 0.962862i \(0.412978\pi\)
\(992\) 2.86543e9 + 4.96307e9i 0.0931964 + 0.161421i
\(993\) 0 0
\(994\) −1.01740e10 + 1.76219e10i −0.328579 + 0.569115i
\(995\) 1.12060e10 1.94094e10i 0.360637 0.624642i
\(996\) 0 0
\(997\) −2.05028e10 3.55118e10i −0.655208 1.13485i −0.981842 0.189703i \(-0.939248\pi\)
0.326633 0.945151i \(-0.394086\pi\)
\(998\) 3.49141e9 0.111184
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.c.e.109.1 2
3.2 odd 2 162.8.c.h.109.1 2
9.2 odd 6 162.8.c.h.55.1 2
9.4 even 3 162.8.a.b.1.1 yes 1
9.5 odd 6 162.8.a.a.1.1 1
9.7 even 3 inner 162.8.c.e.55.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.8.a.a.1.1 1 9.5 odd 6
162.8.a.b.1.1 yes 1 9.4 even 3
162.8.c.e.55.1 2 9.7 even 3 inner
162.8.c.e.109.1 2 1.1 even 1 trivial
162.8.c.h.55.1 2 9.2 odd 6
162.8.c.h.109.1 2 3.2 odd 2