Properties

Label 162.3.d.c.53.2
Level $162$
Weight $3$
Character 162.53
Analytic conductor $4.414$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,3,Mod(53,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.53"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 162.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,8,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.41418028264\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.2
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 162.53
Dual form 162.3.d.c.107.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} +(1.34486 + 0.776457i) q^{5} +(-6.19615 - 10.7321i) q^{7} +2.82843i q^{8} -2.19615 q^{10} +(-12.7279 + 7.34847i) q^{11} +(5.40192 - 9.35641i) q^{13} +(15.1774 + 8.76268i) q^{14} +(-2.00000 - 3.46410i) q^{16} -28.9778i q^{17} +3.60770 q^{19} +(2.68973 - 1.55291i) q^{20} +(10.3923 - 18.0000i) q^{22} +(-12.7279 - 7.34847i) q^{23} +(-11.2942 - 19.5622i) q^{25} +15.2789i q^{26} -24.7846 q^{28} +(24.3748 - 14.0728i) q^{29} +(-4.00000 + 6.92820i) q^{31} +(4.89898 + 2.82843i) q^{32} +(20.4904 + 35.4904i) q^{34} -19.2442i q^{35} +22.5692 q^{37} +(-4.41851 + 2.55103i) q^{38} +(-2.19615 + 3.80385i) q^{40} +(-21.7816 - 12.5756i) q^{41} +(26.5885 + 46.0526i) q^{43} +29.3939i q^{44} +20.7846 q^{46} +(-14.6969 + 8.48528i) q^{47} +(-52.2846 + 90.5596i) q^{49} +(27.6651 + 15.9725i) q^{50} +(-10.8038 - 18.7128i) q^{52} +84.5482i q^{53} -22.8231 q^{55} +(30.3548 - 17.5254i) q^{56} +(-19.9019 + 34.4711i) q^{58} +(-78.8641 - 45.5322i) q^{59} +(6.50000 + 11.2583i) q^{61} -11.3137i q^{62} -8.00000 q^{64} +(14.5297 - 8.38872i) q^{65} +(20.5885 - 35.6603i) q^{67} +(-50.1910 - 28.9778i) q^{68} +(13.6077 + 23.5692i) q^{70} +16.3613i q^{71} +71.5885 q^{73} +(-27.6415 + 15.9588i) q^{74} +(3.60770 - 6.24871i) q^{76} +(157.728 + 91.0645i) q^{77} +(23.3731 + 40.4833i) q^{79} -6.21166i q^{80} +35.5692 q^{82} +(13.2555 - 7.65308i) q^{83} +(22.5000 - 38.9711i) q^{85} +(-65.1282 - 37.6018i) q^{86} +(-20.7846 - 36.0000i) q^{88} -78.9756i q^{89} -133.885 q^{91} +(-25.4558 + 14.6969i) q^{92} +(12.0000 - 20.7846i) q^{94} +(4.85186 + 2.80122i) q^{95} +(-45.5692 - 78.9282i) q^{97} -147.883i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} - 8 q^{7} + 24 q^{10} + 64 q^{13} - 16 q^{16} + 112 q^{19} - 28 q^{25} - 32 q^{28} - 32 q^{31} + 60 q^{34} - 152 q^{37} + 24 q^{40} + 88 q^{43} - 252 q^{49} - 128 q^{52} - 432 q^{55} - 180 q^{58}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) 1.34486 + 0.776457i 0.268973 + 0.155291i 0.628421 0.777874i \(-0.283702\pi\)
−0.359448 + 0.933165i \(0.617035\pi\)
\(6\) 0 0
\(7\) −6.19615 10.7321i −0.885165 1.53315i −0.845525 0.533936i \(-0.820712\pi\)
−0.0396398 0.999214i \(-0.512621\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −2.19615 −0.219615
\(11\) −12.7279 + 7.34847i −1.15708 + 0.668043i −0.950603 0.310408i \(-0.899534\pi\)
−0.206480 + 0.978451i \(0.566201\pi\)
\(12\) 0 0
\(13\) 5.40192 9.35641i 0.415533 0.719724i −0.579952 0.814651i \(-0.696929\pi\)
0.995484 + 0.0949274i \(0.0302619\pi\)
\(14\) 15.1774 + 8.76268i 1.08410 + 0.625906i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 28.9778i 1.70457i −0.523074 0.852287i \(-0.675215\pi\)
0.523074 0.852287i \(-0.324785\pi\)
\(18\) 0 0
\(19\) 3.60770 0.189879 0.0949393 0.995483i \(-0.469734\pi\)
0.0949393 + 0.995483i \(0.469734\pi\)
\(20\) 2.68973 1.55291i 0.134486 0.0776457i
\(21\) 0 0
\(22\) 10.3923 18.0000i 0.472377 0.818182i
\(23\) −12.7279 7.34847i −0.553388 0.319499i 0.197099 0.980384i \(-0.436848\pi\)
−0.750487 + 0.660885i \(0.770181\pi\)
\(24\) 0 0
\(25\) −11.2942 19.5622i −0.451769 0.782487i
\(26\) 15.2789i 0.587652i
\(27\) 0 0
\(28\) −24.7846 −0.885165
\(29\) 24.3748 14.0728i 0.840510 0.485268i −0.0169278 0.999857i \(-0.505389\pi\)
0.857437 + 0.514588i \(0.172055\pi\)
\(30\) 0 0
\(31\) −4.00000 + 6.92820i −0.129032 + 0.223490i −0.923302 0.384075i \(-0.874520\pi\)
0.794270 + 0.607565i \(0.207854\pi\)
\(32\) 4.89898 + 2.82843i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 20.4904 + 35.4904i 0.602658 + 1.04383i
\(35\) 19.2442i 0.549834i
\(36\) 0 0
\(37\) 22.5692 0.609979 0.304989 0.952356i \(-0.401347\pi\)
0.304989 + 0.952356i \(0.401347\pi\)
\(38\) −4.41851 + 2.55103i −0.116276 + 0.0671323i
\(39\) 0 0
\(40\) −2.19615 + 3.80385i −0.0549038 + 0.0950962i
\(41\) −21.7816 12.5756i −0.531259 0.306722i 0.210270 0.977643i \(-0.432566\pi\)
−0.741529 + 0.670921i \(0.765899\pi\)
\(42\) 0 0
\(43\) 26.5885 + 46.0526i 0.618336 + 1.07099i 0.989789 + 0.142538i \(0.0455263\pi\)
−0.371453 + 0.928452i \(0.621140\pi\)
\(44\) 29.3939i 0.668043i
\(45\) 0 0
\(46\) 20.7846 0.451839
\(47\) −14.6969 + 8.48528i −0.312701 + 0.180538i −0.648134 0.761526i \(-0.724451\pi\)
0.335434 + 0.942064i \(0.391117\pi\)
\(48\) 0 0
\(49\) −52.2846 + 90.5596i −1.06703 + 1.84816i
\(50\) 27.6651 + 15.9725i 0.553302 + 0.319449i
\(51\) 0 0
\(52\) −10.8038 18.7128i −0.207766 0.359862i
\(53\) 84.5482i 1.59525i 0.603154 + 0.797625i \(0.293910\pi\)
−0.603154 + 0.797625i \(0.706090\pi\)
\(54\) 0 0
\(55\) −22.8231 −0.414965
\(56\) 30.3548 17.5254i 0.542050 0.312953i
\(57\) 0 0
\(58\) −19.9019 + 34.4711i −0.343137 + 0.594330i
\(59\) −78.8641 45.5322i −1.33668 0.771733i −0.350367 0.936613i \(-0.613943\pi\)
−0.986314 + 0.164880i \(0.947276\pi\)
\(60\) 0 0
\(61\) 6.50000 + 11.2583i 0.106557 + 0.184563i 0.914373 0.404872i \(-0.132684\pi\)
−0.807816 + 0.589435i \(0.799351\pi\)
\(62\) 11.3137i 0.182479i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 14.5297 8.38872i 0.223534 0.129057i
\(66\) 0 0
\(67\) 20.5885 35.6603i 0.307290 0.532243i −0.670478 0.741929i \(-0.733911\pi\)
0.977769 + 0.209687i \(0.0672444\pi\)
\(68\) −50.1910 28.9778i −0.738103 0.426144i
\(69\) 0 0
\(70\) 13.6077 + 23.5692i 0.194396 + 0.336703i
\(71\) 16.3613i 0.230442i 0.993340 + 0.115221i \(0.0367575\pi\)
−0.993340 + 0.115221i \(0.963242\pi\)
\(72\) 0 0
\(73\) 71.5885 0.980664 0.490332 0.871536i \(-0.336876\pi\)
0.490332 + 0.871536i \(0.336876\pi\)
\(74\) −27.6415 + 15.9588i −0.373534 + 0.215660i
\(75\) 0 0
\(76\) 3.60770 6.24871i 0.0474697 0.0822199i
\(77\) 157.728 + 91.0645i 2.04842 + 1.18266i
\(78\) 0 0
\(79\) 23.3731 + 40.4833i 0.295862 + 0.512447i 0.975185 0.221392i \(-0.0710599\pi\)
−0.679323 + 0.733839i \(0.737727\pi\)
\(80\) 6.21166i 0.0776457i
\(81\) 0 0
\(82\) 35.5692 0.433771
\(83\) 13.2555 7.65308i 0.159705 0.0922057i −0.418017 0.908439i \(-0.637275\pi\)
0.577723 + 0.816233i \(0.303942\pi\)
\(84\) 0 0
\(85\) 22.5000 38.9711i 0.264706 0.458484i
\(86\) −65.1282 37.6018i −0.757304 0.437230i
\(87\) 0 0
\(88\) −20.7846 36.0000i −0.236189 0.409091i
\(89\) 78.9756i 0.887367i −0.896184 0.443683i \(-0.853671\pi\)
0.896184 0.443683i \(-0.146329\pi\)
\(90\) 0 0
\(91\) −133.885 −1.47126
\(92\) −25.4558 + 14.6969i −0.276694 + 0.159749i
\(93\) 0 0
\(94\) 12.0000 20.7846i 0.127660 0.221113i
\(95\) 4.85186 + 2.80122i 0.0510722 + 0.0294865i
\(96\) 0 0
\(97\) −45.5692 78.9282i −0.469786 0.813693i 0.529617 0.848237i \(-0.322336\pi\)
−0.999403 + 0.0345438i \(0.989002\pi\)
\(98\) 147.883i 1.50901i
\(99\) 0 0
\(100\) −45.1769 −0.451769
\(101\) 76.6313 44.2431i 0.758726 0.438051i −0.0701121 0.997539i \(-0.522336\pi\)
0.828838 + 0.559488i \(0.189002\pi\)
\(102\) 0 0
\(103\) 76.3538 132.249i 0.741299 1.28397i −0.210605 0.977571i \(-0.567543\pi\)
0.951904 0.306397i \(-0.0991234\pi\)
\(104\) 26.4639 + 15.2789i 0.254461 + 0.146913i
\(105\) 0 0
\(106\) −59.7846 103.550i −0.564006 0.976887i
\(107\) 60.0062i 0.560805i 0.959882 + 0.280403i \(0.0904680\pi\)
−0.959882 + 0.280403i \(0.909532\pi\)
\(108\) 0 0
\(109\) −93.9423 −0.861856 −0.430928 0.902386i \(-0.641814\pi\)
−0.430928 + 0.902386i \(0.641814\pi\)
\(110\) 27.9525 16.1384i 0.254113 0.146712i
\(111\) 0 0
\(112\) −24.7846 + 42.9282i −0.221291 + 0.383288i
\(113\) 76.7279 + 44.2989i 0.679008 + 0.392025i 0.799481 0.600691i \(-0.205108\pi\)
−0.120473 + 0.992717i \(0.538441\pi\)
\(114\) 0 0
\(115\) −11.4115 19.7654i −0.0992308 0.171873i
\(116\) 56.2911i 0.485268i
\(117\) 0 0
\(118\) 128.785 1.09139
\(119\) −310.991 + 179.551i −2.61337 + 1.50883i
\(120\) 0 0
\(121\) 47.5000 82.2724i 0.392562 0.679937i
\(122\) −15.9217 9.19239i −0.130506 0.0753474i
\(123\) 0 0
\(124\) 8.00000 + 13.8564i 0.0645161 + 0.111745i
\(125\) 73.9008i 0.591206i
\(126\) 0 0
\(127\) 78.8231 0.620654 0.310327 0.950630i \(-0.399561\pi\)
0.310327 + 0.950630i \(0.399561\pi\)
\(128\) 9.79796 5.65685i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −11.8634 + 20.5481i −0.0912573 + 0.158062i
\(131\) 71.5157 + 41.2896i 0.545921 + 0.315188i 0.747475 0.664290i \(-0.231266\pi\)
−0.201554 + 0.979477i \(0.564599\pi\)
\(132\) 0 0
\(133\) −22.3538 38.7180i −0.168074 0.291113i
\(134\) 58.2330i 0.434574i
\(135\) 0 0
\(136\) 81.9615 0.602658
\(137\) 185.970 107.370i 1.35745 0.783723i 0.368169 0.929759i \(-0.379985\pi\)
0.989279 + 0.146036i \(0.0466515\pi\)
\(138\) 0 0
\(139\) 30.3923 52.6410i 0.218650 0.378712i −0.735746 0.677258i \(-0.763168\pi\)
0.954395 + 0.298546i \(0.0965015\pi\)
\(140\) −33.3319 19.2442i −0.238085 0.137458i
\(141\) 0 0
\(142\) −11.5692 20.0385i −0.0814734 0.141116i
\(143\) 158.783i 1.11037i
\(144\) 0 0
\(145\) 43.7077 0.301432
\(146\) −87.6776 + 50.6207i −0.600531 + 0.346717i
\(147\) 0 0
\(148\) 22.5692 39.0910i 0.152495 0.264129i
\(149\) 26.5369 + 15.3211i 0.178100 + 0.102826i 0.586400 0.810022i \(-0.300545\pi\)
−0.408300 + 0.912848i \(0.633878\pi\)
\(150\) 0 0
\(151\) −16.0000 27.7128i −0.105960 0.183529i 0.808170 0.588949i \(-0.200458\pi\)
−0.914130 + 0.405421i \(0.867125\pi\)
\(152\) 10.2041i 0.0671323i
\(153\) 0 0
\(154\) −257.569 −1.67253
\(155\) −10.7589 + 6.21166i −0.0694123 + 0.0400752i
\(156\) 0 0
\(157\) −124.854 + 216.253i −0.795247 + 1.37741i 0.127435 + 0.991847i \(0.459326\pi\)
−0.922682 + 0.385562i \(0.874008\pi\)
\(158\) −57.2521 33.0545i −0.362355 0.209206i
\(159\) 0 0
\(160\) 4.39230 + 7.60770i 0.0274519 + 0.0475481i
\(161\) 182.129i 1.13124i
\(162\) 0 0
\(163\) −12.7846 −0.0784332 −0.0392166 0.999231i \(-0.512486\pi\)
−0.0392166 + 0.999231i \(0.512486\pi\)
\(164\) −43.5632 + 25.1512i −0.265629 + 0.153361i
\(165\) 0 0
\(166\) −10.8231 + 18.7461i −0.0651993 + 0.112929i
\(167\) −201.292 116.216i −1.20534 0.695902i −0.243601 0.969876i \(-0.578329\pi\)
−0.961737 + 0.273973i \(0.911662\pi\)
\(168\) 0 0
\(169\) 26.1384 + 45.2731i 0.154665 + 0.267888i
\(170\) 63.6396i 0.374351i
\(171\) 0 0
\(172\) 106.354 0.618336
\(173\) 18.6608 10.7738i 0.107866 0.0622765i −0.445096 0.895483i \(-0.646831\pi\)
0.552963 + 0.833206i \(0.313497\pi\)
\(174\) 0 0
\(175\) −139.962 + 242.420i −0.799780 + 1.38526i
\(176\) 50.9117 + 29.3939i 0.289271 + 0.167011i
\(177\) 0 0
\(178\) 55.8442 + 96.7250i 0.313732 + 0.543399i
\(179\) 277.741i 1.55162i −0.630964 0.775812i \(-0.717341\pi\)
0.630964 0.775812i \(-0.282659\pi\)
\(180\) 0 0
\(181\) 174.277 0.962856 0.481428 0.876486i \(-0.340118\pi\)
0.481428 + 0.876486i \(0.340118\pi\)
\(182\) 163.974 94.6707i 0.900958 0.520169i
\(183\) 0 0
\(184\) 20.7846 36.0000i 0.112960 0.195652i
\(185\) 30.3525 + 17.5240i 0.164068 + 0.0947245i
\(186\) 0 0
\(187\) 212.942 + 368.827i 1.13873 + 1.97234i
\(188\) 33.9411i 0.180538i
\(189\) 0 0
\(190\) −7.92305 −0.0417003
\(191\) 131.745 76.0629i 0.689764 0.398235i −0.113760 0.993508i \(-0.536289\pi\)
0.803523 + 0.595273i \(0.202956\pi\)
\(192\) 0 0
\(193\) 27.5000 47.6314i 0.142487 0.246795i −0.785946 0.618296i \(-0.787823\pi\)
0.928433 + 0.371501i \(0.121157\pi\)
\(194\) 111.621 + 64.4446i 0.575368 + 0.332189i
\(195\) 0 0
\(196\) 104.569 + 181.119i 0.533516 + 0.924078i
\(197\) 133.298i 0.676638i −0.941031 0.338319i \(-0.890142\pi\)
0.941031 0.338319i \(-0.109858\pi\)
\(198\) 0 0
\(199\) −208.862 −1.04956 −0.524778 0.851239i \(-0.675852\pi\)
−0.524778 + 0.851239i \(0.675852\pi\)
\(200\) 55.3302 31.9449i 0.276651 0.159725i
\(201\) 0 0
\(202\) −62.5692 + 108.373i −0.309749 + 0.536500i
\(203\) −302.060 174.394i −1.48798 0.859085i
\(204\) 0 0
\(205\) −19.5289 33.8250i −0.0952627 0.165000i
\(206\) 215.961i 1.04836i
\(207\) 0 0
\(208\) −43.2154 −0.207766
\(209\) −45.9185 + 26.5110i −0.219706 + 0.126847i
\(210\) 0 0
\(211\) 43.7269 75.7372i 0.207236 0.358944i −0.743607 0.668617i \(-0.766886\pi\)
0.950843 + 0.309673i \(0.100220\pi\)
\(212\) 146.442 + 84.5482i 0.690763 + 0.398812i
\(213\) 0 0
\(214\) −42.4308 73.4923i −0.198275 0.343422i
\(215\) 82.5792i 0.384089i
\(216\) 0 0
\(217\) 99.1384 0.456859
\(218\) 115.055 66.4272i 0.527777 0.304712i
\(219\) 0 0
\(220\) −22.8231 + 39.5307i −0.103741 + 0.179685i
\(221\) −271.128 156.536i −1.22682 0.708306i
\(222\) 0 0
\(223\) −111.296 192.771i −0.499086 0.864442i 0.500914 0.865497i \(-0.332997\pi\)
−0.999999 + 0.00105540i \(0.999664\pi\)
\(224\) 70.1015i 0.312953i
\(225\) 0 0
\(226\) −125.296 −0.554408
\(227\) 260.079 150.157i 1.14572 0.661484i 0.197882 0.980226i \(-0.436594\pi\)
0.947842 + 0.318742i \(0.103260\pi\)
\(228\) 0 0
\(229\) −114.971 + 199.136i −0.502057 + 0.869589i 0.497940 + 0.867212i \(0.334090\pi\)
−0.999997 + 0.00237731i \(0.999243\pi\)
\(230\) 27.9525 + 16.1384i 0.121532 + 0.0701668i
\(231\) 0 0
\(232\) 39.8038 + 68.9423i 0.171568 + 0.297165i
\(233\) 116.246i 0.498908i 0.968387 + 0.249454i \(0.0802512\pi\)
−0.968387 + 0.249454i \(0.919749\pi\)
\(234\) 0 0
\(235\) −26.3538 −0.112144
\(236\) −157.728 + 91.0645i −0.668340 + 0.385866i
\(237\) 0 0
\(238\) 253.923 439.808i 1.06690 1.84793i
\(239\) 142.362 + 82.1930i 0.595659 + 0.343904i 0.767332 0.641250i \(-0.221584\pi\)
−0.171673 + 0.985154i \(0.554917\pi\)
\(240\) 0 0
\(241\) 40.6558 + 70.4179i 0.168696 + 0.292190i 0.937962 0.346739i \(-0.112711\pi\)
−0.769265 + 0.638929i \(0.779378\pi\)
\(242\) 134.350i 0.555166i
\(243\) 0 0
\(244\) 26.0000 0.106557
\(245\) −140.631 + 81.1935i −0.574005 + 0.331402i
\(246\) 0 0
\(247\) 19.4885 33.7551i 0.0789008 0.136660i
\(248\) −19.5959 11.3137i −0.0790158 0.0456198i
\(249\) 0 0
\(250\) 52.2558 + 90.5096i 0.209023 + 0.362038i
\(251\) 396.371i 1.57917i −0.613642 0.789584i \(-0.710296\pi\)
0.613642 0.789584i \(-0.289704\pi\)
\(252\) 0 0
\(253\) 216.000 0.853755
\(254\) −96.5382 + 55.7363i −0.380072 + 0.219434i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 186.164 + 107.482i 0.724372 + 0.418216i 0.816360 0.577544i \(-0.195989\pi\)
−0.0919879 + 0.995760i \(0.529322\pi\)
\(258\) 0 0
\(259\) −139.842 242.214i −0.539932 0.935189i
\(260\) 33.5549i 0.129057i
\(261\) 0 0
\(262\) −116.785 −0.445743
\(263\) −275.304 + 158.947i −1.04678 + 0.604360i −0.921747 0.387792i \(-0.873238\pi\)
−0.125036 + 0.992152i \(0.539905\pi\)
\(264\) 0 0
\(265\) −65.6481 + 113.706i −0.247729 + 0.429078i
\(266\) 54.7555 + 31.6131i 0.205848 + 0.118846i
\(267\) 0 0
\(268\) −41.1769 71.3205i −0.153645 0.266121i
\(269\) 208.528i 0.775199i −0.921828 0.387599i \(-0.873304\pi\)
0.921828 0.387599i \(-0.126696\pi\)
\(270\) 0 0
\(271\) 409.885 1.51249 0.756245 0.654289i \(-0.227032\pi\)
0.756245 + 0.654289i \(0.227032\pi\)
\(272\) −100.382 + 57.9555i −0.369051 + 0.213072i
\(273\) 0 0
\(274\) −151.844 + 263.002i −0.554176 + 0.959861i
\(275\) 287.504 + 165.991i 1.04547 + 0.603602i
\(276\) 0 0
\(277\) −248.708 430.774i −0.897862 1.55514i −0.830223 0.557432i \(-0.811787\pi\)
−0.0676390 0.997710i \(-0.521547\pi\)
\(278\) 85.9624i 0.309217i
\(279\) 0 0
\(280\) 54.4308 0.194396
\(281\) −186.427 + 107.634i −0.663442 + 0.383039i −0.793587 0.608456i \(-0.791789\pi\)
0.130145 + 0.991495i \(0.458456\pi\)
\(282\) 0 0
\(283\) 148.354 256.956i 0.524218 0.907973i −0.475384 0.879778i \(-0.657691\pi\)
0.999602 0.0281946i \(-0.00897581\pi\)
\(284\) 28.3387 + 16.3613i 0.0997841 + 0.0576104i
\(285\) 0 0
\(286\) −112.277 194.469i −0.392576 0.679962i
\(287\) 311.682i 1.08600i
\(288\) 0 0
\(289\) −550.711 −1.90558
\(290\) −53.5307 + 30.9060i −0.184589 + 0.106572i
\(291\) 0 0
\(292\) 71.5885 123.995i 0.245166 0.424640i
\(293\) −295.284 170.482i −1.00779 0.581850i −0.0972490 0.995260i \(-0.531004\pi\)
−0.910545 + 0.413410i \(0.864338\pi\)
\(294\) 0 0
\(295\) −70.7077 122.469i −0.239687 0.415150i
\(296\) 63.8354i 0.215660i
\(297\) 0 0
\(298\) −43.3346 −0.145418
\(299\) −137.511 + 79.3917i −0.459901 + 0.265524i
\(300\) 0 0
\(301\) 329.492 570.697i 1.09466 1.89600i
\(302\) 39.1918 + 22.6274i 0.129774 + 0.0749252i
\(303\) 0 0
\(304\) −7.21539 12.4974i −0.0237348 0.0411099i
\(305\) 20.1879i 0.0661898i
\(306\) 0 0
\(307\) −114.354 −0.372488 −0.186244 0.982504i \(-0.559632\pi\)
−0.186244 + 0.982504i \(0.559632\pi\)
\(308\) 315.457 182.129i 1.02421 0.591328i
\(309\) 0 0
\(310\) 8.78461 15.2154i 0.0283375 0.0490819i
\(311\) 169.929 + 98.1083i 0.546394 + 0.315461i 0.747666 0.664074i \(-0.231174\pi\)
−0.201272 + 0.979535i \(0.564508\pi\)
\(312\) 0 0
\(313\) 73.3616 + 127.066i 0.234382 + 0.405962i 0.959093 0.283092i \(-0.0913600\pi\)
−0.724711 + 0.689053i \(0.758027\pi\)
\(314\) 353.140i 1.12465i
\(315\) 0 0
\(316\) 93.4923 0.295862
\(317\) 41.6908 24.0702i 0.131517 0.0759311i −0.432798 0.901491i \(-0.642474\pi\)
0.564315 + 0.825560i \(0.309140\pi\)
\(318\) 0 0
\(319\) −206.827 + 358.235i −0.648360 + 1.12299i
\(320\) −10.7589 6.21166i −0.0336216 0.0194114i
\(321\) 0 0
\(322\) −128.785 223.061i −0.399952 0.692738i
\(323\) 104.543i 0.323662i
\(324\) 0 0
\(325\) −244.042 −0.750899
\(326\) 15.6579 9.04008i 0.0480303 0.0277303i
\(327\) 0 0
\(328\) 35.5692 61.6077i 0.108443 0.187828i
\(329\) 182.129 + 105.152i 0.553583 + 0.319612i
\(330\) 0 0
\(331\) 49.7269 + 86.1295i 0.150232 + 0.260210i 0.931313 0.364220i \(-0.118665\pi\)
−0.781080 + 0.624430i \(0.785331\pi\)
\(332\) 30.6123i 0.0922057i
\(333\) 0 0
\(334\) 328.708 0.984155
\(335\) 55.3773 31.9721i 0.165305 0.0954391i
\(336\) 0 0
\(337\) 212.631 368.287i 0.630952 1.09284i −0.356406 0.934331i \(-0.615998\pi\)
0.987358 0.158509i \(-0.0506687\pi\)
\(338\) −64.0258 36.9653i −0.189426 0.109365i
\(339\) 0 0
\(340\) −45.0000 77.9423i −0.132353 0.229242i
\(341\) 117.576i 0.344796i
\(342\) 0 0
\(343\) 688.631 2.00767
\(344\) −130.256 + 75.2035i −0.378652 + 0.218615i
\(345\) 0 0
\(346\) −15.2365 + 26.3904i −0.0440362 + 0.0762729i
\(347\) −33.5768 19.3856i −0.0967630 0.0558662i 0.450838 0.892606i \(-0.351125\pi\)
−0.547601 + 0.836740i \(0.684459\pi\)
\(348\) 0 0
\(349\) 325.985 + 564.622i 0.934053 + 1.61783i 0.776314 + 0.630347i \(0.217087\pi\)
0.157739 + 0.987481i \(0.449579\pi\)
\(350\) 395.871i 1.13106i
\(351\) 0 0
\(352\) −83.1384 −0.236189
\(353\) 1.03625 0.598281i 0.00293556 0.00169485i −0.498532 0.866872i \(-0.666127\pi\)
0.501467 + 0.865177i \(0.332794\pi\)
\(354\) 0 0
\(355\) −12.7039 + 22.0038i −0.0357856 + 0.0619825i
\(356\) −136.790 78.9756i −0.384241 0.221842i
\(357\) 0 0
\(358\) 196.392 + 340.161i 0.548582 + 0.950172i
\(359\) 534.573i 1.48906i 0.667589 + 0.744530i \(0.267326\pi\)
−0.667589 + 0.744530i \(0.732674\pi\)
\(360\) 0 0
\(361\) −347.985 −0.963946
\(362\) −213.445 + 123.232i −0.589626 + 0.340421i
\(363\) 0 0
\(364\) −133.885 + 231.895i −0.367815 + 0.637074i
\(365\) 96.2767 + 55.5854i 0.263772 + 0.152289i
\(366\) 0 0
\(367\) −132.354 229.244i −0.360637 0.624642i 0.627429 0.778674i \(-0.284107\pi\)
−0.988066 + 0.154032i \(0.950774\pi\)
\(368\) 58.7878i 0.159749i
\(369\) 0 0
\(370\) −49.5654 −0.133961
\(371\) 907.376 523.874i 2.44576 1.41206i
\(372\) 0 0
\(373\) −35.5077 + 61.5012i −0.0951950 + 0.164883i −0.909690 0.415288i \(-0.863681\pi\)
0.814495 + 0.580171i \(0.197014\pi\)
\(374\) −521.600 301.146i −1.39465 0.805203i
\(375\) 0 0
\(376\) −24.0000 41.5692i −0.0638298 0.110556i
\(377\) 304.080i 0.806579i
\(378\) 0 0
\(379\) −696.785 −1.83848 −0.919241 0.393696i \(-0.871196\pi\)
−0.919241 + 0.393696i \(0.871196\pi\)
\(380\) 9.70371 5.60244i 0.0255361 0.0147433i
\(381\) 0 0
\(382\) −107.569 + 186.315i −0.281595 + 0.487737i
\(383\) 376.986 + 217.653i 0.984297 + 0.568284i 0.903565 0.428452i \(-0.140941\pi\)
0.0807324 + 0.996736i \(0.474274\pi\)
\(384\) 0 0
\(385\) 141.415 + 244.939i 0.367313 + 0.636204i
\(386\) 77.7817i 0.201507i
\(387\) 0 0
\(388\) −182.277 −0.469786
\(389\) 45.9374 26.5220i 0.118091 0.0681799i −0.439791 0.898100i \(-0.644947\pi\)
0.557882 + 0.829920i \(0.311614\pi\)
\(390\) 0 0
\(391\) −212.942 + 368.827i −0.544609 + 0.943291i
\(392\) −256.141 147.883i −0.653422 0.377253i
\(393\) 0 0
\(394\) 94.2558 + 163.256i 0.239228 + 0.414355i
\(395\) 72.5927i 0.183779i
\(396\) 0 0
\(397\) 63.7077 0.160473 0.0802363 0.996776i \(-0.474432\pi\)
0.0802363 + 0.996776i \(0.474432\pi\)
\(398\) 255.802 147.687i 0.642719 0.371074i
\(399\) 0 0
\(400\) −45.1769 + 78.2487i −0.112942 + 0.195622i
\(401\) −544.463 314.346i −1.35776 0.783904i −0.368440 0.929651i \(-0.620108\pi\)
−0.989322 + 0.145747i \(0.953441\pi\)
\(402\) 0 0
\(403\) 43.2154 + 74.8513i 0.107234 + 0.185735i
\(404\) 176.972i 0.438051i
\(405\) 0 0
\(406\) 493.261 1.21493
\(407\) −287.259 + 165.849i −0.705797 + 0.407492i
\(408\) 0 0
\(409\) −267.640 + 463.567i −0.654377 + 1.13341i 0.327672 + 0.944791i \(0.393736\pi\)
−0.982050 + 0.188623i \(0.939597\pi\)
\(410\) 47.8357 + 27.6180i 0.116673 + 0.0673609i
\(411\) 0 0
\(412\) −152.708 264.497i −0.370650 0.641984i
\(413\) 1128.50i 2.73244i
\(414\) 0 0
\(415\) 23.7691 0.0572750
\(416\) 52.9278 30.5579i 0.127230 0.0734565i
\(417\) 0 0
\(418\) 37.4923 64.9385i 0.0896944 0.155355i
\(419\) 333.705 + 192.665i 0.796433 + 0.459821i 0.842222 0.539130i \(-0.181247\pi\)
−0.0457895 + 0.998951i \(0.514580\pi\)
\(420\) 0 0
\(421\) 377.660 + 654.126i 0.897054 + 1.55374i 0.831242 + 0.555910i \(0.187630\pi\)
0.0658113 + 0.997832i \(0.479036\pi\)
\(422\) 123.678i 0.293077i
\(423\) 0 0
\(424\) −239.138 −0.564006
\(425\) −566.868 + 327.282i −1.33381 + 0.770074i
\(426\) 0 0
\(427\) 80.5500 139.517i 0.188642 0.326737i
\(428\) 103.934 + 60.0062i 0.242836 + 0.140201i
\(429\) 0 0
\(430\) −58.3923 101.138i −0.135796 0.235206i
\(431\) 107.709i 0.249904i 0.992163 + 0.124952i \(0.0398777\pi\)
−0.992163 + 0.124952i \(0.960122\pi\)
\(432\) 0 0
\(433\) 655.123 1.51299 0.756493 0.654002i \(-0.226911\pi\)
0.756493 + 0.654002i \(0.226911\pi\)
\(434\) −121.419 + 70.1015i −0.279768 + 0.161524i
\(435\) 0 0
\(436\) −93.9423 + 162.713i −0.215464 + 0.373195i
\(437\) −45.9185 26.5110i −0.105077 0.0606660i
\(438\) 0 0
\(439\) 236.000 + 408.764i 0.537585 + 0.931125i 0.999033 + 0.0439580i \(0.0139968\pi\)
−0.461448 + 0.887167i \(0.652670\pi\)
\(440\) 64.5534i 0.146712i
\(441\) 0 0
\(442\) 442.750 1.00170
\(443\) 728.516 420.609i 1.64451 0.949455i 0.665302 0.746575i \(-0.268303\pi\)
0.979203 0.202881i \(-0.0650304\pi\)
\(444\) 0 0
\(445\) 61.3212 106.211i 0.137800 0.238677i
\(446\) 272.619 + 157.396i 0.611253 + 0.352907i
\(447\) 0 0
\(448\) 49.5692 + 85.8564i 0.110646 + 0.191644i
\(449\) 382.751i 0.852453i 0.904616 + 0.426227i \(0.140157\pi\)
−0.904616 + 0.426227i \(0.859843\pi\)
\(450\) 0 0
\(451\) 369.646 0.819615
\(452\) 153.456 88.5977i 0.339504 0.196013i
\(453\) 0 0
\(454\) −212.354 + 367.808i −0.467740 + 0.810149i
\(455\) −180.056 103.956i −0.395728 0.228474i
\(456\) 0 0
\(457\) −161.852 280.336i −0.354162 0.613426i 0.632812 0.774305i \(-0.281900\pi\)
−0.986974 + 0.160879i \(0.948567\pi\)
\(458\) 325.187i 0.710016i
\(459\) 0 0
\(460\) −45.6462 −0.0992308
\(461\) −555.582 + 320.765i −1.20517 + 0.695803i −0.961700 0.274106i \(-0.911618\pi\)
−0.243467 + 0.969909i \(0.578285\pi\)
\(462\) 0 0
\(463\) −64.7461 + 112.144i −0.139840 + 0.242211i −0.927436 0.373982i \(-0.877992\pi\)
0.787596 + 0.616192i \(0.211326\pi\)
\(464\) −97.4991 56.2911i −0.210127 0.121317i
\(465\) 0 0
\(466\) −82.1980 142.371i −0.176391 0.305518i
\(467\) 672.730i 1.44054i −0.693696 0.720268i \(-0.744019\pi\)
0.693696 0.720268i \(-0.255981\pi\)
\(468\) 0 0
\(469\) −510.277 −1.08801
\(470\) 32.2767 18.6350i 0.0686739 0.0396489i
\(471\) 0 0
\(472\) 128.785 223.061i 0.272849 0.472588i
\(473\) −676.832 390.769i −1.43093 0.826150i
\(474\) 0 0
\(475\) −40.7461 70.5744i −0.0857813 0.148578i
\(476\) 718.203i 1.50883i
\(477\) 0 0
\(478\) −232.477 −0.486353
\(479\) −108.786 + 62.8074i −0.227110 + 0.131122i −0.609238 0.792987i \(-0.708525\pi\)
0.382128 + 0.924109i \(0.375191\pi\)
\(480\) 0 0
\(481\) 121.917 211.167i 0.253466 0.439016i
\(482\) −99.5859 57.4960i −0.206610 0.119286i
\(483\) 0 0
\(484\) −95.0000 164.545i −0.196281 0.339969i
\(485\) 141.530i 0.291815i
\(486\) 0 0
\(487\) −448.631 −0.921213 −0.460606 0.887604i \(-0.652368\pi\)
−0.460606 + 0.887604i \(0.652368\pi\)
\(488\) −31.8434 + 18.3848i −0.0652528 + 0.0376737i
\(489\) 0 0
\(490\) 114.825 198.883i 0.234337 0.405883i
\(491\) 391.579 + 226.078i 0.797514 + 0.460445i 0.842601 0.538538i \(-0.181023\pi\)
−0.0450873 + 0.998983i \(0.514357\pi\)
\(492\) 0 0
\(493\) −407.798 706.327i −0.827176 1.43271i
\(494\) 55.1218i 0.111583i
\(495\) 0 0
\(496\) 32.0000 0.0645161
\(497\) 175.591 101.377i 0.353301 0.203979i
\(498\) 0 0
\(499\) −63.2961 + 109.632i −0.126846 + 0.219704i −0.922453 0.386109i \(-0.873819\pi\)
0.795607 + 0.605813i \(0.207152\pi\)
\(500\) −128.000 73.9008i −0.256000 0.147802i
\(501\) 0 0
\(502\) 280.277 + 485.454i 0.558320 + 0.967039i
\(503\) 296.822i 0.590103i 0.955481 + 0.295051i \(0.0953367\pi\)
−0.955481 + 0.295051i \(0.904663\pi\)
\(504\) 0 0
\(505\) 137.412 0.272102
\(506\) −264.545 + 152.735i −0.522816 + 0.301848i
\(507\) 0 0
\(508\) 78.8231 136.526i 0.155164 0.268751i
\(509\) 567.113 + 327.423i 1.11417 + 0.643267i 0.939907 0.341432i \(-0.110912\pi\)
0.174265 + 0.984699i \(0.444245\pi\)
\(510\) 0 0
\(511\) −443.573 768.291i −0.868049 1.50350i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −304.004 −0.591447
\(515\) 205.371 118.571i 0.398778 0.230235i
\(516\) 0 0
\(517\) 124.708 216.000i 0.241214 0.417795i
\(518\) 342.542 + 197.767i 0.661279 + 0.381789i
\(519\) 0 0
\(520\) 23.7269 + 41.0962i 0.0456286 + 0.0790311i
\(521\) 690.006i 1.32439i −0.749333 0.662193i \(-0.769626\pi\)
0.749333 0.662193i \(-0.230374\pi\)
\(522\) 0 0
\(523\) 616.238 1.17828 0.589138 0.808032i \(-0.299467\pi\)
0.589138 + 0.808032i \(0.299467\pi\)
\(524\) 143.031 82.5792i 0.272961 0.157594i
\(525\) 0 0
\(526\) 224.785 389.338i 0.427347 0.740187i
\(527\) 200.764 + 115.911i 0.380956 + 0.219945i
\(528\) 0 0
\(529\) −156.500 271.066i −0.295841 0.512412i
\(530\) 185.681i 0.350341i
\(531\) 0 0
\(532\) −89.4153 −0.168074
\(533\) −235.325 + 135.865i −0.441511 + 0.254906i
\(534\) 0 0
\(535\) −46.5922 + 80.7001i −0.0870883 + 0.150841i
\(536\) 100.862 + 58.2330i 0.188176 + 0.108644i
\(537\) 0 0
\(538\) 147.452 + 255.394i 0.274074 + 0.474710i
\(539\) 1536.85i 2.85129i
\(540\) 0 0
\(541\) −548.734 −1.01430 −0.507148 0.861859i \(-0.669300\pi\)
−0.507148 + 0.861859i \(0.669300\pi\)
\(542\) −502.004 + 289.832i −0.926207 + 0.534746i
\(543\) 0 0
\(544\) 81.9615 141.962i 0.150665 0.260959i
\(545\) −126.340 72.9422i −0.231816 0.133839i
\(546\) 0 0
\(547\) 409.885 + 709.941i 0.749332 + 1.29788i 0.948143 + 0.317843i \(0.102959\pi\)
−0.198811 + 0.980038i \(0.563708\pi\)
\(548\) 429.480i 0.783723i
\(549\) 0 0
\(550\) −469.492 −0.853622
\(551\) 87.9368 50.7703i 0.159595 0.0921421i
\(552\) 0 0
\(553\) 289.646 501.682i 0.523772 0.907201i
\(554\) 609.207 + 351.726i 1.09965 + 0.634884i
\(555\) 0 0
\(556\) −60.7846 105.282i −0.109325 0.189356i
\(557\) 125.808i 0.225867i −0.993603 0.112934i \(-0.963975\pi\)
0.993603 0.112934i \(-0.0360247\pi\)
\(558\) 0 0
\(559\) 574.515 1.02776
\(560\) −66.6638 + 38.4884i −0.119043 + 0.0687292i
\(561\) 0 0
\(562\) 152.217 263.648i 0.270849 0.469125i
\(563\) −440.625 254.395i −0.782638 0.451856i 0.0547261 0.998501i \(-0.482571\pi\)
−0.837365 + 0.546645i \(0.815905\pi\)
\(564\) 0 0
\(565\) 68.7923 + 119.152i 0.121756 + 0.210888i
\(566\) 419.608i 0.741357i
\(567\) 0 0
\(568\) −46.2769 −0.0814734
\(569\) −83.8832 + 48.4300i −0.147422 + 0.0851143i −0.571897 0.820326i \(-0.693792\pi\)
0.424474 + 0.905440i \(0.360459\pi\)
\(570\) 0 0
\(571\) 227.100 393.349i 0.397723 0.688877i −0.595721 0.803191i \(-0.703134\pi\)
0.993445 + 0.114314i \(0.0364671\pi\)
\(572\) 275.021 + 158.783i 0.480806 + 0.277594i
\(573\) 0 0
\(574\) −220.392 381.731i −0.383959 0.665036i
\(575\) 331.981i 0.577359i
\(576\) 0 0
\(577\) −39.1230 −0.0678041 −0.0339021 0.999425i \(-0.510793\pi\)
−0.0339021 + 0.999425i \(0.510793\pi\)
\(578\) 674.481 389.412i 1.16692 0.673723i
\(579\) 0 0
\(580\) 43.7077 75.7039i 0.0753580 0.130524i
\(581\) −164.266 94.8393i −0.282731 0.163235i
\(582\) 0 0
\(583\) −621.300 1076.12i −1.06569 1.84584i
\(584\) 202.483i 0.346717i
\(585\) 0 0
\(586\) 482.196 0.822860
\(587\) −363.061 + 209.614i −0.618503 + 0.357093i −0.776286 0.630381i \(-0.782899\pi\)
0.157783 + 0.987474i \(0.449565\pi\)
\(588\) 0 0
\(589\) −14.4308 + 24.9948i −0.0245005 + 0.0424361i
\(590\) 173.198 + 99.9957i 0.293555 + 0.169484i
\(591\) 0 0
\(592\) −45.1384 78.1821i −0.0762474 0.132064i
\(593\) 329.210i 0.555160i −0.960703 0.277580i \(-0.910468\pi\)
0.960703 0.277580i \(-0.0895323\pi\)
\(594\) 0 0
\(595\) −557.654 −0.937233
\(596\) 53.0738 30.6422i 0.0890500 0.0514131i
\(597\) 0 0
\(598\) 112.277 194.469i 0.187754 0.325199i
\(599\) −159.556 92.1197i −0.266371 0.153789i 0.360867 0.932617i \(-0.382481\pi\)
−0.627237 + 0.778828i \(0.715814\pi\)
\(600\) 0 0
\(601\) −109.208 189.153i −0.181710 0.314731i 0.760753 0.649041i \(-0.224830\pi\)
−0.942463 + 0.334311i \(0.891497\pi\)
\(602\) 931.945i 1.54808i
\(603\) 0 0
\(604\) −64.0000 −0.105960
\(605\) 127.762 73.7634i 0.211177 0.121923i
\(606\) 0 0
\(607\) −5.13467 + 8.89350i −0.00845909 + 0.0146516i −0.870224 0.492656i \(-0.836026\pi\)
0.861765 + 0.507308i \(0.169359\pi\)
\(608\) 17.6740 + 10.2041i 0.0290691 + 0.0167831i
\(609\) 0 0
\(610\) −14.2750 24.7250i −0.0234016 0.0405328i
\(611\) 183.347i 0.300078i
\(612\) 0 0
\(613\) −180.585 −0.294592 −0.147296 0.989092i \(-0.547057\pi\)
−0.147296 + 0.989092i \(0.547057\pi\)
\(614\) 140.054 80.8604i 0.228101 0.131694i
\(615\) 0 0
\(616\) −257.569 + 446.123i −0.418132 + 0.724226i
\(617\) −784.800 453.104i −1.27196 0.734367i −0.296604 0.955000i \(-0.595854\pi\)
−0.975357 + 0.220633i \(0.929188\pi\)
\(618\) 0 0
\(619\) −380.823 659.605i −0.615223 1.06560i −0.990345 0.138622i \(-0.955733\pi\)
0.375122 0.926975i \(-0.377601\pi\)
\(620\) 24.8466i 0.0400752i
\(621\) 0 0
\(622\) −277.492 −0.446129
\(623\) −847.571 + 489.345i −1.36047 + 0.785466i
\(624\) 0 0
\(625\) −224.975 + 389.668i −0.359960 + 0.623469i
\(626\) −179.698 103.749i −0.287058 0.165733i
\(627\) 0 0
\(628\) 249.708 + 432.506i 0.397624 + 0.688704i
\(629\) 654.006i 1.03975i
\(630\) 0 0
\(631\) 601.108 0.952627 0.476313 0.879276i \(-0.341973\pi\)
0.476313 + 0.879276i \(0.341973\pi\)
\(632\) −114.504 + 66.1090i −0.181177 + 0.104603i
\(633\) 0 0
\(634\) −34.0404 + 58.9596i −0.0536914 + 0.0929963i
\(635\) 106.006 + 61.2027i 0.166939 + 0.0963823i
\(636\) 0 0
\(637\) 564.875 + 978.392i 0.886774 + 1.53594i
\(638\) 584.995i 0.916920i
\(639\) 0 0
\(640\) 17.5692 0.0274519
\(641\) 500.089 288.727i 0.780170 0.450431i −0.0563204 0.998413i \(-0.517937\pi\)
0.836491 + 0.547981i \(0.184604\pi\)
\(642\) 0 0
\(643\) −65.0615 + 112.690i −0.101184 + 0.175256i −0.912173 0.409806i \(-0.865597\pi\)
0.810989 + 0.585062i \(0.198930\pi\)
\(644\) 315.457 + 182.129i 0.489839 + 0.282809i
\(645\) 0 0
\(646\) 73.9230 + 128.038i 0.114432 + 0.198202i
\(647\) 985.467i 1.52313i 0.648087 + 0.761567i \(0.275570\pi\)
−0.648087 + 0.761567i \(0.724430\pi\)
\(648\) 0 0
\(649\) 1338.37 2.06220
\(650\) 298.889 172.564i 0.459830 0.265483i
\(651\) 0 0
\(652\) −12.7846 + 22.1436i −0.0196083 + 0.0339626i
\(653\) 519.895 + 300.161i 0.796163 + 0.459665i 0.842128 0.539278i \(-0.181303\pi\)
−0.0459644 + 0.998943i \(0.514636\pi\)
\(654\) 0 0
\(655\) 64.1192 + 111.058i 0.0978919 + 0.169554i
\(656\) 100.605i 0.153361i
\(657\) 0 0
\(658\) −297.415 −0.451999
\(659\) −13.5004 + 7.79445i −0.0204862 + 0.0118277i −0.510208 0.860051i \(-0.670432\pi\)
0.489722 + 0.871879i \(0.337098\pi\)
\(660\) 0 0
\(661\) −203.915 + 353.192i −0.308495 + 0.534329i −0.978033 0.208448i \(-0.933159\pi\)
0.669538 + 0.742778i \(0.266492\pi\)
\(662\) −121.806 70.3245i −0.183996 0.106230i
\(663\) 0 0
\(664\) 21.6462 + 37.4923i 0.0325997 + 0.0564643i
\(665\) 69.4272i 0.104402i
\(666\) 0 0
\(667\) −413.654 −0.620170
\(668\) −402.583 + 232.431i −0.602669 + 0.347951i
\(669\) 0 0
\(670\) −45.2154 + 78.3154i −0.0674857 + 0.116889i
\(671\) −165.463 95.5301i −0.246592 0.142370i
\(672\) 0 0
\(673\) 237.285 + 410.989i 0.352577 + 0.610682i 0.986700 0.162550i \(-0.0519720\pi\)
−0.634123 + 0.773232i \(0.718639\pi\)
\(674\) 601.410i 0.892300i
\(675\) 0 0
\(676\) 104.554 0.154665
\(677\) 244.346 141.073i 0.360925 0.208380i −0.308562 0.951204i \(-0.599848\pi\)
0.669486 + 0.742824i \(0.266514\pi\)
\(678\) 0 0
\(679\) −564.708 + 978.102i −0.831675 + 1.44050i
\(680\) 110.227 + 63.6396i 0.162099 + 0.0935877i
\(681\) 0 0
\(682\) 83.1384 + 144.000i 0.121904 + 0.211144i
\(683\) 1085.46i 1.58926i 0.607095 + 0.794629i \(0.292335\pi\)
−0.607095 + 0.794629i \(0.707665\pi\)
\(684\) 0 0
\(685\) 333.473 0.486822
\(686\) −843.397 + 486.935i −1.22944 + 0.709818i
\(687\) 0 0
\(688\) 106.354 184.210i 0.154584 0.267747i
\(689\) 791.067 + 456.723i 1.14814 + 0.662878i
\(690\) 0 0
\(691\) 503.888 + 872.760i 0.729216 + 1.26304i 0.957215 + 0.289378i \(0.0934484\pi\)
−0.227999 + 0.973661i \(0.573218\pi\)
\(692\) 43.0954i 0.0622765i
\(693\) 0 0
\(694\) 54.8306 0.0790067
\(695\) 81.7470 47.1966i 0.117622 0.0679088i
\(696\) 0 0
\(697\) −364.413 + 631.183i −0.522831 + 0.905570i
\(698\) −798.496 461.012i −1.14398 0.660475i
\(699\) 0 0
\(700\) 279.923 + 484.841i 0.399890 + 0.692630i
\(701\) 216.731i 0.309174i 0.987979 + 0.154587i \(0.0494047\pi\)
−0.987979 + 0.154587i \(0.950595\pi\)
\(702\) 0 0
\(703\) 81.4229 0.115822
\(704\) 101.823 58.7878i 0.144635 0.0835053i
\(705\) 0 0
\(706\) −0.846097 + 1.46548i −0.00119844 + 0.00207575i
\(707\) −949.639 548.274i −1.34319 0.775494i
\(708\) 0 0
\(709\) −497.248 861.259i −0.701337 1.21475i −0.967997 0.250961i \(-0.919253\pi\)
0.266660 0.963791i \(-0.414080\pi\)
\(710\) 35.9320i 0.0506085i
\(711\) 0 0
\(712\) 223.377 0.313732
\(713\) 101.823 58.7878i 0.142810 0.0824513i
\(714\) 0 0
\(715\) −123.289 + 213.542i −0.172432 + 0.298660i
\(716\) −481.061 277.741i −0.671873 0.387906i
\(717\) 0 0
\(718\) −378.000 654.715i −0.526462 0.911860i
\(719\) 340.912i 0.474148i −0.971492 0.237074i \(-0.923812\pi\)
0.971492 0.237074i \(-0.0761884\pi\)
\(720\) 0 0
\(721\) −1892.40 −2.62469
\(722\) 426.192 246.062i 0.590294 0.340806i
\(723\) 0 0
\(724\) 174.277 301.856i 0.240714 0.416929i
\(725\) −550.589 317.883i −0.759433 0.438459i
\(726\) 0 0
\(727\) 485.888 + 841.583i 0.668347 + 1.15761i 0.978366 + 0.206881i \(0.0663312\pi\)
−0.310019 + 0.950730i \(0.600335\pi\)
\(728\) 378.683i 0.520169i
\(729\) 0 0
\(730\) −157.219 −0.215369
\(731\) 1334.50 770.474i 1.82558 1.05400i
\(732\) 0 0
\(733\) −114.585 + 198.466i −0.156323 + 0.270759i −0.933540 0.358473i \(-0.883297\pi\)
0.777217 + 0.629233i \(0.216631\pi\)
\(734\) 324.199 + 187.177i 0.441688 + 0.255009i
\(735\) 0 0
\(736\) −41.5692 72.0000i −0.0564799 0.0978261i
\(737\) 605.175i 0.821132i
\(738\) 0 0
\(739\) −629.892 −0.852357 −0.426179 0.904639i \(-0.640141\pi\)
−0.426179 + 0.904639i \(0.640141\pi\)
\(740\) 60.7050 35.0481i 0.0820338 0.0473622i
\(741\) 0 0
\(742\) −740.869 + 1283.22i −0.998476 + 1.72941i
\(743\) 162.825 + 94.0071i 0.219145 + 0.126524i 0.605554 0.795804i \(-0.292951\pi\)
−0.386409 + 0.922327i \(0.626285\pi\)
\(744\) 0 0
\(745\) 23.7923 + 41.2095i 0.0319360 + 0.0553148i
\(746\) 100.431i 0.134626i
\(747\) 0 0
\(748\) 851.769 1.13873
\(749\) 643.989 371.807i 0.859799 0.496405i
\(750\) 0 0
\(751\) 693.335 1200.89i 0.923215 1.59906i 0.128808 0.991670i \(-0.458885\pi\)
0.794407 0.607386i \(-0.207782\pi\)
\(752\) 58.7878 + 33.9411i 0.0781752 + 0.0451345i
\(753\) 0 0
\(754\) 215.017 + 372.421i 0.285169 + 0.493927i
\(755\) 49.6933i 0.0658189i
\(756\) 0 0
\(757\) 1222.12 1.61443 0.807215 0.590258i \(-0.200974\pi\)
0.807215 + 0.590258i \(0.200974\pi\)
\(758\) 853.383 492.701i 1.12584 0.650001i
\(759\) 0 0
\(760\) −7.92305 + 13.7231i −0.0104251 + 0.0180567i
\(761\) 489.896 + 282.841i 0.643752 + 0.371671i 0.786059 0.618152i \(-0.212118\pi\)
−0.142306 + 0.989823i \(0.545452\pi\)
\(762\) 0 0
\(763\) 582.081 + 1008.19i 0.762884 + 1.32135i
\(764\) 304.252i 0.398235i
\(765\) 0 0
\(766\) −615.615 −0.803675
\(767\) −852.036 + 491.923i −1.11087 + 0.641360i
\(768\) 0 0
\(769\) 299.408 518.589i 0.389347 0.674368i −0.603015 0.797730i \(-0.706034\pi\)
0.992362 + 0.123362i \(0.0393675\pi\)
\(770\) −346.395 199.991i −0.449864 0.259729i
\(771\) 0 0
\(772\) −55.0000 95.2628i −0.0712435 0.123397i
\(773\) 446.970i 0.578228i 0.957295 + 0.289114i \(0.0933607\pi\)
−0.957295 + 0.289114i \(0.906639\pi\)
\(774\) 0 0
\(775\) 180.708 0.233171
\(776\) 223.243 128.889i 0.287684 0.166094i
\(777\) 0 0
\(778\) −37.5077 + 64.9653i −0.0482105 + 0.0835030i
\(779\) −78.5814 45.3690i −0.100875 0.0582400i
\(780\) 0 0
\(781\) −120.231 208.246i −0.153945 0.266640i
\(782\) 602.292i 0.770194i
\(783\) 0 0
\(784\) 418.277 0.533516
\(785\) −335.823 + 193.887i −0.427800 + 0.246990i
\(786\) 0 0
\(787\) 477.650 827.314i 0.606925 1.05122i −0.384819 0.922992i \(-0.625736\pi\)
0.991744 0.128233i \(-0.0409305\pi\)
\(788\) −230.878 133.298i −0.292993 0.169160i
\(789\) 0 0
\(790\) −51.3308 88.9076i −0.0649757 0.112541i
\(791\) 1097.93i 1.38803i
\(792\) 0 0
\(793\) 140.450 0.177112
\(794\) −78.0256 + 45.0481i −0.0982691 + 0.0567357i
\(795\) 0 0
\(796\) −208.862 + 361.759i −0.262389 + 0.454471i
\(797\) −192.141 110.933i −0.241081 0.139188i 0.374593 0.927189i \(-0.377783\pi\)
−0.615673 + 0.788002i \(0.711116\pi\)
\(798\) 0 0
\(799\) 245.885 + 425.885i 0.307740 + 0.533022i
\(800\) 127.780i 0.159725i
\(801\) 0 0
\(802\) 889.104 1.10861
\(803\) −911.172 + 526.066i −1.13471 + 0.655125i
\(804\) 0 0
\(805\) −141.415 + 244.939i −0.175671 + 0.304271i
\(806\) −105.856 61.1158i −0.131335 0.0758260i
\(807\) 0 0
\(808\) 125.138 + 216.746i 0.154874 + 0.268250i
\(809\) 1180.17i 1.45881i 0.684084 + 0.729403i \(0.260202\pi\)
−0.684084 + 0.729403i \(0.739798\pi\)
\(810\) 0 0
\(811\) −627.307 −0.773499 −0.386749 0.922185i \(-0.626402\pi\)
−0.386749 + 0.922185i \(0.626402\pi\)
\(812\) −604.119 + 348.788i −0.743989 + 0.429542i
\(813\) 0 0
\(814\) 234.546 406.246i 0.288140 0.499074i
\(815\) −17.1936 9.92670i −0.0210964 0.0121800i
\(816\) 0 0
\(817\) 95.9230 + 166.144i 0.117409 + 0.203358i
\(818\) 757.001i 0.925429i
\(819\) 0 0
\(820\) −78.1154 −0.0952627
\(821\) 338.512 195.440i 0.412317 0.238051i −0.279468 0.960155i \(-0.590158\pi\)
0.691785 + 0.722104i \(0.256825\pi\)
\(822\) 0 0
\(823\) −163.100 + 282.497i −0.198177 + 0.343253i −0.947937 0.318456i \(-0.896836\pi\)
0.749760 + 0.661710i \(0.230169\pi\)
\(824\) 374.056 + 215.961i 0.453951 + 0.262089i
\(825\) 0 0
\(826\) −797.969 1382.12i −0.966064 1.67327i
\(827\) 1103.70i 1.33458i −0.744799 0.667289i \(-0.767455\pi\)
0.744799 0.667289i \(-0.232545\pi\)
\(828\) 0 0
\(829\) −441.569 −0.532653 −0.266326 0.963883i \(-0.585810\pi\)
−0.266326 + 0.963883i \(0.585810\pi\)
\(830\) −29.1111 + 16.8073i −0.0350737 + 0.0202498i
\(831\) 0 0
\(832\) −43.2154 + 74.8513i −0.0519416 + 0.0899654i
\(833\) 2624.22 + 1515.09i 3.15032 + 1.81884i
\(834\) 0 0
\(835\) −180.473 312.588i −0.216135 0.374357i
\(836\) 106.044i 0.126847i
\(837\) 0 0
\(838\) −544.939 −0.650285
\(839\) 436.443 251.980i 0.520194 0.300334i −0.216820 0.976212i \(-0.569569\pi\)
0.737014 + 0.675878i \(0.236235\pi\)
\(840\) 0 0
\(841\) −24.4134 + 42.2853i −0.0290290 + 0.0502798i
\(842\) −925.073 534.091i −1.09866 0.634313i
\(843\) 0 0
\(844\) −87.4538 151.474i −0.103618 0.179472i
\(845\) 81.1815i 0.0960728i
\(846\) 0 0
\(847\) −1177.27 −1.38993
\(848\) 292.884 169.096i 0.345382 0.199406i
\(849\) 0 0
\(850\) 462.846 801.673i 0.544525 0.943145i
\(851\) −287.259 165.849i −0.337555 0.194887i
\(852\) 0 0
\(853\) −472.415 818.247i −0.553828 0.959258i −0.997994 0.0633136i \(-0.979833\pi\)
0.444166 0.895945i \(-0.353500\pi\)
\(854\) 227.830i 0.266780i
\(855\) 0 0
\(856\) −169.723 −0.198275
\(857\) 642.051 370.689i 0.749185 0.432542i −0.0762145 0.997091i \(-0.524283\pi\)
0.825399 + 0.564549i \(0.190950\pi\)
\(858\) 0 0
\(859\) 680.631 1178.89i 0.792352 1.37239i −0.132154 0.991229i \(-0.542189\pi\)
0.924507 0.381165i \(-0.124477\pi\)
\(860\) 143.031 + 82.5792i 0.166316 + 0.0960223i
\(861\) 0 0
\(862\) −76.1615 131.916i −0.0883544 0.153034i
\(863\) 805.003i 0.932796i 0.884575 + 0.466398i \(0.154449\pi\)
−0.884575 + 0.466398i \(0.845551\pi\)
\(864\) 0 0
\(865\) 33.4617 0.0386841
\(866\) −802.359 + 463.242i −0.926511 + 0.534921i
\(867\) 0 0
\(868\) 99.1384 171.713i 0.114215 0.197826i
\(869\) −594.981 343.513i −0.684673 0.395296i
\(870\) 0 0
\(871\) −222.435 385.268i −0.255378 0.442328i
\(872\) 265.709i 0.304712i
\(873\) 0 0
\(874\) 74.9845 0.0857947
\(875\) −793.107 + 457.901i −0.906408 + 0.523315i
\(876\) 0 0
\(877\) −21.3461 + 36.9725i −0.0243399 + 0.0421580i −0.877939 0.478773i \(-0.841082\pi\)
0.853599 + 0.520931i \(0.174415\pi\)
\(878\) −578.080 333.754i −0.658405 0.380130i
\(879\) 0 0
\(880\) 45.6462 + 79.0615i 0.0518706 + 0.0898426i
\(881\) 264.567i 0.300303i 0.988663 + 0.150151i \(0.0479761\pi\)
−0.988663 + 0.150151i \(0.952024\pi\)
\(882\) 0 0
\(883\) −393.338 −0.445457 −0.222728 0.974881i \(-0.571496\pi\)
−0.222728 + 0.974881i \(0.571496\pi\)
\(884\) −542.256 + 313.071i −0.613411 + 0.354153i
\(885\) 0 0
\(886\) −594.831 + 1030.28i −0.671366 + 1.16284i
\(887\) 1340.65 + 774.026i 1.51145 + 0.872634i 0.999911 + 0.0133715i \(0.00425642\pi\)
0.511535 + 0.859262i \(0.329077\pi\)
\(888\) 0 0
\(889\) −488.400 845.933i −0.549381 0.951556i
\(890\) 173.443i 0.194879i
\(891\) 0 0
\(892\) −445.184 −0.499086
\(893\) −53.0221 + 30.6123i −0.0593752 + 0.0342803i
\(894\) 0 0
\(895\) 215.654 373.523i 0.240954 0.417344i
\(896\) −121.419 70.1015i −0.135513 0.0782382i
\(897\) 0 0
\(898\) −270.646 468.773i −0.301388 0.522019i
\(899\) 225.165i 0.250461i
\(900\) 0 0
\(901\) 2450.02 2.71922
\(902\) −452.722 + 261.379i −0.501909 + 0.289778i
\(903\) 0 0
\(904\) −125.296 + 217.019i −0.138602 + 0.240066i
\(905\) 234.379 + 135.319i 0.258982 + 0.149523i
\(906\) 0 0
\(907\) −688.746 1192.94i −0.759367 1.31526i −0.943174 0.332300i \(-0.892175\pi\)
0.183806 0.982962i \(-0.441158\pi\)
\(908\) 600.627i 0.661484i
\(909\) 0 0
\(910\) 294.031 0.323111
\(911\) −1217.70 + 703.038i −1.33666 + 0.771721i −0.986311 0.164898i \(-0.947271\pi\)
−0.350350 + 0.936619i \(0.613937\pi\)
\(912\) 0 0
\(913\) −112.477 + 194.816i −0.123195 + 0.213380i
\(914\) 396.455 + 228.893i 0.433758 + 0.250430i
\(915\) 0 0
\(916\) 229.942 + 398.272i 0.251029 + 0.434794i
\(917\) 1023.35i 1.11597i
\(918\) 0 0
\(919\) 479.992 0.522299 0.261149 0.965298i \(-0.415899\pi\)
0.261149 + 0.965298i \(0.415899\pi\)
\(920\) 55.9049 32.2767i 0.0607662 0.0350834i
\(921\) 0 0
\(922\) 453.631 785.711i 0.492007 0.852182i
\(923\) 153.083 + 88.3827i 0.165854 + 0.0957560i
\(924\) 0 0
\(925\) −254.902 441.503i −0.275570 0.477301i
\(926\) 183.130i 0.197764i
\(927\) 0 0
\(928\) 159.215 0.171568
\(929\) −587.800 + 339.366i −0.632723 + 0.365303i −0.781806 0.623522i \(-0.785701\pi\)
0.149083 + 0.988825i \(0.452368\pi\)
\(930\) 0 0
\(931\) −188.627 + 326.711i −0.202607 + 0.350925i
\(932\) 201.343 + 116.246i 0.216034 + 0.124727i
\(933\) 0 0
\(934\) 475.692 + 823.923i 0.509306 + 0.882145i
\(935\) 661.362i 0.707339i
\(936\) 0 0
\(937\) −666.600 −0.711420 −0.355710 0.934596i \(-0.615761\pi\)
−0.355710 + 0.934596i \(0.615761\pi\)
\(938\) 624.959 360.820i 0.666268 0.384670i
\(939\) 0 0
\(940\) −26.3538 + 45.6462i −0.0280360 + 0.0485598i
\(941\) 1037.46 + 598.978i 1.10251 + 0.636533i 0.936879 0.349655i \(-0.113701\pi\)
0.165629 + 0.986188i \(0.447034\pi\)
\(942\) 0 0
\(943\) 184.823 + 320.123i 0.195995 + 0.339473i
\(944\) 364.258i 0.385866i
\(945\) 0 0
\(946\) 1105.26 1.16835
\(947\) −393.793 + 227.357i −0.415832 + 0.240081i −0.693293 0.720656i \(-0.743841\pi\)
0.277460 + 0.960737i \(0.410507\pi\)
\(948\) 0 0
\(949\) 386.715 669.811i 0.407498 0.705807i
\(950\) 99.8072 + 57.6237i 0.105060 + 0.0606566i
\(951\) 0 0
\(952\) −507.846 879.615i −0.533452 0.923966i
\(953\) 1060.16i 1.11245i −0.831033 0.556224i \(-0.812250\pi\)
0.831033 0.556224i \(-0.187750\pi\)
\(954\) 0 0
\(955\) 236.238 0.247370
\(956\) 284.725 164.386i 0.297829 0.171952i
\(957\) 0 0
\(958\) 88.8231 153.846i 0.0927172 0.160591i
\(959\) −2304.60 1330.56i −2.40313 1.38745i
\(960\) 0 0
\(961\) 448.500 + 776.825i 0.466701 + 0.808350i
\(962\) 344.834i 0.358455i
\(963\) 0 0
\(964\) 162.623 0.168696
\(965\) 73.9675 42.7051i 0.0766502 0.0442540i
\(966\) 0 0
\(967\) 827.657 1433.54i 0.855902 1.48247i −0.0199032 0.999802i \(-0.506336\pi\)
0.875805 0.482664i \(-0.160331\pi\)
\(968\) 232.702 + 134.350i 0.240394 + 0.138792i
\(969\) 0 0
\(970\) 100.077 + 173.338i 0.103172 + 0.178699i
\(971\) 797.780i 0.821606i 0.911724 + 0.410803i \(0.134752\pi\)
−0.911724 + 0.410803i \(0.865248\pi\)
\(972\) 0 0
\(973\) −753.261 −0.774164
\(974\) 549.458 317.230i 0.564125 0.325698i
\(975\) 0 0
\(976\) 26.0000 45.0333i 0.0266393 0.0461407i
\(977\) −270.574 156.216i −0.276944 0.159894i 0.355095 0.934830i \(-0.384448\pi\)
−0.632039 + 0.774936i \(0.717782\pi\)
\(978\) 0 0
\(979\) 580.350 + 1005.20i 0.592799 + 1.02676i
\(980\) 324.774i 0.331402i
\(981\) 0 0
\(982\) −639.446 −0.651167
\(983\) −320.553 + 185.072i −0.326097 + 0.188272i −0.654107 0.756402i \(-0.726955\pi\)
0.328010 + 0.944674i \(0.393622\pi\)
\(984\) 0 0
\(985\) 103.500 179.267i 0.105076 0.181997i
\(986\) 998.897 + 576.713i 1.01308 + 0.584902i
\(987\) 0 0
\(988\) −38.9770 67.5101i −0.0394504 0.0683301i
\(989\) 781.538i 0.790230i
\(990\) 0 0
\(991\) −1324.48 −1.33651 −0.668256 0.743931i \(-0.732959\pi\)
−0.668256 + 0.743931i \(0.732959\pi\)
\(992\) −39.1918 + 22.6274i −0.0395079 + 0.0228099i
\(993\) 0 0
\(994\) −143.369 + 248.323i −0.144235 + 0.249822i
\(995\) −280.890 162.172i −0.282302 0.162987i
\(996\) 0 0
\(997\) −439.623 761.449i −0.440946 0.763741i 0.556814 0.830637i \(-0.312024\pi\)
−0.997760 + 0.0668966i \(0.978690\pi\)
\(998\) 179.028i 0.179387i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.3.d.c.53.2 8
3.2 odd 2 inner 162.3.d.c.53.3 8
4.3 odd 2 1296.3.q.o.1025.3 8
9.2 odd 6 inner 162.3.d.c.107.2 8
9.4 even 3 162.3.b.b.161.1 4
9.5 odd 6 162.3.b.b.161.4 yes 4
9.7 even 3 inner 162.3.d.c.107.3 8
12.11 even 2 1296.3.q.o.1025.2 8
36.7 odd 6 1296.3.q.o.593.2 8
36.11 even 6 1296.3.q.o.593.3 8
36.23 even 6 1296.3.e.d.161.3 4
36.31 odd 6 1296.3.e.d.161.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.3.b.b.161.1 4 9.4 even 3
162.3.b.b.161.4 yes 4 9.5 odd 6
162.3.d.c.53.2 8 1.1 even 1 trivial
162.3.d.c.53.3 8 3.2 odd 2 inner
162.3.d.c.107.2 8 9.2 odd 6 inner
162.3.d.c.107.3 8 9.7 even 3 inner
1296.3.e.d.161.2 4 36.31 odd 6
1296.3.e.d.161.3 4 36.23 even 6
1296.3.q.o.593.2 8 36.7 odd 6
1296.3.q.o.593.3 8 36.11 even 6
1296.3.q.o.1025.2 8 12.11 even 2
1296.3.q.o.1025.3 8 4.3 odd 2